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Abstract—Energy costs have become a significant fraction of
the operational costs of running large Internet-scale distributed
systems (IDS). In this work, we propose a demand-response
technique where the system temporarily reduces its energy usage
in response to pricing signals from a smart grid. Our proposed
demand-response technique involves deferring the load from
elastic requests to later time periods in order to reduce the server
demand and the current energy usage, and hence, energy costs.
We propose an optimal offline algorithm for demand response and
evaluate it on production workloads from a commercial content
delivery network using realistic electricity pricing models. Our
optimal offline algorithm can achieve 12% energy cost savings for
time-of-use electricity pricing, even when only 40% of the load
is elastic and the service delay is at most 6 hours. The savings
increase to 32% under peak-based demand pricing and to 23%
under a combination of time-of-use and demand pricing. Further,
we show that almost all the energy cost savings can be achieved
with no increase in the bandwidth cost of the IDS.

I. INTRODUCTION

Large Internet-scale distributed systems (IDS) have
emerged in recent years for applications ranging from cloud-
based service delivery to content delivery. The infrastructure
for an Internet-scale distributed system consists of tens of
thousands of servers deployed across a large number of data
centers spanning the globe. Such systems are used today to
run many popular applications such as news, entertainment
and e-commerce [1].

Recent studies have shown that the energy costs have
become a significant component of the total cost of operating
and owning an Internet-scale distributed system. The energy
cost of such a system includes the cost of powering the servers
(and associated infrastructure) and the cost of cooling them,
and in some systems, these energy costs can be as much as 20-
30% of the total operational costs. Consequently the design of
energy-efficient distributed systems has emerged as a popular
research topic. Energy-efficiency techniques for such systems
attempt to reduce the energy usage of the system or the energy
costs (i.e., bills), or both [2], [3], [4], [5].

A concurrent trend is the emergence of the smart electric
grid that supports many technologies and features to encourage
greater adoption of energy-efficiency techniques. These include
the availability of novel electricity pricing models to encourage
greater energy efficiency, the deployment of smart meters for
fine-grain metering and billing needed by such pricing mod-
els, and automated demand-response where the grid provides
explicit signals to consumers to reduce their usage during
peak periods of supply-demand imbalances. While demand-
response involves explicit requests to users to reduce usage,

we note that variable pricing schemes provide an implicit form
of demand-response by discouraging users from using “too
much” electricity when the electricity prices are high.

In this paper, we study how Internet-scale distributed sys-
tems can exploit smart grid features such as demand response
to reduce their energy costs. There are two possible methods
for reducing energy usage in an IDS in response to explicit
or implicit demand-response signals. Both methods involve
reducing the load at the data center that receives such a signal
and then shutting down a subset of the servers to reduce the
total energy usage. One possible approach to reducing energy
use is to move a portion of the load to other nearby data
centers and then shutting down a portion of the servers; this
is achieved by having the IDS redirect some of the incoming
requests to other nearby data centers and ensure that data is
already replicated to service these requests from alternate sites.
This approach was studied in [5] where this mechanism was
employed to reduce electricity bills by redirecting load from
data centers with higher electricity prices to others with lower
prices. This approach, and related ones, implicitly assume that
the incoming requests need to be serviced immediately (i.e., in
“real-time”). In this paper, we study an alternate approach that
moves load in the temporal dimension (rather than spatially or
geographically, as has been done in prior work [5]) in order
to reduce energy costs. Our approach assumes that not all of
the incoming requests need to be serviced immediately. While
requests to interactive services such as web requests do need
immediate service, there are other classes of requests that are
elastic and can be delayed if necessary. Examples of such
elastic requests include background downloads of software up-
dates by operating systems, distribution of OS-level or security
patches and content prefetching for local caching.1 In addition
to elastic content requests, Internet-scale distributed systems
also see elastic requests for computation—such as batch jobs
like transcoding of videos [6], analytics processing, nightly
backups, or book-keeping operations such as accounting and
billing. Thus we assume that an IDS sees two types of requests:
interactive requests that require immediate service and elastic
requests that can be delayed if necessary. We study how such a
system can respond to demand-response signals from the smart
grid by delaying elastic requests and shutting down some of
the servers, thereby temporarily reducing energy usage (and
thus, energy costs).

Our paper makes the following contributions:

• In the offline context where the full load sequence is known

1All major OS platforms—Mac, Windows and Linux—as well as many
phone-based OSes routinely download software updates in the background.



ahead of time, we derive provably optimal algorithms for
demand-response that delay load to minimize the overall cost.

