
Abstract—We consider a slotted wireless network in an infras-
tructure setup with a base station (or an access point) and N
users. The wireless channel gain between the base station and
the users is assumed to be i.i.d., and the base station seeks to
schedule the user with the highest channel gain in every slot
(opportunistic scheduling). We assume that the identity of the
user with the highest channel gain is resolved using a series
of contention slots and with feedback from the base station.
In this setup, we formulate the contention resolution problem
for opportunistic scheduling as identifying a random threshold
(channel gain) that separates the best channel from the other
samples. We show that the average delay to resolve contention
is related to the entropy of the random threshold.

We illustrate our formulation by studying the opportunistic
splitting algorithm (OSA) for i.i.d. wireless channel [9]. We
note that the thresholds of OSA correspond to a maximal
probability allocation scheme. We conjecture that maximal
probability allocation is an entropy minimizing strategy and a
delay minimizing strategy for i.i.d. wireless channel. Finally, we
discuss the applicability of this framework for few other network
scenarios.
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An Information Theoretic Point of View to
Contention Resolution

I. INTRODUCTION

The advancements in the physical layer technology has
enabled cellular networks (e.g., 3G and 4G deployments like
Mobile WiMAX, LTE Advanced) and WLANs (e.g., IEEE
802.11n) support hundreds of megabits per second. However,
with more and more users now accessing the Internet using
wireless as the last mile, there is a continuous necessity to
judiciously use the available network resources. Cross-layer
strategies have become extremely helpful in supporting the
ever increasing demand for bandwidth and stringent QoS.
Opportunistic scheduling and multiuser diversity (see [7])
is one such popular cross-layer technique recommended in
current cellular standards and in ad hoc deployments for
increasing the available network capacity. Unlike the wired
channel, the wireless channel will always be constrained by
fading and interference. Multiuser diversity enhances the net-
work performance by wisely scheduling the users when their
relative channel conditions are better. Opportunistic scheduling
is known to significantly improve the network performance,
especially for elastic traffic with loose delay constraints.

Opportunistic scheduling involves learning the channel state
information of the contending users and scheduling the user
with a relatively better channel. Centralized schemes like
polling incur a lot of overhead and may not scale well with
the number of users. For such schemes, the rate region of
the channel and the set of feasible QoS are well known (see
e.g., [6]). The performance of the system with partial channel
state information was studied in [12]. There is a lot of interest
in developing distributed and semi-distributed algorithms for
opportunistic scheduling. One popular technique has been to
adjust the backoff parameters of the nodes based on their
instantaneous channel gain. A number of works have studied
the optimal performance and the achievable throughput of such
strategies (see e.g., [8]). In [9], the authors propose a splitting
algorithm that resolves contention with feedback from the base
station. The distributed strategies incur losses due to collisions
but are known to very efficient especially for networks with a
large number of users.

In this work, we are interested in the contention resolution
problem of resolving the identity of the user with the highest
channel gain. We formulate the contention resolution problem
for opportunistic scheduling as identifying a random threshold
(channel gain) that separates the best channel from the other
samples. We show that the average delay to resolve contention
is related to the entropy of the threshold random variable.
We illustrate our formulation by studying the opportunistic

splitting algorithm [9]. We show that OSA is a maximal
probability allocation scheme and we conjecture that MPA
is an entropy minimizing strategy and a delay minimizing
strategy as well. In this work, we have studied opportunistic
scheduling for N users with i.i.d. channel gains. We believe
that our formulation of contention resolution as a source code
can help develop optimal strategies for a variety of other
network scenarios as well.

A. Related Literature

The idea of splitting with ternary feedback was originally
proposed for scheduling users in Aloha type networks (see
[1]). In [2], Arrow et al., study a problem of resolving the
user with the highest sample value with binary type questions.
The optimal strategy was studied when accurate feedback
of the number of contending users involved in every slot
was available. The near optimality of greedy strategies (like
MPA studied in Section V) was also discussed in [2]. In
[3], Anantharam and Varaiya prove the optimality of binary
type questions to minimize the average delay in [2]. The
performance of binary type questions in the presence of ternary
feedback was first reported in [5]. The optimal thresholds were
obtained and the relevance to opportunistic scheduling was
discussed.

