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Abstract. Recent years have seen several earnest initiatives from both academic
researchers as well as open source communities to implement and deploy decen-
tralized online social networks (DOSNs). The primary motivations for DOSNs
are privacy and autonomy from big brotherly service providers. The promise of
decentralization is complete freedom for end-users from any service providers
both in terms of keeping privacy about content and communication, and also from
any form of censorship. However decentralization introduces many challenges.
One of the principal problems is to guarantee availability of data even when the
data owner is not online, so that others can access the said data even when a
node is offline or down. Intuitively this can be solved by replicating the data on
other users’ machines. Existing DOSN proposals try to solve this problem using
heuristics which are agnostic to the various kinds of heterogeneity both in terms
of end user resources as well as end user behaviors in such a system. For instance,
some propose replication at friends, or at some other peers based on other heuris-
tics such as reciprocal storage among nodes with similar availability, or storage
in a global DHT realized using all peers’ resources. In this paper, we argue that
a pragmatic design needs to explicitly allow for and leverage on system hetero-
geneity, and provide incentives for the resource rich participants in the system
to contribute such resources. To that end we introduce SuperNova - a super-peer
based DOSN architecture. Super-peers can help (i) bootstrap new peers who are
yet to have/find any friends by either providing them storage space, (ii) maintain-
ing a directory of users, so that users can find friends in the network by name or
interests, (iii) help peers find other peers to store their content in case they don’t
have adequate friends to do so, or if their friends are already overloaded. We en-
vision a self-organizing system, where nodes that provide substantial resources
can gain reputation, and be elevated to the status of super-peers. Users may want
to become super-peers out of altruism (they want DOSNs to succeed), for the
sake of the reputation (e.g., being an influential member for an interest based
community) as well as potentially to monetize their special roles (e.g., run adver-
tisements). While proposing the SuperNova architecture, we envision a dynamic
system driven by incentives and reputation, however, investigation of such incen-
tives and reputation, and its effect on determining peer behaviors is a subject for
our future study. In this paper we instead investigate the efficacy of a super-peer
based system at any time point (a snap-shot of the envisioned dynamic system),
that is to say, we try to quantify the performance of SuperNova system given any
(fixed) mix of peer population and strategies.
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1 Introduction
Online social networks (OSN) such as Facebook are extremely popular, and continues
to grow1, and has grown from the early day use case of being just a tool to keep in
touch with friends into something much more pervasive in both our private life and
work place, including organization or promotion of group events or orchestration of
collaborative tasks. With the increasing number of users, and user centric personal data
online, such networks however raise various privacy concerns. Concerns include inade-
quate or confusing privacy settings to share information with fellow OSN users (which
can be addressed using flexible access control policies supported with simpler user in-
terfaces), as well as more fundamental issues related to data ownership and privacy and
autonomy from the social networking service providers themselves, as well as possible
vulnerability of such vast repositories of personal data to identity harvesters. A slew
of initiatives, originating both from academic research such as PeerSoN[2], Vis-a-Vis
[17], SafeBook [3] as well as open-source and privacy/free speech centric communities
such as Diaspora2, OpenSocial3, NoseRub4 have in the last couple of years started look-
ing at decentralized architectures which can provide online social networking services
without the trappings of such services being run by centralized providers.

The path to the decentralization of online social networking itself is however not
an easy one to tread. Using end user resources in a peer-to-peer manner does not natu-
rally mean scalability or robustness in terms of quality of services, on the contrary, an
internet-scale decentralized online social network run by autonomous and individually
unreliable peers is bound to have poorer performance if compared with a well provi-
sioned, centrally managed dedicated infrastructure based service. Likewise, a peer-to-
peer approach does not naturally provide privacy or security, on the contrary, due to the
lack of any accountable authority, running peer-to-peer software may be more vulnera-
ble to malwares. Finally, not everyone is equally passionate about privacy issues, and in
the absence of a critical mass, even if security related technical challenges to realize a
decentralized online social network (DOSN) are overcome, the exercise may be futile.
Like any other business idea, it is however difficult to foresee whether a specific prod-
uct will appeal to a significant market base. Nonetheless, we argue, that similar to the
usage of PGP (pretty good privacy) for email based private communication, or Tor [6]
for anonymous communication over the internet, while the percentage of users who do
use such techniques is miniscule, the absolute number of people who perceive the need
for the technology to facilitate the same is significant. Thus, scientifically, it is impera-
tive to explore and create the technology which can support decentralized online social
networks. Both the philosophical aspects, as well as very many technical challenges, as
well as opportunities of realizing DOSNs have been extensively discussed in [1] and
other DOSN related publications [2,3,17,14], so we don’t go into further discussions
on the merits and motivations of DOSN in this paper, and instead primarily focus on a
subset of concrete technical issues that we try to address. It is also worth pointing out
at this juncture that, besides being used by privacy conscious netizens in their daily life

1 http://www.facebook.com/press/info.php?statistics
2 http://www.joindiaspora.com/
3 http://www.opensocial.org/
4 http://noserub.com/



as an alternative to a centralized OSNs, DOSNs may also appeal to corporate entities,
who may want to benefit from the advantages of online social networking to enhance
the productivity of their employees, and yet would be apprehensive to put corporate
data on a public OSN like Facebook (a comparison of corporate emails with free email
services may be made). The super-peer based DOSN architecture we propose naturally
fits such corporate needs as well, besides catering to the privacy conscious individuals.

