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Abstract—This paper considers a multi-user downlink schedul-
ing problem with access to the channel state information at the
transmitter (CSIT) to minimize the Age-of-Information (AoI) in
a non-stationary environment. The non-stationary environment is
modelled using a novel adversarial framework. In this setting, we
propose a greedy scheduling policy, called MA-CSIT, that takes
into account the current channel state information. We establish
a finite upper bound on the competitive ratio achieved by the
MA-CSIT policy for a small number of users and show that
the proposed policy has a better performance guarantee than a
recently proposed greedy scheduler that operates without CSIT.
In particular, we show that access to the additional channel state
information improves the competitive ratio from 8 to 2 in the
two-user case and from 18 to 8/3 in the three-user case. Finally,
we carry out extensive numerical simulations to quantify the
advantage of knowing CSIT in order to minimize the Age-of-
Information for an arbitrary number of users.

I. INTRODUCTION

IN addition to throughput, delay, and spectral efficiency,
the Age-of-Information (AoI) metric has recently emerged

as one of the key determinants of the Quality of Service
(QoS) offered by the next-generation wireless networks. The
AoI metric, first introduced in [1], measures the freshness of
information available to the users in real-time. Ever since the
pioneering work by Kaul et al., there has been an extensive
body of work on optimizing and understanding the design
implications of AoI in communication systems. See [2] for a
comprehensive introduction to the recent advances in this area.
In order to keep the analysis tractable, most of the existing
papers on AoI assume stationary stochastic system models
[3], [4]. Furthermore, the usual performance guarantees given
in the literature in connection with AoI are almost always
asymptotic in nature. On the contrary, applications where
the AoI metric is critical to the system performance, such
as the ultra-reliable low latency communication (URLLC)
and mission-critical communication in cyber-physical systems,
typically operate far from the stationary regime [5]. For ac-
ceptable performance, these applications also require stringent
non-asymptotic upper limits on the age-of-information. To
address this issue, in this paper, we focus on designing robust
scheduling algorithms that ensure the maximum information
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freshness for the end-users, irrespective of the possibly time-
varying statistics of the underlying wireless channel. In our
recent papers [6], [7], [8], we introduced an adversarial version
of Binary Erasure Channel (BEC) model, and showed that
a greedy scheduling policy is approximately competitively
optimal. These papers assume that the channel states are
adversarially chosen and the scheduler does not have access
to the current channel state information (CSIT). In the present
paper, we extend our previous results to the setting where the
channel state information of the current slot is available to the
scheduler. The main objective of this paper is to quantify the
provable improvement in performance due to the availability of
CSIT compared to the setting when the transmitter is oblivious
to the current channel state. Due to the complexity of the
analysis, we only have been able to theoretically analyze
the setting when the number of users (N) is either two or
three. Our numerical experiments suggest the AoI advantage
continues in the presence of CSIT even when the number of
users is large. We anticipate that the tools and techniques
developed in this paper will be useful to tackle the general
problem with an arbitrary number of users. In this paper, we
claim the following two main contributions:

1) For the adversarial channel model, we establish an im-
proved upper bound on the competitive ratio for a greedy
online scheduling policy that has access to the current
CSIT. We show that the proposed online policy is 2-
competitive when N = 2 and 8/3∼ 2.67-competitive when
N = 3. This improves the previously known tight upper-
bounds on the competitive ratios (without CSIT), which
are known to be 8 (for N = 2) and 18 (for N = 3)
respectively (see Theorem 3 of [9] and Theorem 1 of
[8], where the competitive ratio is bounded by 2N2 for
any N ≥ 1).

2) We numerically compare the performance of the online
scheduling policy which knows channel states at the
current slot with a greedy online scheduling policy which
does not have the current channel state information. Our
results show that the AoI is substantially reduced with
CSIT.

The rest of the paper is organized as follows. In Section II,
we describe our adversarial system model and formulate the
problem. In Section III, we derive the competitive ratio of a
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greedy scheduling policy for the case N = 2 and N = 3. In
Section IV, we present our simulation results, and finally, in
Section VI, we conclude the paper with a brief discussion on
possible future research directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an online scheduling problem with N users
located in the coverage area of a single Base Station (hence-
forth referred to as BS). Time is slotted, and at the beginning
of every slot, a fresh update packet arrives at the BS from
some external source. Such traffic models are known as the
saturated traffic models in the literature [10], [11], [12]. Each
of the N users are interested in receiving the fresh packet at
each slot to keep up-to-date with the external source. Once a
fresh packet arrives, the BS beamforms and schedules a packet
transmission to one of the N users according to a scheduling
policy π . The downlink channels from the BS to the users are
assumed to be non-stationary, modeled as an adversarial binary
erasure channel, whose states are dictated by an adversary.
In particular, the downlink channel state for any user could
be either Good or Bad as determined by the adversary. The
online scheduling policy π , equipped with the channel state
information (CSIT), knows the current channel states of all
users before the scheduling decision for a slot is made. Making
use of the current channel state information, the policy selects
a user having a Good channel (if any) and then transmits the
latest packet from the BS to the user. The adversary controlling
the channel states may know the scheduling policy as well.
This adversarial framework was first introduced in our recent
papers [6], [7], [8].

