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Abstract—Cognitive radio (CR) is a promising scheme to
improve the spectrum utilization. Spectrum sensing (SS) is one
of the main tasks of CR. Cooperative spectrum sensing (CSS) is
used in CR to improve detection capability. Due to its simplicity
and low complexity, sensing based on energy detection known
as conventional energy detection (CED) is widely adopted. CED
can be generalized by changing the squaring operation of the
amplitude of received samples by an arbitrary positive power p
which is referred to as the generalized energy detector (GED). The
performance of GED degrades when there exists noise uncertainty
(NU). In this paper, we investigate the performance of CSS by
considering the noise NU when all the secondary users (SUs)
employ GED. We derive the signal to noise ratio (SNR) wall for
CSS for both hard and soft decision combining. All the derived
expressions are validated using Monte Carlo (MC) simulations.

I. INTRODUCTION

Cognitive radio (CR) has the potential to solve the spectrum

scarcity problem by allowing the SUs to access the licensed

band when primary users (PUs) are not using them [1]. To

access the unused licensed band, SU needs to check the

occupancy status of the PU, which is termed in the literature as

the spectrum sensing (SS) and is one of the main tasks of CR.

In the literature different techniques for spectrum sensing have

been investigated [2]–[7]. Energy detector [6], [7] is a popular

SS technique since it does not require prior knowledge of the

PU and is easy to implement. CED is generalized by replacing

the squaring operation of the received signal amplitude by

an arbitrary positive power p, which is referred to as the

generalized energy detector (GED) [8], [9] or the improved

energy detector [10], [11] or p-norm detector [12], [13]. It is

shown that performance of the energy detector can be improved

by choosing a suitable value of p [10], [11], [14].

In GED, the decision on the occupancy status of the PU

channel is made based on a predefined threshold, which can

be determined by the noise variance that plays an important

role in determining the performance of the detector. One has

to know the true noise variance to determine the value of this

threshold. If this value is known exactly, one can sense the

occupancy of a PU even at a very low SNR provided the sensing

time is made sufficiently large [2]. However, in practice the

noise variance varies with the time as well as the location and

hence, it is difficult to find it’s exact value. Due to this, there

exists unpredictability about the true noise variance which is

known as noise uncertainty (NU) because of which there exists

a phenomenon called SNR wall [15]. It says that if the noise

variance is not known exactly and is confined to an interval,

one cannot achieve targeted detection performance when the

SNR falls below certain value regardless of the sensing time.

This makes CED an inefficient sensing method. Authors in

[15] derive the SNR wall for CED. The effect of uniformly

distributed NU is studied in [16] and the expression for SNR

wall is derived. In [8], [9], the performance of GED is studied

under uniformly distributed NU. It is shown in [8] that under

the worst case of NU the SNR wall is independent of p and the

CED represents the optimum energy detector. The expression

for SNR wall is obtained in [9] for the same scenario and it is

shown that the SNR wall is independent of p.

The detection performance of the CSS under NU is studied

in [17]. Authors in [18] propose CSS with adaptive thresholds

to improve the detection performance. SNR wall for CSS with

CED assuming the same SNR and NU for all the cooperating

SUs (CSUs) is discussed in [19], [20]. However, in practice the

SNR varies with the time and the location since it depends on

the distance between the PU and the SU and the propagation

path. Also, the NU depends on calibration error, variations in

thermal noise and changes in low nose amplifier (LNA) gain.

Hence, the assumption of the same SNR and NU at all the SUs

is not valid in practice. The scenario in which different CSUs

have the varying NU are studied in [17], [18] but they do not

discuss the SNR wall. The discussion on SNR wall in [19] is

limited to soft combining only whereas the same in [20] for

hard combining is limited to AND combining rule only. Also

in [19], [20], all the CSUs use CED for detection. In this paper,

we derive the expression for SNR wall when all the SUs use

GED, without enforcing any assumption on the SNR and the

uncertainty. We derive the SNR wall for hard as well as for soft

combining. For hard combining we consider all three possible

cases, i.e., OR, AND and k out of M combining rule. Note

that, although authors in [8], [9], [15], [16], [19], [20] discuss

NU and SNR wall, their analysis is limited to real valued signal

only. However, in practice SU receives complex valued signal.

Hence, in this paper, we provide the analysis by considering

the received signal as complex.

II. GENERALIZED ENERGY DETECTOR UNDER NOISE

UNCERTAINTY

A. System Model

Let us consider that M number of SUs are cooperating and

each of them takes N samples during the observation interval.
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Hence, the received signal at the ith SU can be written as

yi(n) =

{

wi(n); H0,

hi(n)si(n) + wi(n); H1,
(1)

where hi(n), si(n) and wi(n) are the nth sample of the complex

fading channel gain, PU signal and the noise, respectively, at

the ith CSU with n = 1, 2, · · · , N and i = 1, 2, · · · ,M . The

signal and the noise samples are independent and identically

distributed (i.i.d) with si(n) ∼ CN (0, σ2
si
)1 and wi(n) ∼

CN (0, σ2
wi
). Here, the notation CN (x̄, σ2

x) denotes complex

Gaussian distribution with mean x̄ and variance σ2
x. In this

paper we restrict our discussion to additive white Gaussian

noise (AWGN) channel only and hence we consider hi(n) = 1.