Among other services, a centralized OSN system uses dedicated servers to store
user data (which includes user profile, other content such as pictures and video files, as
well as communication with other users). In a decentralized setting, ensuring 24/7 data
availability is non-trivial. Replicating the data5 over the network is necessary to increase
availability. However, the choice of appropriate network nodes where to carry out such
replication is neither obvious, and may further be complicated by various issues such as
resource constraints and individual nodes’ behaviors. Even if some enforcement mech-
anism can be devised such that every participant node cooperate together to increase the
overall availability of data in the whole system (common good), computationally it is
(NP-)hard [16]. In a decentralized setting, such enforcement is likely infeasible, and if
incentive mechanisms such as reciprociyt [13,16] are used, (rational) peers would pair-
up with other nodes greedily to maximize their own data availability, such that the price
of anarchy in the system is unbounded [16], that is to say, highly available nodes pair
up together, making their own data highly available, while all other nodes in the system
fail to benefit from the existence of such well provisioned nodes, and suffer from poor
availability of data.

Consequently, the proposed super-peer based architecture is based on the key ob-
servation that it should be possible to incorporate some other forms of incentives in the
system. A super-peer based architecture benefits in that, (i) it allows the nodes acquir-
ing super-peer status to capitalize on the same in various manners, such as monetize by
serving advertisements to the serviced peers, or gain recognition and influence a com-
munity; and (ii) it allows for an alternative form of incentive for peers to behave well, in
order to gain such super-peer status, in order to in turn benefit from the perks of being
a super-peer. Furthermore, a super-peer based architecture allows explicit mechanisms
to leverage on well provisioned nodes, which some users may want to contribute, either
because of an ulterior incentive that they would like a DOSN to be sustainable (simi-
lar to volunteer relay nodes in Tor), or being run by corporate entities who would like
to benefit from the advantages of social networking, while not lose control of data6.
Furthermore, such ‘superpeers’ may be run either on end user computers, or on cloud
services. Finally, having such super-peers help facilitate new node joins in the system,
since new joinees would typically not immediately know enough friends. This is a crit-
ical functionality, which is often ignored in existing literature [2,4,3,14], which deal

5 Replication instead of (erasure) coding based redundancy techniques is more suitable for stor-
ing OSN data, since size of individual data is typically small, while access and manipulation
of such data is relatively frequent. Erasure coding is more suitable for large static data for
archival and back-up applications with relatively infrequent accesses.

6 In the case of corporate run super-peers, corporate super-peers would take care of all storage
needs for their respective employees



with data management issues assuming that nodes have already established (adequate)
social connections.

In this paper, we make the following contributions.

– We propose a new architecture for realizing decentralized online social networks
(DOSNs) which is a super-peers based network of volunteer agents (hence the
name, SuperNova). We have arrived at such a super-peer based design guided by
our past experiences in implementing and experimenting with the PeerSoN DOSN
[2] and other decentralized social information systems [4] relying on other ‘flat’ ar-
chitectures, as well as based on insights obtained from some theoretical works [16].
The proposed SuperNova architecture allows the system to self-organize by lever-
aging on heterogeneity, which may arise due to various reasons including altruistic
behavior of participants as well as various incentive mechanisms.

– We note that the underlying incentive mechanisms will lead to a dynamic system,
where peers’ reputation and role in the system will be in continuous flux, and is a
topic worth studying in its own right. We defer such a study for later. The focus of
this paper is restricted to the algorithmic and systems design and evaluation aspects.

– We investigate (based on simulations) the performance of the proposed system for
a static snap-shot, which results from a mix of strategy choices made by the con-
stituent user population. Such extensive exploration (albeit of only a part) of the
DOSN design and parameter spaces is in contrast with most existing DOSN lit-
erature, which have focused on the system design and security protocols or have
evaluated small scale deployments in controlled environment. While such evalua-
tions are also important, they are inadequate to determine the fundamental impact
of specific design decisions and system parameters (determined, for instance by
user strategies and capacities) or to discern important design concepts, and mainly
manifest the performance of one specific implemented artefact under a specific con-
trolled environment. In contrast, the evaluations in this paper help determine which
mixes of user populations may lead to sustainable DOSNs, versus which mixes are
not sustainable, as well as help quantify the achieved quality of service in each
scenario. More specifically, the different user strategies include: choice of nodes
where to store its data which can be at friends, at strangers, at super-peers or a
combination of the same, as well as the choice of nodes to determine whose data
they are willing to store, again including friends and/or strangers; besides nodes’
storage capacity and churn, which all together determine the system environment.

– In this paper, we propose mechanisms to judiciously utilize user resources, given a
mix of user strategies and contributed resources, by detailing the various resource
management tasks played by the super-peers.

Security issues, which will be essential for practical deployment of a SuperNova
like system, is out of the scope of this paper. Ideas explored in Plutus [8], SafeBook
[3] and [19] are expected to be a starting point for the same. We further discuss re-
lated works next in Section 2, where we elaborate both on how this paper contributes
a new architecture in the context of DOSNs, as well as explain how our evaluation
provides practical insights missing from earlier works. We present the SuperNova ap-
proach including various concepts and algorithms in Section 3. Section 4 evaluates the
performance of such a system using synthetic and real-life social network graphs, and



for various mixes of user strategies and capacities. We draw our conclusions in Section
5 along with an outline of several future directions we intend to pursue.

2 Related works
Work on peer-to-peer storage systems date back to the OceanStore [11] initiative to
achieve archival storage using end-user resources. More than a decade of P2P storage
related research later, we have several hybrid or peer-to-peer storage and backup cloud
like services in actual deployment, e.g., Wuala 7, where storage task is centrally coordi-
nated, or as academic prototypes such as FriendStore [18], where storage is carried out
at nodes’ friends. While allowing for options for sharing and socializing, the original
design of such systems is not social networking. At a very high level, other instances of
hybrid (central coordination assisted) peer-to-peer virtual community networks include
internet telephony service like Skype [12], P2P massively multiplayer online games and
virtual worlds [9] and social peer-to-peer file sharing systems like Tribler [15]. The need
and challenges of realizing DOSNs were formalized recently [1], and since then, there
has been a flurry of academic initiatives to realize both complete systems, as well as to
surmount individual challenges. A more exhaustive survey of existing DOSN specific
research covering various aspects of DOSN designs can be found in [5].

