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Abstract—In this era of fast and large-scale opinion formation,
a mathematical understanding of opinion evolution, a.k.a. opinion
dynamics, is especially important. Linear graph-based dynamics
and bounded confidence dynamics are the two most popular mod-
els for opinion dynamics in social networks. Recently, stochastic
bounded confidence opinion dynamics were proposed as a general
framework that incorporates both these dynamics as special cases
and also captures the inherent stochasticity and noise (errors)
in real-life social exchanges. Although these dynamics are quite
general and realistic, their analysis is particularly challenging
compared to other opinion dynamics models. This is because
these dynamics are nonlinear and stochastic, and belong to the
class of Markov processes that have asymptotically zero drift and
unbounded jumps. The asymptotic behavior of these dynamics
was characterized in prior works. However, they do not shed
light on their finite-time behavior, which is often of interest in
practice. We take a stride in this direction by analyzing the
finite time behavior of a two-agent system, which is fundamental
to the understanding of multi-agent dynamics. In particular,
we show that the opinion difference between the two agents is
well concentrated around zero under the conditions that lead to
asymptotic stability of the dynamics.

Index Terms—Opinion dynamics; Markov process; Concentra-
tion inequality.

I. INTRODUCTION

Public opinion is the driving force of a society. The advent

of social media platforms has revolutionized the speed and

scale of opinion formation, resulting in significant effects

on societies. Hence, modeling opinion formation, popularly

known as opinion dynamics, and analyzing its behavior is a

very important problem.

The study of opinion dynamics has a long history and is

well beyond the scope of this paper. In the mathematical and

computational study of opinion dynamics, individuals or social

entities, a.k.a. agents, are modeled to have real-valued opinions

regarding a topic. A positive (negative) opinion represents a

favorable (unfavorable) view of the topic and its magnitude

represents the agent’s conviction. Opinion dynamics models

are discrete-time dynamical systems where opinions of the

agents at the next time slot are updated according to a specified

function of the current opinions.

Broadly, there have been two popular models of opinion dy-

namics: linear graph-based dynamics and bounded confidence

dynamics. In the first model [1]–[8], opinion updates occur

according to a linear combination of opinions of neighbors on

a social graph. In the original bounded confidence dynamics

[9]–[11], an agent updates its opinion using the average of

the opinion of all agents (including itself) whose opinions are

within a specified distance from its own opinion. Thus, in

short, the linear dynamics consider social graph-based opinion

exchanges whereas the bounded confidence dynamics consider

opinion-dependent opinion exchanges.

There is a substantial amount of work extending both

models to various scenarios and analyzing them either mathe-

matically or numerically [12]. Despite that, these models failed

to capture two basic aspects of human interactions. First, when

humans accept other opinions, it is neither based on only

acquaintance (as is the case with linear dynamics), nor it is

based on a deterministic threshold (as in bounded confidence

dynamics). Often, the consideration has inherent stochasticity,

where the probability of accepting another agent’s opinion

decreases with increasing opinion differences. Second, the

opinions of others are never known perfectly and can at best

be estimated. In other words, there is always noise in opinion

exchanges.

Stochastic bounded confidence (SBC) opinion dynamics

proposed in [13]–[15] is a framework that addresses these

two issues while merging the graph-based exchanges in linear

dynamics with a stochastic generalization of the opinion

dependent exchanges in bounded confidence dynamics. Unlike

prior opinion dynamics models, where opinions eventually

converge, the SBC dynamics capture real-life scenarios where

opinions in a society may stay close in a probabilistic sense

or may eventually diverge to opposite extremes.

Linear dynamics and bounded confidence dynamics have

been analyzed in detail in the literature. SBC dynamics

is a stochastic generalization of both these dynamics on a

graph and are characterized by high nonlinearity. Hence, their

analysis is quite challenging. In [13]–[15], specific conditions

involving the social graph and the nature of the stochastic

opinion-dependent exchanges were provided for limiting opin-

ion differences to be finite. In multiple settings, tight converse

results were also provided. Although these results display

significant initial progress, they do not disclose anything about

the evolution of opinions over a finite time window, which

is often of interest in practice. In general, the nonlinear and

stochastic nature of SBC dynamics makes the problem realistic

and more challenging.
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In this paper, we take the first stride towards characterizing

the opinion differences under SBC dynamics over a finite time

window by studying a two-agent system. A two-agent system

simplifies the SBC dynamics and allows to focus on the issues

of nonlinearity and stochasticity by separating them from the

complexity imposed by graph structures. Hence, understanding

two-agent dynamics is necessary for studying the general SBC

dynamics as it can offer useful insights. A two-agent system

can also be viewed as opinion dynamics between opposing

groups of people in a society. Thus, in addition to being the

first step towards the study of general SBC dynamics, it has

independent relevance.

The central focus of this work is on characterizing the evo-

lution of the opinion difference for two-agent SBC dynamics

over a finite time window. We derive concentration bounds

for the opinion difference under sub-Gaussian noise, using a

Chernoff bound. In particular, we demonstrate that the opinion

difference of the agents is well concentrated around zero,

under the same technical conditions that imply the asymptotic

stability of the SBC dynamics.