The hypotheses H0 and H1 correspond to free and occupied

primary channel, respectively.

Now, considering that all the SUs employ GED, the decision

statistic at the ith SU is given by

Ti =
1

N

N
∑

n=1

|yi(n)|p, (2)

B. Noise Uncertainty Model

The characterization of AWGN, i.e., wi(n), in Eq. (1)

depends on its variance. In general, when we consider different

detection methods, it is assumed that the true noise variance at

the input of SU is known a priori. The same is used in choosing

a threshold for detecting the presence or the absence of a PU

signal. However, in practice, the noise variance varies over time

and location resulting in NU [15], [16].

The average or the expected value of the noise variance σ̂2
wi

is known at the ith SU. Let σ2
wi

be the true noise variance

at the ith SU which may vary from σ̂2
wi

giving rise to noise

uncertainty (NU). The NU factor βi at the ith SU is defined as

βi =
σ̂2
wi

σ2
wi

which is a random variable since σ2
wi

is random.

Let the upper bound on the NU be Li dB, which can be

written as Li = sup {10log10βi}. Assuming that the βi in dB

is uniformly distributed in the range [−Li, Li] [15], implying

that it is restricted in the range [10
−Li
10 , 10

Li
10 ]. The probability

density function (pdf) of βi can be written as

fβi
(x) =











0, x < 10
−Li
10

5
[ln(10)]Lix

, 10
−Li
10 < x < 10

Li
10

0, x > 10
Li
10

(3)

where, ln(z) represents the natural logarithm of z.

C. Detection Probabilities

When there is no cooperative sensing, the performance of the

ith SU is measured in terms of probability of false alarm (PFi
)

and the probability of detection (PDi
) which are defined as

PFi
= Pr {Ti > τ |H0} and PDi

= Pr {Ti > τ |H1}, respec-

tively, where τ and Pr {·} represent the decision threshold and

the probability operator, respectively.

1Complex Gaussian signal assumption is valid, for example, in an orthogonal
frequency-division multiplexing signal having a large number of subcarriers
[21], [22], in frequency-shift keying signals that can be reasonably approxi-
mated as Gaussian process due to the complex time structure.

If N is chosen relatively large then by using central limit

theorem (CLT), the pdf of the decision statistic given in Eq.

(2) can be modeled by Gaussian distribution [8], [9], [12],

[19], [20]. In this case the pdf can be represented by mean

and variance only. Therefore considering uncertainty factor βi,

the mean and variance at ith SU can be given as

µ0i = Gpσ
p
wi
, σ2

0i =
Kp

N
σ2p
wi
, (4)

µ1i = Gp(1 + βiγi)
p

2 σp
wi
, σ2

1i =
Kp

N
(1 + βiγi)

pσ2p
wi
, (5)

where µ0i , σ
2
0i and µ1i , σ

2
1i correspond to the mean and the

variance under H0 and H1, respectively. Here, γi is the average

SNR at the ith SU, Gp = Γ
(

p+2
2

)

, Kp = Γ(p+1)−Γ2
(

p+2
2

)

,

where Γ(a) represents the complete Gamma function [23,

6.1.1]. Using these, PFi
and PDi

for the ith CSU when we

consider a fixed value of NU factor can be obtained as

PFi
= Q

(

τ − µ0i

σ0i

)

, and PDi
= Q

(

τ − µ1i

σ1i

)

, (6)

where Q(t) = 1√
2π

∫∞
t

e−(x2

2
)dx.

The threshold τ is chosen as λσ̂p
w for GED, where λ > 0

is a constant. We assume that σ̂2
w1

= σ̂2
w2

= · · · = σ̂2
wM

and

hence τ is same for all the CSUs. βi being a random variable,

one can obtain the average PFi
and PDi

, i.e., P̄Fi
and P̄Di

,

by using the means and variances from Eq. (4) and Eq. (5) in

Eq. (6) and averaging them over the pdf of βi given in Eq. (3).

Therefore, P̄Fi
and P̄Di

for the ith CSU can be obtained as

P̄Fi
=

∫ b

a

Q

(

(

λx
p

2 −Gp

)

√

N

Kp

)

5

Lixln(10)
dx, and (7)

P̄Di
=

∫ b

a

Q

(

λx
p
2 −Gp(1 + xγi)

p
2

(1 + xγi)
p

2

√

N

Kp

)

5

Lixln(10)
dx, (8)

where, a = 10
−Li
10 and b = 10

Li
10 . Note that, the integrals in

Eq. (7) and Eq. (8) can be reduced to closed form using an

approximation to Q(·) function. The goal of this paper is to

derive the SNR wall and to do that the equations in integral

are sufficient. Hence, we keep these equations in integral form

only.