Some of the prominent (and architecturally representative) prototypes of DOSN in-
clude PeerSoN [2], SoJa [4], SafeBook [3] and Vis-a-Vis [17]. The PeerSoN design,
in principle assumes a global storage service realized using user resources (based on a
DHT), but storage location and responsibility is disentangled from social relations. SoJa
is a DOSN based social library application, which identifies a dichotomy of storage ser-
vices - namely global and ‘socially’ local storage, where the global storage is again
realized using a user resource contributed global DHT, and stores interesting informa-
tion such as user directory, as well as allows storage on encrypted offline messages for
users (similar to as in PeerSoN), while nodes store data which will typically interest
only friends in the local storage realized using friend nodes’ resources. Data security is
the primary focus of Safebook [3], where the degree of trust among nodes is used to cre-
ate a multi-ring system called Matryoshkas. In Vis-a-Vis [17] each individual users host
its data on a virtual individual server (Vis), which is run on a cloud service. Social rela-
tion agnostic storage approaches like PeerSoN do not allow for incentive mechanisms
for users to contribute resources. Approaches leveraging on only immediate social and
trust relations (as in SoJa, FriendStore, SafeBook), or based on reciprocity [16] provide
incentive mechanisms with limited scope, since users benefit only within the confines of
their individual social neighborhoods, rather than at the level of a community at large,
and such limitations lead to poor level of availability [7,16].

In Vis-a-Vis, each peer needs to provision for its storage needs, possibly by making
monetary payment to a storage cloud service. In SuperNova, we try to leverage on the
advantages of each of these approaches, by allowing a multitude of storage and strat-
egy choices - and by adapting an architecture which allows both bilateral as well as
community wide incentive mechanisms. The super-peers in SuperNova help realize a
peer provisioned storage cloud, by both providing storage themselves, as well as by

7 www.wuala.com



help match nodes to meet storage needs. In turn, the super-peers themselves may, simi-
lar to Vis-a-Vis, be run either on commercial cloud services, or by running (relatively)
dedicated personal computers by the end users. Users can store their data at friends,
super-peers or at ‘stranger nodes’. For the later, matching, coordination and account-
ing being carried out by super-peers. Likewise nodes may choose to allow friends or
strangers store data on them, in order to gain reputation and influence in the commu-
nity, which can culminate into super-peer status, which in turn allows opportunities to
monetize the service. Other extrinsic incentives or reasons for nodes to run super-peers
may be altruistic, or vested interests such as corporate entities running super-peers to
manage their employee ‘accounts’. Thus, what we achieve with the SuperNova archi-
tecture is in some sense a generic hybridization of the existing architectures, allowing
the users to participate in an ecosystem, where each individual user has the flexibility
to choose different trade-off points.

Another recent approach looks at using user resources to help scale centralized
OSNs [10] by using user resources to distribute large files among friends, but in such
a scenario, the users’ role is more that of a P2P content distribution network, and the
privacy and autonomy issues of centralized OSNs persist.

Besides the fundamental architectural and design differences with existing DOSNs,
the presented work has several other differences with respect to the existing literature.
We provide explicit mechanisms for new nodes to join the system, and leverage on the
resources provided by super-peers and strangers, while they wait to establish or discover
adequate friendship relations.

Finally, we carry out experiment based evaluation of different parameter choices
to determine quantitatively the impact of different mix of user strategies on the sus-
tainability of DOSNs, which contrasts with evaluation of existing prototypes, which
mainly focus on functional correctness in controlled settings, rather than exploration of
the design parameters and system environment (as we do).

3 Approach
In a DOSN system, to increase availability a particular node n’s data has to be replicated
among other nodes which are selected by exploring various social links - friendship and
strangers (with help from super-peers). We explore best-effort storage mechanisms to
increase (rather than 24/7) availability.

In this section we first describe various entities of the system before describing the
bootstrap process for a new node. We also describe different strategies that a node might
select for increasing its data availability, followed by our system model.

3.1 Definitions of Different Entities
This section describes various entities which are parts of the SuperNova architecture. A
node (or user) n in a DOSN has a list of friends. Some of the friends might be ready
to store friend’s data thus acting as storekeepers (We interchangeably use (1) node and
user and (2) friends and neighbors in this paper.).
Profile: Each node (or user) in DOSN is represented by a profile which can be con-
sidered as a medium of expression for the user, as well as user data - which may be
public, or protected for limited access to a subset of friends, or private and inaccessible
to anyone (for example, for back-up).



Friendlist: Each user’s profile is linked with his friend’s profile, which user adds either
based on acquaintances or on interest similarity. The collection of all the linked profile
is termed as friendlist. We assume friendship is a symmetric relationship.

Storekeepers: Storekeepers are list of users who have agreed to keep a replication
of another user’s data so that when a particular node n is down, then n’s friends can
contact storekeepers to access n’s data. In other words, n’s storekeepers give visibility
to n, when it is down. We describe the process of selection of storekeepers by node n
in section 3.2 in more detail. Not every friend is willing to act as storekeeper because
of prior load or due to personal reasons. Every storekeeper maintains a list of nodes
for which they are doing a storekeeping for data synchronization. Unlike friendship,
storekeeping is not a symmetric relation. For a particular node n, every friend in his
friendlist knows the list of all the storekeepers (described next) for the profile (users).
During initial period of time when a node n, doesn’t have enough friends it requests one
of the super-peers to store his data (see section 3.2). Thus for new nodes super-peers act
as storekeepers.