In [9], Qin and Berry study splitting with ternary feedback
for opportunistic scheduling for i.i.d. wireless channel. We
have briefly described the algorithm in Section III; we motivate
our formulation of contention resolution as a source coding
problem by studying the opportunistic splitting algorithm
presented in [9]. Splitting algorithms have been studied for
other network and channel scenarios as well. In [4], Kessler
and Sidi study splitting algorithms for noisy channel feedback.
In [10], Qin and Berry report the performance of splitting
for different notions of fairness. In [13], Yu and Giannakis
study the performance of splitting with successive interference
cancellation in a tree algorithm. In this work, we restrict
to i.i.d. wireless channel under ideal channel assumptions;
our aim is to present an alternate formulation for contention
resolution using a source coding framework.

There are number of works concerning distributed oppor-
tunistic feedback schemes for wireless systems (see e.g., [11]).
In [8], Qin and Berry proposes a channel aware ALOHA and
characterizes its performance. In [14], Patil and de Veciana
discuss about reducing feedback for opportunistic scheduling
to support best effort and real time traffic. In this work, we
consider a semi-distributed framework where the base station
helps resolve contention with feedback.



B. Outline

In Section II, we describe the network model and the
opportunistic resolution problem. In Section III, we briefly
describe the opportunistic splitting algorithm from [9] and
motivate our formulation. In Section IV, we present contention
resolution problem for opportunistic scheduling as a source
coding problem. In Section V, we characterize OSA using
a maximal probability allocation scheme and study its per-
formance. In Section VI, we discuss the applicability of our
framework for other network scenarios and in Section VII, we
conclude the paper and discuss future work.

II. NETWORK MODEL

We consider the downlink wireless channel of a single cell
of a cellular data network (or of a single cell WLAN in
an infrastructure setup). A fixed number of users, N , share
the slotted wireless channel over time. We assume that the
channel gain between the base station and the wireless users
is independent and identically distributed with a common
continuous distribution F (·). We also assume that the users
have knowledge of the common channel distribution F (·) and
the number of users in the network, N .

Let (Hn,1, Hn,2, · · · , Hn,N ) represent the vector channel
gain of the users in slot n. We assume that every user i would
know its instantaneous channel gain Hn,i at the beginning
of every slot, but that information is not available with other
users in the network, including the base station. The channel
state information Hn,i can be made available to the user i
by the transmission of a pilot signal by the base station at
the beginning of the slot. The base station seeks to identify
and schedule the user with the highest channel gain in every
slot (opportunistic scheduling), i.e., the base station seeks to
schedule

arg max
{i=1,··· ,N}

{Hn,1, Hn,2, · · · , Hn,N}

in slot n. Define Xn,i := F (Hn,i), the cumulative distribution
value in the slot n. Then, the vector (Xn,1, Xn,2, · · · , Xn,N )
is i.i.d. Uniform in [0, 1] for any channel distribution F (·).
Further, the contention resolution problem can equivalently be
described as

arg max
{i=1,··· ,N}

{Xn,1, Xn,2, · · · , Xn,N}

Hence, without loss of generality, we will assume that F (·) is
Uniform in [0, 1] and consider (Xn,1, Xn,2, · · · , Xn,N ) as the
channel gain variables.

The base station resolves the identity of the user with the
highest channel gain by coordinating the contention resolution
process and by providing necessary feedback to aid in the
resolution. We assume that a time slot comprises of K mini
slots, where the mini slots are used to resolve the contention.
For example, the users can transmit MAC packets (like
RTS/CTS in IEEE 802.11 DCF), possibly with some channel
information, to the base station in a minislot and the base
station can feed back the state of the contention in that slot.
We assume that the base station feeds back the result of the

contention within the minislot and the feedback of the base
station is received by all the nodes in the network without
any error. At the end of the contention process, the user that
succeeded in the contention is permitted to transmit data in the
remainder of the slot. In this setup, an objective of the base
station would be to minimize the average number of minislots
required to identify the user with the highest channel gain.

