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Abstract—The conventional approach to scaling Software-
Defined Networking (SDN) controllers today is to partition
switches based on network topology, with each partition being
controlled by a single physical controller, running all SDN
applications. However, topological partitioning is limited by the
fact that (i) performance of latency-sensitive (e.g., monitoring)
SDN applications associated with a given partition may be im-
pacted by co-located compute-intensive (e.g., route computation)
applications; (ii) simultaneously achieving low convergence time
and response times might be challenging; and (iii) commu-
nication between instances of an application across partitions
may increase latencies. To tackle these issues, in this paper,
we explore functional slicing, a complementary approach to
scaling, where multiple SDN applications belonging to the same
topological partition may be placed in physically distinct servers.
We present Hydra, a framework for distributed SDN controllers
based on functional slicing. Hydra chooses partitions based on
convergence time as the primary metric, but places application
instances across partitions in a manner that keeps response times
low while considering communication between applications of
a partition, and instances of an application across partitions.
Evaluations using the Floodlight controller show the importance
and effectiveness of Hydra in simultaneously keeping convergence
times on failures small, while sustaining higher throughput
per partition and ensuring responsiveness to latency sensitive
applications.

I. INTRODUCTION

Software-Defined Networking (SDN) is becoming prevalent
in datacenter and enterprise networks [1], [2]. The central idea
behind SDN is to consolidate control plane functionality (e.g.,
routing, access control) at a logically centralized controller
which monitors and manipulates network state [3], [4]. An
SDN controller for a small network with hundreds of switches
could be hosted on a single physical server. However, as net-
works grow in size and functionality, the controller’s compute
and memory requirements exceed one single server’s capacity.
Therefore, large datacenter and enterprise networks distribute
the controller functionality over multiple servers or VMs [5],
(6], [7], [8].

Real SDN deployments typically consist of several tens of
SDN applications for diverse network tasks such as routing,
load-balancing, security, and Quality of Service (see Figure 1).
Because these applications handle different events (e.g., link
failure vs. path lookup) and perform diverse functions, they
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Fig. 1: An example SDN network

impose varying demands on the underlying machine resources.
We broadly classify them into three groups:

(1) Real-time applications that periodically refresh network
state (e.g., link manager, heart-beat handler) expect a response
within a timeout interval; failing to respond before deadline
would trigger expensive false alarms (e.g., a spurious link
failure).

(2) Latency-sensitive applications that are invoked during flow
setup (e.g., path lookup, bandwidth reservation or QoS) are
in the critical path of applications and directly impact flow
completion times. Therefore, it is crucial to reduce their
latency. However, they don’t have a hard deadline constraint.
(3) Computationally intensive applications such as shortest-
path computation are triggered less often due to infrequent
events such as link failures. But when triggered, these ap-
plications exert substantial pressure (load spikes) on compute
and memory. Convergence time, which is the time required for
global state convergence (e.g., time required for find alternate
paths in all partitions after a link failure in one partition), is
an important metric for these applications.

Designing a distributed control plane that scales well with
network size and application heterogeneity is an important
problem. The conventional approach to scaling SDN deploy-
ments [5], [6], [7], [8] is topological slicing where the network



topology is partitioned across multiple controller instances.
Each controller instance, which runs on a single server ma-
chine, co-locates all applications and handles all events from
a network partition containing a subset of switches.

Topological slicing suffers from a few shortcomings:

(1) Because topological slicing co-locates all applications,
finding the best partition size that satisfies all applications
(i.e., missed deadlines for real-time applications, latency for
latency-sensitive applications, and convergence time for com-
putationally intensive applications) is hard. For instance, co-
locating computationally intensive applications with other ap-
plications may require smaller partition sizes (i.e., higher num-
ber of partitions) in order to satisfy resource constraints on the
server machine. However, increasing the number of partitions
would likely worsen convergence time for route recomputation
on failures. Also, latency-sensitive applications such as band-
width reservation and QoS may require communication across
multiple instances of the application running across partitions
at flow setup time, potentially leading to an increase in
packet-in response times as the number of partitions increase.
Finally, there could be other administrative constraints on
partition sizing (e.g., a unit within an organization may want
to have a separate controller instance). In summary, while
there is substantial diversity among applications, topological
slicing is agnostic of the different applications’ requirements,
and, therefore, does not scale well. (2) Topological sizing
hurts real-time and latency-sensitive applications. Because
computationally intensive applications are susceptible to load
spikes, co-locating computationally intensive applications with
real-time and latency-sensitive applications adversely affects
their latencies (real-time applications are most affected by co-
location) as we show in figure 6.