Each node n’s profile data is divided into three parts namely - Public (Pb), Protected
(Pt) and Private (Pv). Each node n has list of friendsF1,F2, ...,Ff with which his profile
is linked. Each friend Fx (1 ≤ x ≤ f) has information about the list of storekeepers
(SK1, SK2, .. ,SKsk) which are storing node n’s protected data. Each storekeeper SKy

(1 ≤ y ≤ sk) has information about all the other storekeepers which are storing node
n’s data. Friends can access Protected and Public data (enforced using mechanisms
described in [8] and [19]). Public data can be accessed by any node in the network
whereas private data is solely for node n itself.

Super-peers: Super-peers are one of the most important entities in the system. Any
node may become a super-peer by providing his services to the system in general, and
most importantly to new nodes. Super-peers provide storage to the new nodes who
don’t have enough friends in the network for some initial period. They also maintain
and manage different types of services (for example maintenance of user-list) for DOSN
by cooperating among themselves.

In the envisioned system, different super-peers may provide different kind of ser-
vices. Some of them might be offering good storage and bandwidth resources, others
might be carrying out good quality of book keeping, recommendations and match mak-
ing (e.g., to help new users find suitable friends with shared interests, or find reliable
storekeepers) and some a combination of these. We note that appropriate incentive and
reputation based mechanisms are needed to bring accountability and allow the super-
peers to be fairly rewarded for their contributions.

Communities: Groups or communities are formed based on interest. Any user can
create a community. The creator of the community will act as a moderator for the com-
munity. Creator (or owner) of the community is the main responsible person for storing
all the data and for settling any dispute if it arises in the community due to any posting
or because of any other reason. A creator (and owner) may share/delegate his owner-
ship with other nodes if he wishes so, e.g., for load-balancing. Depending on rules and
regulations set by the moderators, community members will have different access for
the community data.



The bulk data related with community will be shared by other members of the com-
munity as well. However community moderators take care of all the data (including
old and new). There are two ways to define the latest data, either w.r.t. time or storage
space. For instance, in terms of time, latest data could be of last 1 week. In terms of
space it could be latest 2 GB of data.
Synchronization: Apart from physical clock, each node n maintains a logical clock
for itself and share it with all the friends and storekeepers. Every friend and storekeeper
maintains a separate clock for every user with which it’s associated. Also each group
owner maintains a logical clock for the community. Every community member main-
tains a separate clock for every community of which he is of member. Logical clock
is used for keeping a synch between a node n and his friends and storekeepers. On the
same line it is used for keeping a synch between all the community members. It is also
used to resolve multiple writes and updates (explained more in section 3.3 either in
community or for friend’s comment) for a node n.
Services/Information: There are two kinds of services, namely - public and protected,
available in the network. Anyone can avail a public service. The list of super-peers
(and the clause of their agreement) is an example of public service. In contrast, if only
group members are allowed to access the information related with a particular group or
community, then it will be termed as a protected service.
List of Directories: Following are the list of directories being maintained in the DOSN
system.

– User List : Every user’s id and his public information pointers (the nodes which are
storing the public data). This list is maintained by super-peers.

– Super-peer List: List of super-peers and their respective services and agreement
details. This list is maintained by super-peers themselves.

– Group (or community) List: List of communities and pointers for community owner
and public content of the community. This list is jointly maintained by community
owners and super-peers.

3.2 Bootstrap of new node
A new node nnn joining DOSN, initially relies on super-peers to increase its data avail-
ability. Later it may find friends (or strangers) in the DOSN with help of super-peers
which can act as storekeepers for it. We explain and classify different phases of a new
node nnn from the point it enters the network till the point it settles down in the network.
1. Initial Phase: When a new user joins the DOSN, it creates a profile. We call this
initial period as ‘Initial Phase’ (IP). Time period of this phase could be from few hours
to days. We assume (although not necessary) that the user will set his username, location
and interest as public data, as these are the most used attributes to find a user in the
network. A public data is a piece of information through which a user can advertise
about himself to make new acquaintances. As soon as a profile is created by the user,
an entry is added to userlist, which is maintained by super-peers (we note that systems
like Skype follow similar approach for maintaining a distributed directory of users).

Since a new node might not get enough friends or acquaintances immediately, so it
might contact some super-peers for storing his data. When a new node joins the network,
he can view a list of super-peers (which is public information) and the list of services
they are providing. A super-peer advertises following list of services for the new nodes.



– Storage: How much data they can store. In lieu of offering space to new node, in
future the super-peer might take the new node’s space for storing its personal data
or storing some other nodes’ data.

– Agreement time: For how long they can store (e.g., for one month).
– Time availability: What times of the day, they can cover for a node.
– Content type: Ready to store what type of content. E.g., a super-peer might not be

interested in storing any copyright material or pornographic material.
– Advertisement: What kind of advertisements will be shown on user’s profile by the

super-peer.

A new node selects a super-peer and sends a request for storekeeping. Once an
agreement is reached between a super-peer and the new node, data is replicated from
the new node to the super-peer. New node nnn now enters Take Care Phase (TCP) where
a super-peer takes care of nnn’s data. The data at the super-peer (and at storekeepers)
is stored in encrypted form if and as necessary [8,19] - thus storing parties (super-
peers/storekeepers) can’t read or modify the content of data.

There are number of incentives for a node to become a super-peer and thus facilitate
new nodes joining the system. Super-peers get more insight in the network. It could be
a self satisfaction for others, as a contributor in making the DOSN successful. Adver-
tisements while serving other nodes’ content provide opportunities for monetization.
Users in turn give feedback about super-peers at the end of contract which can affect a
super-peer’s reputation, thus reputation is another source of incentive for super-peers. A
higher reputation will in turn enable super-peers to attract more users, leading to more
influence and further monetization opportunities for the super-peer.
2. Take Care Phase: Once an agreement is reached between nnn and a super-peer,
nnn enters Take Care Phase (TCP), in which the super-peer helps improve nnn’s data
availability and thus acts as a storekeeper. Note that, the super-peer may delegate the
store-keeping task to other nodes who owe the super-peer because the super-peer had
previously helped them when they were new in the system.

