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Abstract—Overlapped community detection in social networks
has become an important research area with the increasing
popularity and complexity of the networks. Most of the existing
solutions are either centralized or parallel algorithms, which are
computationally intensive - require complete knowledge of the
entire networks. But it isn’t easy to collect entire network data
because the size of the actual networks may be prohibitively
large. This may be a result of either privacy concerns (users of
a social network may be unwilling to reveal their social links)
or technological impediments (implementation of an efficient
web crawler). Performing in-network computation solves both
problems utilizing the computational capability of the individual
nodes of the network. Simultaneously, nodes communicate and
share data with their neighbours via message passing, which
may go a long way toward mitigating individual nodes’ privacy
concerns in the network.

All the aforementioned concerns motivated us to design a
decentralized or distributed technique to detect overlapped
communities in a large-scale network. It is desirable because
this technique does not offer a single point of failure, and the
system as a whole can continue to function even when many
of the nodes fail. To overcome the disadvantages of the existing
solutions, in this paper, we address the overlapped community de-
tection problem for large-scale networks. We present an efficient
distributed algorithm, named DOCD, to identify the overlapped
communities in the network. The efficiency of DOCD algorithm is
verified with extensive simulation study on both synthetic and real
networks data such as, Dolphin, Zachary karate club,
Football club, and Facebook ego networks. We show that
DOCD algorithm is capable of keeping the asymptotically same
results with the existing classical centralized algorithms [1]-[5]
in terms of community modularity and the number of identified
communities. The DOCD algorithm can also efficiently identify
the overlapped nodes and overlapped communities with a small
number of rounds of communication and computation.

Index Terms—OQverlapped Community, Community Detection,
Social Networks, Large-Scale Networks, Distributed Algorithms

I. INTRODUCTION

Large-scale networks, such as social networks (e.g., Face-
book, Twitter, Linkedin, ResearchGate, Instagram, etc.), con-
sist of a large number of connected individuals or users;
typically, the number of nodes is millions, and the number
of links between the users is billions in such a social network.
The size of such networks is growing with an increasing
number of nodes at an enormous rate day by day. Thus, in
such networks, the demand for analysis and characterization is
increasing rapidly. This analysis provides an immense knowl-
edge for understanding the features of the network entities
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and other related characteristics. For instance, the connectivity
between users in the social network represents their friendship
relation or neighbourhood relation or both. They can belong to
a group, but analysis can establish that those group of people
is from the same school or college or maybe from the same
religion, which in turn refers to a community. To identify such
communities is one of the techniques by which we can analyze
and characterize the networks. Mathematically, a network is
considered a graph where nodes represent vertices, and links
between nodes represent edges of the graph. Community de-
tection in networks is a process of partitioning the underlying
network graph into subgraphs (i.e., communities), which are
internally densely and externally sparsely connected. This is
a fundamental analysis technique that confers the modular
composition of a network.

Community detection has been used in a broad range of
applications, such as to find research communities in DBLP
databases, to identify functional groups of a particular virus
strains for vaccine development, and to classify content on
social media sites. Prior knowledge of communities helps to
understand the processes like rumor spreading or epidemic
spreading in a network. For example, there is a very high
chance of spreading some infectious diseases very fast within a
community where community members are physically staying
together or very near to each other (e.g., housing complex,
town, city, village, etc.) or sharing common places (e.g.,
market, shopping mall, school, college, rail station, etc.).
Therefore, appropriate preventive measures can be applied
before spreading, or essential help can be provided to the
affected communities. Similarly, communities allow us to
create a large-scale map of a network, making it easier to
study and analyze.

Moreover, in social networks, a person belongs to more
than one social groups such as family, friends, colleagues,
where each group can be treated as an individual community.
Thus, a person can simultaneously associate with as many
communities as he wishes. Therefore, if a node belongs to
more than one community in the network, it is an overlapped
node. When those overlapped nodes formed a community,
which is termed as overlapped community. Such overlapped
communities are frequently visible in social networks like
Facebook, Twitter, etc. Finding overlapped communities refers
to the overlapped community detection problem in networks.



Designing practical algorithms for overlapped community
detection in network graphs is an important and challeng-
ing problem. However, centralized or parallel algorithms are
computationally intensive and require complete knowledge of
the networks, which is not feasible for large-scale networks.
Therefore, an efficient, distributed algorithm to find overlapped
communities in large-scale networks is needed. This paper pro-
poses an efficient, distributed algorithm to identify overlapped
communities in large-scale networks using local information
and message passing.