Our objective is to design a scheduling policy that compet-
itively optimizes the average freshness of information for all
the users. For any time slot t ≥ 1, let ti(t) denotes the last time
slot when the ith user successfully received a packet from the
BS. The Age of Information (AoI) for the ith user at slot t is
defined as:

hi(t) = t− ti(t).

In other words, the quantity hi(t) measures the number of
time slots before which the ith user received the last packet
prior to time t. The N dimensional vector h(t) represents the
collection of AoI for N users at time t where ith element of
the vector refers to the AoI of the ith user i.e. hi(t). The age
hi(t) increases linearly with time until the ith user receives
a fresh packet. Once a user receives a fresh packet, its AoI
instantaneously drops to unity. See Fig. 1 for an illustration
of the evolution of AoI.

Objective function: Throughout this paper, we consider
optimizing the total AoI metric, which is defined as the sum
of AoI cost incurred for all users over the entire time horizon
under consideration. Hence, the objective function for the AoI
minimization can be expressed as:

AoI(T ) =
T

∑
t=1

(
T

∑
i=1

hi(t)) (1)
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Fig. 1. Time evolution of hi(t), an arrow indicates successful transmission
of fresh packet to the ith user.

A. Performance metric

To quantify the performance of any scheduling policy, we
use the standard notion of competitive ratio from the online
algorithms literature [13], [14]. To be specific, the competitive
ratio of any online policy π is defined as the ratio between
worst-case cost incurred by the policy π and the cost incurred
by the offline clairvoyant optimal policy OPT, which knows
the entire sequence of channel states in advance. Let σ denote
any sequence of channel states. The competitive ratio of an
online policy π can be expressed as:

η
π = sup

σ

(
Cost of the policy π on σ

Cost of OPT on σ

)
, (2)

where, in the above, the supremum is taken over all possible
finite length channel state sequences σ .

B. Scheduling Policies

In this paper we analyze the performance of the following
online policy:

Max-Age with CSIT policy (MA-CSIT): At each time slot,
the scheduler determines the current channel states of all
users using the CSIT. The BS then schedules a fresh packet
transmission to the user having the highest age among all
users currently having a Good channel. If at any time slot,
no channel is in Good state, the MA-CSIT policy does not
schedule a packet transmission to any user.

Slot	Begins Slot	Ends

Time

Scheduler	checks	the
channel	states	of	all

the	users

Age	of	Information
(AoI)	for	each	of	the
user	is	computedBS	schedules	a	fresh

packet	to	a	user

Fig. 2. Timeline of MA-CSIT policy at a particular time slot

For bounding the competitive ratio of the MA-CSIT policy,
we need to characterize the Offline optimal policy (OPT). The
OPT policy is assumed to know the channel states of all the
users for the entire time duration a priori. Hence, the perfor-
mance of any other scheduling policy is dominated by that of
OPT. However, the OPT policy can not be implemented in



an online fashion as it assumes the knowledge of the future
channel states.

Baseline: In order to determine the benefit of having
CSIT, we compare the performance of the MA-CSIT policy
with the Max-Age policy that does not consider the channel
state information [6], [8]. Under the Max-Age policy, at each
time slot t, BS schedules a fresh packet to the user which has
the highest age among all the users, irrespective of the current
channel states. Hence, if the channel state at the scheduled
user-end turns out to be Bad, the packet is lost.

III. PERFORMANCE ANALYSIS

In this section, we bound the competitive ratio of the MA-
CSIT policy from the above.

A note on determining the Max-age users: To begin with,
at any time slot, we first sort the users according to descending
order of their ages under the MA-CSIT policy. The user, who
has the highest age among all the users (under the MA-CSIT
policy) is called the Max-age user (ties are broken arbitrarily).
Similarly, the mth user in the sorted list is called the mth Max-
age user. Thus the Max-age user corresponds to m = 1 in the
sorted list at that time slot. Naturally, under a different policy
(e.g., OPT) the Max-Age user may not have the highest age
among all users.

Next, we recall the concept of a time interval, first intro-
duced in [9],

Definition 1: (Interval) A new interval is said to begin
when the Max-age user transmits a packet successfully
under the MA-CSIT policy.

Hence, an interval continues until the channel corresponding
to the Max-age user becomes Good. Let the quantity hi,t

k
denote the age of the kth user1 at the t th time slot of the ith

interval under the MA-CSIT policy. Also, let oi,t
k denote the

age of the kth user at the tth time slot of ith interval under
OPT policy. So hi,1

k denotes the age of the kth user at the
first time slot of the ith interval under the MA-CSIT policy.
The length of the ith interval is denoted as Ii and the total AoI
cost incurred by the MA-CSIT and the OPT policies on the ith

interval are denoted by CMA-CSIT(Ii) and COPT(Ii) respectively.
With the above definitions in place, we now proceed to bound
the competitive ratio of the MA-CSIT policy.

