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Abstract—Network neutrality has recently been the topic of an
important debate, in both the telecommunication and political
worlds, because of its potential impact in every-day life. While
there has been many studies discussing the advantages and
drawbacks of neutrality, there is no game-theoretical study
dealing with the observable situation of competitive ISPs in front
of a (quasi-)monopolistic content provider (CP), while it is a
complaint from ISPs, and an illustration of the non-neutrality
need. This paper provides a first game-theoretical analysis of
relations between two competitive ISPs and a single CP, in the
form of a four-level game, played at different time scales. This
game is analyzed by backward induction. We show that while
the complaint from ISPs is relevant with a such a competitive
model, inserting side payments does not solve the problem.

I. INTRODUCTION

This paper deals with the network neutrality debate. The

possibility of introducing non-neutrality comes from the in-

creasing traffic asymmetry between Internet Service Providers

(ISPs), mainly due to some prominent and resource consum-

ing content providers (CPs) which are usually connected to

a single ISP. The typical example is YouTube (owned by

Google), accessed by all users while hosted by a single Tier

1 ISP, and whose traffic now constitutes a non-negligible

part of the whole Internet traffic. For this reason, there has

been a surge of protest among ISPs, complaining that the

current Internet business model where ISPs charge both end-

users and content providers directly connected to them, and

have public peering or transit agreements with other ISPs,

is not relevant anymore, because they should charge content

providers that are associated with other ISPs. This was first

advocated at the end of 2005, by Ed Whitacre (CEO of

AT&T) [1]. The underlying concern is that investment is

made by ISPs but content providers get an important part of

the dividends. The revenue arising from online advertising

(meaning showing graphical ads on regular web pages) is

estimated at approximately a $24 billion in 2009 [2] while

textual ads on search pages has led to a combined revenue of

$8.5 billion in 2007 [3], those figures increasing every year.

Meanwhile, transit prices - which constitutes the main source

of revenues for transit ISPs - are decreasing. ISPs argue that

there is no sufficient incentive for them to continue to invest

on the network infrastructures if most benefits go to content

providers. The threat is to lower the quality of service of

CPs that do not pay any fee to them, or even to block their

traffic. This possibility has led to protests from CPs and user

associations, complaining that this might impact the network

development and is an impingement of freedom of speech [1].

This has launched a debate, essentially at the law and policy

makers level, to decide whether the Internet should be neutral,

i.e. all packets should receive equal treatments in terms of

price and service. In the US, the Federal Trade Commission

(FTC) released in 2007 a report not supporting neutrality

constraints, increasing the debate at the political level. This

debate is also active in Europe and in France, as illustrated

by the open consultation on network neutrality launched in

2010. For instance, the French regulation authority, ARCEP,

has published in its response a proposal intending to define

how net neutrality could be implemented [4], [5].

Our goal here is to provide a mathematical analysis of

the advantages and drawbacks of network neutrality. This

type of work has recently received an increasing attention

in the literature. The idea is to investigate the output of the

interactions between selfish actors that are end users, CPs and

ISPs, using the framework of non-cooperative game theory

[6], [7].

Let us briefly describe here, non exhaustively, some impor-

tant existing works in this direction. In [8], [9], the authors

propose to share the revenue among providers using the

Shapley value, the only mechanism that satisfies a set of

axioms representing a sense of fairness; in this case CPs

participate to the network access cost. The work in [10]

analyzes how neutrality or non-neutrality affects provider

investment incentives, network quality and user prices. A

similar comparison is made in [11] between a two-sided

pricing where ISPs are allowed to charge CPs, and one-sided

pricing where such side-payments are not allowed. In each

case, at the equilibrium of the game, the levels of investment

in content and architecture are determined. The paper gives

conditions on the ratio between parameters characterizing

advertising rates and end-user price sensitivity, under which

a non-neutral network outperforms a neutral one in terms of

social welfare. On the other hand, [12] investigates the case

where ISPs negotiate joint investment contracts with a CP in

order to enhance the quality of service and increase industry

profits. It is found that an unregulated regime leads to higher



quality investments, but that ISPs have an incentive to degrade

content quality. The paper [13] studies the implications of non-

neutral behaviors, taking into account advertising revenues and

considering both cooperative and non-cooperative scenarios.