• We evaluate our optimal offline algorithm on a large CDN
workload using an extensive set of pricing contracts that
include time-of-use energy pricing and peak demand pricing.
We see savings of 12% even when only 40% of the load is
elastic and off-peak usage is charged at half the rate of on-
peak usage. We also demonstrate that almost all the energy
savings can be attained with no increase in the bandwidth
costs.

• For a peak demand pricing contract the algorithm does
significantly better, achieving 32% savings under similar
constraints.

• For hybrid contracts where both energy usage and demand
charges are included in the energy costs, we show that 23%
savings are possible for the case when energy and demand
contribute almost equally to the total cost.

• We find that upper-bounding the service delay by 6 hours is
sufficient to achieve the maximum possible savings for 40%
elastic load under various pricing contracts.

The rest of this paper is structured as follows. Section
II presents some background and the models assumed for
the workload, power consumption and electricity pricing. Our
algorithm for optimizing energy costs via demand-response
is presented in Section III. Results from our experimental
evaluation are presented in Section IV. We present related work
in Section V and conclude in Section VI.

II. BACKGROUND

Internet-scale Distributed Systems: Our work assumes
an Internet-scale Distributed System (IDS) that provide service
delivery or content delivery to its users. Content distribution
networks (CDNs) are an example of an Internet-scale dis-
tributed system, and so are distributed cloud-based service
delivery networks. A large IDS employs tens of thousands of
servers that are spread across a large number of data centers;
each data center houses a cluster of servers and the size of each
cluster can vary from hundreds to many thousands of servers
[1]. Incoming requests for service are assumed to be forwarded
to an appropriate cluster by the IDS, and the request is then
serviced by one of the servers within that cluster. Our work
assumes that a request can be one of two types: interactive
requests that require immediate service and elastic requests
that can be delayed if needed by the system. In this work,
we assume that each request, whether interactive or elastic,
is always serviced by the cluster to which it is sent by the
IDS. That is, we do not consider the ability of the IDS to
redirect some of the load to other nearby clusters, and only
look at temporal load optimizations for elastic requests. While
it is possible to combine techniques for moving load across
clusters with those that move load across time, we leave the
design of such hybrid techniques to future work.

We are interested in quantifying the potential energy
savings that can result by delaying elastic requests when
performing smart-grid demand response. Demand response
(DR) is a technique by which a customer temporarily reduces
electricity usage in response to a signal from the grid; in
our context, demand response refers to any technique that
the IDS can employ to reduce or defer its energy usage in
response to signals from the grid. We assume that the smart

grid exposes variable electricity prices to each customer; the
exact pricing models considered in this study are detailed later
in this section. Since price of electricity is no longer flat, the
varying prices serve as implicit signals for demand-response
When the electricity price is high or when higher electricity
usage will result in higher costs, the consumer (which, in our
case, is the IDS) is incentivized to temporarily curtail usage or
shift usage to lower-price periods, and thereby reduce costs.
Our paper studies an optimization approach for performing
such demand-response in an IDS. Our work focuses only on
implicit demand-response (that responds to pricing signals) and
we do not consider explicit demand response here. Temporary
deferral of elastic requests in response to an explicit DR signal
from the grid is an easier problem and it is straightforward to
incorporate such DR signals into our current work.

Workload Model: The workload of an IDS is generated
by users and applications around the world. The global load
balancer of the IDS partitions the load and directs a part of
the load to each cluster of the IDS. Since our energy cost
optimizations do not move load across clusters, we model
and optimize the load arriving at each cluster independently.
For each cluster, we model the load arriving at that cluster
by an arrival sequence � = h�0,�1, . . . ,�T�1i, where �t

is the load that arrives at the cluster at time step t. We
assume that a fraction  of the incoming load is elastic and
that the elastic load can be served in a delayed fashion.
Specifically, we assume that the maximum allowed service
delay for elastic load is ⌧ . As a result of our optimizations, the
loads are processed by the servers in the cluster at times that
are potentially different from when they arrived. The output
of our optimization is a service sequence that we represent by
ˆ� = hˆ�0, ˆ�1, . . . , ˆ�T�1i, where ˆ�t represents the load that will
be served by the cluster at time t.

Power consumption model for clusters: A power con-
sumption model is used to derive the instantaneous power
drawn by the cluster, given its service load sequence ˆ�. Our
cluster power model is based on our earlier work in [7].
We assume that the cluster is fully power proportional and
consumes power that equals u · Ppeak, where the u is the
utilization of the cluster defined as the ratio of the load served
by the cluster and its peak capacity. Ppeak is the maximum
power that can be drawn by the cluster that equals the product
of the number of servers in the cluster and the peak power
draw of each server. Based on a typical deployed server
used by IDNs, we assume that each server can draw 97W
of power at peak. Note that we assume that the cluster is
power proportional since a number of techniques such as server
shutdown [4] are known to make clusters close to power
proportional. We also model the power required for cooling
the cluster as below.

