
ar
X

iv
:1

31
2.

08
25

v1
  [

cs
.N

I] 
 3

 D
ec

 2
01

3
1

FRANTIC: A Fast Reference-based Algorithm

for Network Tomography via Compressive

Sensing

Sheng Cai Mayank Bakshi Sidharth Jaggi Minghua Chen

The Chinese University of Hong Kong

Abstract

We study the problem of link and node delay estimation in undirected networks when at mostk

out of n links or nodes in the network are congested. Our approach relies on end-to-end measurements

of path delays across pre-specified paths in the network. We present a class of algorithms that we call

FRANTIC 1. TheFRANTIC algorithms are motivated by compressive sensing; however,unlike traditional

compressive sensing, the measurement design here is constrained by the network topology and the matrix

entries are constrained to be positive integers. A key component of our design is a new compressive

sensing algorithmSHO-FA-INT that is related to theSHO-FA algorithm [1] for compressive sensing,

but unlikeSHO-FA, the matrix entries here are drawn from the set of integers{0, 1, . . . ,M}. We show

that O(k logn/ logM) measurements suffice both forSHO-FA-INT and FRANTIC . Further, we show

that the computational complexity of decoding is alsoO(k logn/ logM) for each of these algorithms.

Finally, we look at efficient constructions of the measurement operations through Steiner Trees.

I. INTRODUCTION

Monitoring performance characteristics of individual links is important for diagnosing and

optimizing network performance. Making direct measurements for each link, however, is im-

practical in large-scale networks because (i) nodes insidethe networks may not be available to

1FRANTIC stands forFastReference-basedAlgorithm for Network Tomography vIa Compressive sensing.
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carry out measurements due to physical or protocol constraints, and (ii) measuring each link

separately incurs excessive control-traffic overhead and is not scalable.

A viable alternative approach is network tomography [2]. Itaims to infer the performance

characteristics of internal links bypath measurements between controllable nodes, where a path

measurement is function of the characteristics of the linkson the path. It does not require access

to all the nodes and, more importantly, it allows clever solutions to leverage the network structure

(e.g., topology and graph properties) tojointly infer the performance characteristics of multiple

links via path measurements. Many existing work have explored such insight to design excellent

solutions that are able to infer the congested links with much less measurements than the direct

link measurement approach [3]–[7]. See [8] for a survey.

Recently, Xuet al. [9] further argue that usually only a small fraction of network links, sayk

out of total |E| links (k ≪ |E|), are congested (i.e., experiencing large congestion delay or high

packet loss rate). They interpret each path measurement as alinear combination of the delays or

loss rates of thek congested links. With these understanding, the problem of network tomography

can be viewed as recovering ak-sparse link vector from a set of linear measurements.

Exploiting the “sparse congestion structure” insight, Xuet al. [9] propose a compressive

sensing based scheme that can identify anyk congested links usingO(TNk log |E|) path mea-

surements over any sufficiently-connected graph. Here, each of the path measurement is a random

walk on the graph, andTN is the mixing time of the random walk. Further, they show that

one can actuallyrecover the performance characteristics of anyk congested links with again

O(TNk log |E|) path measurements by usingℓ1-minimization. Similar results are also obtained

by [10]–[12]. Given all these exciting results, a natural question is that can we do better and

how?

II. OUR CONTRIBUTION

A. Summary

In this paper, we build upon our recently developed compressive sensing algorithm named

SHO-FA [1] to design a new network tomography solution that we callFRANTIC . FRANTIC
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achieves the following performance:

• FRANTIC can identify anyk congested links (or nodes) out ofn and recover the correspond-

ing link (or node) performance characteristics usingO(ρk log n/ logM) path measurements

with a high probability. Here,M ∈ � andρ ∈ Ω(1) ∩ o(n/k) are design parameters. See

Section II-C for a discussion.

• TheFRANTIC decoding algorithm can recover the link (or node) performance characteristics

in O(ρk log n/ logM) steps.

As compared to the solution in [9], our solution improves both the number of measurements and

the number of recovery steps fromO(TNk log n) to O(k) (obtainable by settingM = O(n)).

B. Techniques and results

The main techniques that lead to these improvements are as follows. First, in Section VI,

we develop an efficient compressive sensing algorithmSHO-FA-INT when the entries of the

measurement matrix are constrained to be positive integers. Our algorithm borrows key ideas

from a prior work [1] that studies compressive sensing in theunconstrained setting. A key

technique here is to group together measurements and choosethe “weights” of the measurement

matrix as co-prime vectors. This ensures that each network link has a distinct signature in

the measurement output, which allows us to decode the delay values for congested links in

an iterative manner. Theorem 1 states the performance guarantees of our algorithm. Next, we

propose a design for measuring the delay on congested links in a network in Section VII. An

important insight in our design is that by using local loops at individual edges, end-to-end delay

measurements can be designed to assign different integer weights to delays for different edges.