III. OPPORTUNISTIC SPLITTING

In this section, we briefly describe a contention resolution
strategy, opportunistic splitting algorithm (OSA) from [9],
for a fixed number of users N and for i.i.d. block fading
wireless channel. Polling for opportunistic scheduling requires
N minislots to identify the user with the highest channel gain.
OSA is a distributed medium access control protocol that uses
ternary feedback to identify the user with the best channel
with a constant overhead.

A time slot is assumed to comprise of a maximum of K
minislots which are used for contention resolution. In every
minislot, OSA describes a continuous range in [0, 1] (the sam-
ple space of the Uniform random variable), (ymin, ymax] ⊂
[0, 1]; only the user(s) whose channel gain values fall within
the range will transmit contention resolution packets in the
minislot. At the end of the minislot, every user receives a
feedback from the base station of 0 or 1 or e, indicating if the
minislot was idle (no transmission), contained a successful
packet transmission or involved an error due to collision,
respectively. If the feedback is 1, the lone transmitter is
declared the winner of the contention and is permitted to
transmit data for the remaining duration of the slot. If the
feedback is 0 or e, then the range is suitably adjusted and the
contention resolution process continues until either a success
occurs or the time-slot ends.

The following pseudo-code describes the OSA algorithm for
a fixed number of users N and for i.i.d. channel gain (see [9]
for more details). In the pseudo-code, f denotes the feedback
in a minislot and k is the count of the number of minislots
used for contention resolution.

Initialize: ylow = 0, ymin = 1− 1
N , ymax = 1

Initialize: f = 0 and k = 1
while (f 6= 1) and (k <= K) do

f = (0, 1, e) feedback from (ymin, ymax]
if (f = e) then

ylow = ymin

ymin = (ymin+ymax)
2

end if
if (f = 0) then

ymax = ymin

if (ylow 6= 0) then
ymin = (ylow+ymax)

2
else

ymin = ymax(1− 1
N )

end if
end if
k = k + 1

end while



Remarks 3.1: The key features of the opportunistic splitting
algorithm are the following.

1) OSA aims to maximize the chances of success in every
minislot. For example, with N users independently and
Uniformly distributed in [0, 1], the probability of success
(identifying the user with the best channel) in a minislot
with the range (p, 1], Np(1 − p)N−1, is maximized at
p = 1 − 1

N . In fact, OSA begins contention resolution
with the range (1− 1

N , 1].
2) When a collision occurs, OSA assumes that the most

likely scenario is that two users are involved in the
collision, and hence, it updates the threshold from
(ymin, ymax] to (ymin+ymax

2 , ymax] (the optimal strategy
if there are only two contending users).

OSA is an effective contention resolution strategy with the
average number of minislots required to resolve contention
known to be less than 2.5070 slots, independent of the number
of users and channel gain distribution.

A. Two User Case

In this section, we will discuss in detail the opportunistic
splitting algorithm for the two user case. The example will
help us motivate the source coding framework described in
the Section IV. Let N = 2 and let (X1, X2) correspond to
the vector channel gain of the two users in a slot. Define
Y1 := min (X1, X2) and Y2 := max (X1, X2). Then, (Y1, Y2)
is the ordered pair of the channel gain values where 0 ≤ Y1 ≤
Y2 ≤ 1.

OSA initializes with ylow = 0, ymin = 1
2 and ymax = 1.

In the first minislot, only the user(s) with 1
2 < Xi transmit a

control packet. A success (a single transmission) happens in
the first minislot iff (X1 ≤ 1

2 < X2) or (X2 ≤ 1
2 < X1),

i.e., a success happens iff Y1 ≤ 1
2 < Y2. The probability of

the event can easily be computed and is equal to 1
2 . Thus,

contention is resolved in the first minislot whenever 0 ≤
Y1 ≤ 1

2 < Y2 ≤ 1 and the probability of the event is 1
2 ;

the threshold that resolves the contention successfully for
the set {(Y1, Y2) : 0 ≤ Y1 ≤ 1

2 < Y2 ≤ 1} is 1
2 and the base

station feeds back a 1 in this case. In the first minislot, an
error due to collision occurs iff 1

2 < Y1 ≤ Y2 and the slot is
left idle iff Y1 ≤ Y2 ≤ 1

2 . Suppose that the feedback in the
first minislot is e. Then, OSA updates the variables as ylow =
1
2 , ymin = 3