This paper is organized as follows. In the next section

(Sec. II), we briefly discuss SBC dynamics. Our main result

on the high probability bound on the opinion difference at a

finite time when the noise (errors) in opinion exchange has a

sub-Gaussian distribution is presented in Sec. III. In Sec. IV,

we provide an outline of the proof of the main result, starting

with the relatively simpler case of bounded noise in Sec. IV-A,

followed by its extension to sub-Gaussian noise in Sec. IV-B.

Detailed proofs are in Appendix.

II. STOCHASTIC BOUNDED CONFIDENCE OPINION

DYNAMICS

Stochastic bounded confidence (SBC) opinion dynamics

[15] captures the effect of the social graph as well as that

of the closeness of opinions on opinion evolution. Further-

more, it models the impact of inherent stochasticity in human

interactions and the unavoidable noise and errors in opinion

exchanges. It is a general framework for opinion dynamics

that captures the well-known linear dynamics and the bounded

confidence dynamics as special cases. Below, we briefly de-

scribe a simplified version of the dynamics that is sufficient for

the purpose of this work. Please see [15] for a more general

description.

In SBC dynamics, there is an underlying undirected social

network G = (V , E) of n agents, which captures the possible

interactions. Agents u and v can interact only if they share

an edge in the social network G, i.e., (u, v) ∈ E . For each

undirected edge (u, v) ∈ E , there is an influence function

Gv,u : [0,∞) → [0, 1], which captures the probability of

mutual influence as a function of the opinion difference.

Opinions are real valued and evolve as a discrete time

stochastic dynamics. Opinions at time t are denoted by

{Xu(t) : u ∈ V}. Any two agents u and v with (u, v) ∈ E
interact at time t with a non-zero probability and at any time,

an agent interacts with at most one other agent. If u and v

interact at time t, then agents are influenced by each other

with probability Gu,v(|Xu(t)−Xv(t)|).
If u and v are influenced by each other at time t, then they

update their opinions as

Xu(t+ 1) =
Xu(t) +Xv(t)

2
+ nu(t),

Xv(t+ 1) =
Xu(t) +Xv(t)

2
+ nv(t),

and if u or v is not influenced by the other agent, then its

opinion evolves as

Xu(t+ 1) = Xu(t) + nu(t).

Here, for each agent u, nu(t) is an i.i.d. zero mean process.

This captures the errors and noise in the interactions, which

stem from miscommunications and misinterpretations. This

also captures the innate evolution of the opinion of an agent

due to his/her own thoughts and emotions.

Note that if one chooses Gu,v(x) = 1 for all x and (u, v) ∈
E and nu(t) = 0, we get back the well-known linear dynamics

on a social network. On the other hand, if we choose G to be

a clique and for any u, v, choose Gu,v(x) = 1 for x ≤ d

and Gu,v(x) = 0 for all x > d, we get back the well-known

pairwise bounded confidence opinion dynamics. Thus, these

two popular class of dynamics are special cases of the SBC

dynamics.

As the SBC dynamics is more general, and is nonlinear

and stochastic, analyzing its behavior is significantly more

challenging. Due to the presence of noise or error in the

SBC dynamics, a consensus cannot be reached, not even in an

almost sure or a high probability sense. This in a way reflects

the real social dynamics, where there is rarely a consensus.

In such a scenario, just like in real democratic societies, we

can at best hope for the differences of opinions to remain

finite. To capture this scenario, the notion of stability of

opinion dynamics was introduced in [15] and conditions for

the stability of SBC dynamics were established.

Mathematically, the stability of SBC dynamics is equivalent

to the opinion differences between agents reaching a proper

stationary distribution. On the other, the dynamics is said to be

not stable if the opinion differences do not reach a stationary

distribution, which captures the case when opinions of two

groups of agents diverge away. The stability results (and their

converses) in [15] give conditions in terms of G and {Gu,v}
for having stable (and not stable) SBC dynamics.

Though the stability results are very important for under-

standing the highly nonlinear SBC dynamics, they do not shed

light on the magnitude of opinion differences in the stable

case. The latter is a quite challenging problem, primarily due

to the nonlinear nature of the stochastic dynamics. Hence, as

a first step, in this paper, we study a relatively simpler case:

SBC dynamics with two agents. As it will be apparent from

the later part of this paper, analyzing the two-agent dynamics

requires significant effort. Hopefully, insights obtained from

the two-agent case would be useful in analyzing the multi-

agent dynamics.



III. MAIN RESULT AND DISCUSSION

We consider the following simple two-agent dynamics.

Agents 1 and 2 interact at all time instants. Thus, at time t, if

their opinions are X1(t) and X2(t), then they are influenced

by each other with probability G(|X1(t) − X2(t)|). Upon

influence, their opinions are updated as, for i = 1, 2,

Xi(t+ 1) =
X1(t) +X2(t)

2
+ ni(t)

and when they are not influenced, the opinions evolve as, for

i = 1, 2,

Xi(t+ 1) = Xi(t) + ni(t).