III. SNR WALL FOR COOPERATIVE SPECTRUM SENSING

When we consider CSS, we get a combined average proba-

bility of false alarm (Q̄F ) and average probability of detection

(Q̄D) in each case based on the number of CSUs. Given

different SNRs (γi > 0) at the SUs, i = 1, 2, · · · ,M , if there

exists a threshold for which

lim
N→∞

Q̄F = 0 and lim
N→∞

Q̄D = 1, (9)

then the sensing scheme is considered as unlimitedly reliable

[16]. In other words, if the channel is sensed for sufficiently

long time, i.e., N → ∞, one can achieve the desired target

Q̄F = 0 and Q̄D = 1 at any SNR level. However, this is

possible only when there is no NU. In the presence of NU, it is

not possible to achieve unlimited reliability below certain SNR

value even when N is very large, i.e., N → ∞ [16]. The SNR



value below which it is not possible to achieve an unlimited

reliability is referred as the SNR wall [16] and in this case at

least one of the conditions in Eq. (9) is not satisfied. However,

when the SNR is above the SNR wall, there exists a threshold

τ for which both the conditions in Eq. (9) are satisfied.

In this section, we derive the SNR wall for CSS under NU

by considering hard as well as soft decision combining.

A. Hard Decision Combining

In hard decision combining all the CSUs take decisions

on the occupancy of the channel and send their results as

ON/OFF to the fusion center (FC). The FC then takes the final

decision considering all the received decisions. In this case, we

investigate the SNR wall for three combining rules, i.e., OR,

AND and k out of M combining rule.

1) OR Combining Rule: In OR combining rule, the FC

declares the PU as active whenever at least one of the CSUs

reports the channel as occupied. Considering this, we first

derive the SNR wall for M = 2 only and then extend the

result to any number of CSUs. Let L1 and L2 be the upper

bounds on the NU factors and γ1 and γ2 be the SNRs at the

two CSUs. In this case with M = 2, Q̄F and Q̄D at the FC

can be written as

Q̄F = P̄F1
+P̄F2

−P̄F1
P̄F2

and Q̄D = P̄D1
+P̄D2

−P̄D1
P̄D2

. (10)

To derive the SNR wall, we make use of the following result,

lim
N→∞

Q
(

a
√
N
)

=











0, if a > 0,

1, if a < 0,

0.5 if a = 0.

(11)

Since σ̂2
wi

s are known, we first need to find λ for which the

conditions in Eq. (9) are satisfied. From Eq. (10), it is clear

that to satisfy lim
N→∞

Q̄F = 0, we need both P̄F1
and P̄F2

to be

0. Hence, using Eq. (7) and Eq. (11), one has to set the λ at

both the CSUs as

λ ≥ Gp

(

10
L1
10

)
p

2

AND λ ≥ Gp

(

10
L2
10

)
p

2

. (12)

The condition in Eq. (12) can be written in compact form as

λ ≥ max

{

Gp

(

10
L1
10

)
p

2

, Gp

(

10
L2
10

)
p

2

}

(13)

Similarly, to satisfy the condition lim
N→∞

Q̄D = 1, we see from

Eq. (10) that PD1
or PD2

must be 1. Once again, using the Eq.

(8) and the Eq. (11), we need to set λ as

λ ≤ Gp

(

10
−L1
10 + γ1

)

p
2

OR λ ≤ Gp

(

10
−L2
10 + γ2

)

p
2

. (14)

If we assume L1 > L2, then using the Eq. (13) and Eq. (14),

λ to be chosen for unlimited reliability should satisfy

Gp

(

10
L1
10

)
p

2 ≤ λ ≤ Gp

(

10
−L1
10 + γ1

)
p

2

, OR

Gp

(

10
L1
10

)
p

2 ≤ λ ≤ Gp

(

10
−L2
10 + γ2

)
p

2

.

(15)

Using Eq. (15), the condition on γ1 and γ2 can be given as

γ1 ≥ 10
L1
10 − 10

−L1
10 OR γ2 ≥ 10

L1
2 − 10

−L2
10 . (16)

Therefore the SNR wall for the OR case is obtained by

considering equality condition in Eq. (16).

To understand this, let us take L1 = 1 dB and L2 = 0.5 dB.

Substituting in Eq. (16), we get γ1 = 0.4646 and γ2 = 0.3676.

Therefore one can achieve unlimited reliability if γ1 ≥ 0.4646
or γ2 ≥ 0.3676. One can also see from Eq. (16) that the SNR

wall in this case is independent of p.

Following a similar procedure, the conditions given for the

case of M = 2 in Eq. (16) can be extended to any M as

γi ≥ 10
L+

10 − 10
−Li
10 , for i = 1, 2, · · · ,M, (17)

where L+ = max {L1, L2, · · · , LM}. In this case, to achieve

unlimited reliability, any one among M conditions in Eq. (17)

must be satisfied.

The scenario when all the CSUs experience the same SNRs,

i.e., γ1 = γ2 = γ, is discussed in [19], [20]. Considering this,

the condition given in Eq. (13) remains the same since it does

not involve γ while that given in Eq. (14) can be rewritten as

γ ≤ max

{

Gp

(

10
−L1
10 + γ

)
p

2

, Gp

(

10
−L2
10 + γ

)
p

2

}

. (18)

Once again, assuming L1 > L2 and using Eq. (13) and Eq.