We propose functional slicing, an approach that comple-
ments topological slicing by splitting different control-plane
functions across multiple servers. Functional slicing adds a
new dimension to the partitioning problem and provides more
freedom for placement of applications on different servers.
With functional slicing, a switch may forward different events
to different controllers (e.g., one could install a forwarding
rule at the switch for each event or have the original server
forward the events to other servers). With functional slicing,
we can optimize the number of partitions to minimize only
convergence time, without violating administrative constraints
and without affecting real-time or latency-sensitive applica-
tions.

While functional slicing offers one more degree of freedom
for partitioning the control plane, it complicates placement.
For instance, placing control-plane functions that are in the
critical path in different machines would lead to longer flow
completion times (i.e., the overhead of crossing machine
boundaries would increase response times for packet-in mes-
sages during path setup). Therefore, our placement algorithm
must be aware of the dependencies between the different
control-plane functions.

We present Hydra, a framework for partitioning and place-
ment of SDN control-plane functions in different servers.

Hydra leverages functional slicing to increase flexibility in
partitioning and placement. Moreover, Hydra’s partitioning is
communication-aware — Hydra considers the communication
graph to avoid placing control-plane functions that are in
the critical path in different machines. We first formulate
the placement of application instances across partitions as
an optimization problem with the objective of minimizing
the latency of latency-sensitive applications that are in the
critical path, subject to resource constraints (i.e., number of
servers, CPU and memory per server). We then reduce our
formulation to a multi-constraint graph partitioning problem
and solve it using well-known heuristics [9]. To shield real-
time applications from other applications, Hydra uses thread
prioritization. Hydra assigns the highest priority to threads
of real-time applications and next highest priority to latency-
sensitive applications, while separating computationally inten-
sive applications from the other two categories.

Hydra is relevant for both reactive controllers (where rules
are installed after examining the first packet of each flow),
and proactive controllers (where rules are pre-installed in
switches) [10]. Our optimization formulation is agnostic to the
choice of the model. Our formulation considers the packet-in
rates, which may be high for reactive SDNs and low for pro-
active SDNs, and the rates, among other factors, influence the
best partition chosen by Hydra. Our evaluation shows a range
of packet-in rates to capture a continuum of this choice.

In summary, we make the following contributions:

e We propose functional slicing, which adds a new dimension
to partitioning and provides more flexibility.

e We introduce a communication-aware placement algorithm
that leverages functional slicing and avoids its potential short-
comings.

e We evaluate Hydra using Floodlight [11] controller and
show the effectiveness of Hydra’s key techniques — functional
slicing, communication-aware placement, and prioritization.

The rest of the paper is organized as follows. Section II
presents an overview of Hydra’s approach, and Section III
delves into the details of Hydra. Section IV describes our
experimental methodology and Section V presents our results.
Section VI discusses related work. Finally, Section VII con-
cludes the paper.

II. HYDRA RATIONALE

We begin by discussing alternative ways to scale SDN
controllers, and present Hydra’s approach and rationale:
Topological partitioning: Current distributed controllers [5],
[6], [7], [8], de facto assume topological partitioning of the
network into multiple controller domains, with one controller
instance per domain. Each controller instance runs all the
control-plane applications (e.g., topology modules, heart-beat
handler that monitors switch failures) but handles events only
from the switches in its own partition. Figure 2a shows
an example of topological partitioning where each partition
contains two switches and the four applications (f/ through
Jf4) run on each controller. While topological partitioning helps
with scaling, the sustainable throughput is still limited by
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Fig. 2: Approaches to partitioning controller functionality.

the fact that the compute and memory capabilities must be
sufficient to handle all applications in that partition. Increasing
the number of partitions to reduce partition sizes may not be
feasible due to network administrator constraints and since
this may potentially increase route convergence time when
recomputing paths on a switch or link failure. Finally, state
changes in any partition of an application may need to be
propagated to other partitions in order to maintain consistency
of the application’s global network state, and flow set up (e.g.,
for a QoS application) may involve communications across
application instances located in different partitions.

