
ar
X

iv
:1

91
1.

07
35

1v
1

 [
cs

.N
I]

 1
7

N
ov

 2
01

9

Caching Techniques to Improve Latency in

Serverless Architectures

Bishakh Chandra Ghosh§, Sourav Kanti Addya§, Nishant Baranwal Somy, Shubha Brata Nath,

Sandip Chakraborty, and Soumya K Ghosh

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur, India

Email: {ghoshbishakh, kanti.sourav, somy1997, nath.shubha}@gmail.com, {sandipc, skg}@cse.iitkgp.ac.in

Abstract—Serverless computing has gained a significant trac-
tion in recent times because of its simplicity of development, de-
ployment and fine-grained billing. However, while implementing
complex services comprising databases, file stores, or more than
one serverless function, the performance in terms of latency of
serving requests often degrades severely. In this work, we analyze
different serverless architectures with AWS Lambda services and
compare their performance in terms of latency with a traditional
virtual machine (VM) based approach. We observe that database
access latency in serverless architecture is almost 14 times than
that in VM based setup. Further, we introduce some caching
strategies which can improve the response time significantly, and
compare their performance.

Index Terms—FaaS, Serverless Computing, Cloud Computing,
Response Time

I. INTRODUCTION

In the current age of web services, the development and

deployment of web applications in the cloud is convenient

than ever before with the advent of ‘serverless computing’ [1].

The application developers and software service providers do

not need to even estimate their server specifications during

the service level agreement negotiation. Moreover, they can

safely leave the worries of scaling their service to the cloud

service platforms. All these are made possible by the concept

of serverless application or Function as a Service (FaaS)

[2]. Popular cloud providers such as Amazon, Microsoft,

and Google already introduced their serverless solutions as

AWS Lambda1, Azure Function2, and Google Cloud Function3

respectively. Apart from these big players, some new solutions

have also started providing the FaaS service [3].

Serverless platform lets application developers to focus on

the core product and business logic instead of spending time

on responsibilities like setting up a server, installing and

updating operating system and runtime environmets, managing

access control policies, provisioning, right-sizing, scaling, and

availability [4]. By building the application on a serverless

platform using FaaS, the platform manages these responsibili-

ties for the developer. Thus, serverless functions together with

complementary services like managed database services, file

storage services, key-value stores, API gateways, etc., provide

§ Equal contribution
1https://aws.amazon.com/lambda/
2https://azure.microsoft.com/en-in/solutions/serverless/
3https://cloud.google.com/functions/

the following benefits over traditional cloud virtual machine

(VM) based setups – i) No server management, ii) Flexible

scaling, iii) High availability, iv) No idle capacity, and v) Fine-

grained billing.

Presently, maximum adopters of this technology are star-

tups, who seek to quickly develop their services and scale

their resources efficiently. Serverless architecture is also a

perfect candidate for a wide range of applications, ranging

from a simple database application to complex data analytics

pipelines [5]. However, everything comes at a price. Our

analysis in this work shows that by using serverless computing

although we are gaining in terms of ease of use, scalability

and pricing, there is a significant trade-off with the service

quality, especially in terms of response time.

In the literature, a few recent works have significantly

explored serverless computing from different perspectives. In

[6], a new serverless computing with better resource efficiency

and more elasticity than the existing serverless platforms is

discussed. To achieve these properties, authors have introduced

a model SAND, based on an hierarchical message bus and

application level sandboxing. Here, the design and imple-

mentation of SAND, as well as experience in building and

deploying serverless applications on it are presented. In [7], the

authors have analyzed linux container primitives, identifying

scalability bottlenecks related to storage and network isolation

where there is a container system optimized for serverless

workloads. Based on these findings, they have implemented

SOCK, a container system optimized for serverless workloads

model. They have identified container initialization and pack-

age dependencies as the common causes of slow Lambda

startup. In [8], authors have advocated six design patterns

using serverless concept to develop cloud security service.

They explain the pros and represent the applications for each

design. They have also introduced a threat intelligence plat-

form which stores logs from different sources, alerts malicious

events, initiate possible action for those activities.