(18), the SNR wall can be obtained as

γ = 10
L1
10 − 10

−L2
10 . (19)

Following a similar procedure, the SNR wall for M CSUs with

γ1 = γ2 = · · · = γM can be obtained as

γ = 10
L+

10 − 10
−L−

10 , (20)

where L− = min {L1, L2, · · · , LM}.

2) AND Rule: Here, the FC declares the channel as occupied

only when all the CSUs PU channel as occupied. Similar to OR

case, here also we first derive SNR wall by considering M = 2
and then extend it to any M . With M = 2, Q̄F and Q̄D can

be written as

Q̄F = P̄F1
P̄F2

and Q̄D = P̄D1
P̄D2

. (21)

It is clear from Eq. (21) that in order to satisfy the condition

on Q̄F in Eq. (9), either P̄F1
or P̄F2

must be 0. Hence, one

has to select λ as

λ ≥ min

{

Gp

(

10
L1
10

)
p

2

, Gp

(

10
L2
10

)
p

2

}

. (22)

Similarly, to satisfy the condition on Q̄D, both P̄D1
and PD̄2

in Eq. (21) must be 1 and hence we need to set λ as

λ ≤ Gp

(

10
−L1
10 + γ1

)
p

2

AND λ ≤ Gp

(

10
−L2
10 + γ2

)
p

2

.

(23)

Once again assuming L1 > L2 and using Eq. (22) and Eq.

(23), λ has to be selected as

Gp

(

10
L2
10

)
p

2 ≤ λ ≤ Gp

(

10
−L1
10 + γ1

)
p

2

, AND

Gp

(

10
L2
10

)
p

2 ≤ λ ≤ Gp

(

10
−L2
10 + γ2

)
p

2

.

(24)

Using this, γ1 and γ2 in this case should satisfy

γ1 ≥ 10
L2
10 − 10

−L1
10 AND γ2 ≥ 10

L2
10 − 10

−L2
10 . (25)



From this, the equality condition in the Eq. (25) gives us

the SNR walls for the two CSUs. Once again considering

L1 = 1 dB and L2 = 0.5 dB, the unlimitedly reliable

performance can be obtained if γ1 ≥ 0.3277 and γ2 ≥ 0.2308.

Note that, in this case both the SNRs have to satisfy the

inequality conditions. Once again, the conditions given in Eq.

(25) can be extended to any number of M and is given by

Eq. (17) with L+ = min {L1, L2, · · · , LM}. Note that all the

SNRs must be ≥ their respective SNR walls in order to achieve

unlimited reliability.

When γ1 = γ2 = γ, the Eq. (22) remains the same but the

Eq. (23) can be rewritten as

λ ≤ min

{

Gp

(

10
−L1
10 + γ

)
p

2

, Gp

(

10
−L2
10 + γ

)
p

2

}

(26)

With L1 > L2 and using Eq. (22) and Eq. (26), the SNR wall

in this case can be obtained as

γ = 10
L2
10 − 10

−L1
10 . (27)

Considering M CSUs with γ1 = γ2, · · · , γM = γ,

the SNR wall can be given by Eq. (20) with L+ =
min {L1, L2, · · · , LM} and L− = max {L1, L2, · · · , LM}.

3) k Out Of M Combining Rule: In this rule, FC declares the

channel as occupied when k out of the total of M CSUs report

the PU channel as occupied. For this case, we first derive the

SNR wall by considering M = 3 and k = 2, and then extend

the result to general case of any M and k. With this setting,

Q̄F and Q̄D can be written as

Q̄F = P̄F1
P̄F2

+ P̄F2
P̄F3

+ P̄F1
P̄F3

− 2P̄F1
P̄F2

P̄F3
, (28)

Q̄D = P̄D1
P̄D2

+ P̄D2
P̄D3

+ P̄D1
P̄D3

− 2P̄D1
P̄D2

P̄D3
, (29)

Now for lim
N→∞

Q̄F = 0, we must have any of the two P̄Fi
s, i =

1, 2, 3 must be 0 in Eq. (28). Therefore, λ has to be selected

such that

λ ≥ max
{

Gp

(

10
L1
10

)

, Gp

(

10
L2
10

)}

, OR

λ ≥ max
{

Gp

(

10
L2
10

)

, Gp

(

10
L3
10

)}

, OR

λ ≥ max
{

Gp

(

10
L1
10

)

, Gp

(

10
L3
10

)}

.

(30)

To achieve the other condition of lim
N→∞

Q̄D = 1, using Eq.

(29), any two P̄Di
s, for i = 1, 2, 3 must be 1 which is obtained

by setting λ as To achieve this, λ has to be selected as

λ ≤ min

{

Gp

(

10
−L1
10 + γ1

)
p

2

, Gp

(

10
−L2
10 + γ2

)
p

2

}

OR

λ ≤ min

{

Gp

(

10
−L1
10 + γ1

)
p

2

, Gp

(

10
−L3
10 + γ3

)
p

2

}

OR

λ ≤ min

{

Gp

(

10
−L2
10 + γ2

)
p

2

, Gp

(

10
−L3
10 + γ3

)
p

2

}

(31)

In order to see the implications of these conditions, let us

consider L1 > L2 > L3. Using Eq. (30) and Eq. (31), the

conditions on γ1, γ2 and γ3 can be given by

γ1 ≥ 10
L2
10 − 10

−L1
10 , γ2 ≥ 10

L2
10 − 10

−L2
10 , γ3 ≥ 10

L2
10 − 10

−L3
10 .
(32)

TABLE I: Comparison of SNR walls for hard combining. Here,

M = 3, L1 = 1 dB, L2 = 0.7 dB and L3 = 0.5 dB.