We start with a compressive sensing matrix given bySHO-FA-INT and emulate the output of the

matrix by first designing two correlated network paths, and then cancelling out the contribution of

unwanted links by subtracting one from another. Theorems 2-4 state the performance guarantees

of the FRANTIC algorithms. We also note that the path lengths required forFRANTIC can be

suitably optimised by using Steiner Trees and network decomposition. Theorem 4 and subsequent
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discussions point this out.

C. Explanation of design parameters

The parameterM denotes the maximum number of times a test packet may travel over any

edge. In many present day networks, the value ofM is usually fixed to be a small constant. In

this setting, our algorithm requiresO(k log n) measurements and decoding steps. Additionally,

if M is allowed to increase with the network size (possibly, in future generation networks), the

number of measurements and decoding complexity our algorithms may be decreased toO(k).

The parameterρ is a design parameter that controls the tradeoff between themeasurement path

lengths and the number of measurements required. Whenρ = 1, we requireO(k log n/ logM)

measurements with path lengthsO(nD/k). On the other extreme, ifρ is set to ben/(kω(1)),

we require uptoo(n) measurements but with as little asω(D) path length. In our exposition, we

prove the correctness of our schemes for the case whenρ = 1. The results for other values ofρ

follow from this analysis by pretending that the network hasρk congested nodes instead ofk.

III. M ODEL AND PROBLEM FORMULATION

Network and delay model: Let N = (V, E) be a undirected network with node setV and link

set E . In this paper, we consider the reference-based tomographyproblem where the topology

of N is known. We assume thatN is connected. We say that a nodev ∈ V has delaydv if

every packet that passes throughv is delayed bydv. Similarly, a linke ∈ E has delayde if every

packet passing throughe in any direction is delayed byde. We say a node or link iscongested

if the delay associated with it is non-zero. A congested nodeis called isolated if there exists

one of its neighbours which is not congested. LetdddV = (dv : v ∈ V) anddddE = (de : e ∈ E).

Both dddV anddddE are unknown but have at mostk non-zero coordinates.

Measurement model: Each measurement is performed by sending test packets over pre-determined

paths2 and measuring the end-to-end time taken for its transmission. Some nodes (resp. links)

may be visited more than once in a given path. As a result, eachmeasurement outputyi,

2In present day networks, this may be accomplished by employing source-based routing (c.f. [16]) for the test packets.
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Reference Type # Measurements Decoding Complexity Path Length Network Topology

[11] Node RO(k log(|V|/k)) +R+ 1 cs with 0− 1 matrix – General graph,
R is the radius of the graph

Node O(rk log(|V|/k)) + r cs with 0− 1 matrix – If G has anr-partition
Node O(2k log(|V|/2k)) + r cs with 0− 1 matrix – Erdos-Renyi random graphG(|V|, p),

with p = β log |V|/|V| andβ ≥ 2
[9] Edge O(TN k log |E|) l1 minimization O(|E|/k) G is a (D, c)-uniform graph,

D ≥ D0 = O(c2kT 2
N ).

[10] Edge O(k log(|E|/k)) l1 minimization – Network is 1-identifiable
[12] Node O

(

c4k2T 2
N log(|V|/d)

)

Disjunct matrix O(|V|/(c3kTN )) G is a (D, c)-uniform graph.
Edge O(c4k2T 2

N log(|E|/d)) Disjunct matrix O(|V|D/(c3kTN )) D ≥ D0 = O(c2kT 2
N ).

Node O(c8k3T 4
N log(|V|/d)) Disjunct matrix unbounded (sink node)

Edge O(c9k3DT 4
N log(|E|/d)) Disjunct matrix unbounded (sink node)

Node O(k2(log3 |V|))/(1− p)2 Disjunct matrix O(|V|/(c3kTN )) G is D-regular expander graph or
Edge O(k2(log3 |E|))/(1 − p)2 Disjunct matrix O(|V|D/(c3kTN )) Erdos-Renyi random graph,G(|V|,D/|V|),
Node O(k3(log5 |V|))/(1− p)2 Disjunct matrix unbounded (sink node) withD ≥ D0 = Ω(k log2 |V|).
Edge O(k3D(log5 |E|))/(1 − p)2 Disjunct matrix unbounded (sink node)

This Node O(k log |V|/ logM) O(k log |V|/ logM) O(D|V|/k) General Graph
paper Edge O(k log |E|/ logM) O(k log |E|/ logM) O(D|E|/k) D is the diameter of the graph

Table I

Partial literature review : [11] considers the node delay estimation problem where a set of nodes can be measured together in one measurement
if and only if the induced subgraph is connected and each measurement is an additive sum of values at the corresponding nodes. The generated
sensing matrix is a0 − 1 matrix, therefore the decoding complexity mainly depends on which binary compressive sensing algorithm is used.
General graph and some special graphs are studied. The idea of a binary compressive sensing algorithm is borrowed by [10]where a single
edge delay estimation problem is studied and the estimationis done usingl1 minimization. In [9], a random-walk based approach is proposed to
solve thek-edge delay estimation problem.TN is the 1

(2c|V|)2
-mixing time ofN . The networks with degree-bounded assumption are studied.