A. Competitive ratio of the MA-CSIT policy for N = 2 users

1here k refers to the index of the user which is same for both MA-CSIT
and OPT policy for the entire time duration T . Please note that, this k does
not refer to the index of the user in the sorted list which is prepared at every
time-slot to determine the ordering of the Max-age users on the basis of the
ages of the users under the MA-CSIT policy. For example the user 1 at a
certain time-slot may become the Max-age user and at another time-slot may
become 2nd Max-age user and so on, but its index remains same for the time
duration T for both the policies.

Proposition 1: The competitive ratio of the MA-CSIT
policy for N = 2 users is upper bounded as ηMA-CSIT ≤ 2.

Proof: For two users, we can express the difference
between the costs incurred by the MA-CSIT policy and OPT
as:

CMA-CSIT(Ii)−COPT(Ii) = ∑
t
(hi,t

1 −oi,t
1 )+∑

t
(hi,t

2 −oi,t
2 ), (3)

where the index in the summation ranges over all slots in the
ith interval. We now establish the following Lemma.

Lemma 1: For the Max-age user, the age difference
between the MA-CSIT policy and the OPT policy for
every time slot t of ith interval remains constant. For
example, if at the ith interval the user 1 remains the
Max-age user then the age difference (hi,t

1 −oi,t
1 ) remains

constant throughout the interval i.

Proof: Without any loss of generality, let us assume that
the MA-CSIT policy serves the user 2 at the beginning of
the ith interval, and at the ith interval, the user 1 becomes the
Max-age user.
We establish Lemma 1 on the basis of the following observa-
tion. Both MA-CSIT and OPT policies can not serve the Max-
age user until the channel corresponding to that user becomes
Good. Furthermore, whenever the channel becomes Good, the
MA-CSIT policy will serve the Max-age user immediately
and a new interval begins. Thus, within any interval, both the
quantities hi,t

1 and oi,t
1 increase linearly. Hence,

hi,t
1 −oi,t

1 = hi,1
1 −oi,1

1 ∀t. (4)

Since we assume that user 1 is the Max-age user at the ith

interval, we have hi,1
1 > hi,1

2 . The next interval, i.e., the (i+1)th

interval begins when the MA-CSIT policy serves user 1. Thus
we have,

CMA-CSIT(Ii) =COPT(Ii)+(hi,1
1 −oi,1

1 )Ii +∑
t
(hi,t

2 −oi,t
2 ) (5)

We now establish the following useful result.

Lemma 2: For the user other than the Max-age user,
the age difference between the MA-CSIT and the OPT
policy is always non-positive (i.e., hi,t

2 −oi,t
2 ≤ 0,∀t for this

case).

Proof: To prove hi,t
2 − oi,t

2 ≤ 0 ∀t we use the following
facts. At the next time slots of the ith interval whenever the
channel corresponding to user 2 becomes Good, both the MA-
CSIT and the OPT policies serve the user 2. The only scenario
when the age of user 2 under the MA-CSIT policy becomes
greater than age of user 2 under OPT i.e. hi,t

2 > oi,t
2 is when



the channel corresponding to user 2 becomes Good and OPT
serves the user 2 but MA-CSIT does not. In other words the
OPT policy serves the user 2 while the MA-CSIT policy
serves the user 1. Since we considered user 1 as the Max-
age user and if the MA-CSIT policy serves the user 1, from
the definition of interval the next interval i.e. (i+1)th interval
starts. This implies at the ith interval the age of the user 2
under MA-CSIT will never become more than the age under
OPT. Hence,

hi,t
2 −oi,t

2 ≤ 0 ∀t (6)

Combining the above two Lemmas, equation (3) may be
simplified as

CMA-CSIT(Ii)≤COPT(Ii)+(hi,1
1 −oi,1

1 )Ii (7)

For bounding the second term in the above inequality, we need
to introduce the notion of Residue-Length as defined below:

Definition 2: (Residue-length) The ith residue-length li
is the length of time from the last slot in the previous in-
terval when the Max-age user of the ith interval got served
by the MA-CSIT policy, counted up to the beginning of
the ith interval.

See Fig. 3 for an illustration of the intervals and the residue
lengths. It is not hard to verify that the difference of the ages
of the Max-age user under the MA-CSIT policy and OPT at
the beginning of the ith interval can be upper bounded by the
residue-length li i.e. hi,1

1 −oi,1
1 ≤ li. Hence, from Eqn. (7), we

have the following upper bound:

CMA-CSIT(Ii)≤COPT(Ii)+ liIi. (8)

Finally, to find an upper bound to the competitive ratio, we
need to derive a lower bound of the cost of the OPT policy for
each intervals. Note that, after the first time slot of any interval,
the Max-age user, by definition, encounters consecutive Bad
channels. Hence, the cost corresponding to that user under the
OPT policy can be lower bounded by ∑

Ii
k=1 k.