Pure functional slicing: Functional slicing partitions the
control-plane functions belonging to the same topological par-
tition and places the functions in different servers. Figure 2b
shows an example of functional slicing for the same network
as in Figure 2a. The example shows the four functions fI()
through f4() split across four controllers each of which covers
the entire network (i.e., all the four topological partitions
in Figure 2a). While this tackles some of the issues with
topological partitioning, the sustainable throughput may now
be bottlenecked by the most demanding application. Further,
pure functional slicing may worsen the latency to handle
critical packet-in events because the control-plane functions
needed to handle each such event may be spread across
multiple machines (i.e., kernel overheads and networks delays
would lie in the critical path of packet-in event-handlers).
Hydra’s approach: With Hydra, we explore a hybrid scheme
that employs a combination of topological and functional slic-
ing to reduce both convergence times and packet-in processing
latencies. Figure 2c shows an example of our hybrid slicing
for the same network as in Figure 2a. The example shows
two topological partitions. Each controller and two functional
partitions of each of the topological partitions, so that only
two servers for each function have to converge as opposed
to the four servers in topological partition in Figure 2a. At
the same time, an event involving all four functions needs
communication only between two servers as opposed to four
servers in functional slicing in Figure 2b.

While Hydra separates computationally-intensive applica-
tions (i.e., path re-computation) from the other two categories,
Hydra shields real-time applications (e.g., heart-beats) from
latency-sensitive applications (e.g., path lookup) using thread
prioritization. Hydra assigns the highest priority to real-time
applications and second highest priority to latency-sensitive

applications.

III. HYDRA

In this section, we discuss Hydra’s communication-aware
placement algorithm. Recall that Hydra leverages functional
slicing to calculate the number of partitions that minimizes
convergence time, without negatively impacting real-time and
latency-sensitive applications or violating administrative con-
straints.

A. Finding the right partition size

In the first step, we compute the number of partitions by
considering only the most critical computationally intensive
application that directly impacts convergence time on failures.
Often, the topology (route computation) application is the
most critical application. While the exact number of partitions
that minimizes convergence time is implementation depen-
dent, in general, as we increase the number of partitions
(starting from 1), the convergence time would decrease as
the computation gets parallelized across partitions. But, after
some point, the communication overheads between parallel
computing instances would start to overwhelm the benefits
from parallelization. Thus, it is reasonable to expect a U-
curve with the best partition size somewhere in the middle.
But, Hydra’s placement algorithm does not depend on the
relationship between convergence time and the number of
partitions.

B. Communication-aware placement: formulation

Hydra takes as input the different (topological) partitions of
applications and their demands (CPU and memory), resource
constraints (i.e., CPU, memory, and number of servers), and
the communication graph to calculate the best placement
of the applications’ partitions that minimizes latency. We
assume that computationally-intensive applications (e.g., path
computation) are isolated by placing those applications in
separate machines (or VMSs); simple prioritization might be
sufficient in some cases as well. We cast placement of the
applications’ partitions as an integer linear programming (ILP)
optimization problem. Because our problem is NP hard, we
identify a efficient heuristic that can solve it in reasonable
time.

Let P be the number of topological partitions, N the number
of SDN applications deployed in the network, and S the



number of physical servers dedicated for the SDN control-
plane. We want to bin-pack P x N application slices within
S server machines such that the average packet-in processing
latency is minimized.

We represent the communication between the different
application slices using a communication graph whose vertices
are application slices. Thus, there are P x N vertices in this
graph. The edges in the graph denote communication between
slices. Communication can occur between two different ap-
plications in the same partition (e.g., packets permitted by a
firewall module may then be forwarded to a load-balancer),
as well as between two slices of the same application in
different partitions (e.g., a bandwidth reservation application
between a source and destination in two different partitions
will require communication between the application slices in
the two partitions).

Let d;; denote the communication cost between two slices.
Because we are interested in latency, the communication
cost denotes the additional latency overhead if the slices are
placed in different machines. Let A; denote a vertex in the
communication graph where ¢ € [1, P x N]. Then, depending
on placement, we have the vector F'[i] = k which denotes that
application slice A; is placed in machine k.

Objective function: Next, we model latency of latency-
sensitive events. Because these events typically traverse multi-
ple application slices, event-handling latency would depend on
the total communication cost across these applications slices
(i.e., path delay). Let E = {ej,ea,...,e.} be the events of
interest, with their associated paths, {pi,p2,..,pr}, in the
communication graph. Naturally, each path is a sequence of
edges in the graph.