Though advantageous in focusing on the user’s business

logic rather than the platform management, serverless archi-

tectures have latency related issues as it is stateless and need

to communicate with other serverless functions and other

components such as data stores. In this paper, we analyze

serverless architectures concerning inter-component latency

and overall response time of serving requests. First, we take

http://arxiv.org/abs/1911.07351v1
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-in/solutions/serverless/
https://cloud.google.com/functions/

the simplest use case of a database application and compare

the performance with the traditional VM based approach.

We observe that compared to VM based systems, serverless

architecture suffers from very high latency for database access.

Next, we analyze a more complex data analytics pipeline

involving multiple functions and observe how the scaling

up of the architecture impacts the overall latency of the

service. Finally, we propose an in-memory internal caching

strategy and compare it with AWS ElastiCache4. From the

comparison, we observe that our proposed system improves

the response time significantly.

II. LATENCY ANALYSIS

In order to understand the latency of serverless architectures

in AWS Lambda services, we consider two practical use

cases: (1) Simple database application and (2) Complex data

analytics pipeline. We compare the latency of the serverless

system with a traditional cloud VM based setup and see how

this latency is affected as the system scales to more complex

architectures.

Fig. 1. Serverless architecture for simple DB application

Fig. 2. VM based setup using Flask and MongoDB on AWS EC2

Fig. 3. Serverless architecture for data analytics pipeline application

A. Methodology

(1) Simple database application: This involves only one

Lambda function and one database. As the serverless functions

are stateless and unlike VM, we cannot save any data on

it, we use Amazon DynamoDB5, which is a key-value and

document database. In order to access the service, we connect

4https://aws.amazon.com/elasticache/
5https://aws.amazon.com/dynamodb/

the Lambda function to an API gateway through which it

can accept HTTP requests. The architecture is depicted in

Figure 1. We implement a simple application in a single

Lambda function using Node.js to store and retrieve account

details of users from the database. In order to compare the

performance of this setup relative to the traditional cloud VM

based approach, we implement a web service with the same

functionality in a VM on Amazon EC26 service. For this

setup we use Python Flask7 web framework along with

MongoDB8 as a database (Figure 2). The Flask application is

served through Nginx9 web server and uWSGI10 application

server. All these components run on the same VM having one

vCPU and 1 GB of memory. We deploy both the serverless

and server based setups in five data centers in different regions

namely, Mumbai, London, California, Canada central, and

Singapore. In order to make a fair comparison, to eliminate

the factor of network quality delay from the end-user, we

only consider the time taken to process the user’s request by

the serverless setup and the traditional VM based setup. For

serverless setup, we use CloudWatch11 logs, and for server

based setup, we use Nginx logs to get the response time of

the service.

(2) Complex data analytics pipeline: We take into ac-

count multiple Lambda functions which are common for data

analytics pipelines, data mining workflows, and any other

complex applications involving multiple steps and processes.

Any such workflow can be depicted as a graph (Figure 3),

where the vertices are serverless components such as logic

units like Lambda functions, databases like DynamoDB, file

stores like Amazon S3, key-value stores such as Redis,

etc. There exists an edge between two such vertices if one

component calls the other component synchronously, and waits

for its response. In other words, there is an edge between two

components if one component depends on another component.

Thus, it is expected that the response time of the service will be

equal to the sum of the computation time of the components in

the longest path of the graph which we call the critical path.

However, since the functions and components are managed

by the provider, here AWS, we do not have any control of

their deployment except ensuring that they are deployed in

the same region. As a result, the Lambda functions, databases,

and other services are most likely deployed in different hosts

and must communicate through the network which incurs

some delay. This delay between each component ultimately

has a severe cascading effect on the overall response time of

the application. We analyze the overall latency with different

workflows of varying critical path lengths involving a series

of Lambda functions terminating at DynamoDB.