During the ith interval, the channel corresponding to the
user other than the Max-age user (i.e. user 2) does not become
Good after the (Ii− li+1)

th time slot. This fact can be verified
from the definition of residue-length. Therefore, the cost for
user 2 under OPT for the ith interval can be lower bounded
as:

Ii−li+1

∑
k=1

1+
li+1

∑
k=1

k = Ii− li+1 +
li+1

∑
k=1

k. (9)

Hence, the total AoI cost under the OPT policy (including
both users) for the ith interval can be lower bounded as:

COPT(Ii)≥
Ii

∑
k=1

k+ Ii− li+1 +
li+1

∑
k=1

k. (10)

Summing up the costs over all intervals we have the following
bound:

∑
i

CMA-CSIT(Ii)≤∑
i

COPT(I)+∑
i

liIi. (11)

Channel	1

Channel	2

=

=

=Good	Channel	and
served	by	MA-CSIT

Good	Channel	and
served	by	OPT

Good	Channel	and
served	by	both	MA-

CSIT	&	OPT

Interval

Residue	Length

Residue	Length

Constant	Bad	Channel	for	both	Users

= Bad	Channel

Next	Interval

Time

Fig. 3. Illustration of residue length and interval construction for 2 users.
Channel i refers to the state of the channel corresponding to user i.

Substituting the bound from Eqn. (10) in the inequality above,
we have:

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 1+

∑i liIi

∑i(∑
Ii
k=1 k+ Ii− li+1 +∑

li+1
k=1 k)

. (12)

Now we use the AM-GM inequality to get liIi ≤
l2
i
2 +

I2
i
2 .

Furthermore, we have ∑
Ii
k=1 k + Ii− li+1 +∑

li+1
k=1 k = Ii(Ii+1)

2 +

Ii +
(li+1)(li+1+1)

2 − li+1 ≥
I2
i
2 +

l2
i+1
2 .

Hence,

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 1+

∑i
l2
i
2 +

I2
i
2

∑i
I2
i
2 +

l2
i+1
2

≤ 2, (13)

where we have used the fact that, by definition l1 = 0. Hence,
ηMA-CSIT ≤ 2.

The above result should be compared and contrasted with
Theorem 3 of [8], which proves an upper limit of 8 for the
competitive ratio of the Max-Age policy that operates without
CSIT.
In the following, we extend the above proof technique for
N = 3 users. The reader will find that although the basic line
of analysis remains the same, the details become much more
involved in this case.

B. Competitive ratio of the MA-CSIT policy for N = 3 users

Proposition 2: The competitive ratio of MA-CSIT
policy for N = 3 users is upper bounded as ηMA-CSIT ≤ 8

3 .

Proof: We use the same definition of intervals as in our
previous proof. The difference in the AoI costs incurred by the
MA-CSIT and the OPT policies can be expressed as follows:

CMA-CSIT(Ii)−COPT(Ii) = ∑
t
(hi,t

1 −oi,t
1 )+∑

t
(hi,t

2 −oi,t
2 )+

∑
t
(hi,t

3 −oi,t
3 ), (14)

where the index in the summation ranges over all slots in the
ith interval. Without any loss of generality, let us assume that



user 1 is the Max-age user for the ith interval under the MA-
CSIT policy. Note that Lemma 1 holds for any number of
users (hence, for N = 3 also). This is because whenever the
channel corresponding to the Max-age user becomes Good,
the MA-CSIT policy serves that user immediately and a new
interval begins. Thus, the difference of ages of the Max-age
user under the MA-CSIT and OPT policies remains constant
throughout any interval (as both increase linearly throughout
an interval). Therefore we can write

CMA-CSIT(Ii) =COPT(Ii)+(hi,1
1 −oi,1

1 )Ii +∑
t
(hi,t

2 −oi,t
2 )+

∑
t
(hi,t

3 −oi,t
3 ). (15)

Using the same definition of residue-lengths as before, we can
express the above difference as:

CMA-CSIT(Ii) =COPT(Ii)+ liIi +∑
t
(hi,t

2 −oi,t
2 )+∑

t
(hi,t

3 −oi,t
3 ).

(16)
We denote the time slot when the Max-age user of the ith

interval got served by the MA-CSIT policy as Tli .
To upper bound the quantity ∑t(h

i,t
2 −oi,t

2 )+∑t(h
i,t
3 −oi,t

3 ) we
introduce the notion of sub-intervals, which form a partition
of the intervals. The formal definition of a sub-interval is given
below:

Definition 3: (Sub-interval) Within an interval, a new
sub-interval is said to begin when the MA-CSIT policy
serves the 2nd Max-age user among the three users.

