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Abstract

This paper presents implementation details, system characterization, and the performance of a 

wearable sensor network that was designed for human activity analysis. Specific machine learning 

mechanisms are implemented for recognizing a target set of activities with both out-of-body and 

on-body processing arrangements. Impacts of energy consumption by the on-body sensors are 

analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited 

processing abilities in the on-body scenario are also characterized in terms of detection accuracy, 

by varying the background processing load in the sensor units. Through a rigorous systems study, 

it is shown that an efficient human activity analytics system can be designed and operated even 

under energy and processing constraints of tiny on-body wearable sensors.
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I. Introduction

Recent advances in low-cost and energy-efficient sensing and networking technology are 

opening up new possibilities for wearable medical diagnostics[1][2][3]. A number of tiny 

sensors, strategically placed on human body, can create a network that can monitor physical 

activities and vital signs, and provide real-time feedback analytics to medical service 

providers. Many patient diagnostic procedures can benefit from such continuous health 

monitoring for optimal management of chronic conditions and supervised illness recovery.

In this paper we report the results from a systems level study of a wearable sensor network 

applied for human activity analytics. A wearable sensor system with networked machine 

learning for activity identification was developed. Based on six data streams containing 

acceleration reading from three sensors, the system was trained for identifying 14 activities 

(i.e. lying down, sitting reclined, sitting up straight, standing, walking briskly and slowly, 

jogging, climbing stairs, riding a bike briskly and slowly, sweeping, jumping jacks, 

squatting, and bicep curls). Important design issues, including sensing, processing, data 

collection, energy efficiency, and application level accuracy are studied in the paper 

individually as well as in terms of their interdependencies in various operating conditions.
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Motivation

Regular participation in physical activity provides many important health benefits, including 

reduced risk of coronary heart disease, hypertension, type II diabetes, obesity, several types 

of cancers, and loss of bone mass. Most of the evidence linking physical activity to health 

benefits has been based on self-reported, which often provides an index of all four 

components of activity (frequency, duration, intensity, and type). Such self-reports do not 

indicate the fine granularity (i.e., breakdown for the time spent on different activities) 

information which can substantially enhance the assessment accuracy of metabolic energy 

expenditures due to physical activity. A wearable activity identification system can provide 

quantifiable fine-grain activity information from day-to-day life, enabling remote 

assessment and epidemiologic/clinical research in an automated manner. Such a system can 

also enable real-time remote monitoring of soldiers, elderly population, and athletes during 

sporting events.

Objectives

The objective of this study is to: a) develop a wearable system that is capable of collecting 

and streaming acceleration samples out of on-body sensors over a wireless link, b) develop 

machine learning mechanisms for recognizing a target set of activities, c) characterize sensor 

energy consumption, identification accuracy, and their trade-offs, and d) characterize the 

impacts of processing constraint on the sensors and its impact of activity detection accuracy.

II. System Architecture

A. Sensor Network

Each wearable sensor is a small 6cm × 3.2cm × 1.5cm package, weighing approximately 20 

grams. As shown in Fig. 1, the package contains a sensor subsystem (MTS310 from 

MemSic Inc.) and a processor and radio subsystem (Mica2 motes), running TinyOS 

operating system. Batteries weigh approximately 13 grams and are attached separately. For 

each sensor package, two 600mAh AAAA batteries are able to support the system for more 

than 30 hours.

A sensor package is worn with an elastic band so that once worn, the sensor orientation does 

not change with respect to the body segments. Three sensor packages are worn on ankle, 

thigh, and wrist of the same side of the body. Fig. 1 shows the picture of a thigh-worn sensor 

package. Once activated, each sensor package continuously samples its acceleration (-2g to 

+2g) in two axes and sends them to a nearby (within 50 meters) laptop computer using a 

900MHz wireless link via an access point. Activity analytics are performed either on-body 

in the sensors, or out-of-body in the laptop. As shown in the diagram, the sensor nodes form 

an ad hoc sensor network with dynamic reconfigurable mesh topology.