PCOOL
= PCOOL

peak ⇥
�
A+B · u0

+ C · u02�

where u0 is the utilization of the chiller and the constants A, B,
and C can be derived from the regression curves provided by
the California Energy Commission [8]. We refer to our earlier
work [7] for more details on our cooling model.

Electricity Pricing Models: The cost of electricity is often
computed on the basis of the four generic metrics described
below. These metrics are themselves computed from “in-
stantaneous” measurements of electricity consumption made



throughout the billing period that is typically a month. Each
metric below is either a demand metric that is based on peak
KW measurements or an energy usage metric that is based
on the energy consumed in KWHs. Further, some parts of
the day are denoted as peak, when energy consumption is
usually high, and other parts of the day are denoted as off-
peak, when the energy consumption is usually low. We first
derive the integrated thirty-minute values by partitioning the
billing period into 30-minute intervals and computing both the
average demand (KW) and the energy KWHs) in each 30-
minute interval. We then compute the four metrics below.

1) On-peak demand (Don): The maximum integrated
thirty-minute demand (in KWs) during on-peak peri-
ods.

2) Off-peak demand (Doff): The maximum integrated
thirty-minute demand (in KWs) during off-peak pe-
riods.

3) On-peak energy usage (Eon): Energy consumed (in
KWHs) during on-peak periods.

4) Off-peak energy usage (Eoff): Energy consumed (in
KWHs) during off-peak periods.

We consider three commonly used pricing models in our
work. Let the cost of electricity to serve a load sequence �
under a particular pricing model ⇡ be denoted by cost⇡(�).
We compute cost⇡(�) as follows. First we apply the cluster
power model to determine how much instantaneous power is
drawn by the cluster to serve a given load sequence. We then
compute the four metrics above using the instantaneous power
draw and use it as follows.

1) The first model we consider is the time-of-use (TOU)
pricing model[9] where the utility computes the electricity bill
based only on energy usage and does not explicitly impose a
demand price that depends on the peak consumption. If ⇡ is
a tariff that uses the TOU model then

cost⇡(�) = ↵onEon + ↵offEoff,

where ↵on the on-peak unit price (in $/KWH) and is more
expensive than the off-peak unit price ↵off. Of particular
interest is the ratio of off-peak to on-peak energy prices
⇢E =

↵off
↵on

. Small values of ⇢E imply a cheap off-peak price,
while ⇢E = 100% is equivalent to flat pricing.

2) The second model we consider is the demand pricing
model where the utility computes the electricity bill based only
on the demand and does not explicitly charge for the energy
consumed. If ⇡ is a tariff that uses demand pricing then

cost⇡(�) = �onDon + �offDoff,

where �on the on-peak unit price (in $/KW) is more expensive
than the off-peak unit price �off (in $/KW). Of particular
interest is the the ratio of off-peak to on-peak demand prices
⇢D =

�off
�on

. Small values of ⇢D imply a much cheaper off-peak
price, while ⇢D = 100% is equivalent to flat demand pricing.

3) In the most general model which we call the hy-
brid pricing model [10], [11] all four metrics above are
used to compute the energy cost. In particular, cost⇡(�) =

↵onEon + ↵offEoff + �onDon + �offDoff. We define the mixing
coefficient as the ratio ⇢M =

�on
↵on

, where a value of 0

implies a pure energy usage pricing, while 1 implies a pure

demand pricing. Note that we can rewrite the incurred cost as
�on (Don + ⇢DDoff + ⇢M {Eon + ⇢EEoff}).

III. AN OPTIMAL ALGORITHM FOR DEMAND RESPONSE

We describe our algorithm for demand response that op-
timally delays load to minimize the total energy cost of an
IDS. The optimal offline algorithm works individually for each
cluster of the IDS and does not move load across clusters. Let
the incoming load at a cluster be represented by an arrival
sequence � = h�0,�1, . . . ,�T�1i, where �t is the load that
arrives at the cluster at time step t. Further, let the fraction of
the incoming load that is elastic be  and let the maximum
allowed service delay for elastic load be ⌧ .