Decision
Rule

γ1 γ2 γ3 k

OR 0.4646 0.4077 0.3677 1

AND 0.3277 0.2708 0.2307 3

2 out of 3 0.3806 0.3238 0.2836 2

Therefore, for k = 2 any two conditions given in Eq. (32) must

be satisfied, in order to get unlimited reliability. Equality sign

in Eq. (32) then gives us the SNR wall for 2 out of 3 rule.

One can also see from Eq. (32) that the SNR wall in this case

is independent of the value of p. As an example, let us take

L1 = 1 dB, L2 = 0.7 dB and L3 = 0.5 dB. Substituting in

Eq. (32), we get the SNR walls for 3 CSUs as γ1 = 0.3806,

γ2 = 0.3238 and γ3 = 0.2836. Therefore one can achieve

unlimited reliability if any two of the SNRs at the CSUs are ≥
to their respective SNR wall values.

Following the similar procedure, the conditions given for

the case of M = 3 in Eq. (32) can be extended to any

k out of M CSUs and is given by Eq. (17) with L+ =
min {k largest from (L1, L2, · · · , LM )}. For example, with

M = 3, k = 2 and L1 > L2 > L3 then L+ = L2 and we

arrive at Eq. (32). Note that, to achieve unlimited reliability,

any k SNRs must be ≥ their respective SNR walls.

The equal SNR wall scenario when γ1 = γ2 = γ3 = γ can be

derived using Eq. (30) and Eq. (31). Assuming L1 > L2 > L3,

the SNR wall for M = 3 and k = 2 can be obtained as

γ = 10
L2
10 − 10

−L2
10 (33)

Now considering γ1 = γ2 = · · · = γM , the

SNR wall for the general case can be given by Eq.

(20) with L+ = min {L1, L2, · · · , LM} and L− =
max {k smallest from (L1, L2, · · · , LM )}. For example, with

M = 3, k = 2 and L1 > L2 > L3 we have L+ = L− = L2.

Note that, the SNR wall for OR and AND combining can be

obtained as the special cases of k out of M combining rule.

Choosing k = 1 and k = M result in OR and AND combining

rules, respectively.

In TABLE I, we list the SNR wall under OR, AND and k

out of M combining rule when hard combining is used. We

consider k = 2 for k out of M combining rule. Note that, the

value of k also represents the required number of SNRs are to

be ≥ their respective SNR walls at the CSUs in order to get the

unlimited reliability. Looking at Table I, one may notice that,

though the SNR wall values that we get for OR combining rule

are higher when compared to other two rules, it requires only

a one SNR to be ≥ the respective SNR wall value to achieve

unlimited reliability. When AND combining rule is used, the

SNR wall values are smallest but we require all three SNRs ≥
their SNR wall values for achieving unlimited reliability. With

k out of M combining rule, the SNR wall values lie between

those of OR and AND combining rules, and any k SNR values

at the CSUs have to be ≥ their respective SNR wall values.



B. Soft Decision Combining

We investigate the SNR wall for soft decision combining

when equal gain combining (EGC) is used at the FC. Here,

the decision on PU being ON/OFF is not taken by the CSUs.

Instead, the decision statistic from all the CSUs are sent to the

FC where they are added to obtain a new decision statistic and

the decision is taken by FC based this. Let Ti be the decision

statistic at the ith CSU. Then, the new decision statistic at the

FC is obtained as

T =
1

M

M
∑

i=1

Ti. (34)

To make it simple, we first carry out the derivations for Q̄f

and Q̄d using two CSUs only, i.e., M = 2 and then extend it

to any M . We know that the decision statistics Ti at two CSUs

with i = 1, 2, respectively, follow Gaussian distribution with

the mean and variance as given in Eq. (4) and Eq. (5). We can

compute T using Eq. (34). T is also Gaussian with mean and

variance as

µ0,c =
Gp

2
[σp

w1
+ σ

p
w2

] , and σ
2

0,c =
GpKp

22N

[

σ
2p
w1

+ σ
2p
w2

]

, (35)

under H0 and

µ1,c =
Gp

2

[

(1 + β1γ1)
p

2 σp
w1

+ (1 + β2γ2)
p

2 σp
w2

]

,

σ2
1,c =

GpKp

22N

[

(1 + β1γ1)
pσ2p

w1
+ (1 + β2γ2)

pσ2p
w2

]

,

(36)

under H1, respectively. Here, subscripts 0, c and 1, c represent

that the means and variances are for CSS under H0 and H1,

respectively.

Using this, the probability of false alarm (QF ) and the

probability of detection (QD) for fixed values of β1 and β2 can

be obtained using Eq. (6). We know that with no cooperation,

the threshold τ is chosen as λσ̂p
w. Hence, when there are

two CSUs, the threshold should be selected as λ
2

(

σ̂p
w1

+ σ̂p
w2

)

.

