
Social Optimal Freshness in Multi-Source, Multi-Channel Systems via MDP

Shiksha Singhal, Veeraruna Kavitha and Vidya Shankar
IEOR, Indian Institute of Technology Bombay, India

Abstract— Many systems necessitate frequent and consistent
updates of a specific information. Often this information is
updated regularly, where an old packet becomes completely
obsolete in the presence of a new packet. In this context, we
consider a system with multiple sources, each equipped with a
storage buffer of size one, communicating to a common destina-
tion via d orthogonal channels. In each slot, the packets arrive
at each source with certain probability and occupy the buffer
(by discarding the old packet if any), and each transfer (to the
destination) is successful with certain other probability. Thus
in any slot, there are two (Age of Information) AoI-measures
for each source: one corresponding to the information at the
source itself and the other corresponding to the information of
the same source available at the destination; some sources may
not even have the packet to transmit.

The aim of the controller at the destination is to maintain
the freshness of information of all the sources, to the best
extent possible – it aims to design an optimal scheduling policy
that assigns in each slot, a subset of sources with packets
(at maximum d) for transmission. This is achieved using an
appropriate Markov Decision Process (MDP) framework, where
the objective function is the sum of Average AoIs (AAoI) of all
the sources. We derive a very simple stationary policy that is
ϵ-optimal – in any slot, order the sources with packets in the
decreasing order of the differences in AoI at the destination
and the source and choose the top sources for transmission.
With moderate number of sources (< 30), the AAoI reduces
in the range of 30− 90%.

I. INTRODUCTION

With the advent of new technology and next generation
networks that support smart applications, the need to continu-
ously update information at centralised location from various
sources becomes increasingly imperative; for example, Inter-
net of Things (IoT), smart homes, environmental monitoring
systems, on-the-road communication retrieval systems etc.
The sources of information are required to transmit peri-
odic status updates to their intended destinations (see [1]-
[2]). A critical requirement for these services is ensuring
that the information provided by the sources remains up-
to-date at the destination, to the best extent possible; the
quality of freshness of information is measured using “age
of information” (AoI) which is the time elapsed since the
time of generation of the latest available information [3].
However, this task is constrained by limited resources and the
requirement coming from multiple sources. Thus we consider
designing an optimal scheduling policy that optimises the
sum of average age of information (AAoI) of all the sources.

Further, often in the systems that require regular updates of
the same information, the old packet becomes obsolete once
a new packet is available ([4]). Thus it is more appropriate
to consider systems with at maximum one buffer storage,
leading to lossy systems.

Motivated by the above factors, we consider a time-slotted
system consisting of multiple sources (with single storage)
that communicate to a common destination via multiple
orthogonal channels. In each slot, the packets arrive at each
source with certain probability, and each transfer (to the
destination) is successful with certain other probability. Thus
in any slot, there are two AoI-measures for each source: one
corresponding to the information at the source itself and the
other corresponding to the information of the same source
available at the destination; some sources may not even have
the packet to transmit (this happens when a source does not
receive a new packet after its last successful transfer). At
any time slot, these two AoI-measures corresponding to all
the sources represent the state of the system. The goal is
to design an optimal scheduling policy which determines
the subset of sources for transfer in any time slot and
which minimises the sum of the AAoI (at the destination)
corresponding to all the sources.
Related work: The problem of minimising the age of
information in such systems has been studied in [5]-[6] which
focus on push-based communication where the sources de-
cide when they want to send an update to the destination,
and hence answer questions of optimal packet generation
times. On the other hand, [7],[8],[9] and [10] focus on
systems which implement pull-based communication, where
the destination asks for data from the sources. Ours is a pull-
based communication but with random packet arrivals to the
sources and with some sources not having packets.

In [7], authors consider multiple independent sources
providing status updates to a single destination via multiple
orthogonal channels. The question here is similar: one needs
to optimally choose a subset of sources to transmit, in each
time slot. They assume the knowledge of (binary) channel
conditions and choose for each channel one source among
those that can communicate with the given channel in the
given time slot. Further the sources always have information
to transmit. In contrast, in our work the random channel
conditions are unknown and we have more uncertainty in
terms of packet availability at sources — it is not realistic
to assume that the measurements are always available in all
the time slots (measurement errors, transmission problems
from the point of generation to the source itself, etc.), e.g.,
as in stock updates, sensor measurement, IoT, etc., which
leads to a possibly stale (one or more slot old information)
information even at the sources. Thus the policies in [7]
consider only the AoIs at destination while we consider both
sets of ages, including the ages at the sources.

The authors in [10] and [9] consider an infinite time
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horizon problem and find optimal stationary randomised
policies that are blind to the state of the system, i.e., without
taking into account the ages of the packets at sources and the
queue lengths (systems are not lossy) etc. The former work
does not even consider the age of information at destination,
while the latter work assumes perfect transmissions, i.e., the
transmission probability equals one.