The take care period is the time when the new node tries to find and establish friend-
ships in the system. There are various ways through which a node can add new friends.
Node nnn can try to search for his acquaintances or friends from userlist in the system
and also through out-of-channel mechanisms such as emails to know if they are partic-
ipating in the network. By exploring community’s membership, a user can also make
new friends based on shared interests. A node tries to find suitable storekeepers among
all the friends8.

As part of agreement, super-peers keep track of new node’s geographic location and
up-time statistics. Each super-peer maintains two kinds of pools as describe below with
the objective to facilitate users in finding other nodes, which are complete strangers to
them and can act as storekeepers and thus help in increasing data availability.

– Time Track pool (TT): As part of agreement, during take care phase, the super-peer
tracks new node’s up and down time.

8 One compelling factor for choosing storekeepers could be their uptime, however in general
this is not always possible. As in real life, we can’t compel our acquaintances/friends to store
data.



– Stranger pool: Every super-peer maintains a stranger pool along with TT pool. A
node can make an explicit request to a super-peer to ask for suggestions about the
nodes which can act as storekeepers for it. During such a request to the super-peer,
a node submits it’s own up and down time and specifies the time intervals during
which it wants the store-keepers to cover for it.

All super-peers share TT and stranger pool information among themselves. If a
node doesn’t get enough uptime availability from its friends, it can request super-peers
to make some suggestion for it by using above two pools. Based on the two pools, a
super-peer can suggest requesting nodes about the (stranger) nodes which can probably
act as storekeepers9. Once the suggestions are received about other nodes, a node can
request these suggested nodes for storing data. Once an agreement is reached between
two nodes, data is replicated and stored securely.
3. Settled Phase: A node may extend its take care phase with a super-peer if he is not
able to get enough storekeepers of its own to get desired data visibility. Once a node
has enough storekeeper(s) (other than super-peer) to manage his data, it can relinquish
super-peer’s services. For every node n, every storekeeper agrees to store a limited
amount of data which requires space s. So only latest s amount of data is stored with
storekeepers and once the limit is reached, the old data is deleted from storekeepers.

3.3 Data Synchronization and Updates.

This section describe merging, copying and updates of data between storekeeper(s)
which is one of the important aspects of DOSN.

Data Storage: When a node n goes down it pushes all its latest data to all the up
storekeepers. When node n comes up, it requests all the storekeepers (whoever are
up) for the latest data. It accepts the data from the storekeeper, which is having latest
data. Node n could be acting as storekeeper for other nodes as well. As a storekeeper,
when a node comes up it synchronizes the data (for each of node, for which it is acting
as storekeeper) with other storekeepers or with owner of the data (whoever is up) for
which it is acting as storekeeper.

If two storekeepers don’t have enough intersecting up time, then a node can request
a super-peer to act as temporary data storage for the latest data. Thus in this case a super-
peer acts as a rendezvous point and keeps the latest data from the last up storekeeper
which is going down before another storekeeper comes up (with respect to node n). We
assume that, before logging off, a storekeeper do transfer completely the latest data on
another machine (either super-peer or storekeeper). In this case, super-peer doesn’t take
part in any updates or cater any request from friends accessing the data. When node n
comes up and if no storekeeper is up, then node n requests the designated super-peer
for the latest data.

When node n is down, friends of n contact respective storekeepers to access the lat-
est data for node n. Any of the storekeepers who are up can be contacted with a request
for the latest data. A particular storekeeper is chosen randomly from up storekeepers
for data access.

9 Nodes suggested by super-peer based on both the pools are termed as stranger nodes.



Updates: When a friend f, posts a comment on node n’s status (or about new uploaded
picture or link), an update request is send to node n (if its up) with a timestamp (log-
ical timestamp). If n is down, requests are made to all the storekeepers who are up,
about the updates. Every update request comes with the timestamp 10. A node n (or
storekeeper(s)) might receive multiple updates at same item, in such cases, node n (or
storekeeper(s)) uses timestamp to resolve any conflicts.

If neither node n is up and nor any of its storekeeper, then comments/posts on the
wall are stored on the commenter side, and resides till node n (or any of its storekeeper)
comes up.

3.4 System Model

Let G(N,E) be the DOSN graph, where N represents nodes (or users) of the network
and E represents the set of edges between any two nodes ni and nj ∈ N . An edge e ∈
E exists between ni and nj ∈ N if each ni and nj profile’s are linked with each other
as friends.

Let Ψ represent the global stranger pool managed by all super-peers and SP the
list of super-peers. To increase the availability, a new node can share his data with a
particular super-peer nsp s.t nsp ∈ SP . A node can get good availability with the
help of friends if many of them are ready to act as storekeepers. We define friends of
node ni as the set γi where nf ∈ γi iff eif ∈ E. A node might be able to convince
some strangers for storekeeping to boast his availability. Let σi represent the set of
storekeepers for node ni, then formally it can be represented as

σi = ni +
∑SK

sk=1 nsk
s.t ∀nsk nsk ∈ γi or nsk ∈ ψ or nsk ∈ SP

Let Ti represents the set of time intervals for which node ni is online. In decentralized
system if the data is not stored at other than the owner of the data, then data availability
is equal to the time units for which node ni is up, that is Avl(ni) = |Ti|. If a node is able
to store data on other nodes as well, then availability of node ni can be defined as

Avl(ni) = |
⋃AN

al=1 Tal| s.t ∀nal ∈ σi

4 Evaluation
In this section we evaluate using various metrics how a DOSN based on SuperNova
architecture will perform for different mix of user behaviors. We first provide a descrip-
tion of various parameters for user’s behavior, before discussing the results.