Similar to [9], [12] uses random-walk measurements to solveboth node and edge failure localization problem where grouptesting (non-linear
version of compressive sensing) algorithm is used. The goalis to generate disjunct matrices which are suitable for group testing. The start
points of measurements can be chosen within a fixed set of designated vertices, or, chosen randomly among all vertices of the graph. The
first type of construction which don’t have the length bound covers the case that only a small subset of vertices are accessible as the starting
points of the measurements. Separately, the problem of edgefailure localization has also been studied in the optical networking literature [13]–
[15]. [13], which consider the single edge failure localization, has the same flavor as [11]. Binary-search type algorithms are proposed for
some special graphs. For the general graphs, the upper boundon the number of measurements required for single edge failure localization is
O(D(N )+log2(|V|)) whereD(N ) is the diameter of the graph. In [14], the problem of multi-link failure localization is considered. For small
networks, tree-decomposition based method has the upper bound on the number of trials ismin(O(D(N ) log |V|),O(D(N ) + log2(|V|))).
For the large-scale networks, random-walk based method similarly to [12] is proposed. They also consider the practicalconstraints such as the
number of failed links cannot be known beforehand. In [15], the solution proposed is based on the(k+ 2)-edge-connected network fork link
failures localization.

i = 1, 2, . . . , m, is a weighted sum of delays involving nodes and links that lie in the measurement

path, where, weight of a given node or link is the number of times it is visited by the measurement

path. In this paper, we consider two kinds of measurements –node measurements and link

measurements. In the node (resp. link) measurements, we associate each node (resp. link) with a

real-valued delay and the objective is to reconstruct the node (resp. link) delay vectordddV (resp.

dddE) given the collection of measurement outputs.

1. Node measurements: In the node measurement model, we associate each node with a real

valued delay (see [11], for example). LetS ⊆ V denote a subset of nodes inN . Let ES denote

the subset of links with both ends inS, thenNS = (S, ES) is the induced subgraph ofN . A

setS of nodes can be measured together in one measurement if and only if NS is connected.

October 15, 2018 DRAFT
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n Total number of links (or nodes) in the network
k Number of congested links (or nodes) in the network
M The maximum number of times a test packet may travel over any edge
D The diameter ofN
TN The mixing time of the random walk over graphN
ρ A design parameter that controls the tradeoff between the path lengths and the number of the measurements
N N = (V , E), a undirected network with node setV and link setE
dv Time taken by a test packet to pass through nodev ∈ V
dddV Node delay vector of length|V|
de Time taken by a test packet to pass through linke ∈ E in any direction
dddE Link delay vector of length|E|

II-A. Network Parameters

R R ∈ �+ such thatMR/ζ(R) ≥ 3n whereζ(·) be the Riemann zeta function
yyy Measurement output of lengthm = Rµ
A Measurement matrix of dimensionRµ × n

a
(r)
ij The r-th row entry in thej-th column of thei-th group ofA for r = 1, 2, . . . , R, i = 1, 2, . . . , µ and j = 1, 2, . . . , n

Gn,µ A bipartite graph with left vertex set {1, 2, . . . , n} and right vertex set {1, 2, . . . µ}
N(S) The set of right neighbours of a subset of left nodesS in Gn,µ

PPP A path of lengthT over the networkN = (V , E), i.e., a sequence(e1, e2, . . . , eT ) of links from E
W (PPP, e) The multiplicity of a link e ∈ E given a pathPPP , i.e., the number of timesPPP visits e
∆(PPP ) The end-to-end delay for a pathPPP

II-B. Design Variables

Table II
TABLE OF NOTATIONS

2. Link measurements: In link measurement setup, we associate each link with a realvalued

delay. LetT ⊆ E denote a subset of links inN . A setT of links can be measured together in

one measurement if and only if there exists a path that traversed each link inT .

For each of these models, we express the measurement output as a vectoryyy ∈ R
m that is

related to the delay vector through a measurement matrixA through matrix multiplication.

IV. K EY IDEAS

In this section, we present some key observations and challenges that this paper focuses on. We

begin with the observation that there is a high-level connection between the compressive sensing

and the network tomography problem. As noted in the previoussection, network tomography

can be treated as a problem of solving a system of linear equations. Under the assumption that

the underlying unknown vector is sparse, it is natural to think of it as a compressive sensing

problem [17] [18] [19]. Building on this intuition, networktomography can be formulated as
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the following compressive sensing problem: i) design a matrix A, ii) obtain delay measurements

yyy = AdddV iii) reconstructdddV from yyy. Fig. 1 illustrates this connection in a complete graph. Since

each subset of nodes in a complete graph induces a connected subgraph, we can freely choose the

locations of non-zero entries in each row ofA. Then, any compressive sensing algorithm with

0-1 measurement matrix [20] [21] can be applied to recover the vectordddV . However, when we go

Figure 1. Node Delay Estimation: For a complete graph with four vertices. We can get any measurements we want since
each subgraph of a complete graph is connected. For example,the subgraphs induced by{v1, v3} (covered by red cycle) and
{v1, v3, v4} (covered by green cycle) are connected, therefore we get themeasurements[1 0 1 0]dddV and[1 0 1 1]dddV respectively.

beyond complete graphs and node measurements, it is not straightforward to apply compressive

sensing directly. The network topology may impose constraints on implementable measurement

matrices (See Figs. 2,3,5).