The study in [8] considers a framed-slot structure where
the packets are generated in the beginning of each frame for
each source and the scheduling policy allocates at maximum
one source in each slot of the frame, based on the success of
the previous transmission attempts of the same frame. Hence
like in [7], the study in [8] also assumes the availability of
packet at each source and in each frame and their policy is
also similar; in each slot of the frame, select the source with
highest age at destination and switching to a new source only
when the packet is transmitted in the previous slot. This paper
considers many more interesting aspects however, does not
consider uncertainty related to packet availability at sources.

In contrast to the above strands of literature, we consider
a system with unreliable and unknown channels (scheduling
is blind to the channel conditions and hence scheduled trans-
mission is successful with probability p) and uncertainty in
packet availability at sources. We however observe the AoIs
at all the sources and destination for optimal source selection.
Towards this, we derive an ϵ-optimal scheduling policy and
compare its performance with two policies inspired by the
existing policies in literature; as already mentioned, none of
the existing algorithms work under our assumptions (mainly
uncertain packet availability at sources) and hence, we adapt
them to our scenario and then compare with the proposed
policy. In particular, we compare the proposed policy with:
i) round-robin (RR) policy which chooses a subset of sources
one after the other irrespective of the instantaneous ages
and, ii) a partial information (PI) policy that chooses a
subset of sources for transmission in any slot only based
on instantaneous ages at the destination.
Contributions: The main contributions of this work are:
(a) We formulate the problem as an appropriate Markov De-

cision Process (MDP) and derive an ϵ-optimal policy. Its
performance approaches the performance of the optimal
policy as p2 reduces to zero (Theorem 1). The policy
is defined by a simple stationary rule, i.e., in any slot,
order the sources with packets in the decreasing order of
the differences in AoI at the destination and the source
and choose the top sources for transmission,

(b) We demonstrate significant improvement (even up to
90%) with the moderate number of sources (Section
V). More interestingly, the performance improvement is
significant for all values of p (Figures 2 and 4) and,

(c) The performance of our policy starts matching with the
existing policies when the number of sources is large
(approximately > 100).

II. PROBLEM DEFINITION

Consider a system with a set N = {1, · · · , N} of N
sources, sending regular updates (packets) of a certain infor-

mation to a common destination via d orthogonal channels.
We use a time-slotted system with T number of slots, where
in each time slot of length τ , each channel can be used by at
most one source to transfer its packet to the destination. In
every time slot, the packets arrive at any source n according
to a Bernoulli process with probability qn and a successful
packet transfer to the destination happens with probability
p for any source. All these events are independent of each
other. The packets are identical but the transfer times may
vary based on the random channel conditions – note here
that the packet transfer times are geometric with parameter
p for each channel. Each source has its own buffer with the
storage capacity of one. It is sufficient to consider storage
capacity of one at every source, as the old packet becomes
obsolete once a new packet arrives. Our focus in this work is
on measures related to the freshness of information available
at the destination related to all the sources. Towards this, we
measure the quality of information using a metric, called Age
of Information (AoI) [3].

Age of Information (AoI): The age (Hn) of information
of source n at destination and at time-slot t is defined as the
time elapsed since the last received packet at destination was
generated, i.e.,

Hn(t) := t− rn(t), (1)

where rn(t) is the time at which the last successfully received
packet (at destination) before time t, is generated at source
n.
Average Age of Information (AAoI): For any n ∈ N , it is
defined as below,

h̄n :=

∑T
t=1Hn(t)

T
, (2)

where T is the required time horizon. As already mentioned,
we consider freshness of information in a lossy system, and
our aim is to find an optimal source selection policy (for
transmission in each slot) which minimises the sum of AAoI
at the destination, from all the sources.

In this context, the state of the system at any time t can
be represented by X(t) = (G(t),H(t)) which is made up of
two vectors with H(t) = (H1(t), · · · , HN (t)) as defined in
(1) while G(t) = (G1(t), · · · , GN (t)) corresponds to the
age of information at all the sources (see Figure 1). For
example, if gn(t) = k then the latest packet waiting at source
n is generated in (t− k)th slot.

Time
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A
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𝝍

Fig. 1. Evolution of age at source and destination with time where blue
and orange rectangles represent packet arrival to source n and successful
packet transfer from source n to destination, respectively.



Another important point here is to observe that the old
waiting packet is replaced with the new packet, if there is
any arrival in any slot. Further, the age of any source n at
time t is replaced with symbol ψ, if it has no packet; this
can happen if its latest packet has been transmitted and there
was no new packet arrival after that. It is easy to see that
Gn < Hn whenever source n has a packet.

Note that the decision is simplified to selecting a subset of
sources at the beginning of each time slot, instead of having
to choose whether to continue with the current packet or
choose a new packet (from the same/different source) as
the transfer times are geometric and exhibit memory-less
property. We model this as a finite horizon Markov Decision
Process (MDP) whose ingredients we describe in the next
section.

The aim of this paper is to derive optimal source schedul-
ing policy which minimises the sum of the AAoI from all
the sources at the destination (see (2)), i.e.,

min
∑
n∈N

h̄n. (3)

III. MDP FORMULATION

In this section, we describe the MDP formulation and its
ingredients.
Decision Epochs: The beginning of each time slot is consid-
ered as a decision epoch. We have 1, · · · , T decision epochs
with T <∞.