B. Medium Access Control

A collision-free TDMA MAC protocol is used for radio communication. As shown in Fig. 

2:a, the access point is programmed to send periodic polling packets to sensors W, A, and T, 

referring to those on the wrist, ankle, and thigh respectively. Upon reception of a polling 

packet, a sensor sends its data packet out (either to another sensor or to the access point). A 
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guard time is allocated between the polling and data packets in order to accommodate clock 

drifts and processing latencies. Frame duration of 300 ms is used in the polling process. A 

packet occupies approximately 30ms, and the allocated guard time is approximately 20ms.

Fig. 2:b depicts the polling and data packet structures. In a polling packet, the Polling 

Sensor ID represents the sensor that is being polled, and the sent Time Stamp captures the 

current time of the access point. The polled sensor returns this Time Stamp as is with the 

sampled acceleration data, thus enabling the receivers to synchronize data samples from all 

three sensors with reference to the Access Point's time. The Request Flag is used to indicate 

the requested type of data. Finally, the Padding Bytes are inserted to keep its size equal to 

that of the data packets.

In a data packet, the Reporting Sensor ID represents the sending node's identity, and the 

Time Stamp contains the same value in the corresponding received polling packet. The 

Request Flag is used to indicate the type of data being sent. As shown in Fig. 2:b, the data 

part of the packet contains two components: 1) Data Payload, consisting of 3 most recent 

acceleration samples (4 bytes each) which are being sent for the first time, 2) Previous Data 

Payload, consisting of 3 previous samples that were already sent as the Data Payload in the 

last frame. In other words, there is a three-sample overlapping redundancy from each sensor 

over consecutive frames.

In the event of a polling packet or data packet loss, a recipient sensor (or access point) can 

recover data up to a certain extent due to that redundantly. Meaning, the effective data loss 

rate is lower than the packet loss rate. For a given packet loss, a data loss would occur only 

when two consecutive packets get lost. Therefore, for a packet loss rate p, the effective data 

loss rate P can be expressed as P = p2. For example, for a packet loss rate of 5%, the 

effective data loss rate is 0.25%, which is a significant improvement.

C. Transmission Power Control

A transmission power control [4] protocol is developed for on-body-sensor to out-of-body 

access point radio links for reducing energy consumption. A measurement based link power 

control with closed-loop feedback control techniques is used. The mechanism requires to: a) 

measure and record packet drop rates and the radio Signal Strength Indicator (RSSI) on a 

wireless link with varying transmission power, b) develop a model for channel behavior 

based on measured data, and c) employ a feedback control instruction from receiver to 

transmitter for adjusting transmission power based on current transmission power, channel 

model, and the difference between current RSSI and a targeted RSSI range.

D. Processing Modes

Activity analytics is categorized into two processing modes, namely on-body and out-of-

body. For out-of-body, all sensor data is wirelessly collected to an out-of-body machine 

which is used for the analysis. In on-body scenarios, analysis is performed at the sensor 

nodes themselves, either at a single node or at multiple nodes for improved load distribution. 

From an application standpoint, on-body processing is more suitable for outdoor 

applications since a separate processing server may not usually be available. In indoor 
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settings, however, such servers may be available and therefore out-of-body applications can 

be supported. This paper presents activity analysis implementation and performance for both 

on-body and out-of-body scenarios.

III. Data Collection

This section presents collected acceleration data for out-of-body activity analytics. Each of 

three sensors in Fig. 1 is equipped with an ADXL202 accelerometer, which is able to detect 

acceleration up to ±2g with a granularity of 300mV/g, and the attached A/D converter has a 

resolution of 10 bits; thus a 0.01g resolution can be achieved using 3V power supply. Based 

on previous results reported in [5][6], such resolution is expected to be sufficient for activity 

analytics as targeted in this study. ADXL202 is able to provide linear output within the 

range of ±2g. Each sensor is programmed to sample acceleration at the rate of 10Hz. 

According to [7], majority of the spectral energy (computed through Fast Fourier 

Transform) for daily activities is found between 0.3Hz and 3.5Hz. Therefore, the 10Hz 

sampling rate is expected to be able to capture most of the activities and provide satisfactory 

accuracy.