Their opinion difference Y (t) := X1(t) − X2(t) is a

discrete-time stochastic process and its evolution can be writ-

ten as: given Y (t) = y, Y (t + 1) = ñ(t) with probability

G(|y|) and with probability 1−G(|y|),

Y (t+ 1) = Y (t) + ñ(t),

where ñ(t) = n1(t)− n2(t) is the difference of two indepen-

dent zero mean i.i.d. noise processes. We assume that ñ(t) has

a symmetric distribution about its mean.

It was shown in [15] that the opinion difference Y (t)
reaches a stationary distribution, i.e., the SBC dynamics is

stable, if for some δ > 0, G(x) & 1
x2−δ , where the notation

f(x) & g(x) means lim infx→∞
f(x)
g(x) > 0. It was also

shown that the dynamics is not stable if for some δ > 0,
1

x2+δ & G(x).
In this paper, our main result is a bound on the tail

probability of a stable two-agent dynamics at a finite time.

We establish the bound for the class of sub-Gaussian i.i.d.

noise processes.

Definition 1 (Sub-Gaussian Random Variable [16, Sec. 2.3]).

A random variable X with E[X ] = 0 is sub-Gaussian with

variance parameter σ2, denoted by X ∈ SG(σ2), if ∀λ ∈ R,

E[exp (λX)] ≤ exp
(λ2σ2

2

)

.

The main result of this paper can be presented as the

following simple statement.

Proposition 1. For a two-agent stochastic bounded confidence

dynamics with G(x) & 1
x2−δ for some δ > 0 and i.i.d. ñ(t) ∈

SG(σ2) for some finite σ,

P0(|Y (t)| ≥ c t
1
2
−β) ≤ 4c1t

2 exp (−c2t
δ
6
− 2β

3 )

for β < δ
4 and positive (independent of t) constants c, c1

and c2. Here, P0(·) corresponds to the conditional probability

given that the initial difference Y (0) = 0.

On the other hand, for a two-agent stochastic bounded

confidence dynamics with G(x) & 1
x1−δ and β < δ

2 ,

P0(|Y (t)| ≥ c t
1
2
−β) ≤ 4c1t exp (−c2t

δ
2
−β).

Consider the process S(t) =
∑t

τ=1 n
(b)(τ), sum of i.i.d.

bounded noise n(b)(τ). We know that for any ǫ > 0 and c > 0
[16] ,

P(|S(t)| ≥ c t
1
2
−ǫ) = 1− o(1).

Thus, the first and obvious implication of Proposition 1 is

that the opinion difference in a stable dynamics concentrates

around 0 and the concentration is much stronger than that of

the sum of i.i.d. bounded noise.

A direct corollary of Proposition 1 is that, for some a, b > 0,

P0(

∞
⋃

τ=t

{|Y (τ)| ≥ c τ
1
2
−β}) ≤ at2 exp(−bt

δ
6
− 2β

3 ),

which follows using union bound. This means that the proba-

bility of the event that |Y (τ)| does not cross τ
1
2
−β after τ = t

approaches 1 fast as t → ∞. This, in turn, implies that Y (t)
almost surely remains within an envelope of the shape t

1
2
−β

for β > 0.

The opinion difference process Y (t) is a Markov pro-

cess [15]. A high probability bound of the above kind is

not uncommon for well behaved Markov processes. In fact,

Markov chains with fast decaying stationary distribution would

generally result in such bounds. However, we note that Y (t) is

structurally quite different from the Markov chains observed

in applications like queuing systems and population dynamics.

The Markov process Y (t) lies in the class of asymptotically

drift zero Markov processes, i.e., its expected drift at Y (t) = y

tends to zero as |y| → ∞. This is because the probability

of influence decays with increasing opinion difference. Note

that even the stable dynamics have asymptotically zero drift.

Furthermore, unlike queuing processes, |Y (t)| has unbounded

jumps. Drift zero Markov processes, as well as Markov pro-

cesses with unbounded jumps, are uncommon among popular

Markov chains seen in the area of information networks.

Though the phenomenon of zero drift is in direct opposition

to strong concentration, unbounded jumps towards zero are

conducive to concentration. However, the jumps are prob-

abilistic and the probability decays with increasing opinion

difference. In that sense, it is not clear whether Y (t) should

have a strong concentration around zero or not. Thus, it can

be said that Proposition 1 settles this interesting dilemma

affirmatively.

IV. PROOF OUTLINE

In this section, we provide intuition behind the proof tech-

niques and outline the proof of Proposition 1. We start with a

relatively simpler case of bounded ñ(t) and discuss the basics

of our proof technique in this context. Then, we extend that

proof technique to sub-Gaussian noise in Proposition 1.

A. Bounded Noise: A Useful First Step

As discussed above, the opinion difference process Y (t) is a

Markov chain [15] with unbounded state-dependent jumps and

asymptotically zero drift. As a result, its analysis is intricate

than the usual Markov chains [15]. So, towards proving the

main result in Proposition 1, as a first step, we consider a

relatively simpler setting: ñ(t) is bounded, i.e., it has a support

[−D,D] for some D > 0 and G(x) & 1
|x|1−δ .