Let, Ji denotes the number of sub-intervals in the ith interval.
We define the jth Sub-Residue length of the ith interval, li

j as
follows:

Definition 4: (Sub-Residue length) The jth sub-residue
length of the ith interval (denoted by li

j) is the time-elapsed
since the last time slot when the 2nd Max-age user of the
jth sub-interval of the ith interval got served by the MA-
CSIT policy, up to the beginning of the ( j + 1)th sub-
interval.

We illustrate the notion of sub-intervals and sub-residue
lengths in Fig. 4. Note that, the above definition is analogous
to the definition of intervals.

In every sub-interval, the age of user which has the least
age under MA-CSIT policy would be always upper bounded
by age of that user under the OPT policy. It directly follows
from Lemma 2, discussed in the previous section. Hence, we
have the following upper bound:

CMA-CSIT(Ii)≤COPT(Ii)+ liIi +∑
j

li
jI

i
j (17)

where Ii
j refers to the length of the jth sub-interval of the ith

interval, and the index j runs over all sub-intervals of the ith

interval.

Next, we proceed to lower bound the cost incurred by the
OPT policy during the ith interval.

a) Lower bounding the cost of the Max-age user: Since,
the ith interval continues until the channel corresponding to the
Max-age user becomes Good, the cost incurred by the Max-
age user (i.e. user 1 in this case) under the OPT policy is
lower bounded by

Ii

∑
k=1

k ≥ I2
i
2

(18)

b) Lower bounding the cost of the 2nd Max-age user :
The cost incurred by the 2nd Max-age user under the OPT

policy during the jth sub-interval is ∑
Ii

j
k=1 k. This is true because

for the entire duration of the jth sub-interval, the channel
corresponding to the 2nd Max-age user remains Bad.

c) Lower bounding the cost of the 3rd Max-age user
: Following the definition of the sub-residue lengths, the
quantity li

j+1 denotes the last time slot when the MA-CSIT
policy serves the 2nd Max-age user of the ( j+1)th sub-interval,
counted from the beginning of the ( j+ 1)th sub-interval. On
the ( j+1)th sub-interval, the 3rd Max-age user of the jth sub-
interval becomes the 2nd Max-age user. Hence, for the last li

j+1
time slots of the jth sub-interval, the cost of the 3rd Max-age
user of the jth sub-interval under the OPT policy is given by

∑
li
j+1

k=1 k.
Thus, the cost under the OPT policy during the jth sub-interval
of the ith interval, excluding the cost of the Max-age user is
lower bounded by:

Ii
j

∑
k=1

k+
Ii

j−li
j+1

∑
k=1

1+
li
j+1

∑
k=1

k ≥
(Ii

j)
2

2
+

(li
j+1)

2

2
,∀1≤ j ≤ Ji−1.

For the last sub-interval of the ith interval, the cost incurred by
3rd Max-age user under the OPT policy is lower bounded by

∑
Ii
Ji

k=1 1 (since at the Ji
th sub-interval sub-residue length does

not exist). Hence the cost incurred by the 2nd Max-age and
the 3rd Max-age user under the OPT at the Jth

i sub-interval is
lower bounded by

Ii
Ji

∑
k=1

k+
Ii
Ji

∑
k=1

1≥
(Ii

Ji
)2

2
(19)

Finally, summing up the cost over all sub-intervals in the ith

interval, we get the following lower bound to the cost incurred
by the 2nd Max-age and the 3rd Max-age user under the OPT
policy:

(Ii
Ji
)2

2
+

Ji−1

∑
j=1

(
(Ii

j)
2

2
+

(li
j+1)

2

2
) (20)

where li
Ji

is the sub-residue length of the last sub-interval of
the ith interval and Ii

Ji
is the length of the last sub-interval of

the ith interval.
There are three scenarios depending on the values mth residue
length ∀m ∈ {2,3, ...} i.e. lm can take,
• Case 1- lm ≤ Im−1 ,



• Case 2- Im−2 + Im−1 > lm > Im−1,
• Case 3- lm ≥ Im−2 + Im−1.

Case 1: Consider the first scenario where lm≤ Im−1 ∀m∈
{2,3....}. Now consider the Max-age user of (i+1)th interval.
The MA-CSIT policy serves the Max-age user li+1 time slots
before the beginning of the (i+ 1)th interval i.e at T th

li+1
slot.