Six acceleration data streams from three sensors (two axes) are collected for all fourteen 

activities, namely, lying down, sitting reclined, sitting up straight, standing, walking briskly 

and slowly, jogging, climbing stairs, riding a bike briskly and slowly, sweeping, jumping 

jacks, squatting, and bicep curls. Fig. 3 demonstrates data from three representative 

activities, namely, standing, squatting, and walking slowly. The horizontal axis is time in 

seconds, and the vertical axis shows acceleration in the unit of g. The vertical bias in the 

graphs is due to the gravity.

IV. Machine Learning

This section presents out-of-body supervised machine learning mechanisms for activity 

recognition using the system.

A. Learning Features

Mean and entropy of acceleration, computed over overlapping time windows, are used as the 

machine learning features for activity detection. Mean and entropy are computed for each of 

the six acceleration streams as shown in Fig. 3. Mean contains the DC value of the signal 

and entropy captures the intensity of activities during each computation window. As a 

feature, entropy was chosen over raw acceleration values because of its lower 

dimensionality within a window. This simplifies the classifier design and acts as a more 

scalable feature for machine learning compared to raw acceleration data. The features are 

computed on windows of 42 consecutive samples, representing 4.2 seconds at 10Hz 

sampling rate. Overlapped sliding windows are used so that 50% of the samples in a window 

overlap with those in the previous window. A 4.2s window size was chosen based on 

previous studies [8][9] with good identification performance using window size spanning 2 

to 5 seconds with 50% overlapping.
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For calculating entropy, acceleration samples within a window are first placed into a number 

of non-overlapping bins covering the entire data range. Entropy is defined as: 

[10], where xi represents the ith bin, and p(xi) indicates the 

probability that an accelerometer reading falls into bin xi. Hence, log p(xi) indicates the 

amount of information derived when an accelerometer reading falls into bin xi; when the 

base number is 2, log p(xi) is in the unit of bits. Consequently, entropy H(X) represents the 

expected amount of information within a window. Generally, it is positively correlated with 

the intensity of activity. Comparing to standard deviation, entropy can be calculated using 

different bin sizes, which would facilitate our future research on system load.

Fig. 4 reports computed entropy for all six acceleration data streams corresponding to the 

representative activities shown in Fig. 3. It can be generally observed that for a given 

activity, the sensors in low-activity parts of the body produce low entropy values. For 

example, while standing, the entropies for all sensor streams are generally low - indicating 

mild variation of acceleration data during standing. Another example is the Y-axis 

acceleration from the ankle sensor during squatting and standing. The entropy stream from 

that sensor while squatting produces larger values compared to standing, thus indicating 

higher levels of variations of the ankle acceleration during squatting. Consistent 

observations were made for all six entropy streams produced by all fourteen activities.

In order to investigate how the dynamic activities are separated in their feature space, we 

conducted Principal Component Analysis (PCA) [11] that reduces the number of features 

(i.e. entropy) from six (i.e. X-axis and Y-axis entropies from each of the three sensors) to 

two. The reduced features are computed as F = PV, where P is an Eigen vector of the scatter 

matrix of the samples, and V is a vector of the original features (i.e. entropies). These are 

derived as:

Fig. 5 depicts the reduced feature space in the Fx-Fy plane for the dynamic activities. The 

two horizontal vectors are two Eigen vectors of the scatter matrix of the extracted entropy 

with largest Eigen values, and they best represent the clusters. Fig. 5 clearly demonstrates 

that the dynamic activities form fairly non-overlapping clusters in the Fx-Fy feature plane. 

This provides visual evidence that entropy is an effective feature for expecting good 

recognition accuracy from machine learning.

B. Classifier Layering

The fourteen target activities are divided into two categories, namely static and dynamic. 

Lying down, sitting reclined, sitting up straight and standing would fall into the static 

category, and the other ten activities would be in the dynamic category.