Our Contributions: This paper studies distributed overlapped
community detection problem in large-scale networks and
makes the following contributions.

1) We propose a distributed algorithm (DOCD) that can
efficiently identify the overlapped communities in large-
scale networks. To the best of our knowledge, this is
the first distributed algorithm to identify an overlapped
community.

2) The number of nodes in the networks is not an input of
the algorithm. It is scalable and robust with respect to the
number of nodes in the networks.

3) The time and message complexities of the algorithm are
O(n?m) and O(D), respectively, where m, n, and D
are the number of nodes, edges, and diameter of the
underlying network graph.

4) We report on the performance of our algorithm through
simulation. The efficiency of the DOCD algorithm is
verified with extensive simulation study on both synthetic
and real networks data such as, Dolphin, Zachary
karate club, Football club, and Facebook
ego networks.

5) We show that the DOCD algorithm (with local infor-
mation) is capable of keeping the asymptotically same
results with the existing classical centralized algorithms
[1]-[5] (which need the information of entire networks)
in terms of community modularity, number of identified
communities, overlapped nodes, and communities.

The rest of the paper is organized as follows. Section
presents brief literature review. In Section we present the
preliminaries and formulate the problem. Section [[V| presents
the overlapped community detection algorithm. The detailed
analysis of the message and time complexity is presented
in Section [V] Section evaluates the performance of the
proposed method and finally, Section [VII} concludes the paper.

II. RELATED WORKS

Several community detection techniques are reported in the
literature, which is mostly centralized and parallel solutions.
The community modularity proposed by Girvan & Newman
[1] is the widely used [2], [6], [7] metric to measure con-
nectivity among community member, i.e., the structure of
a community in an underlying network graph. Community
merging between any two communities leads to the maximum
modularity gain, and this technique has been used in a CNM
algorithm [6]. The CNM algorithm is a hierarchical agglomera-
tion algorithm for detecting the community structure. Further,

the CNM algorithm has been used in [2], [8]]. Several other
measurement techniques are proposed [3]], [9]] to detect the
quality of the community structure. For instance, the paper
[9] presents an algorithm that detects disjoint communities
in a network using another community modularity metric
called WCC, which uses triangular structures in the community.
Ghoshal [3]] defines another modularity metric to show the
improvement of their algorithm compare to the technique
proposed in [[1], [|6]. The authors in [[10]] proposed an iterative
search algorithm for community detection that uses a com-
munity description model evaluates the quality of a partition,
where the partition is done based on external-link separation
among the communities and internal-link compactness within
communities.

Brandes et al. [11] proved that identifying communities
with maximum modularity is NP-hard, even for the restricted
version with a bound of two on the number of clusters,
i.e., communities, and established a lower bound on the
approximation factor. Therefore, heuristics are used in practice
to allow the processing of large inputs. However, even such
heuristics could take a very long time or run out of memory
on modern days’ computer. Hence, parallel or distributed
solutions are very much essential to reduce computation time.
An MPI based parallel heuristics for community detection
has been proposed in [7]]. They developed a parallel version
of the Louvain method [2] to reduce the time complexity.
However, their proposed parallel method requires repetitive
tasks such as graph coloring, meta node creation in each
iteration. The authors in [12] proposed parallel version of
the label propagation method [13]], Louvain method [2],
called as PLM. Next, they extended this PLM method to PLMR
method. Finally, the authors combined both the PLM and PLMR
algorithms to present a two-phase approach called as EPP. A
divisive spectral method has been presented in [[14]], where
the authors first used a sparsification operation followed by a
repeated bisection spectral algorithm to find the community
structures.

However, all the above works are based on finding the
disjoint communities. Another important direction of the iden-
tification of communities is whether the communities are over-
lapped community or not. This problem has been addressed
in [15]], and the authors proposed a centralized algorithm that
finds the overlapped communities. Furthermore, Said et al.
[16] used a genetic algorithm to find the overlapped commu-
nities in social and complex networks. The authors in [5],
proposed a two-step genetic algorithm to find the overlapped
communities. They first encountered the disjoint communities,
and from the disjoint communities, the overlapped commu-
nities have been identified using the community modularity
as the optimization function. Reihanian et al. [17] proposed
a generic framework to find the overlapping communities in
social networks, where paper focused on rating-based social
networks. The members within a community have the same
topics of interest. The strengths of the relationships between
the members are based on the rate of their viewpoints’ unity,
where the strengths of connections of intra-communities are



much more than those of inter-communities. All the solutions
have been proposed so far for addressing the community
detection problem in large-scale networks. However, many
of them are centralized or parallel with expensive proce-
dures either requires complete knowledge of the networks or
computationally intensive. Using local information, designing
practical distributed algorithms for community detection is an
important and challenging problem in large-scale networks.