Figure 2. General Networks: If the link (v1, v3) is removed
from the original complete graph, we cannot get the measure-
ment [1 0 1 0]dddV any longer.

Figure 3. Inaccessible Nodes: If there is some constraint that
we can not access tov3 andv3 is the destination of the paths
for us to get the measurement, then any measurement in Fig.
1 is not available.

Xu et al. [9] get around some of these problems by using random walks.One drawback of

their approach is that it involves a factor of mixing timeTN for both the number of measurements

and path length. For networks without sufficient connectivity, mixing time may be very large,

e.g., cycle graph,TN = O(|E|2). In the following, we propose two news ideas that enable us to

circumvent the above problem.

October 15, 2018 DRAFT



8

Idea 1: Cancellation enables selecting disconnected subsets of links and nodes. The idea here is

similar to that used in [11] where they use the structure called hub to get arbitrary measurement

matrix. However, they only consider the node delay model andspecial graphs which haver-

partition. In this paper, we expand this approach to both link delay and node delay models. By

considering correlated measurements, we can cancel out thecontribution of the undesired links

and nodes in a given measurement. Using this approach, we canmimic arbitrary measurements on

general graphs. See Fig. 4 as an illustration. One drawback of the cancellation based approach

is that if the selected measurement has too many disjoint components, then the number of

measurements required is very large. In Fig. 4, the number ofcancellations is2.

Figure 4. Cancellation: There are three paths in this graph:{e1e6e3e5}, {e5} and {e6}. Triangles indicate the source and
destination of a path. Correspondingly, we can derive threemeasurements[1 0 1 0 1 1]dddE , [0 0 0 0 1 0]dddE , and[0 0 0 0 1]dddE .
Subtracting the second and the third measurements from the first measurement, we get the measurement[1 0 1 0 0 0]dddE which
cannot be got by just one path.

Idea 2: Weighted measurements reduce the number of cancellations required and allow us to

implement arbitrary integer valued matrices. The insight here is that if we have two paths along

the same set of links, we can assign different weights for each link (or node) on these paths by

performing local loops. Specifically, for a given set of weights on a subset of links (or nodes),

we construct two measurements - a spanning measurement, anda weighted measurement. The

spanning measurement is constructed by finding any path thatvisits through all the links (or

nodes) in the desired subset at least once. The weighted measurement, then follows the same

set of edges as the spanning measurement, but visits each link (or node) an additional number

of times in accordance with the desired weight for that link (or node). Finally, we subtract the

end-to-end delay for the weighted path from that of the spanning path to get an output that is

proportional to the output of the corresponding compressive sensing problem (See Fig. 7). These
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Figure 5. Edge Delay Estimation: We know that we can not
get arbitrary measurement by one path even if the graph is
complete. (e.g., the measurement[0 0 0 0 1 1]dddE cannot be got
since there is no path just visitinge5 ande6.)

Figure 6. Inaccessible Nodes: The second measurement in
Fig. 4 cannot be got since thev3 which is the destination of
the second path is not accessible (the same node identifier in
Fig. 1).

ideas enable us to reduce the network tomography problem to acompressive sensing problem

with integer valued matrices. In the Section VI, we present an efficient compressive sensing

algorithm with integer entries.

V. M AIN RESULTS

In this section, we state the main results of this paper. Letρ ∈ Ω(1) ∩ o(|E|/k) be a design

parameter.

Theorem 1 (Compressive sensing via integer matrices). Let M ∈ Z
+. There exists a constant

c such that whenever m > ck⌈log n/ logM⌉, the ensemble of ZM -valued matrices {Am×n} de-

signed in Section VI and the SHO-FA-INT reconstruction algorithm has the following properties:

Figure 7. Cancellation using weighted measurements: To get the measurement[1 0 1 0 0 0]dddE , we design the paths as follows.
First, we just follow the path{e1e6e3e5}, we get the measurement[1 0 1 0 1 1]dddE . Second, when visitinge1 and e3 for the
first time, the probe does one more local loop for both links toget the measurement[3 0 3 0 1 1]dddE . Finally, we take the
difference of these two measurements and divide the result by 2. Note that 1) Only one cancellation is required. 2) Even ifv3
is inaccessible, we still can achieve the two target measurements. 3) One additional local loops ate1 in the second step (so
that e1 is visited5 times), allows us the measurement[2 0 1 0 0 0]dddE . Thus, controlling the number of local loops allows us
to implement other ensembles of measurement matrices.
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1) Given (Am×n,Am×nddd) as input, where ddd is an arbitrary k-sparse vector in R
n, SHO-FA-INT

outputs a vector d̂dd ∈ R
n that equals ddd with probability at least 1 − O(1/k) under the

distribution of Am×n over the ensemble {Am×n}.

2) Given Am×nddd, d̂ is reconstructed in O(k⌈log n/ logM⌉) arithmetic operations.

3) Each row of Am×n has O(n/k) non-zeros in expectation.