Using this τ in Eq. (6) and µ0,c and σ2
0,c from Eq. (35), one

can obtain QF for fixed β1 and β2 after few manipulations as

QF = Q

(

2λβ
p

2

1 β
p

2

2 −Gp

(

β
p

2

1 + β
p

2

2

)

√

β
p
1 + β

p
2

√

N

Kp

)

, (37)

where, we used σ̂2
w1

= σ̂2
w2

= 12 and β1 =
σ̂2
w1

σ2
w1

and β2 =
σ̂2
w2

σ2
w2

.

Similarly, QD for fixed β1 and β2 can be obtained by making

use of mean and variance from Eq. (36) in Eq. (6) as

QD = Q









2λβ
p

2

1 β
p

2

2 − Gp(1+β1γ1)
p
2

β
−

p
2

2

− Gp(1+β2γ2)
p
2

β
−

p
2

1
√

Kp

N

√

(1 + β1γ1)pβ
p
2 + (1 + β2γ2)pβ

p
1









. (38)

β being a random variable, one can obtain Q̄F and Q̄D by

averaging QF and QD over joint pdf of β1 and β2. Assuming

2In literature when the NU is not considered, the expected value of noise
variance is considered as the true noise variance. Here, the expected value of
variances are assumed to be 1 for mathematical simplicity. In [7], the noise
variance is assumed to be 1.

that β1 and β2 are independent and using Eq. (3) the joint pdf

of β1 and β2 is given by

f(x, y) =











0, x < a1, y < a2,
25

[ln(10)]2L1L2xy
, a1 < x < b1, a2 < y < b2

0, x > b1, y > b2,
(39)

where, L1 and L2 correspond to the upper bound on β in dB

at CSUs 1 and 2, respectively. Here, a1 = 10
−L1
10 , b1 = 10

L1
10 ,

a2 = 10
−L2
10 and b2 = 10

L2
10 . Using this, Q̄F is obtained as

Q̄F =

b1
∫

a1

b2
∫

a2

Q





λ
(

2(xy)
p

2

)

−Gp

(

x
p

2 + y
p

2

)

√

Kp

N

√
xp + yp



 f(x, y)dydx.

(40)

Similarly, one can obtain Q̄D by averaging QD in Eq. (38)

over the joint pdf of β1 and β2. Note that, it is not necessary

to simplify Q̄F and Q̄D in this case as well for the reasons

discussed in section II-C for Eq. (7) and Eq. (8).

The derivation for QF and QD can be extended to M number

of CSUs by selecting the threshold τ as τ = λ
M
(σ̂p

w1
+ σ̂p

w2
+

· · · + σ̂p
wM

). Following a procedure similar to two CSUs, QF

and QD for M CSUs with fixed values of β1, β2, · · ·βM can

be obtained as

QF = Q









Mλ
M
∏

i=1

β
p

2

i −Gp

∑M

i=1
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j=1,j 6=i β
p

2

j
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Kp

N

√

∑M

i=1

∏M

j=1,j 6=i β
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j
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, (41)

QD = Q
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


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
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M
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β
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j=1,j 6=i
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
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,

(42)

respectively. Finally, by averaging the QF and QD over the

joint pdf of β1, β2, · · · , βM we get Q̄F and Q̄D for general

case of M CSUs.

Once we obtain Q̄F and Q̄D, we can derive the SNR wall.

Once again, we derive the SNR wall for M = 2 and then

extend it to any M . Since deriving an expression for SNR wall

is mathematically involved when we consider any p, we do it

for p = 2 only. However, we show that SNR wall is independent

of p using our simulation in section IV. Considering p = 2 and

using Q̄F and Q̄D, to satisfy both the conditions in Eq. (9),

the λ has to be chosen such that

Gp

(

10
L1
10 + 10

L2
10

)

2
≤ λ ≤

Gp

(

γ1 + γ2 + 10
−L1
10 + 10

−L2
10

)

2
,

(43)

Using Eq. (43), the condition on γ1 and γ2 for M = 2 can be

obtained as

γ1 + γ2 ≥ 10
L1
10 + 10

L2
10 − 10

−L1
10 − 10

−L2
10 . (44)

Taking the equality sign in Eq. (44) gives the the SNR wall.

Looking at the Eq. (44), one can arrive at the following

conclusions.

• In the absence of NU at both the CSUs, i.e., L1 = L2 = 0,

one can always find a threshold for which both the



conditions in Eq. (9) are satisfied at any SNR greater

than zero, i.e., γ1, γ2 ≥ 0. This means that the sensing

scheme is unlimitedly reliable when there is no NU. A

similar result is shown in [9] where they do not consider

cooperation.

• When both the CSUs have the same NU, i.e., L1 = L2

and the same SNRs, i.e., γ1 = γ2 = γ, then there is no

improvement in terms of SNR wall when compared to

using no CSS. For example, SNR wall as given in [9],

i.e., γ ≥ 10
L
10 −10

−L

10 takes a value of 0.4646 when β (in

dB) is in the range [−1 1], indicating that we require SNR

of at least 0.4646 to obtain unlimitedly reliable sensing.