4 and ymax = 1. In the second minislot, only
the user(s) with 3

4 < Xi transmit a control packet. A success
happens now iff Y1 ≤ 3

4 < Y2 and the conditional probability
of the event (conditioned upon a collision in the first minislot)
is 1

2 . Thus, contention is resolved in the second minislot
whenever 1

2 < Y1 ≤ 3
4 < Y2 ≤ 1 and the probability of

the event is 1
8 ; the threshold that resolves the contention

successfully for the set {(Y1, Y2) : 1
2 < Y1 ≤ 3

4 < Y2 ≤ 1}
is 3

4 and the base station feeds back a e1 in the first two
minislots.

In Table I, we have listed sets of ordered two tuples along
with the threshold (ymin) for OSA that resolves the set. The
feedback from the base station corresponding to the threshold

Events Threshold Feedback Prob

0 ≤ Y1 ≤ 1
2
< Y2 ≤ 1 1

2
1 1

2
1
2
< Y1 ≤ 3

4
< Y2 ≤ 1 3

4
e1 1

8

0 ≤ Y1 ≤ 1
4
< Y2 ≤ 1

2
1
4

01 1
8

3
4
< Y1 ≤ 7

8
< Y2 ≤ 1 7

8
ee1 1

32
1
2
< Y1 ≤ 5

8
< Y2 ≤ 3

4
5
8

e01 1
32

1
4
< Y1 ≤ 3

8
< Y2 ≤ 1

2
3
8

0e1 1
32

0 ≤ Y1 ≤ 1
8
< Y2 ≤ 1

4
1
8

001 1
32

...
...

...
...

TABLE I
THE PROBABILITY DISTRIBUTION ON THE THRESHOLD/FEEDBACK

CORRESPONDING TO OSA FOR N = 2 USERS.

(equivalently, the set) and the probability of the threshold
(equivalently, the feedback) is also listed in the table.

Remarks 3.2: We make the following observations from the
Table I.

1) The threshold (ymin) that resolves (Y1, Y2) is always
such that Y1 ≤ ymin < Y2, i.e., OSA resolves contention
by identifying a threshold between the user channel
gains. The threshold is fed back to the users in ternary
alphabet (0, 1, e). The lone user with a channel gain
strictly greater than the threshold value fed back by the
base station would learn about its successful contention
resolution and the other users would refrain from trans-
mitting any further in the slot.

2) The feedback for a threshold ymin is, in fact, the binary
expansion of ymin (when feedback e and feedback 1
is mapped to 1 and feedback 0 is mapped to 0). The
feedback 1 is equivalent to feedback e followed by an
EoC (end of contention) in this case.

3) The thresholds that resolve contention for OSA form a
countable set with a valid probability distribution (the
probabilities sum up to 1).

4) The average delay to resolve contention is equal to the
average length of the feedback, which is a function
of the probability distribution of the threshold random
variable. The probability distribution is a function only
of the contention resolution algorithm (for the i.i.d.
case). An optimal choice of the thresholds can minimize
the average description length of the feedback and the
delay to resolve contention.

In Section IV, we will propose a general framework for
contention resolution for opportunistic scheduling motivated
by the above observations.

IV. A SOURCE CODING PROBLEM

In this section, we will formulate contention resolution for
opportunistic scheduling with ternary feedback as identifying
a random threshold (channel gain) that separates the best
channel from the other samples. Let (X1, X2, · · · , XN ) cor-
respond to the vector of i.i.d. channel gain values in a slot
and let (Y1, Y2, · · · , YN ) be the ordered N-tuple of channel



gain values of the N users such that 0 ≤ Y1 ≤ Y2 ≤
· · · ≤ YN−1 ≤ YN ≤ 1. The base station seeks to identify
arg max{i=1,··· ,N}{X1, · · · , XN}, or, equivalently, arg{YN}
in the slot. We aim to resolve the contention by identifying
a threshold Y such that YN−1 ≤ Y < YN ; the base station
will feedback the threshold Y using ternary alphabet of 0, 1
and e which aids in resolving the contention. YN−1 and
YN are random variables, and hence, the threshold Y will
also be a random variable. Obviously, the uncertainty in Y
would be a measure of the average description length of the
threshold/feedback.