Theorem 2 (Network tomography for link congestion). Let N = (V, E) be an undirected

network of diameter D such that at most k have unknown non-zero link delays. Let M ∈ Z
+

Then, the FRANTIC algorithm has the following properties:

1) FRANTIC requires O(ρk⌈log |E|/ logM⌉) measurements.

2) For every edge delay vector dddE ∈ R
|E|,FRANTIC outputs d̂ddE that equals dddE with probability

1−O(1/ρk).

3) The FRANTIC reconstruction algorithm requires O(ρk⌈log |E|/ logM⌉) arithmetic opera-

tions.

4) The number of links of N traversed by each test measurement packet in FRANTIC is

O(D|E|/ρk) and the total number of hops for each packet is O(DM |E|/ρk).

Definition 1 (Isolated congested node). A congested node is called isolated if there exists one

of its neighbours which is not congested.

Theorem 3 (Network tomography for node congestion). Let N = (V, E) be an undirected

network of diameter D such that at most k have unknown non-zero node delays and all congested

nodes are isolated. Let M ∈ Z
+ Then, the FRANTIC algorithm has the following properties:

1) FRANTIC requires O(ρk⌈log |V|/ logM⌉) measurements.

2) For every edge delay vector dddV ∈ R
|V|, FRANTIC outputs d̂ddV that equals dddV with probability

1−O(1/ρk).

3) The FRANTIC reconstruction algorithm requires O(ρk⌈log |V|/ logM⌉) arithmetic opera-

tions.

4) The number of links of N traversed by each test measurement packet in FRANTIC is

O(D|V|/ρk) and the total number of hops for each packet is O(DM |V|/ρk).
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VI. SHO-FA-INT ALGORITHM FOR COMPRESSIVESENSING

We begin by describing a new compressive sensing algorithmSHO-FA-INT which has several

properties that are desirable for our application.SHO-FA-INT is related to theSHO-FA algorithm

– originally developed in the unconstrained compressive sensing setting [1] – but differs from it

in that the non-zero entries of the sensing matrixA are constrained to be positive integers less

than or equal to someM ∈ �. 3

Let {Gn,µ}n,µ∈� be an ensemble of left-regular bipartite graphs, where eachGn,µ is a bipartite

graph with left vertex set{1, 2, . . . , n} and right vertex set{1, 2, . . . , µ}. For each left vertex

j ∈ {1, 2, . . . , n}, we pick three distinct vertices uniformly at random from the set of right

vertices{1, 2, . . . , µ}.

Measurement Design: Let ζ(·) be the Riemann zeta function. LetR ∈ �+ such thatMR/ζ(R) ≥

3n and let [M ] denote the set{1, 2, . . . ,M}. Given the graphGn,µ, we design aRµ × n

measurement matrixA(= ARµ×n) as follows. First, we partition the rows ofA into µ groups

of rows, each consisting ofR consecutive rows as follows.

A =





































a
(1)
11 a

(1)
12 . . . a

(1)
1n

...
...

. . .
...

a
(R)
11 a

(R)
12 . . . a

(R)
2n

a
(1)
21 a

(1)
22 . . . a

(1)
2n

...
...

. . .
...

a
(R)
21 a

(R)
22 . . . a

(R)
2n

...
...

. . .
...





































Let a(r)ij be ther-th row entry in thej-th column of thei-th group and letaaaij = [a
(1)
ij a

(2)
ij . . . a

(R)
ij ]T .

First, for each(i, j) not in Gn,µ, we setaaaij = 0R. Next, we randomly chose3n distinct values

from the setC ,
{

[c1, c2, . . . , cR]
T ∈ (ZM)R : gcd(c1, c2, . . . , cR) = 1

}

and use these to set the

3Reference [1] proposes a design of matrixAµ×n such that givenyyy = Addd for a k-sparse vectorddd ∈ �n, a reconstruction
d̂dd can be obtained inO(k) steps by using a measurement vector of lengthµ = O(k). A key requirement of this design is that
both the locations of non-zero entries ofA as well as their values may be arbitrarily chosen. In particular, the non-zero entries
of A are chosen to be unit norm complex numbers.
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values ofaaaij for each edge(i, j) in Gn,µ. The assumption thatMR/ζ(R) ≥ 3n ensures that such

a sampling is possible. We skip the proof of Lemma 1 here and refer the reader to [1] for the

proof.

Lemma 1. [1, Lemma 6] For M large enough, MR/ζ(R) ≤ |C| ≤ MR.

The output of the measurement is aRµ-length vectoryyy = Addd. Again, we partitionyyy into µ

groups ofR consecutive rows each, and denote thei-th sub-vector asyyyi. Note eachyyyi ∈ �
R

follows the relationyyyi = [ai1ai2 . . . ain]ddd.

Reconstruction algorithm: The decoding process is essentially equivalent to the “peeling process”

to find 2-core in uniform hypergraph [22], [23]. The decoding takes place overO(k) iterations.