Proposition 2. Consider a two-agent stable dynamics with

G(x) & 1
|x|1−δ for some δ > 0, and bounded noise model



with the assumed characteristics. Let k = c t1/2−β for some

β < δ
2 and c > 0. Then, for c1, c2 > 0,

P0(|Y (t)| ≥ k) ≤ c1t exp (−c2t
δ
2
−β).

The above result is a direct consequence of the following

theorem, and as we discuss later, the derivation of which

provides a foundation for the more general case considered

in Proposition 1. In the rest of this paper, O represents the

big-O notation.

Theorem 1. Let k = c t1/2−β for some β > 0 and c > 0.

For a two-agent stable dynamics with G(x) & 1
|x|1−δ for some

δ > 0, and bounded noise model with the assumed character-

istics, there exists a parameter regime, β < δ
2 , for which the

tail probability of opinion difference decays exponentially with

time t. That is, for λ = O(t
δ
2
− 1

2 ), α = O(tδ−1), γ(λ) = O(1),

P0(|Y (t)| ≥ k)) ≤ 2
(γ(λ)

α
+ 1

)

exp (−λk).

Proof of this result is presented in Appendix A. Let E0[.]
represent E[.|Y (0) = 0]. The main part of the proof involves

obtaining a suitable upper-bound on E0[e
λY (t)], which is done

in three main steps.

First, for any t ≥ 0, obtain an upper-bound on E0[e
λY (t+1)]

in terms of E0[e
λY (t)], E[eλñ(t)] and G(|Y (t)|):

E0[e
λY (t+1)] ≤ E[eλñ(t)]

(

E0[e
λY (t)(1−G(|Y (t)|))] + 1

)

.

Second, note that as the noise is bounded, |Y (τ)| ≤ Dτ for

any τ . Using this fact along with the recursive relation, for any

t > 0, we obtain a bound on E0[e
λY (t)] as sum of products

of the moment generating function of noise at λ, Mñ(λ), and

{G(Di) : 0 ≤ i ≤ t}:

E0[e
λY (t)] ≤ Mñ(λ) +

t−1
∏

i=0

Mñ(λ)(1 −G(Di))

+

t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(D(t − 1− j)).

Third, by using Hoeffding’s lemma for the moment gener-

ating function of noise, Mñ(λ), and by restricting λ to o(1),
we obtain the following bound on E0[e

λY (t+1)] in terms of

sum of products involving only λ and G(Dt):

γ(λ)

t−1
∑

i=0

[

γ(λ)(1 −G(Dt))
]i

+
[

γ(λ)(1 −G(Dt))
]t

.

Finally, by the use of the Chernoff bound and a suitable

choice of λ, the bound in Theorem 1 follows. Please see

Appendix A for a detailed proof.

The above proof technique has an interesting aspect to it.

It starts with an initial weak bound on |Y (t)| and refines it

to a much stronger bound. This is also the case in the proof

of Proposition 1. However, in the latter case, the initial weak

bound is tighter and hence, so is the final bound. As a result,

the main result applies to all influence functions for which the

two-agent SBC dynamics are stable.

B. Extending to Sub-Gaussian Noise

Proposition 1 is a consequence of the following more gen-

eral result. Define an event At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ dτ} where

h(t) is order-wise smaller than t. Recall that k = c t1/2−β for

some β > 0 and c > 0.

Theorem 2. Consider a two-agent stable dynamics with

G(x) & 1
|x|2−δ for some δ > 0, and sub-Gaussian noise model

with the assumed characteristics. Then, with dτ = D τ
1
2
+β′

for some β′ > 0, there exists a parameter regime, β < δ
4 ,

for which the tail probability of opinion difference decays

exponentially with time t. That is, for c′ > 0, γ(λ) =
O(1), λ = O(tk

′( δ
2
−1)), α = O(tk

′(δ−2)) where k′ = 1
2 + β′,

P0(|Y (t)| ≥ k|Y (0) = 0) ≤ 2(t− h(t)) exp (−c′h(t)2β
′

)

+ 2
[

exp
(λ2σ2h(t)

2

)

+
γ(λ)

α

]

exp (−λk).

The first part of proposition 1 follows from Theorem 2 for

an appropriate choice of h(t) = tζ with ζ < 1 − δ
2 and β′ ∈

(

δ
4
−β

3− 3δ
2

,
δ
4
−β

1− δ
2

)

. The latter part of proposition 1 follows from a

similar analysis with dτ = Dτ .

Proof of Theorem 2 builds on the three step approach

discussed in Sec. IV-A. However, proof technique for bounded

noise cannot be directly extended to sub-Gaussian noise. An

important ingredient in the proof for the bounded noise case

was the bound on G(|Y (t)|) in the second step, which used

the fact that |Y (τ)| ≤ Dτ for any τ . Clearly, this is not true

when the noise is sub-Gaussian. We circumvent this issue by

introducing a high probability bound on |Y (t)| instead of a

deterministic bound, and by adapting the subsequent proof

steps and the final step involving the Chernoff bound according

to that high probability bound.

We first discuss the final step involving the Chernoff bound

since that would place the changes we make to the three

preceding steps in the proof of Theorem 1 in the right

perspective.