Dong and Biswas Page 5

Int Conf Commun Syst Netw. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



As shown in Fig. 6, a two layer hierarchical classifier mechanism with different feature 

usage is used. This is in contrast to using a single classifier with both mean and entropy as 

its useable features. This approach was used because increasing dimensionality does not 

always improve classification accuracy, and less number of features can often lead to 

simplified and more manageable classifier design [11].

In Fig. 6, a classifier in the first layer would classify static versus dynamic activities using 

entropy as the input. The first classifier in the second layer for dynamic activity recognition 

also uses entropy as the input. The classifier for static activity recognition, however, uses 

mean acceleration as the input. Those classifiers in the second layer work mutually 

exclusively, meaning the result would be chosen only from one of them based on the 

outcome of the layer-1 classifier. Different machine learning algorithms, including, Neural 

Networks, Decision Tree (J48) and Naïve Bayes, were separately experimented with as the 

layer-1 and layer-2 classifiers. The Machine Learning Toolkit Weka [12] was used for 

implementing the classifiers here.

V. Experimental evaluation

For each learning algorithm, all three classifiers were trained with data obtained from the 

system worn by a subject set of 10 people, consisting of 5 male and 5 female between 22 to 

30 years of age. Each subject performed 4 sessions, and each session includes all 14 

activities. During each session, a subject was asked to wear the networked sensor system 

and to perform each activity for 2 minutes. The acceleration sampling rate was 10Hz for 

each of the sensors. After evaluating a number of classifiers, including Nearest Neighbor, 

Support Vector Machine, Neural networks, Decision Tree (J48) and Naïve Bayes, it was 

found that Neural Networks, Decision Tree (J48), and Naïve Bayes provide the best 

accuracy for this particular application. Neural Networks provided in Weka is a multilayer 

perceptron, which deploy a feed-forward artificial neural network and use supervised back-

propagation for training. In our experiments, 15 hidden neurons are used in the network.

Table 1 presents recognition accuracy of the layer-1 classifier in Fig. 6 that classifies 

dynamic and static activities. For this and all subsequent results, accuracy is reported in a 

subject-independent manner by training the classifier based on the data collected on 9 

subjects, and testing it on the last subject. This procedure is repeated ten times, each time for 

a different test subject. Average accuracy from ten such runs is reported.

Table 2 reports the recognition accuracy of the layer-2 classifier in Fig. 6 that classifies 10 

dynamic activities based on entropy. Accuracy for 4 test subjects using all three classifiers is 

presented in the table. Results for the other six test subjects showed similar recognition 

accuracy for the dynamic activities. Results indicate that all three chosen classifiers are able 

to provide above 90% detection accuracies for most of the subjects.

Further details about the recognition inaccuracies for the layer-2 dynamic classifier are 

shown in the form a confusion matrix (for Subject 1 using Neural Networks) in Fig. 7. It can 

be seen that 100% accuracy can be achieved for riding bike slowly and walking slowly, 

while for the other activities, accuracy could be lower. For instance, accuracy for jogging is 
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only 71%, as 26% of the instances are confused with jumping jacks, which indicates that the 

decision boundary between jogging and jumping jacks is not as clear as other boundaries.

Finally, Table 3 demonstrates recognition accuracy of the layer-2 static classifier in Fig. 6 

that classifies 4 static activities based on mean acceleration data. Detection accuracy for the 

static activities is always near 100% for the reported four and all other subjects in our 

experiments.

VI. Energy-Accuracy Trade-off

Energy efficiency of the networked sensor system and its implications on activity 

recognition accuracy is studied in this section. Fig. 8 reports accuracy of the layer-2 

classifier for dynamic activity recognition, when the acceleration sampling rates of the 

wearable sensors are changed. As expected, with lower sampling rates (i.e. higher intervals) 

the overall accuracy degrades for all three classifiers in a linear manner.