Then, the cost of an event is given by:

VPm S P; tlat(pm) =

> dij )

<i,§>€Epm, F[i]#F[j]

In this formulation, two slices would incur latency overhead
of d;; when placed in different servers but no overhead when
co-located in the same physical machine.

We can assign a weight (e.g., relative priority, probability)
to each event and calculate the weighted latency as follows.

2

Pm€{pP1,P2,...Dr }

tiat = '7(pm)tlat (pm) 2

The weights could be relative priorities of the events based
on semantic knowledge or could just be event probabilities.
Our objective is to minimize equation (2) subject to capacity
(i.e., CPU and memory), latency, and correctness constraints.

Capacity constraints: Let the compute and memory ca-
pacity of each server be R.,, and R,.em, respectively. Let
A;’s compute and memory requirements be C,; and M,
respectively. Then, we have the following constraints based
on CPU and memory capacities.

< chu
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>, M
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real-time constraints: We can bound the latency for real-
time applications using an additional constraint of the form:

tiat(pm) <= deadline,, 4)
where p,,, is a path of a real-time event m in the graph.

C. Communication-aware placement: simplification

The final form of the objective function #;,; is the linear
combination ¢, = > Flil£F[] oyjd;;, for some coefficients
a;. If we ignore the constraints (i.e., equations (4) and (3),
we see that t;,; only depends on the weight of the edge-cut
between the partitions and our aim is to find such a mapping
F'. If we ignore only equation (4), the problem reduces to the
well-known multi-constraint graph partitioning [9] problem.
If each vertex A; is assigned a vector of weights (C;, M;)
denoting the compute and memory requirement of each slice,
then the problem is equivalent to finding a S-way partitioning
such that the partitioning satisfies a constraint associated with
each weight, while attempting to minimize the weight of edge-
cut. Because multi-constraint graph partitioning is a known
NP-hard problem [9], we employ heuristic methods from [12]
which deliver high quality results in reasonable time. While
our heuristic solution ignores equation (4), we did not observe
appreciable degradation in our experiments.

D. Discussion

We discuss dynamic load adaptation and fault tolerance.

Load adaptation: Some previous papers ([5], [13]) argue
for the controller’s partitioning and placement to change
according to instantaneous load from switches (e.g., packet-in
rate). However, such dynamic re-partitioning and placement
requires applications to re-partition and migrate their state
which drastically affects controller performance and offsets
the cost advantage of dynamic re-partitioning. This cost of
reorganizing state applies to controllers that store state locally
as well as to those that use a distributed datastore. While
controllers that store state locally must aggregate/split/migrate
their state whenever partitioning/placement changes [13], con-
trollers that use a distributed datastore must reshard their
datastore whenever the partitioning changes [5]. Because the
cost of provisioning for the peak load is a small fraction (e.g.,
dedicating 100 servers for a 100,000-server datacenter is only
0.1%) of total cost of ownership (TCO) of large datacenters,
we provision enough servers to accommodate the peak load
and do not change our partitioning based on packet-in rate
(load). Nevertheless, if desired, Hydra’s placement algorithm
is fast enough to respond to load variations.



Fault tolerance: For fault tolerance reasons, it may be
desirable to replicate SDN controllers in each partition, either
using a simple master-slave design for each partition, or a
more strongly consistent approach based on the Paxos algo-
rithm [14]. While fault tolerance mechanisms are orthogonal
to our work, it is easy to generalize Hydra to handle the
placement of replicas. Specifically, a simple approach is to
replicate the configuration produced in the previous section
as many times as needed for adequate fault tolerance. If
it is also desirable to consolidate the number of physical
controller machines, our model could be extended by including
additional variables for each replica, and using the same
placement algorithms described in the previous section. To
ensure that replicas of a given application/partition slice are
not placed on the same physical host, additional constraints
may be added to require replicas be placed in different hosts.
Finally, there might be additional requirements that parts of the
network supplied by different power sources need controller
isolation for fault tolerance. This constraint can be added to
our formulation by requiring that applications corresponding
to these partitions not be co-located with each other.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present the details of our implementation
and our evaluation methodology.