Finally, in [14], a game-theoretic model is considered with

a single CP, a single ISP, a (consumers’) demand function

that depends on price and quality of service, and involving

advertisement and network investment components.

In those works, there is in general a single ISP, and one

or several CPs. Though, in practice, we often have ISPs in

competition for customers, while for many services, the CPs

are in a quasi monopole, a characteristic ISPs complain about.

The typical example is YouTube. We propose to specifically

address this issue in this paper. Remark that in addition to

[11], considering competitive ISPs has been proposed in [15],

but in their model, competition is over consumers, quality and

prices for heterogenous CPs, none of those works consider a

monopolistic CP as can be encountered for some applications.

The model we consider is inspired from [13], from which

we borrow the basic assumptions, but to which we add the

competition between ISPs. We analyze how this realistic

assumption impacts the results of [13]. We propose a multi-

level game where decisions are taken at different time scales.

The solutions of the games at the largest time scales, played

first, are determined using backward induction, meaning that

players anticipate the impact on, and the resulting solution

of, the games played later on at smaller time scales. We show

that (Bertrand) competition among ISPs leads to zero revenues

for them while the CP gets some, but that introducing side

payments does not solve the problem.

The paper is organized as follows. Section II presents the

basic assumptions of the model we are going to consider,

the different levels of game and the mathematical description

of the investigated comparison between the neutral and the

non-neutral regimes. The next sections present the various

game levels: Section III explains how users choose their ISP,

depending on the price they have to pay; then we describe in

Section IV how at a higher level the CP, anticipating decisions

of end users, chooses the content price. At an even higher level,

still by backward induction, ISPs play a game on the access

charge for end users; this Bertrand competition is described

in Section V. We then describe the game at the highest level

on the economic relationships between the ISPs and the CP,

by determining the side payments of the CP to the ISPs in

Section VI. We determine what happens if those prices are

fixed by ISPs, based on a game; we also look at the case when

they are decided by the CP or a regulator (maximizing social

welfare for instance). Section VII concludes by discussing

the impact and relevance of side payments on the providers’

revenues. It shows that the initial idea to add revenue to the

ISPs is not validated, and therefore that non-neutrality (by

means of side payments) does not help, an argument in favor of

neutrality sympathizers. We also give in this section directions

for future research.

II. MODEL

We consider a single CP, whose parameters will be indexed

by 1, and two ISPs, named (and indexed by) A and B.

The access price per unit of volume charged to users by the

providers is p1 for the CP, and pA and pB for the two ISPs. In

order to study non-neutrality, we also introduce side payments

qA and qB representing the per unit of volume prices that the

CP has to pay to A and B, respectively. Remark here that

we authorize pA, pB , qA and qB to potentially be negative,

meaning that in that case, it is the ISPs who will actually pay

the end users or the CP. The charges imposed by actors to other

players are summarized in Figure 1, the arrows indicating the

cash flows.

End-users

ISP A

pA

ISP BpB

CP 1

qA

qB

p1

Fig. 1. Charging interactions between players

End users on the other hand are assumed infinitesimal, their

total amount of traffic being modeled by a demand function,

assumed to be linear and depending on the total price p̄ that

has to be paid to access the network:

D := [D0 − dp̄]+ (1)

where D0 is the total demand if the service were free, d is the

sensitivity to the price, and x+ = max(0, x) for all x ∈ R. A

clearer characterization of the total price p̄ will be provided

in the next section, but when going through ISP A or B, the

total price is respectively

p̄A = pA + p1

or p̄B = pB + p1.

The utilities (revenues) of the ISPs are given by the total

amount of volume that goes through them times the total

amount they get per unit:

UA = DA · (pA + qA)

UB = DB · (pB + qB).

The utility of the CP in this model is the sum of revenues

gained by traffic flowing through A and through B (we do

not look at advertisement revenues here, but it could be added

without loss of generality by adding a per unit of volume

revenue). It is thus given by

U1 = DA(p1 − qA) +DB(p1 − qB).

The decision variables are the prices p1, pA, pB , qA, qB , im-

pacting end users (demand), as well as revenues of providers.



Those variables are decided at different time scales or levels,

that can be described as follows.