The decoding algorithm is very similar to [1, Section IV-B].In each iteration, we find one

non-zero undecodeddj with a constant probability after locating a right node thatis connected

to exactly one non-zero left node. After decoding the non-zero dj for the current iteration, we

cancel out the contribution ofdj from all measurements and proceed iteratively. To describe

the peeling process, we define leaf nodes as follows.

Definition 2 (S-leaf node). A right node i is a leaf node for S if i is connected to exactly one

j ∈ S in the graph Gn,µ.

First, the algorithm initializes thereconstruction vector d̂dd(1) to the all zeros vector0n, the

residual measurement vector ỹyy(1) to yyy, and theneighbourly set D(1) to be the set of all right

nodes for whichyi does not equal0R. In each iterationt, the decoder picks a right nodei(t)

from the current neighbourly setD(t) and checks if only one left node contributes to the value

of (ỹ(t))i(t). If so, it identifiesi(t) as a leaf node, decodes delay value at the corresponding

parent node, and updatesD(t + 1), ỹyy(t + 1), and d̂dd(t + 1) for the next iteration. The decoder

terminates when the residual measurement vector becomes zero. See [1, Section IV-B] for a

detailed description.

Next, we prove the performance guarantees ofSHO-FA-INT as claimed in Theorem 1. Let

k = k(n) grow as a function ofn. We show that the algorithm presented above correctly
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reconstructs the vector̂ddd with a high probability over the ensemble of matrices{ARµ×n}. To

this end, we first note that ifµ = Ω(k), the ensemble of graphs{Gn,µ} satisfies the following

“many leaf nodes” as shown in the following lemma.

Lemma 2 (Many leaf nodes). [1, Lemma 2] Let S be a subset of the left nodes of the Gn,µ and

let N(S ′) be the set of right neighbours of a set S ′. If |S| ≤ k then with probability 1−O(1/k),

for every S ′ ⊆ S, N(S ′) contains at least |N(S ′)|/2 S ′-leaf nodes.

Proof of Theorem 1: Let S(ddd) = {j ∈ {1, 2, . . . , n} : dj 6= 0}. By Lemma 2, with probability

(1−O(1/k)), all its subsetsS ′ of S(ddd) have at least twice as many leaf neighbours as the the

number of elements in theS ′. Therefore, in each iteration, the probability of picking aleaf node

is at least half. Next, we note that in each iteration that we pick a leaf node, the probability of

identifying as one and finding it’s left neighbour correctlyis 1. This is true because the weight

vectorsaaaij ’s corresponding different neighbours of a given right nodei are different and for a

leaf nodei with the sole non-zero neighbourj, the output valueyyyi exactly equals todjaaaij .

Next, we argue that ifi is not a leaf node, then the probability of it being declared aleaf

node in any iteration isO(1/n). Note that for this error event to occur for a right nodei, it

must be true that
∑

j′∈N(i) de′aij′ = d′′aij′′ for somed′′ ∈ � andj′′ connected toi. Since all the

measurement weights are chosen randomly, by Schwartz-Zippel lemma [24], [25], the probability

of this event isO(1/n), which is o(1/k).

Since the probability of picking a leaf node at any iterationis at least1/2, the expected

number of iterations before a new leaf node is picked is upperbounded by2. Since there are

at mostk non-zerodj ’s, in expectation, the algorithm terminates inO(k) steps. Further, since

the probability of finding a leaf in each iteration is independent of other iterations, by applying

standard concentration arguments, the total number of iterations required is upper bounded by

2k in probability.

Finally, to compute the decoding complexity, note that eachiteration requires a constant

number arithmetic operations over vectors in[M ]R, which in turn can be decomposed into
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O(R) arithmetic operations over integers. Therefore, the totalnumber of integer operations

required isO(Rk) = O(k⌈log n/ logM⌉). Finally, we note that since each left node inGn,µ has

exactly3 right neighbours which are picked uniformly among all rightnodes and independently

across different left nodes, with a high probability, each right node has no more than4n/µ left

neighbours. This can be proved by first computing the expected number of left neighbours for a

right node and then applying Chernoff bound to concentrate it to close to its expectation. This

shows that, with a high probability, the number of non-zero entries in each row ofA is O(n/k).

VII. T HE FRANTIC ALGORITHM

A. Link Delay Estimation: We define apath PPP of lengthT over the networkN = (V, E) as a

sequence(e1, e2, . . . , eT ) = ((v1, v2), (v2, v3), . . . (vT , vT+1)) such thatet ∈ E for t = 1, 2, . . . , T .

For a given pathPPP , we define the multiplicityW (PPP, e) of a link e ∈ E as the number of times

PPP visits e. Let ∆(PPP ) be the end-to-end delay for a pathPPP .

Definition 3 (www-spanning measurement). Given a measurement weight vectorwww = [w1w2 . . . w|E|],

and a www-spanning measurementis a path PPP = (e1, e2., . . . eT ) in the network N such that PPP

visits each e in {e : we 6= 0} at least once.

Definition 4 ((www,PPP )-weighted measurement). Given a measurement weight vector www and a

www-spanning measurement PPP = (e1, e2, . . . eT ), a (www,PPP )-weighted measurementis a path QQQ =

(e′1, e
′
2, . . . e

′
H) in the network N such that W (QQQ, e) = W (PPP, e) + 2we for each link e.