In the proof of Theorem 1, the natural Chernoff bound is

P0(Y (t) ≥ k) ≤ E0[e
λY (t)] exp (−λk).

In the current setting, we adopt the following useful modi-

fication.

P0(Y (t) ≥ k|At−1) ≤ E0[e
λY (t)|At−1] exp (−λk)

P0(Y (t) ≥ k) ≤ P0(Y (t) ≥ k|At−1) + 1− P0(At−1),
(1)

where, At−1 is an event defined in terms of {Y (τ) : 0 ≤ τ ≤
t− 1}. The choice of the event At is dictated by the fact that

|Y (t)| should be bounded on At with high probability and

1− P0(At−1) should be rapidly approaching 0 as t → ∞.

Note that, clearly, |Y (t)| is stochastically smaller than

the absolute value of the sum of i.i.d. sub-Gaussian noise

|
∑t

τ=1 ñ(τ)|. Thus, P0(|Y (t)| ≥ D t
1
2
+β′

) is no more than

P(|

t
∑

τ=1

ñ(τ)| ≥ D t
1
2
+β′

) ≤ 2 exp

(

−
D2

2σ2
t2β

′

)

,



which fast approaches 0 as t → ∞. Here, the bound on

P(|
∑t

τ=1 n(τ)| ≥ D t
1
2
+β′

) follows from the concentration

inequality for the sum of i.i.d. sub-Gaussian random variables.

Based on the above observations, while keeping the adap-

tation of the final step involving the Chernoff bound in mind,

we adapt the three main steps from the proof of Theorem 1

as follows.

First, define At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ D τ
1
2
+β′

} and obtain

an upper-bound on E0[e
λY (t+1)|At] in terms of E0[e

λY (t)|At],
E[eλñ(t)] and G(|Y (t)|). Then, using the fact that At imposes

a symmetric constraint on Y (t) and Y (t) has a symmetric

distribution, we show that E0[e
λY (t)|At] ≤ E0[e

λY (t)|At−1].
This gives a recursive upper-bound on E0[e

λY (t+1)|At] in

terms of E0[e
λY (t)|At−1], E[e

λñ(t)] and G(|Y (t)|).
Second, we use the fact that |Y (t)| ≤ D t

1
2
+β′

on the

event At to obtain a bound on E0[e
λY (t)|At−1] as sum of

products of the moment generating function of noise at λ and

{G(D i
1
2
+β′

) : 0 ≤ i ≤ t}.

Third, using the sub-Gaussian bound on the moment gen-

erating function of noise and by restricting λ to o(1), we

obtain a bound on E0[e
λY (t)|At−1] in terms of sum of products

involving only λ and G(D t
1
2
+β′

).
Finally, upper-bound on the probability of At is obtained

using sub-Gaussian concentration and all the bounds are

plugged into (1).

A detailed proof that essentially formalizes the above steps

is presented in Appendix.

The bound in Proposition 1 applies to the whole range

of influence functions for which dynamics is stable. On the

other hand, the bound in Proposition 2 applies to influence

functions satisfying G(x) & 1
x1−δ . The main reason behind the

improvement from Proposition 2 to Proposition 1 is the change

in the second step of the proof of Theorem 1. In the proof

for the sub-Gaussian case, the initial bound on |Y (t)| in the

second step of the proof of Theorem 2, though probabilistic,

is a significantly tighter bound, which results in a much better

final bound.

V. CONCLUDING REMARKS

For a stable stochastic bounded confidence opinion dynam-

ics of two agents, we obtained a high probability bound on the

opinion difference at a finite time. Our proof technique is based

on bounding the conditional moment generating function of

the opinion difference on a high probability subset of the

sample space and adapting the Chernoff bound accordingly.

In future, we look to build on the insights obtained here to

address multi-agent dynamics on a social graph.
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APPENDIX

A. Proof of Theorem 1

Assume that ñ(t) is bounded in [−D,D]. Let Mñ(λ) denote

its moment generating function at λ. By using Chernoff bound,

for λ > 0,

P0(|Y (t)| ≥ k) = 2P0(Y (t) ≥ k) ≤ 2E0[e
λY (t)] exp (−λk).

(2)

We now focus on the expectation term in (2). By the law of

iterated expectations,

E0[e
λY (t+1)] = E0[E[e

λY (t+1)|Y (t)]]

= E0[e
λ(Y (t)+ñ(t))(1−G(|Y (t)|) + eλñ(t)G(|Y (t)|)].

https://www.sciencedirect.com/science/article/pii/S006526010860341X
http://www.jstor.org/stable/2285509
http://dx.doi.org/10.1287/moor.1120.0570
https://doi.org/10.1145/2538508
https://doi.org/10.1177/0022002797041002001
https://ideas.repec.org/a/jas/jasssj/2002-5-2.html
http://dx.doi.org/10.1142/S0129183120501016


For any t > 0, ñ(t) and Y (t) are independent. Therefore,

E0[e
λY (t+1)] = E[eλñ(t)]E0[e

λY (t)(1−G(|Y (t)|) +G(|Y (t)|)]

≤ Mñ(λ)
(

E0[e
λY (t)(1 −G(|Y (t)|))] + 1

)

.