4.1 Network
We use the social network graph from a subset of the DBLP co-authorship graph as a
representative social network. Specifically, we use the giant connected component of
co-authorship graph from DBLP record of papers published in conferences between
2004 to 2008, comprising of 273798 unique authors. Each author represents a node in
the network. The graph has an average degree of 6 with diameter of 23.
10 Timestamp is the time of the logical clock w.r.t. node n which is shared by friends and store-

keepers of node n. Since the updates are w.r.t. node n, so logical clock of node n is used.



4.2 Trace Generation
Node’s up and down time is generated synthetically, taking into account typical bi-
modal, and weekly behavior cycles. A trace was generated for two weeks time. We
considered following three different factors for the trace generation :

– Location: We consider twelve different (time zone) locations, with each location
differing by 2 hours from its adjacent locations.

– Weekday Behavior: We consider six types of behaviors during the weekday.
– Weekend Behavior: We consider four types of behaviors for the weekend.

Weekday’s and Weekend’s behavior were motivated by different working hours
which users might follow on their workstations and thus will drive the online time
during weekdays. Also some users work during weekends and others simply leisure
and don’t switch on their workstations. Each user is associated with one of each three
different factors and a resultant trace was attached with that user for one week. In the
second week, we consider two scenarios: (i) all users have same behavior as in the first
week, and (ii) for some users (27 percent) we introduce minor variations in their traces
and for few others we generate a major variations (3 percent), while for the rest (70
percent) the behavior remains unchanged.

4.3 Various parameters for Storekeepers
In our study we consider three different parameters related with acceptance of node’s
request for storekeeping the data. Different users have different behavior and to capture
individual behavior is difficult so we generalize it for the whole network.

– Pfd: This parameter decides with what probability a friend/neighbor is ready to
accept the data of a node.

– Psd: The percentage of nodes which wants to participate in stranger pool.
– Pas: With what percentage a stranger is ready to accept another stranger’s request

for storing the data.

We consider two values for each parameter - representing low and high percentage
values taken by the nodes for particular storekeeping behavior. Based on these values
we consider 8 different combinations. Table 1 summarizes the various combinations
that we analyzed by selecting different percentage values for each parameter. The first
column represents the combination number to identify the parameter combinations, and
2nd, 3rd and 4th columns represent the percentage values of each parameter.

4.4 Various node strategies for storage
A node can request social neighbors or/and strangers for storekeeping. It is less likely
that a new joinee will make enough friends/strangers to store its data during few initial
days, thus new nodes are more likely to request super-peers for data replication and thus
will choose one of the super-peers for sharing of data11. Nodes will try their best to have
maximum availability by replicating their data on various nodes across the network. A
node in general can store its data using either of the four following schemes depending
on various factors like if its social neighbors are already overloaded and whether he is
(not) willing to store data on nodes run by strangers.
11 For simplicity in our experiments we assume a node only requests one super-peer for storing

its data.



– Snns: A node is able to store his data on some of his neighbors as well on strangers.
– Snn: A node is able to store data only at his neighbors. A node might not be inter-

ested in storing data at strangers because either he is not trusting or he is not able
to convince strangers.

– Snsp: A new nodes store his data on one of the super-peers after agreement.
– Sns: A node might not be able to get help from any of its neighbors for storage, e.g.,

because all the neighbors are already overloaded because of prior storage commit-
ments. However a node might go for a scheme where he is able to convince some
strangers for storing the data.

Super-peers are assumed to have enough storage space to cater to node’s request
(specially the new joinees). By varying Pfd, Psd and Pas, we measured the percentage
of nodes falling for Snns, Snn, Snsp and Sns. In Table 1 the 5th, 6th, 7th and 8th

columns represent the percentage values for Snns, Snn, Sns and Snsp.

Table 1. Different combination of Parameters

Combination Pfd Psd Pas Snns Snn Sns Snsp

C1 50 50 100 22.4 36.6 16.2 24.8
C2 50 70 100 31.5 27.7 22.7 18.1
C3 20 70 100 14.5 11.9 41 32.6
C4 20 50 100 10 15.9 29.2 44.9
C5 20 50 40 4 22 12 62
C6 20 70 40 5 20 16 59
C7 50 70 40 12 46 9 33
C8 50 50 40 9 45 6 40

We also measure the availability of nodes in each combination. We define availabil-
ity time as the ratio of the number of time units for which a node n’s data is available
to that of total time unit of the simulation. We categories the availability (Avl) into 6
classes namely (names are intuitive for performance) - (1) Excellent (Avl ≥ 95) (2)
Very Good (95 > Avl ≥ 80) (3) Good (80 > Avl ≥ 65) (4) Mediocre (65 > Avl ≥
50) (5) Poor (50 > Avl ≥ 30) and (6) Very Bad (Avl < 30). For each combination
we measure the percentage of nodes falling under each availability category. Figure 1
represents the percentage values for each combination of parameters namely from C1
to C8 (refer Table 1) for both cases when there is deviation (D) and when there is no
deviation (ND).

Parameter combinations representing the user’s behavior has clear effect on the per-
centage of nodes falling under each scheme. In an ideal situation (Row C2 in Table
1- based on our parameters), half of neighbors (or friends) ( Pfd = 50%) are ready to
accept storage request and more than half of the nodes in the network (Psd = 70%)
are ready to store participate in stranger pool and all the strangers (Pas = 100%) are
ready to accept all the requesting for storage. In this situation there is minimum load on
super-peers (comparing with all other cases). Also the number of nodes falling under
excellent availability category is at its maximum. Although deviation has introduced a
sharp decline in percentage of excellent nodes however the total numbers of excellent
and very good nodes are still higher. When the percentage of nodes ready to store data



Fig. 1. Performance of different parameter combinations for Deviation (D) and Non
Deviation (ND)
at strangers declines (Psd in C1) there is a very small effect on the excellent nodes
(compare ND1 and ND2 in Figure 1).