III. PRELIMINARIES
A. Basic Definitions

Network graph: A network graph is denoted as G(V, E),
which shows interconnections between a set of entities V =
{v1,va,...,v,}. Each entity v; € V is represented by a node
or vertex. Connections between nodes are represented through
links or edges set E. Let n = |V| and m = |E| be the number
of vertices and number of edges in G, respectively. G(V, E)
is a simple undirected graph.
Community in a Graph G(V, E): We denote a set C =
{C4,Cs, ..., C} which consists of k¥ number of communities,
where each community C; € C, 1 < ¢ < k, consists of set
of nodes of V, ie., C; C V. The size of a community C;
is presented by |C;| = A, where C; = {v1,va,...,v5} and
V=CUCyU...UCy.

A node may belong to one or more communities. If a node
v belongs to at least two communities such as C; and Cj, i.e
v € C; N Cj then v is treated as an overlapped node.
Overlapped node: A node is said to be an overlapped node
if it belongs to at least two communities.
Overlapped community: A community is said to be an
overlapped community if it consists of at least one overlapped
node.
Cluster coefficient: The cluster coefficient [16] of a node v
is denoted as: CC, = = 5 5X’_‘1), where f is the total number
of links between neighbours and § is the total number of
neighbours of v.
Node Modularity (NM): The node modularity of a node v is
defined as:

(2 x p)

506 —1)’

where p is the ‘total number of links between neighbours
within its own community of v’ and ¢ is the total number
of neighbours of v.

Overlapped Node Modularity (ONM): The Overlapped
Node Modularity is defined as:

NM, = ey

(2 xu')
ONM, = 56 —1)’
where ' is the ‘total number of links between neighbours
belong to communities of overlapped node v’.

For example, let v be an overlapped node belongs to two
different communities C; and C;. Hence, all the links of its
neighbours that belong to C; and C; are only be considered
for computing ON M,, of v. The value of NM, and ON M,
is the same when v is not an overlapped node.

2)

Community Modularity: Community modularity measures
community structures. It quantifies how a node within a com-
munity is strongly connected with other nodes in the network.
We use this metric to measure the connectivity between nodes
and identifying communities. The community modularity of a

A
community C; € C' is defined as: CM¢, = M
Overall Community Modularity: The overall community

modularity of the set of communities C' is defined as: C Mg =
Z?=1 CMc;
= .

B. Distributed Computing Model

We consider a synchronized communication network which
consists of n nodes. Each node has a unique id of an O(log n)
bits. Initially, each node knows its own id and the ids of its
neighbours in the network. We use CONGEST model [18]],
[19] of distributed computing, wherein each communication
round, every node may send an O(log n)-bit message to each
of its neighbours. In this synchronous system, the computation
of every node proceeds in rounds. In each round, every node of
the network sends messages, and its neighbours receive these
messages in the same round.

We consider the distributed network model as a network
graph G = (V,E), where nodes represent processors (or
computing entities), and the edges represent communication
links among the processes. Nodes communicate through the
edges in synchronous rounds. At the beginning, each node
knows following additional information:

o I'(v): list of neighbours of a node v and adjacent edges
of each neighbour;

e v(v): a list of communities where neighbours of v
belongs to. Each entry in this list is represented by a 3-
tuple: {c_id, c_size, CM}, where c_id is the community
ID, c_size is the number of node in the community and
CM is the community modularity;

e join = True/False: if a node joins a community, it sets
join = True, otherwise False;

o head = True/False: if a node becomes community
head, it sets head = True, otherwise False;

o parent = True/False: if a node becomes parent, it sets
parent = True, otherwise False;

o CL(v): represents a list of communities where v belongs
to at the same time. Each entry in the list C'L(v)
is represented as a 4-tuple: {c_id,c_size,p_id,CM},
where c_id and c_size are defined above, p_id is parent
ID or NULL, and CM is the community modularity,
respectively.

o Z(v): aset of overlapped communities {27, Z, .. .,
identified by v.