Observe that the end-to-end delay for awww-spanning measurementPPP is equal to∆(PPP ) =
∑

e∈E W (PPP, e)de, and that for a(www,PPP )-weighted measurement is equal to

∆(QQQ) =
∑

e∈E

W (QQQ, e)de = ∆(PPP ) + 2
∑

e∈E

wede. (1)

Proof of Theorem 2: To prove Theorem 2, we start with a measurement matrixA drawn according

to the SHO-FA-INT construction for Theorem 1. For each row of the measurement matrix, we

construct two paths in the network - a spanning measurement and a weighted measurement. Next,
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we subtract the end-to-end delay for the spanning measurement from the weighted measurement

to get an output that is exactly twice the measurement outputcorresponding to the compressive

sensing measurement using measurement matrixA. Thus, we can apply theSHO-FA-INT recon-

struction algorithm from Section VI to reconstruct the delay vectordddE . More precisely, LetA

be aRµ×n matrix drawn from the ensemble of Section VI, whereR = O(⌈log n/ logM⌉) and

n = |E|.

Measurement Design: Let aaa(i) = [ai1ai2 . . . ain] be thei-th row of A. Consider network mea-

surementsPPP (i) andQQQ(i) defined as follows. LetPPP (i) be anaaa(i)-spanning measurement obtained

by picking the links in{e : aaa(i) 6= 0} one-by-one and finding a path from one link to another. By

the definition of the diameter of the graph, there exists a path of length at mostD between any

pair of links. Therefore, there exists a pathPPP (i) = ((v1, v2), (v2, v3), . . . , (vT , vT+1)) of length

T = O(Dn/k) that covers all theO(n/k) vertices that have non-zero components inaaa(i).

Next, letQQQ(i) = (e′1, e
′
2 . . . , e

′
T ′) be a(PPP (i), aaa(i))-weighted measurement of lengthT ′ = T +

2
∑

e∈E ae(i) as follows. Lete′1 = (v1, v2). If a(v1,v2)(i) 6= 0, we traverse the edge(v1, v2) an addi-

tional2a(v1,v2)(i) times by going in the forward direction,i.e. on (v1, v2), and the reverse direction,

i.e. on (v2, v1), an additionala(v1,v2)(i) times each. Thus, forτ = 1, 3, 5, . . . , 2a(v1,v2)(i) + 1, we

sete′τ = (v1, v2) and forτ = 2, 4, . . . , 2a(v1,v2)(i), we sete′τ = (v2, v1). Next, if v3 = v1, i.e., we

have already visitede2, we traverse the link we traverse the linke2 once more, else we traverse

it a(v2,v3)(i) + 1 times in the forward direction anda(v2,v3)(i) times in the reverse direction,i.e.,

for τ = 2a(v1,v2)(i)+2, 2a(v1,v2)(i)+4, . . . , 2a(v1,v2)(i)+2a(v2,v3)(i)+2, we sete′τ = (v2, v3) and

for τ = 2a(v1,v2)(i)+3, 2a(v1,v2)(i)+5, . . . , 2a(v1,v2)(i)+2a(v2,v3)(i)+1, we sete′τ = (v3, v2). We

continue this process for each link(vt, vt+1) in the pathPPP (i), , i.e., if (vt, vt+1) has been visited

already in either the forward or reverse direction byQQQ(i), we add it toPPP (i) only once, else, we

traverse it an additionala(vt,vt+1)(i) times in each direction. Therefore,QQQ(i) visits every edge

e ∈ E a total of2ae(i) times more thanPPP (i) does.

Reconstructing dddE: Next, we measure the end-to-end delays for the pathsPPP (i) andQQQ(i) for

eachi = 1, 2, . . . , Rµ and letyi = (∆(QQQ(i)) − ∆(PPP (i)))/2. From equation (1), it follows that

yi =
∑

e∈E aiede. Note that this exactly equals the output of a compressive sensing measurement
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Figure 8. Isolated Node: For a subgraph with5 vertices and4 links, all vertices are
congested.v1 is not isolated since all of its neighbors are congested. Suppose there is
a local loop involvingv1, v2, ande1. For link measurement, only the delay ofe1 is
added to the weighted measurement. However, for the node measurement, the delays
of v1 and v2 are both added to the weighted measurement. The delay ofv2 will not
be canceled by the corresponding spanning measurement.

with ddd as the input vector,A as the measurement matrix, andyyy and the measurement output

vector. Using this observation, we input the vectoryyy to the SHO-FA-INT algorithm to correctly

reconstructddd with probability 1 − O(1/k). The guarantees on the decoding complexity follow

from the decoding complexity of theSHO-FA-INT algorithm and that on the total number of

hops follows by noting that each link in a measurement path may be visited at most2M times.

B. Node Delay Estimation: The measurement design and the decoding algorithm for node

delay estimation proceeds in a similar way to the link delay estimation algorithm of Section VII.