Let C : [0, 1] × [0, 1] → [0, 1] be a code (an allocation),
which assigns for every 2-tuple (YN−1, YN ) an element Y :=
C(YN−1, YN ) ∈ [0, 1], such that YN−1 ≤ Y < YN . Let Y
have a discrete distribution, i.e., let there exist a set ΩY =
{y1, y2, · · · } and a set of probabilities {py1

, py2
, · · · } such that∑

i=1 pyi
= 1, and pyi

:= Pr(Y = yi). Then, the entropy of
the random variable Y (equivalently, the code C) is defined as

−
∞∑
i=1

pyi
log2(pyi

)

Clearly, the entropy would approximate the average length
of the feedback required for a contention resolution algo-
rithm that resolves a two tuple (YN−1, YN ) with threshold
C(YN−1, YN ).

The code C(, ) can, in general, take a continuous sample
space, all of [0, 1] and a useful description of entropy may not
be possible in such cases. For continuous distribution F (·),
Pr(YN−1 6= YN ) = 1, and for every (YN−1, YN ) such that
YN−1 6= YN , there is some rational Q such that YN−1 ≤ Q <
YN . Hence, we can always identify a code with a countable
sample space for any continuous F (·) and define its entropy.
Further, the feedback from the base station for any contention
resolution algorithm is a finite sequence in ternary alphabet.
Hence, we will always seek a code with a discrete distribution
for Y . In such a framework, our objective could be to identify
the code with the minimum entropy.

Remarks 4.1:
1) The maximal probability allocation scheme of OSA (see

Section V) provides us a discrete distribution for the
random threshold Y with a finite entropy.

2) The ternary description of the threshold does not use all
the alphabets completely. For example, the alphabet 1
appears only at the end of every code word (EoC). Fur-
ther, the code is non-singular but need not be uniquely
decodable as the codes are decoded one at a time. Hence,
the entropy of the threshold need not exactly measure
the average feedback length (and the average delay).

3) We have assumed that the code C is a function only of
the two tuple (YN−1, YN ). For correlated wireless chan-
nels and for arbitrary feedback schemes, we may need
to consider C as a function of the N-tuple (Y1, · · · , YN ).

V. OSA AS A SOURCE CODE

The opportunistic splitting algorithm with ternary feedback
identifies a threshold Y for every N tuple (Y1, · · · , YN ) such

that YN−1 ≤ Y < YN . OSA chooses the thresholds in a
minislot such that the probability of success is maximized in
the minislot. The following pseudo-code describes the code
C : (YN−1, YN )→ Y corresponding to OSA.

Ω() := {(YN−1, YN ) : 0 ≤ YN−1 ≤ YN ≤ 1}
Initialize k = 1
repeat

a) Define yk as

yk := arg max
y∈[0,1]

Pr(YN−1 ≤ y < YN |(YN−1, YN ) ∈ Ω())

b) Define Ωyk
as

Ωyk = {(YN−1, YN ) : (YN−1, YN ) ∈ Ω(), YN−1 ≤ yk < YN}

c) Update Ω() as

Ω() = Ω()\Ωyk

k = k + 1
until Ω() 6= NULL
We define Ω() as the set of all 2 tuples (YN−1, YN ). The

code begins with identifying a threshold y1 that maximizes
the probability of success in Ω(). Every two tuple in Ω() that
contains the threshold y1 is assigned to be resolved by the
threshold; we define the above set as Ωy1

, the set resolved by
the threshold y1. The set Ωy1

is now removed from Ω() and
the procedure continues. Define ΩY as the set of all thresholds
defined by the above pseudo-code. From the construction of
the above code, we see that,

C(YN−1, YN ) = arg max
y∈ΩY

{Pr(Ωy) : YN−1 ≤ y < YN}

For this reason, we call OSA as the maximal probability allo-
cation code (MPA). The following theorem from [5] identifies
the exact threshold of OSA for a given range (ymin, ymax].