Zs}

C. Problem Definition

Let G(V, E) be an undirected unweighted underlying net-
work graph, where V' is a set of vertices or nodes, and F is a
set of edges. Our target is to partition V' into {C1,Cs, ..., Ck}
which consists of &£ number of communities such that V' =
CiUCyU...UC.



The problem is to identify the overlapped communities Z =
{Z1,25,..., 24} such that a node v € Z; if v € Ny, C;
where v € V, t < sand I; C {1,2,...,k} with |[I] > 2.

IV. DOCD ALGORITHM

In this section we explain Distributed Overlapped Com-
munity Detection (DOCD) algorithm to find the overlapped
communities in a network graph G(V, E).

A. Outline of the DOCD algorithm

The DOCD algorithm executes in two phases: Phase-1I
(Community selection and formation) and Phase-II (Com-
munity reorganization). In the first step of Phase—-I, commu-
nity heads are selected, and each community head forms a new
community. In the next step, each non-community head selects
one or more communities and join them. This community
selection process continues until all the nodes join at least
one community. Phase—1I terminates after all nodes join their
respective communities. In Phase—-I1I, all non-community
heads join one or more new communities or leave from its
selected communities. Next, the community heads do the same
process to leave their community or join a new community.
In the case of joining a new community refers to the commu-
nity merging process. Finally, after the community merging
process, each node identifies the overlapped communities. A
flow diagram of the DOCD algorithm is illustrated in Fig.
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Fig. 1. Outline of the DOCD algorithm

A detailed description of the DOCD algorithm is given below.

B. Phase-I: Community Selection and Formation

In this phase, following messages are to be exchanged
between the nodes.
o CC_msg(CC,):

— Send: Node v sends this message to the neighbour
after computing the cluster coefficient CC,,.

— Receive: On receiving these messages from all
of its neighbour u, node v compares its C'C, with
ca,.

e Join_Com(v,c_id, p_id):

— Send: On joining a community a node v sends this
message with its community id c_id, and parent id
p_id.

— Receive: On receiving this message, node v up-
dates its y(v).

e Complete(v, NM,,c_size):

— Send: After all neighbours of v select their com-
munities, v sends this massage to its parent.

— Receive: On receiving this message, v checks its
~(v) to verify that all of its neighbours select their
communities or not.

The detail description of Phase-T is described below.

a) Community head selection: Each node v com-
putes cluster coefficient CC, using T'(v). It exchange
cc_msg(CC,) with its all neighbours. It finds the maximum
among all cluster coefficients received from its neighbours
(excluding its own) and stores in C'C),q,. If its own cluster
coefficient, CC,, > CC}, 4, then v elects itself as a community
head. In case of multiple maximum, id can be used to select the
community head. The community head v updates the following
information:

e The community  head  inserts a  4-tuple:
{c_id,c_size,p_id,CM} with c_id = v, c_size = 1,
p_id = NULL, and CM = CC, in its CL(v).

o Itsets head = True, parent = False and join = True.

Finally, v sends a Join_Com(v, c_id, p_id) message to its
neighbours. Each community head maintains a list of all nodes
belongs to its community.

b) Community selection by a node: On receiving
Join_Com(v,c_id,p_id) message, node u first includes
the 3-tuple: (c_id,—1,—1) in ~(u). If it receives multiple
Join_Com messages, then it selects the community which
consists of maximum number of its neighbours. u selects
multiple communities in case of a tie - having multiple
maximum neighbours. In this case, u becomes an overlapped
node and it will have more than one parents.

For each selected community, node u inserts an indi-
vidual entry of a 4-tuple: {c_id, c_size,p_id,CM} with
c_id = v, c_size = 1, p_id = v, and CM = CC, in
its CL(u). It sets head = False, parent = False and
join = True. Finally, it sends Join_Com(u,c_id,p_id)
message. When a node v (already joined a community) re-
ceives Join_Com(u, c_id, p_id) message from node u, then
node v checks whether it becomes a parent of u or not.
Node v checks the p_id value, if p_id == v then it updates
parent = True.

c¢) Termination of Phase-I: If a node v is a not a
parent (i.e., parent = False), then it checks its y(v) to
ensure whether all of its neighbours joined their respective
communities or not. If joined, it computes the node modularity
N M, by eqn[] If v is an overlapped node, it computes N M,
for the individual communities. It sets ¢_size = 1 and sends
Complete(v, NM,,c_size) message to its parent then it
locally terminates Phase-1I.