1) At the largest time scale, the side payments qA and qB
are decided. In the neutral case, they are either fixed

to 0, or determined as a common value. They can be

different in the non-neutral case, and can be determined

either by the ISPs (in a game), the CP, or a regulator. All

those options will be investigated. Those determinations

will be obtained anticipating the solution of the games

below whatever the values of qA and qB (the so-called

backward induction).

2) At a smaller time scale, for fixed values of qA and

qB , the ISPs fix their prices pA and pB during a non-

cooperative game to attract customers and maximize

their revenues. Here again, the decisions are made

anticipating the solutions at lower levels.

3) At an even smaller time scale, the CP sets the price p1.

4) Finally, for those fixed values of p1, pA, pB , qA, qB ,

the users choose their ISP (if not too expensive). This

defines the user equilibrium.

All those interacting levels are now solved by backward

induction, from the smallest time scale to the largest one.

III. USER EQUILIBRIUM

In order to define the user equilibrium, we assume that

users choose the cheapest way to access content, i.e., that they

choose the network with the smallest total price. According to

Wardrop’s principle [6], if p̄A > p̄B , then a user connected to

A would prefer to change ISPs, and reciprocally, if p̄A > p̄B
then a user connected to B would switch to A. We therefore

have

p̄A > p̄B ⇒ DA = 0 (2)

p̄B > p̄A ⇒ DB = 0. (3)

We define

p̄ := min(p̄A, p̄B)

as the total price via an ISP with strictly positive demand, i.e.,

the total price experienced by end-users.

The total demand D can be decomposed into demand DA

at A and DB at B, such that

D = DA +DB .

We have DA = D = D0 − dp̄ (respectively DB = D) if

p̄A > p̄B (respectively p̄B > p̄A), but in the case when p̄A =
p̄B = p̄ (i.e., pA = pB), we assume that there is a coefficient

α ∈ [0, 1] such that DA = αD = α(D0 − dp̄) and DB =
(1 − α)D = (1 − α)(D0 − dp̄). This parameter α represents

the proportion of population going with A because of some

non-monetary preferences like the ISPs relative reputations.

We end up with the following set of equations to define the

user equilibrium:














































p̄A = pA + p1
p̄B = pB + p1
p̄ = min(p̄A, p̄B)
D = DA +DB

D = [D0 − dp̄]+

p̄A > p̄B ⇒ DA = 0
p̄B > p̄A ⇒ DB = 0
p̄B = p̄A ⇒ DA = αD, DB = (1− α)D.

We have the following property:

Proposition 1. For each (pA, pB), there exists a unique user

equilibrium defining DA and DB .

Proof: The proof of this proposition is obvious from the

above equations: if pA > pB , DA = 0, p̄ = pB+p1 and DB =
D0 − dp̄; a symmetric characterisation is obtained pB > pA;

while if pA = pB , p̄ = p̄A = p̄B , D = [D0−dp̄]+, DA = αD
and DB = (1− α)D.

IV. CONTENT PROVIDER PRICE DETERMINATION

The CP aims at maximizing his revenue U1, for fixed

values of pA, pB , qA, qB , making use of what the resulting

user equilibrium will be. The problem is therefore maxp1
U1

with

U1 =















[D0 − d(pA + p1)]
+(p1 − qA) if pA < pB

[D0 − d(p+ p1)]
+

×(p1 − αqA − (1− α)qB) if pA = pB = p

[D0 − d(pB + p1)]
+
(p1 − qB) if pA > pB ,

(4)

where we have plugged the user equilibrium as defined in the

proof of Proposition 1 into the expression of U1.

Differentiating with respect to p1 in all three cases, we get

for prices such that min(pA, pB) + p1 < D0/d,

∂U1

∂p1
=















D0 − d(pA + p1)− d(p1 − qA) if pA < pB
D0 − d(p+ p1)

−d(p1 − αqA − (1− α)qB) if pA = pB = p
D0 − d(pB + p1)− d(p1 − qB) if pA > pB ,

and the maximum of U1 is therefore obtained at

p∗1 =















1

2

(

D0

d
+ qA − pA

)

if pA < pB
1

2

(

D0

d
+ α(qA − p)

+(1− α)(qB − p)) if pA = pB = p
1

2

(

D0

d
+ qB − pB

)

if pA > pB .

(5)

Note that the following condition must be met for this price

to lead to positive demands:






D0

d
> pA + qA if pA < pB

D0

d
> p+ αqA + (1− α)qB if pA = pB = p

D0

d
> pB + qB if pA > pB .