Theorem 5.1: Given N users and thresholds (ymin, ymax]
(i.e., ymin ≤ YN−1 ≤ YN ≤ ymax), the y that maximizes
the probability of success in the interval (ymin, ymax] is the
unique stationary point of (ymax − y)(yN−1 − yN−1

min ).
Remarks
1) For any N , and with ymin = 0, ymax = 1, the above

expression becomes, (1− y)(yN−1) = yN−1− yN . The
expression is maximized at y = 1− 1

N . Hence, for any
N , y1 = 1− 1

N .
2) As an example, for N = 2, repeating the above proce-

dure will yield us y1 = 0.5, y2 = 0.75, y3 = 0.25, y4 =
0.875, · · · . Note that the above values are in fact the
thresholds reported in Table I.

3) In Remark 3.2, for the N = 2 case, we noticed that
the feedback from the base station corresponding to a
threshold can be viewed as the binary representation
of the threshold itself. For general N , the feedback
from the base station can still be viewed as the bi-
nary representation of the threshold, however, with the
weights corresponding to a position computed from the
thresholds {yk} obtained from the pseudo-code. For
example, the weight of the first position will be equal
to y1.
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Fig. 1. Plot of the average delay performance of OSA and MPA as a function
of the number of users N . We have also plotted the entropy of the threshold
random variable corresponding to MPA.

In Figure 1, we plot the average delay performance of
OSA (as described in Section III) and the maximal probability
allocation code. As expected, the performance of OSA and
MPA are similar and in fact, MPA performs better than OSA as
it identifies the optimal thresholds without any approximations
(see Remark 3.1). We have also plotted in the Figure 1,
the entropy of the maximal probability allocation code in
bits. As expected, the entropy of the random variable reflects
the average delay performance of the contention resolution
algorithm as a function of N very well.

A. Entropy Minimization

Entropy is a concave function of the distribution. The max-
imal probability allocation code identifies a local minima in
the space of probability distributions. From limited numerical
work (not reported in this paper), we conjecture that the
maximal probability allocation code is a globally entropy
minimizing strategy as well. The following theorem proves
the optimality of MPA for the N = 2 case.

Theorem 5.2: MPA is a delay minimizing strategy and an
entropy minimizing strategy for N = 2 case.

Proof: Let (x, 1] be the contention range in the first
minislot for the delay minimizing strategy. Conditioning on
the first minislot, the optimal average delay D can be written
as

D = 2x(1− x) + (1 +D)(1− 2x(1− x))

The optimal solution of D is 2 and is obtained at x = 1
2 . We

note from Figure 1 that the average delay of MPA is 2 and
hence, MPA is a delay optimal strategy.

Let {pi} be the discrete distribution that minimizes the
entropy of the code for N = 2 case. We will define
E({pi}) := −

∑
i pi log2(pi) as the minimum entropy. Then,

conditioning on the first minislot (as before), we have,

E({pi}) = −2x(1−x) log(2x(1−x))+E({x2pi})+E({(1−x)2pi})

where,
E({api}) = −

∑
i

api log2(api)

Substituting in the above expression and simplifying it, we
have,

E({pi}) =
−2x(1 − x) log2(2x(1 − x)) − x2 log(x2) − (1 − x)2 log((1 − x)2)

2x(1 − x)

The above expression is minimized at x = 1
2 and the

minimum entropy is 3. From Figure 1, we note that the entropy
of the threshold random variable for MPA is 3 and hence, MPA
is an entropy minimizing strategy as well.

VI. TWO EXAMPLES

In this section, we discuss contention resolution for two
different channel scenarios, a constant channel and a correlated
channel. We compare the performance of OSA/MPA with the
source-coding framework and illustrate the generality of our
proposed technique.

A. Constant Channel

We consider a downlink wireless channel with 3 users. We
assume that the channel gain is a constant, say 1 unit, for all
users and for all time slots. The objective of the contention
resolution algorithm is to identify a user from the set of 3
users (akin to a distributed medium access problem). Suppose
that the users pick a uniform random variable, Xi, in [0, 1]
independent of the other users. Then, OSA can be used to
resolve contention among the 3 users by identifying the user
with the largest value of Xi; this is a popular strategy to apply
OSA for discrete channel distributions. The average number
of slots required to resolve contention using OSA is then 2.12
slots (obtained from simulations).