As G(.) is decreasing in its argument, in time window [0, t],
G(|Y (t)|) ≥ G(Dt) for any t. We have

E0[e
λY (t+1)] ≤ Mñ(λ)

(

E0[e
λY (t)](1−G(Dt)) + 1

)

.

This recursive inequality can be expanded to obtain

E0[e
λY (t)] ≤ Mñ(λ)

+
t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(D(t− 1− j))

+
t−1
∏

i=0

Mñ(λ)(1 −G(Di)). (3)

We exploit the observation that G(.) is decreasing and simplify

the RHS of (3) term by term. Focusing on the second term,

t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1 −G(D(t− 1− j))

≤

t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(Dt))

=

t−2
∑

i=0

Mñ(λ)
t−i(1−G(Dt))t−i−1

= Mñ(λ)

t−1
∑

i=1

[

Mñ(λ)(1 −G(Dt))
]i

.

Now, the third term:

t−1
∏

i=0

Mñ(λ)(1 −G(Di)) ≤ Mñ(λ)
t
t−1
∏

i=0

(1−G(Dt))

=
[

Mñ(λ)(1 −G(Dt))
]t

.

Putting all these terms together in (3), we get

E0[e
λY (t)] ≤ Mñ(λ)

t−1
∑

i=0

[

Mñ(λ)(1 −G(Dt))
]i

+
[

Mñ(λ)(1 −G(Dt))
]t

. (4)

By Hoeffding’s lemma,

Mñ(λ) ≤ exp
(λ2D2

2

)

.

We assume that λ −→ 0 as t −→ ∞. That is, for large t,

exp (λ
2D2

2 ) = 1 + λ2D2

2 + o(λ4) where lim
t−→∞

o(λ4)
λ = 0. Let

γ(λ) = 1 + λ2D2

2 + o(λ4). From (4),

E0[e
λY (t)] ≤ γ(λ)

t−1
∑

i=0

[

γ(λ)(1 −G(Dt))
]i

+
[

γ(λ)(1 −G(Dt))
]t

. (5)

Therefore,

P0(|Y (t)| ≥ k) ≤ 2
(

γ(λ)
t−1
∑

i=0

[

γ(λ)(1−G(Dt))
]i

+
[

γ(λ)(1 −G(Dt))
]t)

exp (−λk). (6)

We observe from (6) that, as λ increases, the exponential

term decreases, whereas γ(λ) increases. One way to choose an

optimal λ for a better bound is such that γ(λ)(1−G(Dt)) < 1.

Based on the stability criterion, we consider G(x) &
1

|x|1−δ , i.e., for B, δ > 0, G(|Y (t)|) = B
1+|Y (t)|1−δ . For

some α > 0, let (1 + λ2D2

2 )(1 − G(Dt)) = 1 − α

which gives λ =
√
2

D

√

B−α(1+(Dt)1−δ)
(1+(Dt)1−δ−B)

. For λ to be real,

α ≤ B
1+(Dt)1−δ . Pick α = B

2(1+(Dt)1−δ)
which in turn gives

λ = 1
D

√

B
(1+(Dt)1−δ−B) . From (5), with α = O(tδ−1),

E0[e
λY (t)] ≤ γ(λ)

1− (1 − α)t

α
+ 1 ≤

γ(λ)

α
+ 1.

Therefore,

P0(|Y (t)| ≥ k) ≤ 2
(γ(λ)

α
+ 1

)

exp (−λk). (7)

We have k = O(t
1
2
−β) for some β > 0. In (7), as λ =

O(t
δ
2
− 1

2 ), the bound is useful asymptotically only for β < δ
2 ,

say β = δ
3 ,

δ
4 and so on. That is, for β < δ

2 , (7) not only

verifies with the stability results in the literature but also proves

our intuition for k. This technique cannot be extended to the

case where G(x) & 1
|x|2−δ which is quite evident from its

available choices of β.

B. Proof of theorem 2

We use the following lemmas 1 and 2 to prove theorem

2. Proof of the lemmas are detailed in sections C and D

respectively.

Recall the event At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ dτ} where h(t) =

tζ , 0 < ζ < 1, and dτ = D τ
1
2
+β′

for some β′ > 0.

Lemma 1. With G(x) & 1
|x|2−δ for some δ > 0,

P0(|Y (t)| ≥ k|At−1)

≤ 2
[

exp
(λ2σ2h(t)

2

)

+
γ(λ)

α

]

exp (−λk),

where γ(λ) = O(1), λ = O(tk
′( δ

2
−1)), α = O(tk

′(δ−2)) with

k′ = 1
2 + β′.

Lemma 2. Recall that dτ = D τ
1
2
+β′

for some β′ > 0 and

D > 0. Then, for c′ > 0,

P0(A
C
t−1) ≤ 2(t− h(t)) exp (−c′h(t)2β

′

).

By law of total probability,

P0(|Y (t)| ≥ k) = P0(|Y (t)| ≥ k|At−1)P0(At−1)+

P0(|Y (t)| ≥ k|AC
t−1)P0(A

C
t−1)

≤ P0(|Y (t)| ≥ k|At−1) + P0(A
C
t−1).



