
Managing Large-Scale Transient Data in IoT
Systems

Nanjangud C. Narendra
Ericsson Research Bangalore, Bangalore, India

nanjangud.narendra@ericsson.com

Sambit Nayak
Ericsson Research, Bangalore, India

sambit.nayak@ericsson.com

Anshu Shukla
Ericsson Research, Bangalore, India

anshu.shukla@ericsson.com

Abstract—
The rise of Internet of Things (IoT) has brought about the need

to manage the voluminous amount of data that flows through
IoT systems. In order to achieve scalability, distributed cloud
technology is used for designing and implementing large-scale
IoT systems. Current work on managing data in such systems
has mostly focused on persistent data, i.e., data that is stored even
after the system has finished its execution. However, very little
work has focused on how to manage the transient (non-persistent)
data that is streamed through the system and which does not
outlive the system execution. This transient data is crucial since
it is typically processed to generate summarized insights during
system execution, and some of it may need to be stored after
system execution as per users needs. Currently this data is either
purged after analysis or is fully stored for historical purposes.

To that end, in this position paper, we present our thoughts
on managing transient data in IoT systems. By managing, we
mean the process of generating useful value from this data for
users. We therefore provide a precise definition of how data
can be characterized as transient. We then use this definition
to suggest approaches for facilitating placement and processing
of this data closer to related data and/or sources of computation
for improving execution efficiency. We also show how these
approaches can be made dynamic, so as to accommodate users’
changing needs in real-time.

I. INTRODUCTION AND RESEARCH CHALLENGES

The world is witnessing an exponential growth in the
number of devices comprising sensors, actuators and data
processors, resulting in the so-called Internet of Things (IoT)
phenomenon. It is estimated that by 2020 there will be in
excess of 50 billion devices all connected to the Internet.
Such a proliferation of devices has the potential to generate
enormous amounts of data, resulting in a classic Big Data
problem, viz., the need to extract, process and analyze this
data. In addition, most of this data is transient; in other words,
it is usually generated at high speeds by sensors and other
devices, and its usefulness reduces rather rapidly with time.

Consider, for example, an offshore oil platform (see
https://www.automationworld.com/oil-and-gas-edge). The sen-
sors within it typically generate 1-2 TB of data. Given its
relatively remote geographic location, it would take dedicated
satellite links to upload that data onto the cloud, which is
infeasible given the relatively low speed of satellite uploads.
It is estimated it would take several days just to upload one
day of data. Since all this data needs to be analyzed, it is
essential that the refinery be equipped with appropriate tools

close to the edge so that most of the data can be analyzed,
and decisions taken about which data to retain & transmit, in
real-time. In addition, latency is also an issue, since data that
is not used immediately gets lost, and that degrades the quality
of the overall analysis conducted on the data. Such a scenario
calls for a locally designed and installed IoT network within
the oil platform, that is able to quickly process this data and
send only a subset of the data to the remote cloud for storage
& further processing.

Another interesting example is in transportation systems in
smart cities [1], in particular, Vehicular Ad-Hoc Networks
(VANET). Such networks generate huge amounts of data
(several GB per mile) which needs a well-designed network of
intermediate edge servers and data aggregators in order to be
able to process and derive value from this data. Also, unlike
in the case of the oil platform, such networks would need to
be dynamically modified in response to changing vehicular
traffic and other road conditions. Some applications here are
traffic light management and vehicular search (searching for a
suspect driving a vehicle with the help of dashboard cameras
mounted on nearby vehicles).

These examples therefore raise a number of research ques-
tions that need to be addressed, of which we list a few:

1) How to define which data is transient, i.e., which data
needs to be discarded after analysis?

2) How to design the IoT network and its intermediate
transient data storage and analysis servers on the edge
so that the expected volume of data can be handled?

3) How to optimally place transient data throughout the IoT
network so that the overall latency of data transmission
and analysis is minimized?

4) How to ensure that the data placement strategy is dy-
namic; as a corollary, how to minimize the time taken to
migrate data in case of this dynamism?