The OSA, in every slot, attempts to identify a y such that the
probability of a unique user in the interval (y, 1] is maximized.
Here, in this example, we note that it is more appropriate to
identify a y that maximizes the probability of success either
in (y, 1] or in [0, y). The following algorithm is a contention
resolution strategy optimized for this problem.

Initialize: ylow = 0, ymin = 1− 1
3 , ymax = 1

Initialize: f = 0, k = 1
repeat

f = (0, 1, e) feedback for interval (ymin, ymax]
if (f = e) then

k = k + 1
f = (0, 1, e) feedback from interval [ylow, ymin)
if (f = 0) then

ylow = ymin

ymin = ymin + (ymax − ymin)× (1− 1
3 )

end if
else if (f = 0) then

ymax = ymin

ymin = ymin + (ymax − ylow)× (1− 1
3 )

end if
k = k + 1

until (f 6= 1)



Using simulations, we observe that the average effort needed
to resolve contention is 1.89 slots much less than the 2.12 slots
required by OSA. The proposed algorithm makes use of the
fact that, in the event of a collision, the probability that two
users are involved is significantly higher than the probability
that three users are involved in the collision.

The contention resolution problem was formulated as iden-
tifying a random threshold Y between Y1 and Y2 (Y1 < Y ≤
Y2) or between Y2 and Y3 (Y2 ≤ Y < Y3). The entropy of
the proposed strategy was observed to be strictly smaller than
the entropy of the maximal probability allocation scheme of
OSA.

B. Correlated Channel

We consider a wireless downlink channel with N = 2
users. We assume that the wireless channel of the
two users is correlated with the sample space, ΩH =
{(4, 2), (4, 6), (8, 6), (8, 10), (12, 10), (12, 14), (16, 14)} and
with the joint probabilities pH = { 1

7 − 6ε, 1
7 − 5ε, 1

7 −
4ε, 1

7 − 3ε, 1
7 − 2ε, 1

7 − ε,
1
7 + 21ε}, where 0 < ε << 1. OSA

would maximize the probability of success in every minislot
and hence, would consider the thresholds in the following
sequence (if we restrict to integer thresholds) 15, 13, 11, 9, 7, 5
and 3. The average number of minislots required to resolve
contention with OSA/MPA is 1

7 (1+2+· · ·+6+6) ≈ 27
7 ≈ 4. In

general, if there are k channel states, then the average number
of slots required to resolve contention is approximately k

2 .
Consider the following alternative strategy in resolving

contention. In the first minislot, we consider the threshold
value 9 to resolve contention. If a collision occurs in the first
minislot, then the next threshold would be 13 for the second
minislot and in the event of an idle first minislot, the next
threshold would be set to 7 for the second minislot. Similarly,
if there is collision in the first two minislots, then, the threshold
would be set to 15 for the third minislot and so on. If there is a
unique user attempting in a minislot, the contention resolution
algorithm stops. The average number of minislots required to
resolve contention with this strategy is approximately 3; in
general, if there are k channel states, then the average number
of minislots required would be log(k). We note that, for large
k, the above strategy is strictly optimal than the OSA. The
contention resolution problem can be formulated as identifying
a random threshold Y such that Y1 ≤ Y < Y2. Clearly, the
minimum entropy for the wireless channel is approximately
log(k) and is equal to the average number of minislots required
to resolve contention.

The two examples clearly illustrate that a maximal prob-
ability strategy like the OSA is not optimal for all channel
scenarios. Also, the source-coding technique could provide us
a way to identify the optimal contention resolution strategy
under general channel scenarios as well.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have modeled contention resolution for
opportunistic scheduling as a source-coding problem. The
entropy of a certain random variable is seen to approximate

the average number of slots required to resolve contention. We
characterized OSA as a maximal probability allocation scheme
and obtained the thresholds for contention resolution (in OSA)
from its source code.

We note that MPA provides us a local optima, and we
conjecture that MPA is globally optimal as well (for i.i.d.
channel conditions). We believe that the information theoretic
view point can be used to develop contention resolution
algorithms for a variety of other network scenarios as well
(e.g., partial network information, limited channel feedback).
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