From lemma 1 and lemma 2,

P0(|Y (t)| ≥ k) ≤ 2(t− h(t)) exp (−c′h(t)2β
′

)

+ 2
(γ(λ)

α
+ exp

(λ2σ2h(t)

2

))

exp (−λk).

(8)

C. Proof of Lemma 1

The below mentioned claims 1 and 2 are useful to prove lemma

1.

Claim 1. Recall the event At. Then, for λ > 0,

E0[exp (λY (t))|At] ≤ E0[exp (λY (t))|At−1].

Proof of Claim 1. Let the conditional probability of Y (t)
given an arbitrary event A be denoted as fY (t)|A(.). Note that

the constraints {|Y (τ)| ≤ dτ} are symmetric for all τ . With

Y (0) = 0, symmetric noise model and symmetric constraints,

we observe that fY (t)|At
(.) and fY (t)|At−1

(.) are symmetric

about zero. Hence,

E0[exp (λY (t))|At−1] =

∫ ∞

0

exp (λy)fY (t)|At−1
(y)dy

+

∫ ∞

0

exp (−λy)fY (t)|At−1
(y)dy

= 2

∫ ∞

0

cosh (λy)fY (t)|At−1
(y)dy.

(9)

Similarly,

E0[exp (λY (t))|At] = 2

∫ ∞

0

cosh (λy)fY (t)|At
(y)dy. (10)

Note that cosh (λy) increases with y for any λ > 0 and

fY (t)|At
(.) is a restriction of fY (t)|At−1

(.). Therefore, from

(9) and (10), we have the result.

Claim 2. Let {Y ′(t), t ≥ 0} be the process of opinion

difference for a stable two-agent system with G = 0. That

is,

Y ′(t+ 1) = Y ′(t) + ñ(t).

Then, for any t ≥ 0,

E0[exp (λY (t))] ≤ E0[exp (λY
′(t))] ≤ exp

(λ2σ2t

2

)

.

The proof of claim 2 uses the notion of stochastic ordering

and so, we overview it below. For a random variable X , let FX

and F̄X represent its distribution function and tail distribution

respectively, i.e. for any x ∈ R,

FX(x) = P(X ≤ x),

F̄X(x) = P(X > x).

Definition 2 (Stochastic Ordering [17, Sec. 1.2]). Given two

random variables X and Y taking values in R, we denote

X ≤st Y if

FX(l) ≥ FY (l) ∀l ∈ R

or equivalently, if

F̄X(l) ≤ F̄Y (l) ∀l ∈ R.

Also, if X ≤st Y , then E[f(X)] ≤ E[f(Y )] for all non

decreasing functions f for which the expectations exist.

Proof of Claim 2. Clearly, Y (t) ≤st Y ′(t). As exponential

function is non decreasing for λ > 0, by definition 2,

E0[exp (λY (t))] ≤ E0[exp (λY
′(t))]. Since Y (0) = 0,

Y ′(t) =
t−1
∑

τ=0

ñ(τ).

We also assumed ñ(t) ∈ SG(σ2) for all t. Therefore, Y ′(t) ∈
SG(σ2t). That is,

E0[expλY
′(t)] = E0[exp

(

λ

t−1
∑

τ=0

ñ(τ)
)

] ≤ exp
(λ2σ2t

2

)

.

Along with these claims, we use the proof technique of

theorem 1 to bound the condition probability P0(|Y (t)| ≥
k|At−1). By the law of iterated expectations,

E0[e
λY (t+1)] = E0[E[e

λY (t+1)|Y (t)]]

= Mñ(λ)E0[e
λY (t)(1−G(|Y (t)|)) +G(|Y (t)|)].

(11)

Now, from (11),

E0[e
λY (t+1)|At] = Mñ(λ)E0[e

λY (t)(1−G(|Y (t)|))

+G(|Y (t)|)|At]

≤ Mñ(λ)E0[e
λY (t)(1−G(|Y (t)|)) + 1|At]

(a)

≤ Mñ(λ)(E0[e
λY (t)|At](1−G(dt)) + 1)

(b)

≤ Mñ(λ)(E0[e
λY (t)|At−1](1 −G(dt)) + 1),

where inequality (a) holds as G(.) is decreasing in its argument

and inequality (b) follows claim 1. So, we have a recursive

inequality:

E0[e
λY (t+1)|At] ≤ Mñ(λ)(1 + E0[e

λY (t)|At−1](1−G(dt))),

which upon expansion gives

E0[e
λY (t)|At−1] ≤ Mñ(λ)

+
t−2
∑

i=h(t)

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(dt−1−j))

+ E0[exp (λY (h(t))]

t−1
∏

i=h(t)

Mñ(λ)(1 −G(di)).

(12)



Simplifying the second term in (12),

t−2
∑

i=h(t)

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(dt−1−j))

≤

t−2
∑

i=h(t)

Mñ(λ)
t−i

t−2−i
∏

j=0

(1 −G(dt))

=

t−2
∑

i=h(t)

Mñ(λ)
t−i(1−G(dt))

t−i−1

= Mñ(λ)
t−2
∑

i=h(t)

[

Mñ(λ)(1 −G(dt))
]t−i−1

= Mñ(λ)

t−1−h(t)
∑

i=1

[

Mñ(λ)(1 −G(dt))
]i

.