Now if we consider CSS with two CSUs having the same

noise uncertainties and SNRs, we still require an SNR of

0.4646 at both the CSUs in order to satisfy the SNR wall

condition given in Eq. (9), indicating no improvement.

• The advantage of using CSS lies in the fact that the SNR

wall is determined by combined SNR, i.e., γ1+γ2. Hence,

even if the SNR is low at one CSU, we could still satisfy

condition in Eq. (44) by having sufficiently high SNR at

other CSU and achieve unlimitedly reliable sensing. For

example with L1 = 1 dB and L2 = 0.5 dB, the combined

SNR required for unlimited reliability is 0.6954. This can

be satisfied if one of the CSUs has the SNR of 0.3954
and the other has a low SNR of 0.3.

Using Eq. (41) and Eq. (42), one can obtain the SNR wall for

M CSUs as

M
∑

i=1

γi =
M
∑

i=1

10
Li
10 −

M
∑

i=1

10
−Li
10 , (45)

and the conclusions that are drawn for the case of M = 2 can

be easily extended to general case of M CSUs.

We would like to mention here that we have not considered

the fading in our system model mentioned in section II-A. One

may include the fading to make it more general. However this

inclusion considerably increases the mathematical complexity

since the expressions for Q̄D will have multiple integrals in

order to carry out the averaging over the pdfs of NU and

instantaneous SNR under fading. For example, with M = 2, the

expression for Q̄D consists of two integrals for hard combining

and that for soft combining will have four integrals. Due to

this, the approach that we have used in section III for deriving

the SNR wall can no longer be used. It makes it hard and

mathematically too involved to arrive at closed form of SNR

wall expressions. One can still obtain the SNR wall in this

case by numerical means by choosing the threshold for which

the Q̄F becomes 0 which can be easily obtained using the

expressions for Q̄F . This threshold can then be used to find

the SNR for which the Q̄D becomes 1 which gives us the

SNR wall. Due to the page limitation, we have not included

the analysis and the simulation plots considering fading here.

IV. RESULTS AND DISCUSSIONS

In this section, first we validate the expressions for Q̄F

and Q̄D for both hard and soft combining using the receiver

operating characteristic (ROC) plots, i.e., Q̄F Vs. Q̄D, obtained

using expressions and Monte Carlo (MC) simulations. We
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Fig. 1: Q̄F Vs. Q̄D plots using Theoretical analysis and Monte

Carlo simulations for (a) k out of M combining rule with L1 =
1 dB, L2 = 0.7 dB, L3 = 0.5 dB, γ1 = −5 dB, γ2 =
−10 dB, γ3 = −15 dB and (b) soft combining with L1 =
1 dB, L2 = 0.5 dB, γ1 = −5 dB and γ2 = −15 dB.

then verify the analytical expressions for SNR wall derived in

section III using MC simulations. Verification is done using the

combined plots of threshold τ Vs. Q̄F and Q̄D by considering

a very large value of N = 106. As discussed in section III, the

SNR wall for hard decision combining is independent of p and

hence all our plots on hard combining (Fig. 2 to 4) are shown

for p = 2 only. For MC simulation we generate PU signal as

complex Gaussian with mean 0 and variance σ2
s . The noise at all

the CSUs are generated as complex Gaussian with mean 0 and

variance σ2
wi

, where i = 1, 2, · · · ,M . The results are averaged

over 105 realizations. In each iteration, noise samples are

generated with variance σ2
wi

where σ2
wi

=
σ̂2
wi

βi
, with σ̂2

wi
= 1

and by taking the samples of βi from pdf given in Eq. (3). Note

that, since we assume here σ̂2
w1

= σ̂2
w2

= · · · , σ̂2
wM

= 1, we

get τ = λ and hence the plots of τ Vs. Q̄F and Q̄D are shown

for verification of derived results. If we assume different σ̂2
wi

at different CSUs, it is more appropriate to plot λ Vs. Q̄F and

Q̄D since in this scenario τ is different for all the CSUs but

the λ remains the same.

In Fig. 1a, we show the ROC plots for k out of M combining

rule using both theoretical analysis and MC simulations by

considering p = 2 and p = 3. To obtain these plots using

theoretical analysis we use Eq. (28) and Eq. (29). Overlapping

of the plots conforms the correctness of our analysis. Since

OR and AND combining rules are special cases of k out

of M combining rule, we avoid showing the plots for them.

Similar plots are shown for soft combining in Fig. 1b where

the expressions for Q̄F and Q̄D in section III-B for M = 2 are

used. Once again, the overlapping of the plots obtained using

both the methods validates the theoretical analysis.

We next show the plots of τ Vs. Q̄F and Q̄D. We start with

one of the hard decision combining, i.e., OR combining rule,

as discussed in section III-A1 and consider two CSUs having

L1 = 1 dB and L2 = 0.5 dB. Substitution in Eq. (16) leads

to the SNR wall as γ1 = 0.4646 or γ2 = 0.3676. In Fig.