SDN Applications: We use the Floodlight SDN controller
[11], which is a widely used OpenFlow controller. We evaluate
four control-plane functions:

1) Shortest path computation (DJ): Shortest path computa-

tion based on Dijkstra’s algorithm, which runs whenever
a new link (switch) is discovered or an existing link
(switch) fails.

2) Firewall (FW): Filters packet-in messages based on a

set of rules.

3) Route Lookup (RL): Returns the complete path based on

source/destination pair in a packet-in header.

4) Heart-beat handler (HB): Generates and forwards heart-

beat messages between switches and controllers;

DJ is a computationally intensive intensive application; FW
and RL are latency-sensitive applications and are invoked
during path setup; HB is real-time application — if a heart-beat
is not processed within a deadline (i.e., heart-beat interval), a
spurious link/switch failure would result which would trigger
DJ. While a production SDN deployment would include tens
of applications, it is hard for researchers to study a large
number of applications at production scales.

Load Generation: Hydra’s evaluation requires large topolo-
gies with a few thousand switches. Because network emulators
such as Mininet model both control and data plane, they
do not scale beyond a few tens of switches [S]. Therefore,
we use CBench [15]. CBench generates packet-in events that
stress the control-plane without modeling a full-fledged data-
plane. While the current implementation of CBench generates
random packet-in messages (to potentially non-existent des-
tinations), we modified CBench to generate packets that are
meaningful to our topology. We use a reactive model of SDN
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in our experiments. However, our results are generalizable to
both pro-active or reactive models.

Topology: Datacenters typically employ hierarchical
topologies which provide high bisection bandwidth and good
fault tolerance [16], [17], [18]. Our datacenter topology is a
fat-tree with 2560 switches. The topology is organized into
512 core switches, and 32 pods, with each pod containing 32
Top of Rack (ToR) switches.

V. RESULTS

In this section, we compare Hydra to Topological slicing for
the three types of applications. Recall that we care about differ-
ent metrics depending on the application type — lower missed
heart-beats (deadlines) for real-time applications (HB), lower
latency (higher throughput) for latency-sensitive applications
(FW,RL), and lower convergence time for computationally-
intensive applications (DJ).

We begin by showing how convergence time varies with
the number of partitions which enables us to choose the right
partition size. Then we show how our communication-aware
placement co-locates different application slices. Because our
placement depends on CPU and memory utilization, we show
CPU and memory utilizations which are sensitive to a variety
of parameters such as packet-in rates, topology sizes, and
other parameters. After placement, we compare missed heart-
beats for HB and throughput (at near-saturation high loads,
throughput is a proxy for latency as queuing becomes the
dominant latency component) for FW and RL.

A. Convergence Time

We study convergence time for our fat-tree topology with
2560 switches. Because fat-tree is hierarchical, it is straight-
forward to create partitions by grouping neighboring pods. For
example, we can create two partitions by grouping 16 pods in
one partition and the other 16 in the other partition (each pod
contains 32 ToR switches). Recall that convergence time is
the time to recalculate shortest paths after a link failure. So,
to measure convergence time, we take down a random link in
our fat-tree which could be a border link (i.e., core link) or
a partition-local link (i.e., ToR or aggregate links). We then
measure the time required for all partitions to recompute their
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paths which includes time for inter-partition communication.
While all neighboring partitions need to recompute on a
border-link failure, a local link failure might also require
partitions to advertise new costs to other partitions similar to
BGP. For each partition size, we simulate 100 random link
failures.

We show the average convergence time for DJ vs. number
of partitions (partition size) in figure 3. We vary the number
of partitions (ToR switches per partition) as 1 (1024), 2(512),
4(256), 8(128), 16(64), and 32(32) along X-axis and show
convergence time along Y-axis. We see that convergence
time decreases rapidly as we increase the number of par-
titions from 1 to 8 due to amortization of compute from
parallelization. However, after 8, convergence time starts to
climb as communication overhead overwhelms gains from
parallelization. Because topological slicing co-locates other
applications with DJ, higher number of partitions are needed to
accommodate the aggregate CPU and memory requirements.
In contrast, Hydra’s functional slicing enables us to choose the
best partition size (e.g., 8 in this case), independent of other
applications.