Our algorithm works in two steps. First, our algorithm
creates a modified load sequence called the service load
sequence that we represent by ˆ� = hˆ�0, ˆ�1, . . . , ˆ�T�1i, where
ˆ�t represents the load that will be served by the system at time
t. Note that ˆ� represents the load sequence obtained after the
algorithm moves around the load to optimize energy costs. (For
simplicity, assume that �t =

ˆ�t = 0, for t < 0 and t � T . )
Next, our algorithm uses the service sequence ˆ� and produces
a set of specific load movements Lt,t0 � 0 that transforms the
arrival sequence � to the service sequence ˆ�. Specifically, Lt,t0

is the amount of elastic load that is moved from time t to time
t0, for all 0  t  T � 1 and t  t0  t+ ⌧ . We describe each
step in detail below.

A. Constructing the service load sequence ˆ�

The algorithm delays processing some of the elastic load to
minimize the energy cost, while ensuring that no elastic load
is delayed more than ⌧ time steps and further the cluster’s
capacity bounds are met. Let ft be the elastic load that arrived
at time step t but was postponed to be processed at a later step
by our algorithm. Since the amount of elastic load arriving at
time t is at most �t, the following holds.

ft   · �t, 8t (1)

The load that is delayed at a time step is assigned by the
algorithm to be processed at a later time step. Let pt represent
the total elastic load that arrived at the cluster at some time in
the past but is assigned to be served at time t. We can write
the load served by the cluster at time t as

ˆ�t = �t + pt � ft, 8t (2)

For simplicity, for values of t outside of our time window we
set both pt and ft to be zero, i.e., pt = ft = 0 for t < 0 and
t � T . Since the algorithm can only move elastic load to a
future time slot and never back to a past time slot, we require
that the total load served in every prefix in the service load
sequence is upper bounded by the corresponding load from the
arrival load sequence. In other words,

tX

i=0

ˆ�i 
tX

i=0

�i, 8t (3)

By substituting for ˆ�i from Equation 2, we get
tX

i=0

fi �
tX

i=0

pi � 0, 8t (4)



Since service delay is at most ⌧ , we require that the load in
the arrival sequence �1, · · · ,�t should be served by the cluster
within time t+ ⌧ . In other words

t+⌧X

i=0

ˆ�i �
tX

i=0

�i, 8t. (5)

Substituting for ˆ�i, we get
t+⌧X

i=0

fi �
t+⌧X

i=0

pi 
t+⌧X

i=t+1

�i, 8t (6)

Let cluster capacity C represent the maximum load that a
cluster can serve at any given time . The cluster capacity is
a function of server resources available at each cluster. Since
the served load cannot exceed C at any time step, we have

ˆ�t  C, 8t (7)

Finally, we need the following variables to be non-negative.
ˆ�t, pt, ft � 0, 8t (8)

Let cost⇡(ˆ�) represent the energy cost of serving load se-
quence ˆ� using energy pricing policy ⇡. We minimize cost⇡(ˆ�)
subject to the linear constraints represented in Equations 1, 2,
4, 6, 7, and 8. Since the constraints are linear and we know that
the cost function cost⇡ described in Section II is also linear for
the tariffs ⇡ that we consider, we can solve the minimization
problem as a linear program (LP).

Theorem 1. For a given arrival load sequence �, our linear
program produces a feasible service load sequence ˆ� that has
the minimum energy cost.

Proof: Our LP formulation has a feasible solution since
the input arrival sequence � satisfies the capacity constraints
of Equation 7. Here we make the reasonable assumption that
the load balancer of the IDS distributes load to each cluster
such that arriving load satisfies the capacity constraint. Thus,
ˆ�t = �t and pt = ft = 0, for all t, is a feasible solution for
the LP. It follows that our algorithm yields a feasible service
sequence with minimum cost.

B. Constructing the load movement schedule L

The first step of our algorithm does not explicitly produce
a schedule for how much elastic load moves from each time t
to each time t0, t0 > t. However, such a schedule Lt,t0 can be
computed given the output service sequence ˆ� and the input
arrival sequence � as follows. We create a directed graph G =

(V,E) with capacities assigned to each edge as follows. The
vertex set V = {s} [ U [ V [ {s0}, where s is a source
node, s0 is a sink node, U = {u0, u1, · · · , uT�1}, and V =

{v0, v1, · · · , vT�1}. The edge set E has an edge (s, ut) for
each ut 2 U with capacity w(u, st) = �t. Likewise, it has an
edge (vt, s

0
) for each vt 2 V with capacity w(st, s

0
) =

ˆ�t.
Finally, we add edges (ut, vt0) with capacity +1 as long as
t  t0  t + ⌧ . We then compute the maximum flow from
source s to sink s0 in graph G and compute the required load
movement schedule L(t, t0) to equal the flow routed on edge
(ut, vt0).