1, we show the plot of τ Vs. Q̄F and Q̄D by considering

γ1 = 0.2 which is less than the SNR wall of 0.4646 and



γ2 = 0.3676. This corresponds to choosing one of the SNRs

as less than the corresponding SNR wall and the other one

as the value satisfying SNR wall condition. The vertical line

in Fig. 1 gives the threshold for which both the conditions in

Eq. (9) are satisfied. This means, if we set the threshold as

1.26 and choose a large value of N , we can achieve Q̄F = 0
and Q̄D = 1, i.e., unlimited reliability. This indicates that if

γ1 ≥ 0.4646 or γ2 ≥ 0.3676, it is possible to find a threshold

to achieve unlimited reliability.
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Fig. 2: Plots of τ Vs. Q̄F and Q̄D for OR combining rule.

Here, N = 106, M = 2, L1 = 1 dB, L2 = 0.5 dB, p = 2,

γ1 = 0.2 and γ2 = 0.3676.

The condition for SNR wall in the case of AND combining

rule is obtained using Eq. (25). Using the same L1 and L2 as

in the OR case, we obtain γ1 = 0.3277 and γ2 = 0.2308. In

this case, both these SNRs must be ≥ these values in order to

achieve the unlimited reliability. The plot for AND combining

rule is shown in Fig 2 using the SNR values equal to their SNR

walls. The vertical line in the plot shows that using τ = 1.12
one can achieve unlimited performance when N is very large.
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Fig. 3: Plots of τ Vs. Q̄F and Q̄D for AND combining rule.

Here, N = 106, M = 2, L1 = 1 dB, L2 = 0.5 dB, p = 2,

γ1 = 0.3277 and γ2 = 0.2308.

In Fig. 3, we demonstrate the SNR wall for k out of M

combining rule and consider three CSUs, i.e., M = 3, having

L1 = 1 dB, L2 = 0.7 dB and L3 = 0.5 dB with k = 2.

Using these parameters in Eq. (32), we compute the SNR walls

as γ1 = 0.3806, γ2 = 0.3238 and γ3 = 0.2836. In Fig. 3,

we show the plots by choosing γ1 = 0.2 which is below the

required value of SNR wall and γ2 = 0.3238 and γ3 = 0.2836
which are equal to their SNR walls. Since we have k = 2, and

2 out of 3 CSUs have the inputs with SNR ≥ their SNR walls,

an unlimited operation is obtained. We can see from Fig. 3 that

choosing a value of τ = 1.16 (threshold corresponding to the

vertical line) gives the unlimited reliability, i.e., choosing this

threshold value with two of the three SNRs ≥ their SNR walls

gives us Q̄F = 0 and Q̄D = 1.
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Fig. 4: Plots of τ Vs. Q̄F and Q̄D for k out of M combining

rule. Here, N = 106, M = 3, L1 = 1 dB, L2 = 0.7 dB,

L3 = 0.5 dB, p = 2, γ1 = 0.2, γ2 = 0.3238, and γ3 = 0.2836.
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Fig. 5: Plots of τ Vs. Q̄F and Q̄D for soft combining. Here,

N = 106, M = 2, L1 = 1 dB, L2 = 0.5 dB, p = 2, γ1 = 0.3
and γ2 = 0.3954.

As done for the hard decision combining, in Fig. 4, we show

plots to validate the SNR wall expressions when soft decision

combining is used. Once again we consider M = 2 and same

uncertainties as used in OR combining rule. The conditions

on γ1 and γ2 can be obtained by substituting these values in

Eq. (44) which gives us SNR wall as γ1 + γ2 = 0.6954. It

shows that in order to get the unlimited reliability, we require

the combined SNR at two CSUs to be ≥ 0.6954. In Fig. 4,

we choose γ1 = 0.3 and γ2 = 0.3954, thus satisfying the

SNR wall condition. We see that setting τ = 1.2 gives us

the unlimited performance which is demonstrated by a vertical

line at τ = 1.2. This shows that even if the SNR is low at one

SU and the other has sufficiently high SNR, we still get the

unlimitedly reliable sensing.
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Fig. 6: Plot of τ Vs. Q̄F and Q̄D for soft combining. Here,

N = 106, M = 2, L1 = 1 dB, L2 = 0.5 dB, p = 3, γ1 = 0.3
and γ2 = 0.3954.

In Fig. 5, we demonstrate that the SNR wall is independent

of the value of p when we use soft combining. Here, we

choose p = 3 instead of p = 2 and the other parameters

are kept the same as in Fig. 4. The vertical line at τ = 1.72
shows that setting the threshold at 1.72 and taking a large N

gives us the unlimited performance. This clarifies that the SNR

wall is independent of the value of p, since we get unlimited

performance by using the same SNR values as used when p = 2
in Fig. 4. We would like to mention here that due to the page

limitations, we have included only the interesting results for

each case. Other special cases can also be validated using the

similar procedure.

V. CONCLUSION

In this work, we study cooperative spectrum sensing when

all the CSUs employ generalized energy detector under noise

uncertainty. We derive the SNR wall for hard as well as soft

decision combining. For hard combining, we consider all three

possible cases, i.e., OR, AND and k out of M . For soft combin-

ing, we consider equal gain combining and derive the SNR wall

for the same. We also validate all our theoretical analysis with

Monte Carlo simulations. Our future research work involves

analysis of SNR wall for cooperative spectrum sensing when

the cooperating secondary users experience fading.
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