The difference here is that instead of assigning weights to links in a path, our design assigns

weights to nodes in a path by visiting each node repeatedly. We skip the proof of Theorem 3

here as it essentially follows from the technique used in theproof of Theorem 2. The only

difference is that for node delay estimation we add the isolation assumption. If there exists

one congested node,v ∈ V, whose neighbors are all congested nodes, then we are not able

to generate the measurement involvingv by subtracting the weighted measurement from the

spanning measurement. The reason is that each local loop involving v adds one more delay

corresponding to one of its congested neighbor. However, this problem doesn’t happen in the

edge delay measurements. (See Fig. 8)

VIII. E XPLOITING NETWORK STRUCTURE

A. Reducing Path Lengths through Steiner Trees:

One drawback of the approaches presented in the previous section is that even though on an

average, each row ofA contains onlyO(n/ρk) non-zero entries, our upper bound on the path

length relies on worst case pairwise paths for each pair of successive edges to be measured. In
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this Section, we propose a Steiner Tree based approach to design the measurement paths given

a measurement matrixA.

Definition 5 (Steiner Tree). Let S ⊆ V . We say that T ⊆ E is a Steiner Tree for S if T has the

least number of edges among all subsets of E that form a connected graph that is incident on

every v ∈ S. Let L(S) be the length of a Steiner Tree for S.

For everys ∈ Z
+, let

L∗(s) , max
S:S⊆V
|S|≤s

L(S).

Note that, in general,L∗(s) ≤ Ds. Further, in many graphs of practical interest,L∗(s) ≪ Ds.

For example, in a line graph withn vertices,L∗(s) is at mostn, while Ds maybe as large

as O(ns). Using this observation, we may further improve the performance guarantee of our

algorithm. We note that it suffices to find a Steiner Tree that passes through all links specified by

a given row of the measurement matrixA. Also, we already know that, with a high probability,

the number of non-zero entries in each row ofA is O(n/ρk). Thus, in general, the number of

links traversed by each link (or node) delay measurement isO(L∗(s)) wheres = O(|E|/ρk) (or

O(|V|/ρk) respectively) is the number of non-zero entries in the measurement. This proves the

following assertion.

Theorem 4 (Network tomography for link/node congestion using Steiner Trees). For the setting

of Theorem 2, the number of links of N traversed by each measurement of FRANTIC is at most

O(L∗(s)) where s = O(|E|/ρk) is the number of non-zero entries in the measurement and the

total number of hops for each measurement is O(ML∗(s)).

Remark:There exist polynomial-time approximation schemes with a performance ratio decreased

from 2 to 1.55 by a series of works [26]–[33].

B. Average length of Steiner Trees:

In Theorem 4, we analyzed the length of measurement paths in terms of the worst-case length

of Steiner trees that contain an arbitrary subset ofs links (resp. nodes). However, on an average,
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however, this may be too conservative an estimate.

Definition 6 (Average length of Steiner tree). For every s ∈ �+, let

L(s) ,

∑

S:S⊆V
|S|=s

L(S)

|{S ⊆ V : |S| = s}|

denote the average length of Steiner tree.

In the example shown in Fig. 9, we argue that, with a high probability, the length of paths

required is upper bounded byL(s) which may be significantly smaller thanL∗(s).

C. Network decomposition:

Since we already know the topology of the network, exploringthe structure of the topology

may help us to reduce the path length of each measurement. In Fig. 10, we illustrate how to

reduce the length of Steiner tree by network decomposition.
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Clique containing C =O(n1/2 ) nodes
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0.4
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Figure 9. Worst-case vs Average length of Steiner trees: Consider a network ofn links. The network has two parts - a clique
consisting ofC = (1 +

√

1 + 8(n− n0.4))/2 fully connected nodes and a line consisting ofn0.4 nodes. Let the number of
congested links in the network bek = n0.95. Thus, each measurement path has to cover a set of links of sizeO(n0.05) specified
by SHO-FA-INT . In the worst case, such a set can include the two ends of the linear part. Thus, in the worst case, the length of
the Steiner tree can exceedn0.4. However, we note that theSHO-FA-INT algorithm picks the measurement nodes uniformly at
random. Thus, the probability of picking even one edge from the linear part of the network isO(n0.45/n0.5) = O(n−0.5) by
the union bound. Therefore, on an average, the length of Steiner tree is at mostO(n−0.5 × n0.4) = O(n0.35), which is lower
than the worst-case length of a Steiner tree coveringO(n0.05) links in the network.
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Figure 10. Network Decomposition: The network consists of three parts – two complete graphs with Θ
(

n0.5
)

vertices and a
line graph withΘ

(

n0.6
)

vertices. It follows that there areΘ(n) links in each of the two complete graphs andΘ
(

n0.6
)

links
in the line graph. For each link measurement, with high probability, two links involved locate in each of two complete graphs.
Therefore, the average length of Steiner tree is at leastΘ

(

n0.6
)

. If we decompose the original network into two subgraphs as
shown in the figure and do the link delay estimation on them separately, the average length of Steiner tree becomes at most
Θ
(

n0.5
)

which is smaller thanΘ
(

n0.6
)

.
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