In order to establish the connection between sensor sampling rate and its impacts on energy 

consumption due to variable radio transmissions, experiments were performed for measuring 

the run-time current consumption by the on-body sensors. As shown in Fig. 9, a 1Ω resistor 

is inserted into the power supply circuit, and the voltage across the resistor is monitored by 

an oscilloscope. The typical baseline current consumption of an on-body sensor unit is 

around 20mA, and around 35mA during radio transmissions; the resulting equivalent 

resistance is around 100Ω. The input impedance of the oscilloscope is 1MΩ. Therefore, the 

1Ω resistor causes very minimal impact on the system power consumption. The current 

consumption by the sensors package is first computed from the voltage across the 1Ω 

resistor, and then the power consumption is estimated based on the supply voltage and 

measured current.

Fig. 10 depicts the sensor power consumption traces for different acceleration sampling 

intervals. Each gray ellipse in the graphs indicates the surge of consumption due to a radio 

packet transmission. With higher sampling rates (e.g. lower intervals), more such surges 

occur due to more frequent packet transmissions, thus causing higher overall power 

consumption.

As observed in Fig. 10, since a given power budget for the on-body sensors bounds the 

maximum rate at which acceleration can be sampled (and radio packets can be sent), it also 

dictates the resulting activity detection accuracy.

Maximum detection accuracy for off-body activity analysis for a given per-sensor power 

budget is shown in Fig. 11. The reported accuracy represents average over three different 

classifiers, namely, Neural Network, Decision tree (J48) and Naïve Bayes. As expected, 

better detection accuracy can be achieved via higher power consumption at the sensor nodes.
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VII. Networked On-Body Analytics

Study for on-body detection is presented in this Section

One of the on-body sensors, chosen dynamically, is designated as the master node for data 

processing. As shown in Fig. 12, two of the three on-body sensors designated as the slave 

units sample their own acceleration data and extracts features (i.e. mean and entropy) before 

sending them to the designated master using the MAC protocol described in Section II. The 

master sensor also collects its own acceleration and computes the corresponding features. 

Once sufficient amount (i.e. 4.2s worth) of feature data is available at the master unit, it 

executes a previously trained decision tree classifier to recognize the current activity and 

then periodically sends the detected activity to an access point, when available in range. 

Decision tree was chosen for its lower computational complexity.

Given that the processor on the on-body sensors are generally cycle-limited, and the activity 

analytics is expected to share the CPU with other applications [13], the amount of total 

processing load is expected to impact the activity detection accuracy in the on-body 

processing mode. Impacts of such background load on activity detection accuracy are 

studied in this subsection, and all the results shown above have no background load.

While executing the decision tree based classifier (which was trained off-body), a synthetic 

background load generating process was executed. The background load comprised of 

periodic multiplication of two 4×4 unsigned 32-bit integer matrices. It was observed that 

each matrix multiplication takes 1.5ms. Multiplications are carried out with exponentially 

distributed periodicity and duration, for which the mean is changed for varying the effective 

background load. Background load is expressed in percentage as the mean execution time of 

each multiplication operation over the mean interval between two consecutive 

multiplications. Consequently, background load is executed in addition to the posture 

recognition application.

The effects of background load are depicted in Fig. 13:a. Experimental analysis revealed that 

the loss of detection accuracy is primarily due to sampling irregularities and sample losses 

caused by the background process. The detection process uses a 100ms periodic timer for 

sampling acceleration data. It turns out that increased background load can: 1) insert large 

timing jitter for the 100ms sampling timer, and 2) subsequently reduce the effective number 

of samples within each 4.2s entropy computation window. Therefore, the assumption used in 

[13][14] that a modularized criteria may not be valid.

These effects which cause the loss of detection accuracy are shown in Fig. 13:b. The sample 

interval variation in Fig. 13:b reports effect-1 above, which is sample interval variance 

caused by the background process. And the sample loss rate represents effect-2 in terms of 

the fraction of samples that were pushed out of the 4.2s window by the background load. 

Deterioration of both these quantities with higher background load explains the loss of 

accuracy. Note that the impacts of background load appeared to be significantly more 

pronounced for the dynamic activities, which is why Fig. 13 reports only the dynamic case. 