Now, if a node v is a parent (i.e., parent = T'rue), it waits
until it receives all the Complete messages from its children.
If the parent node v is an an overlapped node and received
all the Complete messages from its children then for each
community, it does the following tasks.

NM,+>!_, NM;

e Node v computes N M, and N M,,, = ) s
where N M; is obtained from the Complete message of
neighbour 4, [ is the total number of its children in the
same community.

e v updates c_size = 1 + Zi:l c_size; and sends
Complete(v, NMgy4, c_size) message to its parent.

o If v is a community head (i.e., p_id = NULL), it

computes NM, and CM = W where
N M; is obtained from received Complete message of
neighbour ¢, and !’ is the /total number of its children. It
updates c_size = 1 + 2221 c_size;.

Finally, v locally terminates Phase-I. When each commu-

nity head receives Complete message from its neighbours,

it starts the execution of Phase-II procedure, which is

described below.

C. Phase-II: Community Reorganization

This phase is divided into two sub-phases: Nodes
movement and Community Merging which are discussed
below. Here we introduce the following messages those are to
be transmitted during the execution of the process.

e Movement(v,CM,c_size):

— Send: Each community head v sends this message
to its community members for a possible movement
from one community to another.

— Receive: on receiving the message, each member
computes the benefits for its current community from
which it moves or joins other communities where its
neighbours belong to.

e ONM_msg(ONM,):

— Send: Node v sends this message to the neigh-
bour after computing the overlapped node modularity
ONM,,.

— Receive: On receiving these messages from all of
its neighbour u, node v compares its ON M, with
ONM,,.

e Decision(v, NM,,benefit,leave):

— Send: When a node v decides to join or leave
a community, it sends this message. A variable
leave = True/False, is used to know whether it
is leaving or not from a community.

— Receive: On receiving this message, the commu-
nity head decides whether its members are allowed
to leave or not.

e Leave_Accepted (v,CM,c_size):
— Send: When a community head u decides to allow

node v to leave from its community, it sends this
message.

— Receive: On receiving this message, a node v
leaves a community.

e Join_Reqg(v, NM,):

— Send: v sends the message when it decides to join
neighbour community.

— Receive: On receiving this message, a node v
sends this message to community head. When the
community head receives this message, it updates
CM and c_size.

1) Nodes Movement: Each community head starts execu-
tion of Nodes movement by sending a Movement message
to the members of its community. On receiving this message,
each member v forwards this message. If ¢_id of the message
is same with its own community then it updates C'M and
c_size in CL(v). If it is not same, then the message came
from its neighbour with different communities, then it updates
CM and c_size in y(v). Next, it does the following tasks.

a) Benefit computation: Node v computes benefit to
include itself for each of the communities in y(v) and stores
the maximum positive benefits with the community id in a
list BLyy,-. Similarly, it computes benefits to exclude itself
for each of its communities in C'L(v). It selects the maximum
positive benefit and stores in a list B L s. In case of multiple
maximum, it keeps all maximum benefits associate with each
of the community ids in BLgey or in BLy, as per the
aforementioned explanation. The detail description of benefit
computation is given below:

Let C; and C; be two communities with size [ and !’
respectively. Let v € C; and v € C; and u and v are
neighbours of each other. u computes benefit of community
modularity for the community C; \ {u} (excluding u from C;)
and C; U {u} (including u into C}), respectively. If u leaves
C;, the community modularity of C; may increase or decrease.
Similarly, if « joins Cj, that may increase or decrease the
community modularity of C;. The community modularity of
C; and C; are CM¢, and CMc;. u computes the benefit of
C; after excluding u from C;: '
benefit(ci\{u}) = CM((L_u) - CMCj where CMéju) =
(CMc, xI)~NM,

-1
after including w into Cj: benefit(c,ufuy) = C’Mé’:u) -
w CMc. xI")+NM, ’
CMg,; where C’Méj ) (O DN '7l,+i
b) Decision making: Movement of v is decided based
on following conditions:

. Similarly, u computes the benefit of C;

o if BLsey and BLyy, both are empty then v maintains
the status quo with current communities.