(6)

That same condition also ensures that the CP makes a strictly

positive profit.

Not surprisingly, the price p∗1 increases when the demand

sensitivity d decreases and when the side payments increase.



V. PRICING GAME BETWEEN ISPS: BERTRAND

COMPETITION

Before the users decide which ISP to join and the CP
chooses p1, the ISPs play a pricing game, making use of what
the CP and users decisions would be. In order to determine the
solution of this game, we need to express the utility functions
of the ISPs. Replacing in UA and UB the expression p1 by
p∗1 in (5), and using the user equilibrium in the proof of
Proposition 1, we get

UA =



















1

2
[D0 − (pA + qA)d](pA + qA) if pA < pB

α

2

(

D0 −

(

p+ αqA + (1− α)qB
)

d

)

×(p+ qA) if pA = pB = p

0 if pA > pB .
(7)

We get a similar expression for UB , just inverting the indexes

A and B, and changing α to 1− α.

To determine if there is a Nash equilibrium to this pricing

game, we need to determine the best-response curves of ISPs.

Recall (see [7]) that a Nash equilibrium would be a price

profile (pA, pB) such that no ISP can improve his utility by

unilaterally changing his price. The best-response curves are

defined as (by expliciting the dependence of UA and UB on

pA, pB)

BRA(pB) = arg max
pA≥0

UA(pA, pB) and

BRB(pA) = arg max
pB≥0

UB(pA, pB).

With those notations, a Nash equilibrium is a point (p∗A, p
∗
B)

for which BRA(p
∗
B) = p∗A and BRB(p

∗
A) = p∗B . Graphically,

if we draw the two best-response curves on the same figure,

the set of Nash equilibria is then the (possibly empty) set of

intersection points of those curves.

We also assume throughout the paper that there is a dis-

cretization value ǫ on the price range values. Indeed, the prices

are usually defined through a unit (cents for instance) such that

when defining a price difference, this cannot be less than ǫ.
We have the following proposition:

Proposition 2. Assuming an ǫ close enough to zero, there is

a unique equilibrium (p∗A, p
∗
B) to the price war:

1) If qA < qB , the equilibrium is (−qA,−qA − ǫ),
2) If qA > qB , the equilibrium is (−qB − ǫ,−qB),
3) If qA = qB = q, the equilibrium is (−q,−q).

We typically end up with a Bertrand competition [7], in

which ISPs decrease their price to attract all demand from the

competitor, up to the moment where revenue becomes zero

for one of them. In this case, when the side payments qA
and qB are positive, then because of the competition it is the

ISPs which give money to the end users, the money they are

getting coming from the CP. Best-response curves (and the

Nash equilibrium) are illustrated by Figure 2 when qA < qB
(the case qB < qA is symmetric), and in Figure 3 when qA =
qB .

Proof: We start by determining the best-response func-

tions of ISPs. We do it for A, as the case of B is symmetric.

We can note that UA in (7), as a function of pA with pB

−qA D0
2d

− qA

−qB

D0
2d

− qB

pA

p
B

p∗A
p∗B

Fig. 2. best-response curves in the price war when qA < qB . Parameter
values: qA = 20, qB = 30, D0 = 100, d = 2, α = 0.5.

−qA D0
2d

− qA

−qB

D0
2d

− qB

pA

p
B

p∗A
p∗B

Fig. 3. Best-response curves in the price war when qA = qB . Parameter
values: qA = qB = 50, D0 = 100, d = 2, α = 0.4.

fixed, is continuous on (−∞, pB), has a given value on pB ,

and is 0 on (pB ,+∞). The function of pA that defines UA for

pA < pB , 1

2
[D0−(pA+qA)d]

+(pA+qA), is first increasing up

to D0

2d
− qA, then decreasing up to D0

d
− qA, and then constant

equal to 0. Remark therefore that for A to obtain a strictly

positive demand (and thus, utility), the condition in (6) must

be satisfied, i.e., the CP also makes some benefit.

As a consequence:

• if D0

2d
− qA < pB , the maximum of UA for pA < pB is

obtained at that point, and equals 1

8

D2

0

d
.