Simplifying the product in the third term of (12),

t−1
∏

i=h(t)

Mñ(λ)(1 −G(di)) ≤

t−1
∏

i=h(t)

Mñ(λ)(1 −G(dt))

=
[

Mñ(λ)(1 −G(dt))
]t−h(t)

.

Using claim 2, the third term in (12) is now upper bounded

by exp
(

λ2σ2h(t)
2

)[

Mñ(λ)(1−G(dt))
]t−h(t)

. Putting all these

simplified terms together in (12), we get

E0[e
λY (t)|At−1] ≤ Mñ(λ)

t−1−h(t)
∑

i=0

[

Mñ(λ)(1 −G(dt))
]i

+ exp
(λ2σ2h(t)

2

)[

Mñ(λ)(1 −G(dt))
]t−h(t)

.

(13)

Since ñ(t) ∈ SG(σ2), Mñ(λ) ≤ exp
(

λ2σ2

2

)

. We assume that

λ −→ 0 as t −→ ∞. That is, for large t, exp (λ
2σ2

2 ) = 1+ λ2σ2

2 +

o(λ4) where lim
t−→∞

o(λ4)
λ = 0. Let γ(λ) = 1 + λ2σ2

2 + o(λ4).

Now, (13) gives

E0[e
λY (t)|At−1] ≤ γ(λ)

t−1−h(t)
∑

i=0

[

γ(λ)(1 −G(dt))
]i

+ exp
(λ2σ2h(t)

2

)[

γ(λ)(1 −G(dt))
]t−h(t)

. (14)

Note that Y (t) is symmetric about zero given At−1. By using

Chernoff bound,

P0(|Y (t)| ≥ k|At−1) = 2P0(Y (t) ≥ k|At−1)

≤ 2E0[e
λY (t)|At−1] exp (−λk).

Therefore,

P0(|Y (t)| ≥ k|At−1) ≤ 2
(

γ(λ)

t−1−h(t)
∑

i=0

[

γ(λ)(1 −G(dt))
]i

+exp
(λ2σ2h(t)

2

)[

γ(λ)(1 −G(dt))
]t−h(t))

exp (−λk).

(15)

We choose an optimal λ for a better bound in (15) by

setting γ(λ)(1 − G(dt)) < 1. That is, for some α > 0,

let (1 + λ2σ2

2 )(1 − G(dt)) = 1 − α and with G(|Y (t)|) =

B
1+|Y (t)|2−δ , B, δ > 0, we get λ =

√
2

σ

√

B−α(1+d2−δ
t )

(1+d2−δ
t −B)

. For λ

to be real, α ≤ B
1+d2−δ

t

. Choose α = B
2(1+d2−δ

t )
and we have

λ = 1
σ

√

B

(1+d2−δ
t −B)

. Taking dt = Dt
1
2
+β′

for some β′ > 0

gives α = O(tk
′(δ−2)) where k′ = 1

2 + β′. From (14),

E0[e
λY (t)|At−1] ≤ γ(λ)

1 − (1− α)t−h(t)

α
+ exp

(λ2σ2h(t)

2

)

≤
γ(λ)

α
+ exp

(λ2σ2h(t)

2

)

,

which gives the required tail probability,

P0(|Y (t)| ≥ k|At−1) ≤ 2
(γ(λ)

α
+ exp

(λ2σ2h(t)

2

))

exp (−λk).

From the final inequality, we observe that, by appropriately

choosing β′ <
δ
4
−β

1− δ
2

, there is a parameter regime, β < δ
4

and ζ < 1 − δ
2 , such that the tail probability of the opinion

difference decays to zero exponentially.

D. Proof of Lemma 2

We have At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ dτ} where h(t) = tζ , 0 <

ζ < 1. Here, we assume that dτ = D τ
1
2
+β′

for some β′ > 0
and D > 0.

P0(A
C
t−1) = P0

[(

t−1
⋂

τ=h(t)

{|Y (τ)| ≤ dτ}
)C]

(a)

= P0

[

t−1
⋃

τ=h(t)

{|Y (τ)| > dτ}
]

(b)

≤

t−1
∑

τ=h(t)

P0(|Y (τ)| > dτ )

(c)

≤

t−1
∑

τ=h(t)

P0(|Y
′(τ)| > D τ

1
2
+β′

)

(d)

≤

t−1
∑

τ=h(t)

2 exp (−c′τ2β
′

) for some c′ > 0

≤

t−1
∑

τ=h(t)

2 exp (−c′h(t)2β
′

).

Therefore, we have

P0(A
C
t−1) ≤ 2(t− h(t)) exp (−c′h(t)2β

′

).

(a) and (b) follow De Morgan’s law and Boole’s inequality

(union bound) respectively. Recalling the characteristics of

{Y ′(t), t ≥ 0} as discussed in the proof of claim 2, we

have |Y (t)| ≤st |Y ′(t)| and Y ′(t) ∈ SG(σ2t). Hence, the

inequalities (c) and (d).
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