5) How to determine, on the fly, that subset of data in an
intermediate data server, that needs to be sent to a central
cloud server for storage? This could depend on its relation
to other data sources in other servers throughout the IoT
network.

6) How to use provenance to determine which data to be
sent to the central cloud server? Provenance, i.e., history
of past usage, can, in addition to the actual nature of the
data itself, dictate which data needs to be stored in the
central cloud server.

ar
X

iv
:1

80
3.

09
10

2v
1 

 [
cs

.D
C

] 
 2

4 
M

ar
 2

01
8



II. OUR PROPOSED APPROACH

Our proposed system for transient data management is as
depicted in Fig. 1, and comprises the following components:

• Transient Data Characterization is responsible for de-
ducing which data sets can be categorized as transient
(though not explicitly marked so by the user) and their
associated storage characteristics

• Resource Estimator is responsible for estimating storage
requirements of the transient data sets involved in a
data pipeline/flow and the compute requirements of the
involved processing units

• Resource Planner performs matching of the estimated
storage and compute resource requirements with the
available capabilities at the various distributed locations

• Data Manager performs background actions of deducing
associations between data sets, tracking data provenance,
and deriving possible optimizations such as temporary
data migration or transformation for a data set

• The system maintains a registry of available storage and
compute capabilities at the edge (constrained or more-
capable), fog and cloud systems/nodes.

• The user can author rules or policies in a Domain-Specific
Language (DSL) provided by the system to describe a
high-level data processing and flow goal. The system
parses such higher-level goals to essentially derive a
description of the data sets involved and any processing
and flow pipeline elements. The user can also directly
categorize certain data sets as “transient” in the system,
or the system can deduce which data sets are transient
from the goals themselves. Characterization of transient
data involves identifying its characteristics like generation
source(s), validity period, estimated storage volume, etc.

• Once such characterization of transient data is done,
the system performs matching of available storage ca-
pabilities at the known/registered systems/nodes with the
required estimated capability for the transient data sets,
and thus allocates such storage as close to the data
generation source as possible.

• The system performs similar estimation and matching
for the compute requirements of the data processing/flow
pipeline units.

• The system registers metadata information about the
transient data sets into the metadata platform.

• The system formulates the data flow as a Direct Acyclic
Graph (DAG) model comprising of computation and
storage units, based on the identified data processing
elements and data sets involved. And then the system
deploys the DAG units as per the model.

• The system runs background actions to:
– monitor the DAG units and the systems/locations they

are deployed on to perform run-time estimation of any
changes in required storage and compute resources,
match them dynamically with available storage and
compute, and do necessary re-deployment of the up-
dated DAG

– analyze provenance of and associations between data
sets, and their historical access patterns and thereby
perform data management actions (migration, transfor-
mation, retention, etc.) as necessary

We now describe the primary facets of the overall system
described above, with the individual facets and their features
described in detail with illustrative examples:

• Characterization as Transient Data: “Transient data”
refers to data that is not primarily intended for
long-duration storage, rather certain kinds of process-
ing/transformations are done on such data to derive
resultant data that is useful to the user or system, and
the resultant data in turn is stored or archived as per
requirements. Such categorization of data as “transient”
can be performed based on direct user actions and/or
policies set by the user. Alternatively, the system itself
deduces that certain types of data are “transient” in nature
- either learning from past record of explicit marking or
on its own. An example would be temperature readings
in a building, of which only summarized data would be
subject to analysis by earlier users.

• Provenance-based intelligent data management: Use of
a “metadata” platform [2] by the system will facilitate
intelligent decisions and platform-level data management
actions on such data by the system. Below we describe
certain kinds of intelligent actions. For example, the
system may maintain associations between data sets to
build knowledge of related data; or, it can store and
process transient data as close to the point of generation
as possible; or it can analyze historical data set access
patterns to perform any possible data management actions
in the background for optimization purposes.
Such placement of data and computation is also dy-
namically adjusted at run-time based on the available
capabilities (which can change over time with or without
configuration changes), policies & quality parameters
(configuration changes by user). That means the sys-
tem performs on-the-fly migration of transient data sets
and computation logic among the possible placement
locations. Such migration is based on a set of decision
criteria such as data transfer and storage costs, user-
defined policies/rules, quality parameters such as overall
latency and capacity of Virtual Machines, etc.