• if −qA ≤ pB ≤ D0

2d
− qA, then the maximum of UA for

pA < pB is obtained at pB − ǫ and is 1

2

(

D0 − ((pB −

ǫ) + qA)d
)

((pB − ǫ) + qA).

• if pB < −qA then pA < pB would imply that the revenue



of A cannot be positive. It is therefore better for A to get

zero revenue, for example with the price pA = −qA, but

actually any price pA > pB is a best-reply of A in that

case.

To determine the best-reply on (−∞,+∞), we now only

have to compare the value at those points with UA(pB , pB),
which gives:

• when pB > D0/(2d)− qA, UA(
D0

2d
− qA, pB) =

1

8

D2

0

d
to

be compared with UA(pB , pB) =
α
2

[

D0 −
(

pB +αqA +

(1−α)qB

)

d

]+

(pB+qA). We prove here that it is always

better for A to set pA = D0

2d
− qA in that case.

– When pB > D0/d − (αqA + (1 − α)qB) then

UA(pB , pB) = 0 and player A is better off setting

pA = D0/(2d)− qA.

– Otherwise, the difference UA(D0/(2d)− qA, pB)−
UA(pB , pB) can be seen as a degree-2 polynomial

in D0, with discriminant of the same sign as

−α(1− α)(pB + qA)(pB + qB).

We have pB > D0/(2d)−qA therefore pB+qA > 0.

On the other hand, Provider B should set pB ≥ −qB
in order to make profit, so that the discriminant is

non-positive, and thus the difference UA(D0/(2d)−
qA, pB)− UA(pB , pB) is always non-negative.

• When −qA ≤ pB ≤ D0/(2d) − qA, UA(pB − ǫ, pB) =
1

2
[D0 − (pB − ǫ + qA)d](pB − ǫ + qA), still to be

compared with UA(pB , pB) = α
2

[

D0 −
(

pB + αqA +

(1 − α)qB

)

d

]+

(pB + qA). In that case, Provider A is

better off setting pA = pB when pB is above a threshold,

and setting pA = pB − ǫ otherwise. When ǫ → 0 that

threshold equals D0

d
− qA − α(qA − qB).

• the case pB < −qA does not offer any possibility for

A to have a positive revenue, so does not need to be

considered here.

A symmetric behaviour is deduced for B.

On Figure 3, it can be noted (looking at the blue curve)

that when pB is right above −qA, the best response for B is

pB − ǫ, but becomes pB when when pB increases; this comes

from the comparison between UA(pB , pB) and UA(pB−ǫ, pB)
described above.

But remark that we cannot have simultaneously the maxi-

mum obtained at the value of the opponent, i.e., BRA(pB) =
BRB(pA) = pA = pB = p, with strictly positive utilities.

Indeed, it is not possible that each utility value at the price of

the opponent is larger than the value just below, i.e., that
{

limpA→p UA(pA, p) ≤ UA(p, p)
limpB→p UB(p, pB) ≤ UB(p, p).

For strictly positive utilities, this would be equivalent to
{

D0 − (p+ qA)d ≤ α(D0 − (p+ αqA + (1− α)qB)d)
D0 − (p+ qB)d ≤ (1− α)(D0 − (p+ αqA + (1− α)qB)d),

i.e.,
{

D0

d
− p ≤ qA + α(qA − qB)

D0

d
− p ≤ qB + (1− α)(qB − qA).

Summing the two equations, this leads to

D0

d
− p ≤ αqA + (1− α)qB ,

which contradicts the fact that demand at p is positive (and

therefore the utilities UA(p, p) and UB(p, p)), using p∗1 in (5).

As a consequence, and as shown in Figures 2 and 3, a

player’s best interest is always to play less than its opponent,

up to the moment when the revenue of one of them becomes

zero (which means by (7) that pA = −qA or pB = −qB). In

that case, if qA = qB , we get the third item in the proposition,

no ISP can reduce his price anymore, while if qA < qB , B
can reduce his price to −qA − ǫ, while A cannot go below

−qA without having a negative revenue. In that situation, no

ISP can unilaterally increase his revenue. The symmetric case

qA > qB is obtained similarly. This concludes the proof of the

proposition.

VI. SIDE PAYMENTS DETERMINATION

We consider at the higher level three possibilities for the

choice of side payments qA and qB . We first look at the

case when they are determined by the CP (even if unlikely in

practice), then the case when they result from a game played

between ISPs, and finally the case when they are determined

by a regulator (to maximize social welfare).