6https://aws.amazon.com/ec2/
7http://flask.palletsprojects.com
8https://www.mongodb.com/
9http://nginx.org/
10https://uwsgi-docs.readthedocs.io/en/latest/
11https://aws.amazon.com/cloudwatch/

Mumbai London California Canada
central

Singapore
0

20

40

60

80
D
at
ab
as
e
La
te
nc
y
(m

s)

Lambda - DynamoDB
EC2 MongoDB

Fig. 4. Database access latency in serverless and VM based architecture

1 2 3 4 5
Length of critical path

0

100

200

300

400

500

600

Re
sp

on
se

 T
im

e
(m

s)

Fig. 5. Latency with increasing critical path length

B. Observations

For the first scenario, the simple database application in-

volving only a single database read or write operation per

request, we measure the response time of the system per user

request. We deploy both the serverless setup and the VM

based setup in five regions. We observe that the response time

for the serverless architecture is significantly higher than the

VM based setup. Our analysis shows that the reason of this

higher latency is not because of higher processing time by

the Lambda function but mostly due to the latency of the

database access. In Figure 4, we compare the mean database

access times by the Lambda function and the Flask web

application to the DyanamoDB and MongoDB respectively,

in five regions. Clearly, in all regions the access time of the

database in serverless setup is significantly higher than the VM

based setup. The most probable reason behind this is since

in serverless the database and the Lambda function are not

necessarily hosted on the same physical host, the DynamoDB

access involves network latency, in contrast to MongoDB

which is hosted in the same VM. Overall, the database access

time in serverless architecture is nearly 14 times of that in

traditional VM based architecture if the database is hosted in

the same VM.

In the second scenario, we compare the latency of the com-

plex serverless architectures with varying critical path lengths.

We take the smallest such setup is of length 1 with only one

Lambda function and a database (DynamoDB) just like the

first case. For the architecture of critical path length 2, the

longest path involves two Lambda functions and one database

at the end. Similarly, we deploy such setups of critical paths of

length 3, 4, and 5. Each of the Lambda function has negligible

computation and their individual response times are less than

5ms. This allows us to monitor only the overhead due to

the chaining of serverless components through network calls.

Figure 5 shows the box and whisker plot of the distribution of

response time for 100 user requests. We can observe that the

response time of the system increases steadily with increasing

critical path length. The mean latency of the system increases

by 7.6 times from 50ms in case of length 1 to 430ms for

length 5. Thus, as the serverless architectures scale up, it incurs

more and more latency overhead.

III. SERVERLESS CACHING

In our experiments, we observe that difference in latencies

when using traditional approaches and while using serverless

architecture is huge even when the cold starts are ignored. In

both of the scenarios, the overall latency is a result of the

network delay in between the components of the serverless

architecture. Thus, in order to work around this latency and

improve the overall response time of the system, we can

introduce a cache so that recomputing/refetching previously

computed results can be avoided. Hence, we propose two

different kinds of caching techniques and through our exper-

iments, we try to determine how much improvement we can

gain with caching.

Unlike in traditional cloud VMs, in Lambda functions,

there is no provision to install an in-memory cache service

such as Memcache, Redis etc. within the function. Instead,

AWS provides separate external cache services such as Redis

and Memcache through Amazon ElastiCache. Although

using it will avoid computation/fetching time, these external

caches are not hosted in the same container or host just

like the other components. As a result, they also have the

overhead of network calls. In order to reduce the latency

further by avoiding any network calls, we propose an in-

memory internal cache by leveraging the Lambda container’s

memory persistency across multiple consecutive requests in

short intervals and Javascript’s asynchronous function calls for

cache updates.

Fig. 6. Redis as a cache

Internal cache: Here, by ‘internal’, we mean internal to the

runtime executing the Lambda function. AWS Lambda shares

Fig. 7. In-memory cache

global variables in between different function calls of the

same Lambda function. But, this feature comes with its own

constraints. The global variables are shared between only those

function calls which are sharing a session. A session starts

with a cold start when the first request arrives and the function

container is deployed. The subsequent requests are served by

the same container. If there is a considerable time gap between

the requests, the function container may be suspended and the

session is closed. At this point, all the data stored in the global

variables is also lost. Therefore, if we use the memory of

the function container for caching, whenever the frequency of

requests drops, the container may be suspended which results

in invalidation of the whole cache. So, we can say that in order

to keep such a cache warm, the frequency of requests should

not drop below a certain threshold.

We implement the in-memory cache in Node.js runtime

as a global object variable. For read calls, we first check if the

result of the request is already available in the memory. If it is

available (cache hit), then the result is immediately returned as

the response. In case of a miss, the result is computed/fetched

and then saved in the cache before returning the response.