• Rule-based Domain Specific Language (DSL) for Config-
uration: Policies/rules authored by the user will be in a
high-level domain-specific language (DSL) that states the
goals, rather than explicitly stating the technical specifics
of data storage and processing. The system will deduce
the optimal storage and computation requirements for a
data flow described in such a goal, and match them with
available capabilities while attempting to optimize costs.
For example, a higher level goal in DSL would state
that “collect temperature data throughout a building every
30 seconds, send a notification to all hooters/signals if
temperature crosses a threshold T, and store the resultant



Fig. 1. System Architecture

summarized metrics (average over every 15 minutes) and
alarms data only to a target system every 24 hours for
further analysis”. In this case, the system will: identify
that the sensor readings accumulated over a 30-second
period is ”‘transient data” and that the averages and
alarms/events data is also “transient”; perform estimation
of the volume of transient data over the 15-minute win-
dow, and match that with the available storage/compute
capability at the relevant edge gateway or edge/cloud
server; and perform estimation of the computation re-
quirements (pull/fetch from sensor or pub/sub system,
summary/average and event/alarm generation, write to
storage, push to target system) and match such require-
ments with computation capabilities at the edge gate-
way and/or edge/cloud server closest to the temperature
sensors/devices in the building deployment; based on
these estimations, deplys the data flow processing units
accordingly.

III. RELATED WORK

Data Modeling: The citation [3] presents spatio-temporal sen-
sor graphs, a data model for representing sensor data. Its key
usefulness is a memory-efficient model for representing fast-
changing sensor data, that also supports adequate support for
knowledge discovery from the model. The model also enables
the detection of so-called “hot spots”, which are topological
changes occurring in the graph, and are generated by changes
in values emitted by sensors. The spatio-temporal sensor graph
is therefore a useful tool for representing changes in sensor
values over time, and is complementary to our work.
Data Processing: The citation [4] presents an architecture for
a data collection system for IoT based applications. That paper
also presents an implementation and detailed experimental
results to evaluate their architecture. A similar data collection
& storage architecture, specific to smart cities, is presented
in [5]. It provides a high abstraction layer for the description
of both sensing infrastructures and sensed data, which can be
exported as “things” to the internet.



The CityPulse project (see http://www.ict-citypulse.eu/) fo-
cuses on providing large-scale stream processing solutions
to interlink data from Internet of Things and relevant social
networks and to extract real-time information for the sustain-
able and smart city applications. The project supports the
integration of dynamic data sources and context-dependent
on-demand adaptations of processing chains during run-time.
We view CityPulse as complementary to our work, since our
contextual data filtering approach would be relevant to any
system that needs to process streaming data from sensors.

A recent trend in cloud computing has been
Fog Computing [6] and Edge Computing (see
http://vis.pnnl.gov/pdf/fliers/EdgeComputing.pdf). These
proposals focus on the crucial issue of voluminous data
generated by sensors, and which need to be processed by
cloud data centers. Arguing that centralized cloud data centers
would be overwhelmed by the volume of this data, these
proposals call for moving computation and data analytics as
much towards the edge devices as possible.
Data Storage: A context management architecture for IoT
has also been presented in [7]. One key feature of [7] is a
multi-tenant storage & representation model that provides data
isolation for multiple users. Another key feature is scalability,
which is achieved via a combination of distributed deployment
with horizontal scalability, and shared resources through mul-
titenancy. We will be investigating the multitenancy approach
of [7] for our future work.

On a related note, the citation [8] presents an approach
for scalable semantic-aware storage of context data. The key
premise of that paper is that, given the extreme heterogeneity
of data sources in IoT-based systems, it would be more
efficient to deal with this diversity via context-aware storage.
To that end, that paper discusses the key requirements for con-
text storage systems, and discusses two context organization
models. Simulation of these models on smart city data is also
presented in [8].