A. Determined by the CP

Plugging into the expression of the utility U1 of the CP (4)

the optimal value p∗1 in (5) and the prices of the war determined

in Proposition 2, we get

U1(qA, qB) =







1

4d
(D0 − d(qB − qA − ǫ))2 if qA < qB

1

4

D2

0

d
if qA = qB

1

4d
(D0 − d(qA − qB − ǫ))2 if qA > qB .

(8)

If the parameter ǫ is a very small amount (less than |qA−qB |,
if it is positive), the optimum is obtained when qA = qB = q,

irrespective of its value because an increase of side payments

would result in an equal increase of the value p∗1, so that the

revenue U1 does not change. Remark that the ISPs then make

no profit at all, all benefits going to the CP with a total value
D2

0

4d
.

B. Determined by the ISPs, through a game

If we instead assume that the side payments are non-

cooperatively determined by the ISPs, recall first that the

utility functions of A and B are (using the equilibrium of



Proposition 2, highlighting the dependence on qA and qB):

UA(qA, qB)=















1

2
[D0 − (qA − qB − ǫ)d]

×(qA − qB − ǫ) if qA > qB
0 if qA = qB = q
0 if qA < qB ,

(9)

UB(qA, qB) =















1

2
[D0 − (qB − qA − ǫ)d]

×(qB − qA − ǫ) if qB > qA
0 if qA = qB = q
0 if qB < qA.

(10)

In that case, the ISPs best interest is always to play a larger

side payment than his opponent. As a consequence, there is

no Nash equilibrium, the side payments will naturally tend to

+∞.

Remark here too that sending the side payments to infinity

does not mean that the perceived price goes itself to infinity

(nor that demand is 0), those payments are indeed given back

to the end users by the ISPs, and the content providers price

is also increased by this amount (nullifying the effect).

C. Determined by a regulator

A regulator can either decide to maximize the revenue of the

supply chain (sum of utilities of the ISPs plus the CP), the user

welfare (end-users surplus), or the social welfare (including

user welfare and all providers utilities).

In our model, all subscribers pay the same unit price

p̄ = p1 + min(pA, pB). But some of them would have

accepted (or were willing) to pay more than p̄ to benefit from

the service: for example among the total demand D(p̄), the

amount of traffic that was (unitarily) worth at least p̃ is D(p̃).
The difference between the actual value of the traffic (the

price the user is willing to pay) and the price actually paid

is considered to be a profit made by the user. User Welfare

(UW) is defined as the total profit of the users corresponding

to the service. It can be computed using the demand function

as

UW =

∫ +∞

p=p̄

D(p)dp, (11)

and is illustrated in Figure 4. For our linear demand function,

we have

UW =
d

2

(

D0

d
− p̄

)2

when p̄ ∈ [0, D0/d]. UW naturally increases when the

perceived price decreases, because new subscribers get some

surplus and the already present subscribers experience a higher

surplus.

Similarly, the total price paid by users equals p̄ D(p̄). This

amount is shared among the three providers, and is therefore

the total value of the supply chain. Its expression is simply

U1 + UA + UB = p̄ [D0 − dp̄]+

as illustrated in Figure 4.

Finally, the Social Welfare is defined as the overall value of

the service for the society. It therefore includes the surpluses

D(p)

U1 + UA + UB

UW

p̄ D0/d p
0

D(p̄)

D0

User Welfare UW

Total revenue

Fig. 4. The different surpluses

of all actors, and equals

SW = U1 + UA + UB + UW.

For the linear demand function D, we have

SW =
1

2d

(

D2
0 − d2p̄2

)

.

In summary, Social Welfare corresponds to the total value

that the service has for subscribers, without considering any

monetary exchanges because they stay within the society. It is

therefore natural that Social Welfare increases when demand

increases, i.e. when the perceived price decreases.

As Figure 4 illustrates, all the measures defined in this

section (total provider surplus, user welfare, social welfare)

depend only on the perceived price p̄ that results from the

pricing decisions of the CP and the ISPs. The following

proposition gives the value of that perceived price when the

side payments vary.