However when the participation of number of nodes willing to participate in stranger
list declines (from 70 % to 50 % for Psd in Row C1) we notice an immediate load
on super-peers (Row C1, Column Snsp). This is better than C7, which represent the
situation when the percentage of nodes willing to store stranger’s data decreases. Thus
presenting the fact that parameter Pas is more influential than Psd for increasing the
load on super-peers.

Maximum load (62%) on super-peers (Row C5, Column Snsp) is observed when
neither neighbors are interested in storing other friend’s data and nor the participation
of nodes in stranger’s scheme is overwhelming (Row C5). Although storage is gener-
ally cheap, in practice, super-peers nevertheless will have limited space. Furthermore,
there is also the issue of associated bandwidth usage. Hence, such a system state is
undesirable and arguably unsustainable.

There should be a balanced behavior among nodes for a system to be successful.
When the percentage of neighbors, who are willing to store neighbor’s data is low (Row
C3 and C4), the system can still sustain if there is high level of contribution by/to
strangers. This depicts a scenario if all new joinees act as storekeepers for each other,
thus increasing availability. This collaboration of stranger support (in time of need) may
eventually lead to change in relationship from strangers to friends.

We noticed high load on super-peers when percentage of the nodes falling under
stranger scheme is high and when percentage of nodes ready to accept stranger data is
low (Row C6). When participation of neighbors is increased, there is immediate decline
on super-peers’ load as evident from load Row C7 which is attributed due to the fact
that nodes rely more on neighbors than strangers. By comparing C6 and C7 we infer
that merely participation of nodes in stranger scheme (Psd) is not sufficient however it
is more important that how many nodes out of Psd are ready to accept stranger’s data
(Pas), thus parameter Pas is more important than Psd. The system shows a very poor
performance when all the parameters are at their lowest (Row C5) - clearly showing the
decline in percentage of excellent and very good availability (D5 in Figure 1).

Although nodes are more willing to store at friends, for new nodes and the nodes
who are not able to find storage among neighbors and strangers, super-peer can be of



great help. From above values we observed that the system has good performance when
everyone cooperates (C2) and is at its worst when users are not ready to contribute to
the system (C5) and act in a selfish manner.

We compare availability in three different scenarios. (1) To highlight the effect of
super-peers we compare our super-peer based architecture with a flat scheme. (2) A
comparison between an ideal (or best) case vs worst is also presented to reflect the effect
of cooperation and selfishness respectively. (3) Nodes might be interested in getting
availability in terms of the time when their friends are online vs. 24/7 availability. In
evaluation of all the three cases - along with measuring cumulative availability, we
try to gather information about what percentage of nodes are getting what percentage
of availability. As a micro-measurement, we also compare the individual scenarios in
terms of availability in terms of 6 categories defined above.
1. Availability w.r.t total time and time when friends are online: A node could be
interested in making his data available only when his friends are online (so that they
can access it), instead of getting 24/7 availability.We selected parameter combination
in Row 8 (which is the most realistic scenario among all the cases) to compare two
different types of availabilities. Interesting results were gathered while comparing two
different cases. Figure 2 compares availability for the two scenarios, i.e., when total
time (TT) is considered and when friends up time (FT) is considered. Figure 2(a) gives
the cumulative availability when deviation (D) is introduced as well as when system is
evaluated with no-deviation (ND). We present our results for a pragmatic scenario (C8
in Table 1) out of all the combinations.

When a node is only concerned about availability of its data when his own friend’s
are online, and there is no-deviation in the node’s uptime behavior (FTND), the system
outperforms the total time with no-deviation (TTND). When only friend’s up time is
considered there are more than 50% of nodes whose availability is 100% as compare to
total time (TT) where the value is less than 20% (refer Figure 2(a). However with intro-
duction of deviation, in case of friends up time (FTD) system sharply declines in terms
of performance as compare to total time (TTD), where deviation doesn’t put much ef-
fect on the performance. However in both cases all nodes had availability greater than
40%. In Figure 2(b) we capture more microscopic information in terms of the percent-
age of nodes getting a specific percentage of availability. This information is important
to gather individual behavior as some information is missing in the macroscopic cumu-
lative distribution. In case of FTND the highest percentage of nodes is around 53 %
however it declines to around 5% when deviation is introduced. From the Figure 2(b),
one can also infer that there is not much deviation in terms of individual percentage
after deviation is introduced.

It’s common in real world that most friends are collocated. So if a node stores the
data among his friends, because of location (and consequent temporal) correlation, most
of the friends will be online during the same time and thus availability will be high for
such nodes. For same reason, most of the nodes get excellent availability. However the
value might be low if we compare the total time of the system which is much higher
than the friend’s online time and thus a decrease in availability value is observed. When
deviation is introduced, there is a sharp decrease in availability. If friends deviate from
their usual uptime behavior they are responsible for decreasing the data-availability as