o if BLgey is non-empty and BLy;- is empty then v
maintains the status quo with current communities.

o if BLgyey is empty and BL,y, is non-empty then v
joins the neighbour communities along with maintains
the status quo with current communities.

e if BLsey and B Ly, both are non-empty then v decides
to leave from its current communities and joins neighbour
community of positive benefit.



c) Locking movements: Suppose a node u computes the
benefit for its neighbour v’s community and decides to join
that community. Similarly, node v computes benefits for its
neighbour w’s community and decides to join that community.
If v and v both move to their intended communities, then
the benefit computation by node u is incorrect because of
the movement of v. To eradicate this problem, we use a
locking strategy by which among the neighbouring nodes,
only one node is allowed to move. To execute it, v and v
both compute ONM,, and ONM,, by eqn [2] and exchange it
via the ONM_msg message. In general, on the comparison, if
ONM,, is the minimum [H among all other competitors (e.g.,
v), then node u is allowed to move. Other competitors (e.g.,
v) lock their movement for this round. If ON M, = ON M,
for all v, then the id of the nodes can be used to break the
tie and give priority to one node. If a node has at least one
child having degree one in the community then it also locks
itself for the movement. A node w having minimum ON M,,,
sends a Decision(v, NM,, benefit,leave) message to its
community head, where benefit = benefitc,\ (u}) and
leave = True, respectively.

d) Termination of nodes movement: On receiving
Decision message from the members, each community head
v makes a list ML of the members who want to leave the
community (i.e., whose leave = True). v arranges the list
ML in decreasing order based on the values of benefit. v
recomputes the community modularity CM’ excluding first
member u of the list M L. If CM’ > CM then community
head v allows u to leave the community, where C'M is the
community modularity including u. Then the community head
v, removes entry of u from ML, decreases the c_size by
one, updates CM by CM' and sends Leave_Accepted
(u, CM,c_size) message to all of the community members.
The community head v repeats the above process unless the
list ML is exhausted. On receiving a Leave_Accepted
(u,CM,c_size) message, a member forwards the message
to its neighbour within the community and updates C'M and
c_size. When u receives this message, it removes the entry of
4-tuple associated with the community from C'L(u). When all
the children of u receive this message, they select a neighbour
with minimum id as a new parent from the same community
and update CM and c_size accordingly. All the neighbours
of u update their ~.

When a node u (belonging to a community C;) wants to
join a new community C; of a neighbour w, it inserts an
entry: {c_id, c_size,p_id,CM} with c_id = j, c_size =
size of C}, p_id = w, and CM = CM of C; in its CL(u).
Next, u sends Join_Reqg(u, N M, ) message to the neighbour
w. If w is not the community head then it forwards this
message to its community head. On receiving this message the
community head updates C'M and c_size. A non-head node
u terminates the Node movement round once it decides the
final decision of its movement: staying in the same community

"Minimum value of ON M,, signifies that most of the neighbours of u are
belonging to different communities.

or joining in new communities or leaving from the current
community and joining new communities. The community
head proceeds for the next round community merging
once the decision of Node movement in its own community
is over.

2) Community Merging: The community heads are the
candidate for executing community merging procedures. This
is similar to the aforementioned Node movement procedure.
In this process, each community head v computes the benefits
and stores in BLyy, and BLgeyp. Next, if its BLge s and
BL,;, both are non-empty then v decides to merge with
the neighbouring community of the positive benefits. If node
v wants to join a new community C; of community head
u, then it sends a Merge_Req(v,c_id, ONM,) message
to u, where c_id = j for C;. If a node v wanted to
join Cj, but receives a Merge_Req message from u, in
that case, lower id node allows other to join by sending a
Confirm (v,c,,t,CM) message. Meanwhile, if v receives
a Merge_Req message from w, then it ignores the message.
On the other case, if node v does not want to join any
community and receives a Merge_Req message from node
w, then it sends Confirm(v,c_id, c_size, C M) message to
node w. When node v joins community of u after receiving the
Confirm(u, c_id, c_size, CM), it updates C M and c_size
and sends Update_Com (v, c_id, c_size, CM) message to
all the nodes in the merge community. Each member after
receiving this message, updates its CL(v),~y(v), CM, c_size,
respectively. This process terminates when no community
heads move from one community to another.