Proposition 3. When ǫ tends to zero, at the overall pricing

equilibrium (including CP and ISPs decisions) the perceived

price p̄ = p∗1 +min(pA, pB) tends to

p̄ =
1

2

(

D0

d
+ |qA − qB |

)

. (12)

Proof: We directly apply Proposition 2:

• if qA < qB then the equilibrium of the pricing game is

(pA, pB) = (−qA,−qA − ǫ). Since pB < pA, the CP

decision gives p∗1 = 1

2
(D0/d + qB + qA + ǫ) from (5),

which yields p̄ = 1

2

(

D0

d
+ |qA − qB |+ ǫ

)

if ǫ < |qA −
qB |. When ǫ → 0 we obtain (12).

• The case qA > qB can be treated similarly.

• If qA = qB = q, then pA = pB = −q from Proposition 2,

and (5) implies that p∗1 = 1

2
(D0/d+ 2q). Then p̄ = D0

2d
,

which is still consistent with (12).



1) Side-payments to maximize the supply chain value:

Summing the utilities (8), (9), and (10) of the supply chain,

we get

U1+UA+UB =

{

D2

0

4d
− d

4
(|qA − qB | − ǫ))2 if qA 6= qB

D2

0

4d
if qA = qB ,

which is maximized when qA = qB = q and does not depend

on the value of q. Note that the value 1

4

D2

0

d
is actually the

absolute maximum that could be reached by all providers if

they decided to collaborate: this can be easily seen on Figure 4,

since 1

4

D2

0

d
is the surface of the largest rectangle below the

demand function.

2) Side payments to maximize User Welfare or Social

Welfare: If the objective of a regulator is to maximize user or

social welfare, as we saw in the beginning of this section the

side payments should be chosen so as to minimize the resulting

perceived price p̄. From Proposition 3, that perceived price is

minimized when qA = qB = q, for any value of q.

3) On the efficiency of side payments: The previous sub-

sections have highlighted the fact that equal side payments

are likely to be selected. On the other hand, recall that when

qA = qB then no ISP makes any profit, and the CP takes

all the supply chain surplus, that equals
D2

0

4d
. This suggests

that the ISPs’ arguments regarding the CPs extracting most of

the benefit is legitimate. However, our model also suggests

that side payments would not benefit to ISPs, since equal

side payments have no effect while asymmetric side payments

imply that one ISP is thrown out of the market.

VII. DISCUSSION, CONCLUSIONS AND FUTURE WORK

We have provided in this paper a model describing the

interactions between two ISPs in competition, a CP and end

users connecting to the network through the least expensive

ISP. With respect to the literature, we believe that considering

competitive ISPs and a single CP is a more realistic representa-

tion of the current network where we have a quasi-monopole

for some applications (for instance YouTube) while several

ISPs are in competition (an argument of ISPs). The goal is

to study the impact of side payments on providers’ revenues

and conclude if this can help ISPs to increase their revenue,

as they claim in the current network neutrality debate.

The above sections have presented a four-level game where

(from the largest to the shortest time scale) the side payments

are first determined, then a pricing game is played between

ISPs, followed by the content provider price, and finally,

knowing all those prices, end users choose their ISP, or none

if too expensive. All those levels are played by backward

induction, meaning that players anticipate the solutions of the

later games when choosing their strategies.

The following remarks can be made from our analysis:

• The idea of introducing side payments in the net neutral-

ity debate was to ensure that ISPs would recover their cost

and reinvest in the architecture but, as we have shown,

this does not help the ISPs to get a higher revenue. If

ISPs choose the side payments, there is no equilibrium

and even in other cases, the equilibrium is independent

of those side payments;

• the reason for that is the Bertrand competition between

ISPs which drives their revenue to zero; side payments

are “counter-balanced” by competition in the sense that

side payments are poured back to end users in order to

attract them.

As a conclusion, side payments are actually not of interest for

ISPs, they do not help in a competitive situation.

As future research, we would like to go into several direc-

tions: first to include several CPs with different contents, but

such that some end users are targeting only a subset of them,

for all possible subsets. ISPs may also charge each other to

let the CPs not connected to them reach their own customers.

Other extensions to our model include dealing with a non-

linear demand, including a congestion cost as in [16] (but

where it is not related to network neutrality), and/or including

architecture investment and content innovation characteristics,

for the ISPs and the CP respectively.
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