(a) Cumulative Availability (b) Individual Availability

(c) System Performance

Fig. 2. Comparison for Friend’s Time (FT) and Total Time (TT) for Deviation (D) and
NonDeviation (ND)

compared to a node which has scattered his data, like by selecting some strangers as
well. This observation is reinforced with the help of Figure 2(c), where the total per-
centage of nodes for ”excellent” plus ”very good” in case of friends after introducing
deviation (FD) becomes less than the total excellent nodes without introducing the de-
viation (FND). If we consider the total time as a measure to find availability, we notice
that there is not much difference in performance (excellent plus very good) between no
deviation (NDTT) and when deviation is introduced (TTD). This can be attributed to
the fact that if a node spread his data to nodes other than friends, then he will be less
affected by the deviation and thus he can either choose strangers, and if strangers are
not willing to do so he can take help of super-peers.
2. Comparison of Flat Vs Super-peer architectures: We also compare our approach
to a flat scheme where there are no super-peers, in contrast to our architecture. In the
absence of a trusting authority like super-peers, it is difficult to keep a strangers’ list or
trust information regarding strangers for finding suitable store-keepers. However, to do
a fair comparison with the flat scheme, we assume that nodes can convince strangers
to store their data using a reciprocity scheme [16]. This assumption works well with



(a) Cumulative Availability (b) Individual Availability

(c) System Performance

Fig. 3. Comparison for Flat (F) Vs Super-peer (SP) for Deviation (D) and NonDeviation
(ND)

the nodes which are present in the system for long. However, the new joinees find it
difficult without a trust authority (like super-peers) to decide which strangers to trust.
This affects the overall performance of the system as the new joinees are not able to get
enough storekeepers for data-replication.

As in the bootstrap period, it is difficult for a new node to find friends and convince
strangers to store their data and this is a major cause of poor performance in the flat
scheme. Figure 3(a) and 3(b) show that there are very few nodes whose availabilities
are above 60 %. Deviation (FD) downgrades availabilities for 30 % of nodes (refer
Figure 3(a) - between 30% to 60 % nodes on X axis). We further observe that only a
small percentage of nodes ( 8 %) have excellent availabilities, and it becomes less than
half in the case of deviation (FD). These results indicate the efficacy and need of our
super-peer based architecture.
3. Best Vs Worst case: We also compare the best parameter (B) combination with the
worst (W) one (C2 and C5 respectively in Table 1) out of our choice of parameters. In
the worst case, the low parameter values indicate that every peer is acting in a selfish and
conservative manner. Evidently, super-peers are having maximum load in this scenario
out of all (refer to Table 1, Row C5 and column Snsp).



In our experiments, while super-peers have uptime comparatively higher than nor-
mal peers, they are still not individually up 24/7. Since large numbers of nodes are
relying on few nodes (super-peers) when the corresponding super-peers are down, the
data availability for large number of nodes decreases, thus lowering the performance of
the system. Figure 4(a) measures the cumulative values in worst case for both deviation
(WD) and non-deviation (WND) and compare them with the best case for both devi-
ation (BD) and non-deviation (BND). These values were compared w.r.to total time.
Note also that the bandwidth load at super-peers is expected to increase proportionally
to their storage node, which may in turn lead to congestion and further deterioration of
response times and quality of service.

The low parameter values in Row C2 (for Pfd, Psd and Pas) shows that nodes are
unwilling to act as storekeepers for others. From Figure 4(b) one can clearly note that
the highest availability is around 90% for little more than 5 % of nodes as compared
to the nearly 25 % when every node cooperates in case of non-deviation (in best case).
The cooperation phenomena is also evident in terms of percentage of nodes getting
”excellent” or ”very good” availability both with and without deviation for the best
case in Figure 4(c) (BD and BND respectively). In the worst case, after introducing
deviation the system is behaving more in a mediocre range where storekeepers might
not be able to exchange latest data thus leading to inconsistency. Also from Figure 4(a)
it’s easy to infer that the availability is 60 % or less for 60 % of the nodes. Even without
deviation, most of the nodes are not getting good availability as around 50 % nodes are
having availability 70 % or less.

5 Conclusion and Future Work

In this paper we proposed a super-peers based architecture to facilitate decentralized
online social networking. The proposed architecture provides flexibility to individual
users to choose their strategy in terms of where to store their data, as well as whose
data to store. While we do not investigate the role of trust and reputation explicitly in
this paper, recent trust model [20] which correlate node’s high reputation with them
being more influential custodians of the community’s tasks provides a premise to carry
out such a dynamic analysis of node’s behavior in a SuperNova like super-peer based
DOSN. In this paper, we instead investigate the ‘static’ characteristics of the system,
specifically, we study the influence of different user strategy mixes on the performance
and sustainability of a DOSN. Existing initiatives, both academic and open-source ones,
have in recent years focused on developing the enabling technologies (some of which,
particularly related to security, could be incorporated in SuperNova as well), however,
a quantitative estimate on whether such a system is sustainable or not, given diverse
participation behaviors and capacities has so far not been investigated. Thus, besides
proposing a more pragmatic system design, this paper distinguishes itself from existing
work in the rigor of the evaluations. Studying the dynamic role of reputation in chang-
ing population mixes, as well as designing and incorporating incentive mechanisms in
SuperNova in order to achieve desirable mix of user populations; refinement of the se-
curity mechanisms in the design; and incorporation of the SuperNova mechanisms in
the PeerSoN initiative comprise our planned future work.
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Fig. 4. Comparison for Best(B) Vs Worst(W) Parameter Combination for Deviation (D)
and NonDeviation(ND)
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2. S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta. PeerSoN: P2P social networking - early
experiences and insights.

3. L. A. Cutillo, R. Molva, and T. Strufe. Safebook: A privacy-preserving online social network
leveraging on real-life trust. In Communications Magazine, IEEE, 2009.



4. A. Datta. SoJa: Collaborative Reference Management Using A Decentralized Social Infor-
mation System. In 6th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), 2010.

5. A. Datta, S. Buchegger, L. H. Vu, T. Strufe, and K. Rzadca. Decentralized online social
networks. In Springer’s Handbook of Social Networks, 2010.

6. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In
Proceedings of the 13th USENIX Security Symposium, 2004.
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