The OPT policy can serve the Max-age user twice after T th
li+1

time slot. Since li+1 ≤ Ii, the OPT policy can serve the Max-
age user once at the beginning of Jth

i sub-interval and next at
the beginning of (i+1)th interval. So, the li+1 time slots can be
divided into two parts. The first part refers to the sub-residue
length of the last sub-interval i.e li

Ji
and the next one refers to

the length of final sub-interval i.e. Ii
Ji

. Hence we have

Ii
Ji
+ li

Ji
= li+1 (21)

Let ai denotes the first part of li and bi refers to the second
part. So for the above case we have

ai+1 = li
Ji

(22)

bi+1 = Ii
Ji

(23)

Hence the lower bound of the OPT policy at Eq. (20) can be
rewritten as

b2
i+1

2
+

Ji−2

∑
j=1

(
(Ii

j)
2

2
+

(li
j+1)

2

2
)+

(Ii
Ji−1)

2

2
+

a2
i+1

2
(24)

Since ai+1 = li
Ji

and bi+1 = Ii
Ji

, we can rewrite Eqn. (17) as:

CMA-CSIT(Ii)≤COPT(Ii)+ liIi +
Ji−1

∑
j=1

(li
jI

i
j)+ai+1bi+1 (25)

Summing the costs over all intervals from Eq. (25) and using
the lower bound of the OPT policy for the Max-age user of
Eq. (18) and the lower bound for the 2nd Max-age and the
3rd Max-age user of Eq. (24) we get the following bound:

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 1+

∑i(liIi)+∑
Ji−1
j=1 (l

i
jI

i
j)+ai+1bi+1)

∑i(
I2
i
2 +

b2
i+1
2 +∑

Ji−2
j=1 (

(Ii
j)

2

2 +
(li

j+1)
2

2 )+
(Ii

Ji−1)
2

2 +
a2

i+1
2 )

(26)

Using the AM-GM inequality, we have liIi ≤
l2
i
2 +

I2
i
2 ,

∑
Ji−1
j=1 (l

i
jI

i
j) ≤ ∑

Ji−1
j=1 (

(li
j)

2

2 +
(Ii

j)
2

2 ) and ai+1bi+1 ≤
a2

i+1
2 +

b2
i+1
2 .

Hence, from the above, we get

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 1+

∑i(
l2
i
2 +

I2
i
2 +∑

Ji−1
j=1 (

(li
j)

2

2 +
(Ii

j)
2

2 )+
a2

i+1
2 +

b2
i+1
2 )

∑i(
I2
i
2 +

b2
i+1
2 +∑

Ji−2
j=1 (

(Ii
j)

2

2 +
(li

j+1)
2

2 )+
(Ii

Ji−1)
2

2 +
a2

i+1
2 )

(27)
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Fig. 4. Illustration of residue length and interval construction for 3 users.
Channel i refers to the state of the channel corresponding to user i.

Combining above equations we get

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 2+

∑i(l2
i )

∑i(Ii
2 +2∑

Ji−1
j=1 (

(Ii
j)

2

2 +
(li

j+1)
2

2 )+b2
i+1 +a2

i+1)

(28)

Lower bounding the sub-interval lengths and the sub-residue
lengths by zero, from the above, we have

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 2+

∑i(l2
i )

∑i(Ii
2 +b2

i+1 +a2
i+1)

(29)

Since, ai+bi = li, using the Cauchy-Schwartz inequality, we
have a2

i +b2
i ≥ l2

i /2,∀i. Hence, the RHS of the above equation
can be further upper bounded as below:

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 2+

∑i(l2
i )

∑i(Ii
2 +

l2
i+1
2 )

(30)

We have li ≤ Ii−1. Note that the RHS of Eqn. (30) is mono-
tonically increasing for li ≥ 0. Hence, we can upper bound the
RHS of equation (30) by substituting li = Ii−1. Therefore, we
get

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 2+

∑i(I2
i−1)

∑i(Ii
2 +

I2
i
2 )
≤ 8

3
(31)

Please see the Appendix section for the proof of Case 2 and
Case 3. Hence, for all values of li, we get ∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 8

3
which implies ηMA−CSIT ≤ 8

3 .

IV. SIMULATION RESULTS

In this section we provide two particular channel configu-
rations for 2 users and 3 users scenario to show the tightness
of the bound provided in the III-A and III-B sections.

A. N = 2 users case

Consider the following channel state sequence for 2 users
where the whole sequence is divided into intervals of fixed
length ∆ where ∆ is even. At the beginning of every interval
the channel corresponding to the user 1 is Good and the other
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Fig. 5. AoI cost comparison between MA-CSIT policy and OPT policy for
2 users

channel is Bad. For the next ∆

2 −2 slots both channels remain
Bad. Next, at the ∆

2
th

slot both the channels become Good.
After that, at the (∆

2 +1)th slot, the channel corresponding to
user 2 remains Good but other channel becomes Bad. For
the next ∆

2 −2 slots both channels remain Bad and finally at
the ∆th slot both channels become Good. In Fig. 5 the AoI
cost ratio between the MA-CSIT and the OPT policy for this
particular channel state configuration has been plotted. It can
be seen as interval length grows the cost ratio approaches 2,
while in section III-A we showed that for 2 user case the
competitive ratio for the MA-CSIT policy is upper bounded
by 2.