In an earlier paper [9], we presented a decentralized cloud-
based solution for storage of IoT data, using Cloud and mini-
Clouds. The key features of our paper are the proposal to
use an object storage product such as Ceph; algorithms for
optimal mini-Cloud placement in an IoT environment; as well
as algorithms for optimal migration of data among the mini-
Clouds to address storage capacity issues while minimizing
access latency. In [10] we further explored this topic by
investigating optimal data replication strategies in distributed
IoT cloud storage. Our solution assumes the existence of
multiple distributed cloud data centers, called mini-Clouds,
among which data can be replicated. We model our problem
comprehensively based on various parameters such as effective
bandwidth of the IoT network, available number and size of
data items at each mini-Cloud, and we present our problem as
a collection of various sub-problems based on subsets of these
parameters. We prove that the exact solution to the problem is
intractable, and we present a number of heuristic strategies to
solve it. Our results show that the performance of any heuristic
is bounded by the read and write latency of mini-Clouds. We

will be investigating incorporation of the techniques from [9],
[10] into our future work on transient data management.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the crucial issue of
managing transient data in IoT systems. While much work
has gone into data management in IoT in general, we show
that a precise characterization of transience of data in such
systems is currently lacking. To that end, we have provided
in this paper a precise definition. Based on this definition,
we proposed approaches by which this transient data can be
placed & processed for deriving useful value for users of this
data.

Future work will focus on implementing and testing our
approaches on specifically designed IoT test beds in various
application domains such as smart grid, building automation
and transportation.

ACKNOWLEDGMENTS

The authors wish to thank their colleagues at Ericsson
Research Bangalore for their feedback.

REFERENCES

[1] N. K. Giang, V. C. Leung, and R. Lea, “On developing smart transporta-
tion applications in fog computing paradigm,” in Proceedings of the 6th
ACM Symposium on Development and Analysis of Intelligent Vehicular
Networks and Applications, ser. DIVANet ’16. New York, NY, USA:
ACM, 2016, pp. 91–98.

[2] J. M. Hellerstein, V. Sreekanti, J. E. Gonzalez, J. Dalton, A. Dey, S. Nag,
K. Ramachandran, S. Arora, A. Bhattacharyya, S. Das et al., “Ground:
A data context service.” in CIDR, 2017.

[3] B. George, J. M. Kang, and S. Shekhar, “Spatio-temporal sensor graphs
(stsg): A data model for the discovery of spatio-temporal patterns,” Intell.
Data Anal., vol. 13, no. 3, pp. 457–475, Aug. 2009.

[4] C. Cecchinel, M. Jimenez, S. Mosser, and M. Riveill, “An architecture to
support the collection of big data in the internet of things,” pp. 442–449,
2014.

[5] M. Fazio, A. Puliafito, and M. Villari, “Iot4s: a new architecture to
exploit sensing capabilities in smart cities,” International Journal of Web
and Grid Services, vol. 10, no. 2, pp. 114–138, 2014.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[7] D. Preuveneers and Y. Berbers, “Samurai: A streaming multi-tenant
context-management architecture for intelligent and scalable internet of
things applications,” pp. 226–233, June 2014.

[8] M. Antunes, D. Gomes, and R. Aguiar, “Scalable semantic aware context
storage,” pp. 152–158, Aug 2014.

[9] N. C. Narendra, K. Koorapati, and V. Ujja, “Towards cloud-based decen-
tralized storage for internet of things data,” in 2015 IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM), Nov
2015, pp. 160–168.

[10] A. Kumar, N. C. Narendra, and U. Bellur, “Uploading and replicating
internet of things (iot) data on distributed cloud storage,” in 2016
IEEE 9th International Conference on Cloud Computing (CLOUD), June
2016, pp. 670–677.

http://www.ict-citypulse.eu/
http://vis.pnnl.gov/pdf/fliers/EdgeComputing.pdf

	I Introduction and Research Challenges
	II Our Proposed Approach
	III Related Work
	IV Conclusions and Future Work
	References