B. Communication-aware placement

We start by showing the CPU and memory demands of
applications. For these measurements, we ran Floodlight con-
troller on our machine with 4 cores of CPU and 64 GB of
memory. The demand of each application depends on the
amount of application state and controller’s load. Application
state impacts both CPU and memory usage — applications
maintain state in memory and look up state for each packet-
in message. RL must keep local topology information which
depends on the partition size. The number of firewall rules
impacts FW’s state overhead. In our experiments, we use
50,000 firewall rules which is typical for large networks. DJ
maintains both local and global topology information. DJ’s
CPU usage depends on link failure rate and partition size.
We simulate a random link failure every 10 seconds which is
reasonable for large networks. From figure 3, we expect that
DJ’s CPU usage to be highly sensitive to partition size. HB’s

CPU and memory usage are minimal — its CPU usage slowly
grows with heart-beat frequency but negligible overall.

The CPU demands of applications also depend on load (i.e.,
rate at which the controller receives packet-in messages from
switches). We modified CBench to precisely control packet
rate. Our base controller saturates around 50,000 packets per
second. Therefore, we make measurements from 10,000 to
50,000 packets per second. Even without any applications,
SDN controllers run some common functions (e.g., south-
bound OpenFlow protocol handlers) which cannot be turned
off. Therefore, we initially measure the idle CPU and memory
usage without any applications (no incoming packets to the
controller) which represents the overhead of starting a new
controller instance. The overhead is about 15% CPU usage
and 512M B of memory. We enable applications one-by-one
and measure CPU and memory usage for each application
(excluding idle overhead) at 100 ms intervals. We discard
initial and final samples to capture steady-state usage.

Figure 4 shows the CPU requirements of different applica-
tions as as we vary the load. DJ and HB do not depend on load
— DJ’s CPU usage depends on partition size and link failure
rate (1 every 10 seconds), and HB’s usage depends on heart-
beat frequency (we ran HB at 10/second and 100/second but
they are both insignificant). We show DJ for varying partition
sizes — for example, DJ(4P) is for 4 partitions each with one
fourth the number of switches as DJ(1P). We observe that DJ’s
CPU usage reduces with increasing number of partitions due
to reduced number of switches. As discussed in the previous
section, with topological slicing, the state overheads of other
applications (e.g., RL, FW) determine the partition size which
negatively impacts convergence time. For instance, we can see
that the combined CPU usage of Idle, RL, FW, HB, and DJ(4P)
is close to 100% (15 + 45 + 7 + 3 + 25) for higher loads. In
fact, only when there are more than 8 partitions, the combined
CPU usage falls well below 100% (servers usually operate at
less than 90% loads to provide reasonable response times).
Therefore, topological slicing is forced to choose a partition
size of 16 or more which leads to high convergence times (see
figure 3). Hydra, on the other hand, separates DJ from other
applications, enabling DJ to use the best partition size.

Memory usage is largely independent of load. Table I shows
the average memory overheads of DJ, FW, and RL for the
one partition case containing all switches. From the table, it
is clear that memory does not impact our placement in our
controller as all of applications comfortably fit within our
memory capacity. However, we expect production controllers
to have large state overheads that will not fit within one
server’s memory. We do not show HB’s memory overhead
as it is negligible.

TABLE I: Memory requirements

DJ RL FW

3.75GB | 1.25 GB

6.25 GB

Recall from section IV that our communication graph has
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only one edge between RL and FW, as RL and FW are the
only applications that lie in the critical path of flow’s path
setup; DJ and HB do not have edges between them or to
either RL or FW. From figure 4 and table I, it is straight
forward to see the difference between Topological slicing’s and
Hydra’s placement decisions. Topological partitioning requires
16 controller instances (16 partitions) requiring 16 cores. Each
instance would host all the applications. In contrast, Hydra
creates 8 network partitions (minima in figure 3). For each
partition, it assigns two controller instances which run on
separate CPU cores. While one controller instance hosts DJ for
that partition, another instance hosts all the other applications
— RL, FW, and HB. While we could manually calculate
optimal placements in this simple controller, deployment-
scale controllers would likely consist of tens of applications
with complex communication patterns, and, therefore, would
require a rigorous approach such as Hydra. Unfortunately, it
is harder for researchers to experiment with production-scale
controllers without access to production-scale networks and
workloads.