Theorem 2. The above process finds a valid load movement
schedule L that corresponds to the arrival sequence � and
service sequence ˆ� in time O(⌧T 2

).

Proof: First, we establish that all the load is successfully
reassigned without any being dropped. That is, the maximum
flow routed equals the total load

P
i �i that arrived at the

cluster. Since the maximum flow equals the minimum capacity
of a cut that separates the source s and sink s0 vertices, we
compute the capacity of the minimum cut of G. Note that the
minimum cut will not contain any edge in U ⇥ V since those
edges have infinite capacity. Therefore, it suffices to consider
cuts that place vertices {s} [ {u0 · · ·ut} [ {v0, · · · , vt+⌧} on
one side and rest of the vertices on the other side, for some
0  t  T � 1. Such a cut has capacity

T�1X

i=t+1

�i +

t+⌧X

i=0

ˆ�t,

which using Equation 5 is at least
PT�1

i=0 �i. Now noting there
exists a cut of size

PT�1
i=0 �i, namely the cut with source s

on one side and all other vertices on the other side, we can
conclude that the capacity of the minimum cut is

PT�1
i=0 �i

which in turn equals the routed flow through G. Thus, all
load that arrived at the cluster is routed through G. Further,
note that L constructed in this fashion obeys the delay bound
of ⌧ , since we added only edges from a vertex ut to vertices
{vt, · · · , vt+⌧} when constructing G. Thus, the load movement
schedule L is valid and when L is applied to the arrival load
sequence � we obtain the service load sequence ˆ�. Finally,
note that using Orlin’s max flow algorithm, computing the load
assignment L takes O(|V ||E|) = O(⌧T 2

) time.

IV. EVALUATING THE BENEFITS OF DEMAND RESPONSE

To evaluate the cost benefits of demand response (DR)
in an IDS we used extensive traces from Akamai [1], the
largest commercial CDN, and ran the optimal demand response
algorithm presented in Section III for each Akamai cluster. We
used each of the three electricity pricing models described in
Section II and analyzed the energy cost benefits for the IDS.
For all our evaluations, we report on system-wide cost savings
for the IDS by aggregating our results across all clusters.
The system-wide metrics capture the situation where demand
response is implemented in all the clusters of the IDS. As a
baseline we compute the energy cost incurred by the IDS when
no demand response is implemented in any of the clusters, i.e.,
in the baseline no load is shifted and the arrival load sequence
and service load sequence are identical for each cluster. Energy
cost savings is the percent reduction in cost due to DR, i.e.,

100⇥ ((baseline cost)� (cost with DR)/(baseline cost)).

A. Empirical Data from the Akamai Network

For our analysis, we used extensive load traces collected
over 25 days from a large set of Akamai clusters deployed
in data centers in the US. The 22 clusters captured in our
traces are distributed widely within the US and had 15439
servers in total, i.e., it is a representative sampling of Akamai’s
US deployments. Our load traces account for a peak traffic of
800K requests/second and an aggregate of 950 million requests
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Fig. 1: Average load per server measured every 5 minutes
across 22 Akamai clusters in the US over 25 days.

delivered to clients. The traces consist of a snapshot of total
load served by each cluster collected every 5-minute interval
from Dec 19th 2008 to January 12th 2009, a time period that
includes the busy holiday shopping season for e-commerce
traffic (Figure 1). In the figure, one may note load variations
due to day, night, weekday, weekend, and holidays (such as
low load on day no. 8, which was Christmas).

B. Time-of-use (TOU) Pricing Model

We evaluate energy cost benefits of DR on a typical time-
of-use energy contract where the energy usage charge is a
function of the time of day. The energy consumed between 9
AM to 9 PM on weekdays is charged at the on-peak energy
rate of ↵on dollars per kWh. The energy consumed during
the remaining duration is charged at the off-peak rate of ↵off
dollars per kWh.

Varying ⇢E . Electric utility companies incentivize off-
peak usage by providing discounted pricing. We capture this
through ⇢E =

↵off
↵on

, the ratio of off-peak to on-peak energy
usage charge. ⇢E = 1 corresponds to flat pricing where the
energy charge is independent of the time of day. ⇢E = 0

corresponds to the case where off-peak usage is free (such
as in underutilized renewable sources of energy). To study
the impact of discounted pricing, we varied ⇢E and plotted
it against the savings obtained by our algorithm for ⌧ = 12

hours. (Figure 2a). A service delay of half a day allows us
to move almost the entire load from peak periods to off-peak
hours (⇢ = 0), saving 99% when  = 100%, and 38% savings
with  = 40%. The savings drop to 0 when the incentive is
removed and off-peak is charged at the same rate as on-peak
(⇢E = 1). For a typical value of ⇢E = 50% where off-peak
energy charge is half of the on-peak charge we are able to save
12% even when only 40% of the load is elastic.