3) Identification of Overlapped Communities:: When a
node v joins a community, it keeps this community informa-
tion in its CL(v). If CL(v) consists of multiple entries, then
node v is an overlapped node. During the whole execution of
the Phase—ITI procedure, each v updates its y(v). Node v
can easily get its neighbours community information from its
~(v). Node v checks its v(v) and extracts the neighbour ids of
the same communities, and thus, it can identify the overlapped
community Z(v) = {21, Zs,..., Zs} locally. The outline of
DOCD is presented in Algorithm []

V. COMPLEXITY ANALYSIS

In the first round of Phase-1I, the community heads are
selected based on cluster coefficients and ids. In the second
round, one-hop neighbours of all the community head select
their communities. Similarly, two-hop neighbours decide their
communities in the third round, and thus the execution of
Phase-1I proceeds hop by hop in the network. If the network
diameter is D, then we require (D+1) such rounds to terminate
the whole process of Phase—1I. Hence, the time complexity of
the Phase—1I is O(D). In the whole execution of Phase-T,
each node v sends one CC_msg, one Join_Com, and one
Complete message. In this phase per edge requires constant
number of messages which is at most six to be traveled during
the execution of whole Phase—-TI procedure. Hence message
complexity is O(m).



Algorithm 1: DOCD

Input: Node v: I'(v)

Output: Z(v)

// v Executes Phase-I
o Community head selection;
o Community selection by a node;
e Termination of Phase-1I;

// Executes Phase-II

if v is a non-head member then

if receives Movement message then
node v executes the following task in sequence:

e Benefit Computation;

e Decision Making;

e Locking Movements;

e Termination Nodes Movement.

else

// v is a community head

send Movement message to the members within the community;

if receives all Decision messages from all community members then
L Executes Community Merging;

v identifies overlapped communities Z(v);

In Phase-II, each community head initially sends the
Movement message to its community neighbours. The neigh-
bour of the community heads forward this message to its
community neighbours and so on. Hence, total D rounds
is required for forwarding the Movement message in the
worst case. Each member of a community computes its
benefits and makes decisions for its movement. It needs
another round of message exchange to know whether it
can move or not. In the same round, it sends Decision
message to the community head and a Join_Reqg mes-
sage to its neighbours. Hence, it takes 2D rounds of mes-
sage exchange. In the next round, each community head
sends a Leave_Accepted message for allowing a mem-
ber to move. Similarly, this message is forwarded by each
of the members that take D rounds. Hence, Phase-II:
Nodes movement takes O(D) rounds. In Phase-II:
Community merging, each community head computes its
benefits. It needs another round to know whether it can
merge with the neighbouring community or not. In the next
round, it may send or receive a Confirm message and
a Update_Com message. So, Phase—-II: Community
merging takes O(D) rounds. Hence, time complexity of the
Phase-II is O(D). In the whole process of Phase-1II,
each community head sends one Movement message. Hence,
it becomes total |C| Movement messages. Next, the commu-
nity head may generate total (c_size—1) Leave_Accepted
messages sent to be among the community members. Since,
there are |C| communities, then in the worst case total |C|
Merge_Req messages and |C| Confirm messages may gen-
erate during the whole process. Finally, total c¢_size number
of Update_Com messages may exchange for updating the
community. Similarly, each node in the network, who decides
for movement, exchanges a ONM_msg and a Decision mes-
sage. Hence, total 2n messages are to be generated. Finally,
a member can join |C| — 1 communities, thus n nodes may
generate at most n - (|C| — 1) Join_Reqg messages. Hence,
total message complexity is O(|C| + c_size +2n+n- (|C| —
1)) = O(n - |C|) = O(n?), where maximum possible value

of |C| is n. In worst case each message can pass through
every edge in the network, hence message complexity of DOCD
algorithm is O(n?m) and time complexity is O(D).

VI. PERFORMANCE EVALUATION

Extensive simulation studies have been done to evalu-
ate the performance of our proposed DOCD algorithm. In

Football club

Zachary karate club Dolphin networks

Fig. 2. Run time snapshot of real world networks (benchmark datasets)

our simulation study, we use real world networks (bench-
mark datasets) like, Dolphin, Zachary karate club,
Football club, and Facebook networks, respectively.
The algorithm is implemented in Intel Xeon 2.6GHz, 16
cores, 64 GB RAM, machine using Python-3. A run-
time snapshot of the DOCD algorithm is shown in Fig. 2]
for Dolphin, Zachary karate club and Football
club networks.
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Fig. 3. Comparison with number of communities on different networks

The different and same colored nodes in Fig. 2] show
different and same community, respectively. All the orange-
colored nodes refer to the overlapped nodes.