Thus, if the cache is warm, the response time would be very

low. But, if the cache is cold, the response time would be more

as the time is spent in fetching the data from the database or

other modules.

For write calls, in order to improve the latency, instead of

synchronously updating the database, the function delegates

the actual writing to another Lambda function asynchronously

and spends time only in doing any preprocessing of the

data to be written. This is implemented using Javascript’s

asynchronous function calls.

IV. EVALUATION

In order to compare the performance with different caching

techniques, we setup a simple database application involving

DynamoDB and a Lambda function. Along with that, we

implement Redis based cache of Amazon ElastiCache

(Figure 6) and also our proposed in-memory internal caching

(Figure 7). Figure 8 shows the distribution of the response

time for different caching techniques for 100 user requests.

We observe that using Redis cache improves the response

time as compared to fetching data directly from DynamoDB.

Moreover, our proposed in-memory cache further improves

the response time significantly. With a hit ratio of 0.9, the in-

memory internal cache reduces the response time by around

45ms. This is a significant improvement which is crucial for

latency-sensitive realtime applications.

D
yn

am
oD

B

M
em

or
y
M
is
s

Re
di
s
M
is
s

M
em

or
y
H
it

Re
di
s
H
it

M
em

or
y
w
it
h

0.
9
H
it
 R
at
io

Re
di
s
w
it
h

0.
9
H
it
 R
at
io

0

25

50

75

100

125

150

175

Re
sp
on

se
 t
im

e
(m

s)

Fig. 8. Comparison of response time using Redis cache, our proposed in-
memory cache, and without cache.

V. CONCLUSION

To rapidly develop and deploy complex services, serverless

is a good candidate. However, the latency incurred between the

different serverless components is an important issue, which

may lead to degraded quality of experience for any service.

In this work, we analyze different serverless architectures

with AWS Lambda services and compare their performance in

terms of latency with traditional VM based approach. Then, we

compare some caching strategies which significantly improve

the response time and ultimately the quality of experience

of the end-users. An immediate extension of this work is to

develop an in-memory caching system which remains warm in

between Lambda sessions and consistent in case of multiple

replicated function container instances.

REFERENCES

[1] G. Adzic and R. Chatley, “Serverless computing: Economic and ar-
chitectural impact,” in Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, ser. ESEC/FSE 2017. New York,
NY, USA: ACM, 2017, pp. 884–889.

[2] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the 2018 USENIX

Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX
Association, Jul. 2018, pp. 133–146.

[3] Selverless partners. [Online]. Available: https://serverless.com/partners/
[4] W. Lloyd, M. Vu, B. Zhang, O. David, and G. H. Leavesley, “Improving

application migration to serverless computing platforms: Latency mitiga-
tion with keep-alive workloads,” in Proceedings of the 2018 IEEE/ACM

International Conference on Utility and Cloud Computing Companion,

UCC Companion 2018, Zurich, Switzerland, December 17-20, 2018,
2018, pp. 195–200.

[5] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, A. Gokhale, and T. Dami-
ano, “Stratum: A serverless framework for the lifecycle management
of machine learning-based data analytics tasks,” in Proceedings of the

2019 USENIX Conference on Operational Machine Learning (OpML 19).
Santa Clara, CA: USENIX Association, May 2019, pp. 59–61.

[6] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards high-performance serverless computing,” in
Proceedings of the 2018 USENIX Annual Technical Conference (USENIX

ATC 18). Boston, MA: USENIX Association, Jul. 2018, pp. 923–935.
[7] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,

and R. Arpaci-Dusseau, “SOCK: Rapid task provisioning with serverless-
optimized containers,” in Proceedings of the 2018 USENIX Annual Tech-

nical Conference (USENIX ATC 18). Boston, MA: USENIX Association,
Jul. 2018, pp. 57–70.

[8] S. Hong, A. Srivastava, W. Shambrook, and T. Dumitras, “Go serverless:
Securing cloud via serverless design patterns,” in Proceedings of the 10th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18).

https://serverless.com/partners/

	I Introduction
	II Latency Analysis
	II-A Methodology
	II-B Observations

	III Serverless Caching
	IV Evaluation
	V Conclusion
	References