Varying elastic load fraction . Any increase in the fraction
of elastic load  is exploited by the algorithm by moving a
larger fraction of the overall load to off-peak hours. Figure
2b quantifies this by plotting  against the fraction of overall
traffic served during off-peak hours over the duration of the
entire trace. For interactive loads, where  = 0, about 55%
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(a) Energy cost savings as a
function of ⇢E for different
fractions of elastic load ().
12% savings when ⇢E =
50% for 40% elastic load
with ⌧ = 12 hours.
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(b) 72% of the total load is
served at off-peak hours when
 = 40% of the load is elastic
with ⌧ = 12 hours.
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(c) Cost savings increase
linearly with the fraction of
elastic load.

0 5 10 15 200

20

40

60

80

100

Service delay τ (hours)

C
os

t s
av

in
gs

 (%
)

 

 

ρE = 0 %
ρE = 30 %
ρE = 50 %
ρE = 70 %
ρE = 100 %

(d) At 40% elastic load, max
service delay ⌧ = 6 hours is suf-
ficient to get maximum savings.

Fig. 2: Time-of-use pricing

of the entire load is handled during off-peak hours. With
increasing flexibility to delay load, the fraction of off-peak
load increases linearly with . For typical values of ⌧ = 12

hours,  = 40% the algorithm serves 72% of the entire load
during off-peak hours.

The linear relation between  and the off-peak load gets
reflected in the cost savings as well, as seen in Figure 2c.
Individual curves in the figure correspond to different values
of the energy usage pricing ratio ⇢E . The lower the value of
⇢E , the higher the discount for off-peak usage and thus the
greater savings.

Varying maximum allowable delay ⌧ . Different elastic tasks
processed by an IDS have different delay sensitivities. A task
such as billing is relatively insensitive to delay, since it suffices
that the monthly bills for customers of the IDS is ready by
the end of the month. However, other elastic tasks like a
software update or video transcoding is expected to complete
within hours.The relation between maximum allowable service
delay ⌧ and cost savings obtained by the algorithm are shown
in Figure 2d for  = 40%. Individual curves in the figure
correspond to different values of the energy usage pricing ratio
⇢E . It is interesting to note that increasing ⌧ beyond a threshold
provides little additional cost savings. In particular, a service
delay ⌧ = 6 hours is sufficient to obtain the maximum possible
savings. Thus, adding elastic loads with more laxity than 6



hours does not provide larger benefits. The six hour threshold
is a consequence of the time duration of the on-peak and off-
peak time periods in the TOU pricing.

Optimizing electricity costs without increasing bandwidth
costs: The TOU pricing model does not explicitly charge
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(a) Energy cost savings as a
function of ⇢E for different
fractions of elastic load ().
12% savings when ⇢E =
50% for 40% elastic load
with ⌧ = 12 hours.
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(b) 72% of the total load is
served at off-peak hours when
 = 40% of the load is elastic
with ⌧ = 12 hours.
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(c) Cost savings increase linearly
for  < 70% and then slowly
plateaus
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(d) At 40% elastic load, max
service delay ⌧ = 6 hours is suf-
ficient to get maximum savings.

Fig. 3: Energy cost optimization without increasing bandwidth
costs using the max-load constraints.

for the maximum power demand of a cluster. So the cost
optimizations we saw earlier in this section could potentially
create new load peaks when moving load from on-peak to
off-peak hours. In fact, such peaks could cause the maximum
load of the service load sequence to be higher than that of
the arrival load sequence! Such a situation is untenable from
the standpoint of other operational costs incurred by an IDS.
Besides electricity, a primary operating cost for an IDS is
bandwidth. Bandwidth is often priced using a 95/5 contract
where the billing period is divided into 5-minute intervals and
the average bandwidth used by the cluster is computed over
each such interval. The bandwidth cost of the cluster is then
proportional to 95

th percentile of the 5-minute averages [12].
We use the maximum load of the service load sequence of
a cluster as a reasonable proxy for bandwidth costs incurred
in that cluster. In particular, we assume more load means
proportionally more bandwidth usage. Further, as we did in
[12], we use “maximum” as a proxy for the “95th percentile”
as the latter is difficult to analyze and optimize. Note that if
our energy cost optimization increases the bandwidth cost, that

could negate the economic incentive2 for the IDS performing
such an optimization.