Fig. [B] shows number of identified communities on
Dolphin, Zachary karate club and Football
club networks, respectively. We have compared our results
with GN [1], Louvain [2]], Ghoshal [3], and BLDLP [4]
methods.

We observe that DOCD identifies almost the same number of
communities as a result obtained by Louvain [2] for all three
benchmark datasets, whereas for Football club network,
the result of DOCD is almost similar with the outcome of
[3]. Hence, DOCD, the algorithm performs almost comparable
results compared to the centralized algorithms in terms of
identifying number communities with existing works.

Fig. @] shows community modularity values of different
algorithms for Dolphin, Zachary karate club and
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Fig. 6. Number of nodes, number of overlapped nodes and number of
overlapped communities in different networks

Football club networks. Compare to others, the commu-
nity modularity value of DOCD algorithms is less. The reason
for the same is that DOCD finds overlapped communities where
community modularity is computed using overlapped nodes,
whereas [1]], [2]], and [3] compute disjoint communities.

Fig. | shows the number of rounds required to
find overlapped communities in Zachary karate club,
Dolphin and Football club networks, respectively us-
ing DOCD algorithm. We show the results for each phase
individually. Fig. [6] shows the variation of the actual number
of nodes vs. number of overlapped nodes and overlapped
communities identified from the Zachary karate club,
Dolphin and Football club networks, respectively.

Table[l|shows the comparison study with the method [3]], for

No. of communi- Community No. of
Data set . .

ties modularity overlapped

nodes

Meena DOCD Meena DOCD Meena DOCD

3] 5] 5]
Karate 4 5 0.4198 0.541 5 8
Dolphin 5 9 0.5285 0.531 Unknown 27
Football 7 8 0.5851 0.567 Unknown 16

TABLE 1

COMPARISON WITH [[5]] WITH RESPECT TO THE NUMBER OF
COMMUNITIES, COMMUNITY MODULARITY AND NUMBER OF
OVERLAPPED NODES.

the number of identified communities, community modularity,
and the number of overlapped nodes, respectively. It is inter-
esting to observe that the number of identified communities are
always greater than the result reported in [5]]. The comparison
of the number of overlapped nodes is insignificant because the
number of overlapped nodes directly affects the community
modularity value. Thus, our DOCD algorithm results better
community modularity as compared to

Method Zachary Dolphin Football Algorithm | Community
Karate club networks club
[C] CM| [C] CM| C] C' M|
GN 2 0.90 2 095 12 0.64 | centralized | Disjoint
Louvam 4 0.91 10 0.78] 10 0.69| Centralized | Disjoint
Ghoshal [3] 2 0.76 4 0.58| 9 0.70 | Centralized | Disjoint
Meena |35] 4 0.41 5 052 7 0.58 | Centralized | Overlapped
DOCD 5 0.54 9 0.53 8 0.56| Distributed | Overlapped
TABLE II

SHOWING COMPARISON SUMMARY WITH THE NUMBER OF COMMUNITIES
|C| AND COMMUNITY MODULARITY C M

The DOCD algorithm identifies overlapped communities in a
large-scale networks and it produces comparative results with
the existing centralized algorithms [3]), which are shown in
Table [l Moreover, DOCD algorithm is capable of identifying
the overlapped communities within a small number of rounds
of communications, as shown in Fig. @

VII. CONCLUSION

This paper has proposed a distributed algorithm DOCD, to
solve the overlapped community detection problem in large-
scale networks. The total number of nodes in the networks is
not an input of the algorithm. It is scalable and robust with
respect to the number of nodes in the networks. The time
and message complexities of the algorithm are O(n?m) and
O(D), respectively, where m, n, and D are the number of
nodes, edges, and diameter of the network graph. To show
the performance of the algorithm, we have done an extensive
simulation study with benchmark data sets. We showed that
our distributed algorithm keeps the asymptotically same num-
bers of communities and community modularity with existing
centralized algorithms. The proposed solution can also work
for a dynamic network by recomputing community modularity
for a neighborhood change, but complexity will be high. So, as
future work, one can design an efficient distributed algorithm
for dynamic networks.
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