B. N = 3 users case

In this case, we consider the interval length ∆ to be multiple
of 6. Here we mention at which time slot the channels
corresponding to the users become Good. At the first time
slot of the interval the channels corresponding to user 1 and
2 are only Good. For 2nd and 3rd time slots the channels
corresponding user 1 and user 3 remain Good respectively.
At the (∆

6 )
th time slot, the channels corresponding to user 1

and user 3 become Good and at the next time slot, the channel
corresponding to the user 1 only remains Good. After that, at
the (∆

3 + 1)th slot, the channels corresponding to user 2 and
user 3 become Good. At next two time slots i.e. (∆

3 +2)th and
(∆

3 +3)th slots the channels corresponding to user 2 and user
1 remain Good respectively. Next at the ∆

2
th

time slot the
channels corresponding to user 1 and user 2 become Good
and at the next time slot, the channel corresponding to user 2
only remains Good. After that at ( 2∆

3 +1)th slot, the channels
corresponding to user 1 and 3 become Good. For the next
two time slots i.e. ( 2∆

3 +2)th and ( 2∆

3 +3)th slots the channels
corresponding to user 3 and user 2 remain Good respectively.
Next at 5∆

6
th

time slot, the channels corresponding to user 2
and user 3 become Good and at the next time slot, the channel
corresponding to user 3 only remains Good. In all other
time slots the users which are not mentioned, the channels
corresponding to those users remain Bad. For this particular
scenario the AoI cost ratio between the MA-CSIT and the
OPT policy has been plotted in Fig. 6. As ∆ grows, the cost
ratio approaches 2.25, while in section III-B we showed that
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Fig. 6. AoI cost comparison between MA-CSIT policy and OPT policy for
3 users
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Fig. 7. AoI cost comparison between MA-CSIT policy and Max-Age policy

for 3 user case the competitive ratio for the MA-CSIT policy
is upper bounded by 2.67.

V. COMPARISON BETWEEN THE MA-CSIT AND THE MAX
AGE POLICY

In this section we provide numerical results to show the
advantage of having CSIT. Through simulations we compare
the performance of MA-CSIT policy and the Max-Age policy
[6], [8] which does not have CSIT. In this case we consider the
channel states corresponding to each user to be independent
and identically distributed. Consider the channel correspond-
ing to each user can be Good with a probability p. In Fig. 7,
Fig. 8 and Fig. 9, the time averaged AoI cost (AoIavg(T )) for
MA-CSIT policy and Max Age policy when p = 0.5, p = 0.3
and p= 0.1 have been plotted respectively. In Fig. 10, the ratio
between the average AoI cost of Max Age policy and that of
MA-CSIT policy for these three cases has been shown. From
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Fig. 8. AoI cost comparison between MA-CSIT policy and Max-Age policy
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the plots we can conclude that when the policy is equipped
with CSIT the performance improves drastically.

VI. CONCLUSION

The paper investigates the fundamental limits of Age-of-
Information for static users over adversarial environments
when the scheduling policy is assumed to know the CSIT at
the current slot. Theoretically we provide upper bound on the
competitive ratio when the number of users is either 2 or 3.
Through simulations, we showed that the greedy scheduling
policy performs substantially better over adversarial setting
when the policy is equipped with the channel state information
at the current slot. Finding an upper bound on the competitive
ratio for arbitrary number of users is an interesting open
problem.
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VIII. APPENDIX

Case 2: Im−2+ Im−1 > lm > Im−1 : In this case, before the
ith interval the last time slot at which the MA-CSIT policy can
serve the Max-age user of ith interval would lie somewhere at
the (i−2)th interval. At that time slot that user has the least
age under the MA-CSIT policy. We denote that time slot as
T i

li
and the Max-age user of ith interval as ui

max. Next we need
to determine the time slots where the OPT serves ui

max but the
MA-CSIT does not.
• After T i

li
time slot suppose, the OPT serves ui

max at some
time slot at (i−2)th interval but the MA-CSIT does not.
This is only possible when the 2nd Max-age user and ui

max
get Good channels.Since at the (i−2)th interval, ui

max has
the least age under the MA-CSIT policy, the MA-CSIT
serves the 2nd Max-age user. Hence at that time slot ui

max
becomes the 2nd Max-age user and at the (i−1)th interval
it will become the Max-age user. But it is not possible, as
ui

max is the Max-age user of ith interval and same user can
not become Max-age user at two consecutive intervals.