We now optimize demand response in the TOU pricing
model with the additional constraint that the bandwidth costs
are not increased. To achieve this we add a new constraint
to our optimization algorithm mandating that the maximum
load of the output service load sequence ˆ� is no more than
the maximum load of the input arrival load sequence �.
Specifically, let the maximum load in the arrival sequence be
�max =

T�1
max

i=0
�i. We require that 8i, ˆ�i  �max.

A limit on the maximum load decreases the ability to run at
higher utilization and thus exploit energy discounts effectively.
Therefore we would expect cost savings to decrease with the
max-load constraints. Figure 3a shows that savings drops to
84% when off-peak energy is free (⇢E = 0) for pure elastic
load ( = 100%). It is interesting to note however that the
additional constraints have no impact for a lower fraction of
elastic load ( = 40%). Comparing figures 2c and 3c we see
that the max-load constraint has no impact on the behavior of
the algorithm for  < 70%.

C. Demand Pricing

Demand pricing is an important component of most re-
alistic electricity pricing contracts, allowing electric utilities
to directly manage the peak power demand by charging on
the basis of it. A demand pricing contract consists of an on-
peak demand charge �on and an off-peak demand charge �off.
The on-peak charge is applied to the maximum integrated
thirty-minute demand during on-peak periods (Don) seen over
the billing period. Similarly the off-peak charge is applied to
the maximum integrated thirty-minute demand during off-peak
periods (Doff). The electricity cost for a demand pricing policy
⇡ for a load sequence � is

cost⇡(�) = �onDon + �offDoff.

Varying relative off-peak ratio ⇢D. Electric utilities are
underutilized during off-peak hours and can support higher
demands from individual consumers and incentivize them
by discounted off-peak pricing. We capture this discounting
through ⇢D =

�off
�on

, the relative price of off-peak demand.
⇢D = 0 corresponds to free usage during off-peak hours, and
⇢D = 1 corresponds to time-insensitive demand pricing. Figure
4a plots cost savings as a function of the relative off-peak price
⇢D. For a maximum service delay of half a day the savings
resemble those seen earlier for pure energy usage contracts
when ⇢D = 0. But for ⇢D = 100% savings are still possible
by smoothing out the peaks. When the entire load is capable of
withstanding service delays of ⌧ = 12 hours, we see savings
of 37%. For a lower value of  = 40%, we still get savings
of 27% at ⇢D = 100%. For typical values of ⇢D = 50% and
 = 40% we get 32% savings.

Varying percent of elastic load . Since pricing depends
on peak demand, substantial savings can be obtained by
smoothing out the largest peaks with relatively low movement

2It is also worth noting that any scheme that increases maximum load also
increases the maximum power demand, instead of decreasing it. This negates
a primary purpose of an utility offering TOU pricing to incentivize reduction
in peak power demand.



in load. As the peaks and valleys get shallower, more load
needs to be moved for incremental savings. We see this in
Figures 4b and 4c where for low values of , savings grow
rapidly without moving load from on-peak to off-peak hours.
As  increases beyond 30%, the gains obtained by local valley
filling are exhausted and additional gains are obtained by
moving traffic to off-peak hours.

Varying maximum allowable service delay ⌧ . The relation-
ship between the maximum allowed service delay and cost
savings are shown in Figure 4d for  = 40%. As in the case for
time-of-use contracts, we see that maximum possible savings
are achieved by a service delay of at most 6 hours.
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(a) 32% savings when ⇢D =
50% for  = 40% elastic
load with ⌧ = 12 hours.
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(b) 63% of the total load is
served at off-peak hours for 40%
elastic ⌧ = 12 hours
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(c) Cost savings flatten out
as the fraction of elastic
load increases
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(d) At 40% elastic load, 6 hours
of service delay is sufficient to
get maximum savings

Fig. 4: Demand Pricing

D. Hybrid Pricing

Electric utilities use a combination of energy usage and
demand charges to increase the usage during off-peak hours
and at the same time decrease the peak power usage. We
capture this through a mixing coefficient ⇢M =

�on
↵on

, the ratio
of on-peak demand charge to on-peak energy charge. ⇢M = 0

corresponds to a pure energy usage contract such as time-of-
use, while as ⇢M tends to infinity the contract gets closer to a
pure demand pricing model.