C. Latency-sensitive applications

In this experiment, we compare the performance of latency-
sensitive applications in one network partition. Recall that
Hydra creates 8 network partition (1/8" switches) as opposed
to topological slicing which creates 16 partitions (1/16t"
switches). In figure 5, we compare the scalability of latency-
sensitive applications in Hydra vs. topological slicing. We
show load (injected packets per second) along X-axis and
the achieved throughput after route lookup (RL) and firewall
processing (FW) along Y-axis. As we can see, Hydra scales
well beyond 60,000 packets per second whereas topologi-
cal slicing saturates at about 40,000. As a result, latency-
sensitive events incur high queuing inside the controller in
the case of topological slicing. It is also interesting to note
that even though Hydra handles events from a larger number
of switches, the latency-sensitive applications (RL and FW)
are isolated from the load spikes caused by computationally-
intensive DJ application, thanks to functional slicing.
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Fig. 7: Isolation of prioritization’s gains

D. Real-time applications

Separating computationally-intensive DJ application also
helps our real-time heart-beats (HB) application. Figure 6
shows the CDF of heart-beat latency between Hydra and
topological slicing. Our default heart-beat frequency is 10
heart-beats per second. We see a marked difference between
the two — while Hydra’s 95" and 99" %-iles are about
10 ms, topological slicing’s 95" %-ile is about 30 ms.
With a deadline of 100 ms (i.e., periodicity of heart-beats),
topological slicing would suffer about 3% missed deadlines,
whereas Hydra would not miss any. While 3% may look like
a small number, but penalty for missed deadlines is very high
(i.e., missed deadlines trigger expensive path recomputation
which would further exacerbate the problem).

E. Isolating the impact of prioritizing

In this section, we isolate the gains from prioritizing real-
time applications over latency-sensitive applications. In figure
7, we compare the CDF of heart-beat latency between Hydra
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with and without prioritization. The responses are received in a
timely fashion when HB is prioritized over RL, but modestly
degrades when not prioritized. In figure 8, we increase the
heart-beat rate to 100 per second to facilitate quicker failure
detection. We see that almost all HB messages meet the
deadline when prioritized but no messages meet the deadline
when not prioritized. In fact, some HB messages take as long
as 1800 ms to get a response. Thus, prioritization improves
timeliness of real-time applications beyond functional slicing.

VI. RELATED WORK

While there is a plethora of research on SDN, a systematic
analysis of controller partitioning and placement is not well-
studied. Onix [8] focuses on providing APIs for control-plane
and state distribution. Beehive [19] enables applications to
express their state-dependence and uses the inferred state-
dependence to co-locate functions within each application.
In contrast, Hydra considers event-processing pipeline across
applications and considers others constraints (e.g., CPU load,
memory) to partition applications as well as the state (i.e.,
topology).

Hyperflow [7] improves controller performance by pro-
actively synchronizing state but does not deal with parti-
tioning. Kandoo [6] offloads switch-local events to switches
but does not address a large subset of events that are not
local to the switch. ElastiCon [5] topologically partitions the
controller based on CPU load. In contrast, Hydra employs
a hybrid of topological and functional partitioning. A few
other papers address the placement of the controller on the
network to reduce network delays and to topologically-slice
the network for better performance [20], [21]. But none of
them employ functional slicing and they do not target specific
response times and convergence costs. While some papers
[8], [5] argue for a logically-separate, globally-consistent,
distributed datastore for storing state to ease communication
among different controllers, others [13] prefer that the state be
distributed among controller instances like many distributed
or parallel applications today. Nevertheless, our optimization
formulation is agnostic to the choice of state management.
In our evaluation, we use Floodlight [11] which assumes
the latter alternative where there is no separate datastore
but other communication costs (e.g., datastore) can be easily
incorporated into our model.

VII. CONCLUSION

In this paper, we have presented Hydra, a framework
for distributing SDN control functions across servers. Hy-
dra combines well-known topological slicing with our novel
functional slicing and distributes applications based on their
communication pattern. We have demonstrated the importance
of functional slicing and communication-aware placement in
the scalability of SDN with extensive evaluations.

Our results, while promising, are only a start. First, while
we evaluated using applications that are available publicly
controllers, we expect Hydra’s benefits to be even higher with
large-scale deployments. Getting access to production SDN

deployments can enable larger-scale evaluations, which is an
interesting direction for future work. Second, we are building
a more comprehensive system based on functional slicing,
that can handle other issues such as incrementally placing
applications as loads drastically change and incorporating
consistency guarantees into the model.
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