Since the static detection uses mean as the only feature, sample loss and irregularities did 

not affect the accuracy much.
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VIII. Related Work

Human activity recognition research have appeared in the literature primarily from an out-

of-body analysis standpoint. The work in [8] collects annotated acceleration data from 20 

subjects, and then different classifiers were deployed to analyze the data. It was shown that a 

decision tree classifier provides the best accuracy, and the sensors on thigh and wrist are 

most important for high accuracy. The approach in [9] implemented a real-time out-of-body 

decision tree algorithm that provided high accuracy using subject-dependent training. The 

system developed in [13], which is called Titan, is also used in [14]. When a task is inserted, 

the Network Manager would inspect the capabilities of the sensor nodes, and insert it into a 

node accordingly.

In contrast to those work in the literature, our approach in this paper is to develop a systems 

study that, in addition to developing activity analytics classifiers, characterizes energy and 

processing constraints of the on-body sensor units. The impacts of energy consumption by 

the sensors on out-of-body activity detection accuracy are analyzed by varying the 

acceleration sampling rate, and its subsequent energy overhead due to data reporting 

requirement over radio links. Subsequently, on-body activity detection accuracy in the 

presence of processing load constraints is characterized by modeling and stochastically 

varying the background processing loads on sensors.

To our knowledge, this is the first work to report a systematic approach towards designing a 

networked wearable sensor system with energy and processing considerations.

IX. Summary and Ongoing Work

This paper reported the design and systems level details of a wearable sensor network that is 

capable of monitoring human activity dynamics for remote health monitoring applications. 

An elaborate machine learning mechanism was used to demonstrate that accurate activity 

analytics can be performed both on-body and off-body. It was also demonstrated that the 

detection accuracy can be traded for reducing energy expenditure at the sensor nodes. Other 

systems performance including how the background CPU load in the sensors can affect the 

detection accuracy in the off-body processing mode was also presented. Ongoing work on 

this topic includes: 1) developing various other applications, including an automatic on-body 

eating detection system, and 2) developing a middleware framework for autonomous 

process migration for switching between on-body and off-body processing modes based on 

available energy and processing resources.
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Fig. 1. Wearable sensor network for activity analysis
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Fig. 2. TDMA MAC layer for on- and off-body communication
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Fig. 3. Acceleration data streams for three representative activities
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Fig. 4. Entropy streams for the representative activities
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Fig. 5. Principal Component Analysis for 10 dynamic activities
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Fig. 6. Hierarchical classifier layering

Dong and Biswas Page 16

Int Conf Commun Syst Netw. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7. Confusion matrix for the dynamic activity classification
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Fig. 8. Classification accuracy vs. sampling interval
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Fig. 9. Power monitoring arrangement
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Fig. 10. Power consumption traces for different sampling rates
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Fig. 11. Activity recognition as function of power consumption
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Fig. 12. On-body processing model
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Fig. 13. Loss of detection accuracy due to limited processing cycles
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Table 1
Recognition accuracy for dynamic vs. static classifier

Classifier Accuracy (%)

Dynamic vs. static

Neural Network 100

Decision Trees 99.94

Naïve Bayes 99.99
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Table 2
Recognition accuracy for dynamic activities

Classifier Accuracy (%)

Subject 1

Neural Network 95.61

Decision Trees 94.98

Naïve Bayes 95.38

Subject 2

Neural Network 94.99

Decision Trees 94.36

Naïve Bayes 94.77

Subject 3

Neural Network 95.17

Decision Trees 92.99

Naïve Bayes 97.50

Subject 4

Neural Network 94.65

Decision Trees 89.55

Naïve Bayes 93.27
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Table 3
Recognition accuracy for static activities

Classifier Accuracy (%)

Subject 1

Neural Network 100

Decision Trees 100

Naïve Bayes 100

Subject 2

Neural Network 100

Decision Trees 94.31

Naïve Bayes 100

Subject 3

Neural Network 100

Decision Trees 100

Naïve Bayes 100

Subject 4

Neural Network 100

Decision Trees 94.10

Naïve Bayes 100
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