Varying mixing coefficient ⇢M . In Figure 5a, we study the
impact of demand response as ⇢M is increased with  = 100%.
When energy usage costs dominate at low values of ⇢M we
see savings as observed earlier in Figure 2a with 0 savings for
⇢E = 100% and 31% for ⇢E = 50%. When the contribution
of demand charges dominates for large values of ⇢M we see
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(a) 43% savings when
⇢M = 32 for ⇢D = 50%,
⇢E = 50%,  = 100%
elastic load with ⌧ = 12
hours.
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(b) Energy costs contribute
roughly half of the total cost
when ⇢M = 32 for  = 40%
with ⌧ = 12 hours
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(c) The relation between
savings and the fraction of
elastic load  becomes non-
linear as ⇢M increases
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(d) At 40% elastic load, 6 hours
of service delay is sufficient to
get maximum savings of 23% at
⇢M = 32

Fig. 5: Hybrid Pricing

savings rise to roughly 37% and 53% respectively for ⇢D =

100% and ⇢D = 50% respectively, comparable to values seen
in Figure 4a. It is interesting to note that savings increase as
the contract tends towards a demand pricing model.

We consider a typical hybrid contract where ⇢E = ⇢D =

50% in greater detail. Figure 5b shows the contribution of
energy charges as a fraction of the total cost paid to the utility.
We see the curve drop-off asymptotically from 99.6% to 3.3%
as ⇢M increases from 0.1 to 1024. Energy utilization charges
contribute about the same as demand charges when ⇢M = 32.

Varying fraction of elastic load . Figure 5c shows the
relation between the fraction of elastic  and cost savings
for different values of the mixing coefficient ⇢M . Low values
correspond to linear relation, similar to pure energy contracts
(Figure 2c) while high values mirror the non-linear relation
observed in Figure 4c.

Varying maximum allowable delay ⌧ . A high service delay
⌧ allows greater freedom to the algorithm to postpone load
and thus increase savings. It is interesting to note though that
a maximum service delay of 6 hours is sufficient to obtain
the maximum possible savings through demand response.
The savings obtained increases with the value of ⇢M when
the demand pricing component begins to dominate. Savings
increase from 13% to 31% as ⇢M increases from 1 to 1024

for  = 40% elastic load.



V. RELATED WORK

Recently the area of energy-aware (“green”) distributed
system design has seen significant research attention. Design
of energy-aware techniques for data centers has involved power
management mechanisms at a server level [13] as well shutting
down servers when not needed [14], [15], [16]. Thermal-
aware placement of workloads across servers to reduce energy
and cooling costs has also been studied [17]. FAWN uses
“wimpy” nodes to serve simple content and reduce cluster
energy costs [18]. More recent work has studied how to
incorporate intermittent renewable energy to power data center
clusters [2], [3]. Design of energy-aware Internet-scale systems
has also seen recent attention. The use of server shutdown and
cluster shutdown have been proposed as mechanisms to turn
off less utilized servers or clusters in a CDN and reduce energy
costs [4], [19], [7]. Separately techniques to move incoming
load to other nearby data centers with lower electricity prices
has been proposed as a mechanism to reduce the energy
bills of an IDS [5]. Our approach is complementary since
we propose moving the load in the temporal dimension—
by delaying elastic requests—and thereby reducing electricity
bills. Integration of demand-response in data centers has been
studied previously in [20], [21]. Our work differs in the focus
on CDN workloads. We go beyond service delay constraints
and also look at bandwidth costs which contribute to the
operating costs of a CDN. We also evaluate our algorithms
over a wide range of pricing models.

VI. CONCLUSIONS

In this paper we studied techniques for reducing the energy
costs in an IDS by performing demand-response to respond
to variable electricity prices. Our proposed demand response
approach consists of moving a portion of the incoming load—
comprising elastic requests—to a later point in time, thereby
temporarily curtailing the server demand and reducing energy
costs. Such an approach is best suited for elastic requests such
as background downloads of software updates or background
computational tasks that do not always require immediate
service. We presented an optimization-driven algorithm for our
demand-response approach and evaluated the potential benefits
of this approach for realistic workloads from a commercial
CDN and realistic electricity pricing models. Our results
showed that our algorithm can achieve 12% savings in the
presence of time-of-use electricity pricing when only 40% of
the demand is elastic. The savings increase to 32% under peak-
based demand pricing and to 23% under a combination of time-
of-use and demand pricing. Further, most of the energy savings
can be obtained without an increase in bandwidth costs.

As part of future work, we plan to study hybrid techniques
that combine the ability to move load in the spatial dimension
(by moving some load to nearby data centers) as well as the
temporal dimension (by deferring a portion of the load) to
achieve greater energy savings. It is likely that geographically
separated data centers will differ not just in the price of power
but also the type of contract imposed by the utility, which
can provide a greater scope for cost savings. While our work
provides an upper bound on energy savings possible through
demand response, we plan to extend it to the online setting
where future loads are not known in advance and the impact
of delaying requests may be difficult to predict.
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