• Another possible scenario is after T i
li

the 2nd Max-age
user at the (i−2)th interval gets Bad channels constantly
and at the beginning of (i− 1)th interval the channels
corresponding to both ui

max and the 2nd Max-age user
become Good and the OPT serves ui

max instead of
serving the 2nd Max-age user. In this scenario the MA-
CSIT serves the Max-age user and the 2nd Max-age user
becomes the Max-age user of the (i− 1)th interval i.e.
ui−1

max. But in this case the OPT policy can serve ui−1
max

at max once after the user gets served by the MA-CSIT
policy which implies

ai−1 = li−1
Ji−1

= li−1 (32)

At T i
li

time slot the OPT policy can serve either 2nd Max-
age user or the ui

max. But if the OPT policy serves the
ui

max, then for the rest of the time slots of (i−2)th interval
and entire (i−1)th interval the cost difference for that user
under the OPT and the MA-CSIT policy remains zero.
Suppose the OPT policy serves the 2nd Max-age user.
Since after T i

li
time slot, both ui

max and 2nd Max-age user
get Bad channels constantly and li−1

Ji−1
≤ Ii−1

Ji−1−1 , the cost
difference between the MA-CSIT and the OPT policy
for the users other than the Max-age user for rest of the
(i−2)th interval

li−1
Ji−1

Ii−1
Ji−1
− Ii−1

Ji−1−1Ii−1
Ji−1
≤ 0 (33)

Hence the cost difference between the MA-CSIT policy
and the OPT policy at (i−2)th interval is

CMA-CSIT(Ii−2)− COPT(Ii−2)≤
l2
i−2

2
+

I2
i−2

2
+

Ji−2−1

∑
j=1

(
(li−2

j )2

2
+

(Ii−2
j )2

2
(34)

For this particular case at the (i−1)th interval there will
not be any sub-interval because ui

max can not get Good

channel at the (i−1)th interval, otherwise the MA-CSIT
policy will serve ui

max immediately and this will contradict
the assumption li > Ii−1. Thus, for (i− 1)th interval, we
have

Ji−1−1

∑
j=1

(
(li−1

j )2

2
+

(Ii−1
j )2

2
) = 0 (35)

Since the OPT policy serves the ui
max at the beginning of

(i−1)th interval we have

bi = Ii−1 (36)

Hence at (i−1)th interval the cost difference between the
MA-CSIT policy and the OPT policy is

CMA-CSIT(Ii−1)−COPT ≤ li−1Ii−1 +aibi (37)

Since the OPT policy did not serve the 2nd Max-age user
at the beginning of (i−1)th interval the cost of ui−1

max under
OPT policy is lower bounded by ∑

li+ai−1
k=1 k ≥ (li+ai−1)

2

2 .

Now consider, N1 =∑k I{k 6=i−2,i−1}(
l2
k
2 +

I2
k
2 +∑

Jk−1
j=1 (

(lk
j )

2

2 +
(Ik

j )
2

2 ) +
a2

k+1
2 +

b2
k+1
2 ), N2 =

l2
i−2
2 +

I2
i−2
2 +∑

Ji−2−1
j=1 (

(li−2
j )2

2 +
(Ii−2

j )2

2 and N3 = li−1Ii−1 + aibi. Also let D1 =

∑k I{k 6=i−2,i−1}(
I2
k
2 + ∑

Jk−1
j=1 (

(Ik
j )

2

2 +
(lk

j+1)
2

2 ) +
a2

k+1
2 +

b2
k+1
2 ),

D2 =
I2
i−2
2 + ∑

Ji−2−1
j=1 (

(Ii−2
j )2

2 +
(li−2

j+1)
2

2 ) +
a2

i−1
2 =

I2
i−2
2 +

∑
Ji−2−1
j=1 (

(Ii−2
j )2

2 +
(li−2

j+1)
2

2 ) +
l2
i−1
2 (since ai−1 = li−1) and

D3 = ∑
li
m=1 m+∑

ai
m=1 m+∑

bi
m=1 m.

In the expression of D2 the first summation indicates the
lower bound on the cost incurred by ui−1

max under the OPT
policy since it got served by the OPT policy for the last
time before (i− 1)th interval. The rest two summations
refer to the lower bound of the cost incurred by ui

max
under the OPT policy since it got served by the MA-
CSIT policy before ith interval.

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤+

N1 +N2 +N3

D1 +D2 +D3

≤ 1+

N1 +N2 +
l2
i−1
2 +

I2
i−1
2 +

a2
i

2 +
b2

i
2

D1 +
I2
i−2
2 +

l2
i−1
2 +

l2
i
2 +

a2
i

2 +
b2

i
2

(38)

Since bi = Ii−1 and li ≥ Ii−1, simplifying above equations
we get,

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 2+

∑k I{k 6=i−1,i}(
l2
k
2 )+

I2
i−1
2

∑k Ik 6=i−1,i(
I2
k
2 +

a2
k+1
2 +

b2
k+1
2 )+

l2
i
2 +

I2
i−1
2 +

l2
i−1
2 +

a2
i

2
(39)



Hence we have

∑i CMA-CSIT(Ii)

∑i COPT(Ii)
≤ 2+

∑k I{k 6=i}I2
k

∑k I{k 6=i,i−1}(I2
k +a2

k+1 +b2
k+1)+2I2

i−1

≤ 8
3

Case 3: When li ≥ Ii−1 + Ii−2, it is easy to check that
for ui

max cost under OPT will be always greater than the cost
under MA-CSIT policy. Hence ∑i CMA-CSIT(Ii)

∑i COPT(Ii)
is upper bounded

by 8/3.
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