States: As already defined, the state of the system at any time
t, X(t) = (G(t),H(t)) which contains AoIs at all sources
and destination at the beginning of time slot t. The state
space is,

X = {x = (g,h) : gi = ψ or gi < hi}.

Actions: The action at every decision epoch is to choose
a subset of sources a, whose packet is to transferred. Let
Nx :=

∑
n 1{gn ̸=ψ} be the number of sources that have

packets to transmit. Then, the state dependent action space,

Ax = 2Sx

Nd
x

with Sx := {n : gn ̸= ψ}, Nd
x := min{Nx, d}, (4)

where 2Sx

Nd
x

is a Nd
x sized subset of Sx, the set of sources with

packets that can be transmitted. There are some observations
related to this definition. Observe that there is only one action
and Ax = {Sx} for all the states with |Sx| = Nd

x ≤ d and
that no transmission is attempted if Nd

x = 0. Further, when
Nx > d, any action a ⊂ Sx with |a| = d. In other words,
we consider work conserving policies that facilitate transfer
of all the available packets, however obviously constrained
by capacity d.

Cost: Towards optimising (3), from (2) and (3), the appro-
priate instantaneous cost at time t when the state is x ∈ X
and action a ∈ Ax is chosen is given by,

c(x,a) = E

[
N∑
n=1

hn|x,a

]
for all a ∈ Ax and all x.

The above conditional expectation is the sum of N terms
each of which is area under the age curve corresponding to
one source (area under trapezium ABDE in Figure 1 is one
such area corresponding to source n) during a given time
slot. Thus,

c(x,a) =

N∑
n=1

(
hnτ + 0.5τ2

)
for all a ∈ Ax and all x.

Now optimising using the above instantaneous cost is equiv-
alent to optimising using instantaneous costs, which equals
c(x,a) =

∑N
n=1 hnτ for all a ∈ Ax and all x, as τ is an

arbitrary constant. Thus, we set

c(x,a) =

N∑
n=1

hn for all a ∈ Ax and all x. (5)

Transition probabilities: The system evolves to a new state
X ′ when action a ∈ Ax is chosen in state x ∈ X at any
decision epoch. This transition depends on the transfer status
(if any, i.e., if Nd

x > 0) and packet arrival status, both in
the previous slot. Let C ⊂ N be the set of sources which
generated new packets in the duration between previous and
current decision epoch. Let X(t−1) = x and A(t− 1) = a.

Now, if the packet of sources W ⊂ a is successfully
transferred then the state evolves as below: for any n,

H ′
n =

{
hn + 1 for all n /∈W,

gn + 1 else, i.e., if n ∈W.
(6)

G′
n =


gn + 1 for all n /∈ C and n /∈W,

0 for all n ∈ C,
ψ else, i.e., if n /∈ C and n ∈W.

(7)

Observe that the age of packet at source a, G′
a is set to ψ

when it does not receive a new packet, as the latest packet
with it is just transferred. The transition of the above type
(specified by W and C) happens with probability,

P(X(t) = X ′|x,a) = p|W |(1− p)|a|−|W |
∏

n∈N\C

(1− qn)
∏
n∈C

qn.

(8)
Thus with all the ingredients defined, the optimisation of

the term in (3) is equivalent to solving the following MDP
where,

V ∗(x) = min
π=(d1,··· ,dT−1)

Eπ,x

[
T∑
t=1

c(X(t),A(t))

]
.

IV. NEAR OPTIMAL POLICY

The aim of this section is to derive near optimal or ϵ-optimal
policy. It is well known in the MDP literature that the optimal
policy can be non-stationary (i.e., the decision rules are
different across time slots) for finite horizon problems [11].
However, interestingly our ϵ-optimal policy turns out to be
stationary. In particular, we consider the following special
stationary policy constructed using the differences between
AoIs at sources and destinations as defined below:



π∆ = (d∆1 , · · · , d∆T−1) where d∆t = d∆ for all t, and

d∆(x) = arg min
a∈Ax

Nd
x∑

i=1

(gai − hai),
(9)

as already explained (in Section III) there is only one action
when Nx ≤ d. Next, we present our main result which upper
bounds the performance of π∆ policy with respect to the
optimal value (proof in Appendix).

Theorem 1: There exists a sequence of non-negative func-
tions {Zt(x)} for each t ≤ T such that the stage-wise
optimal value function(s) {V ∗

t (x)} are related to the cor-
responding value function(s) {V ∆

t (x)} under policy π∆ of
(9) as below:

V ∆
t (x)− V ∗

t (x) = p · pdZt(x) for each t, x, with, (10)

pd := 1− (1− p)d = pCp, Cp =

(
d−1∑
l=0

(−1)l
(

d

l + 1

)
pl

)
.

Further there exist two constants {D1(t)} and {D2(t)}
independent of p such that,

|Zt(x)| ≤ D1(T − t)||x||∞ +D2(T − t) with (11)
||x||∞ := max

n∈N
{hn + 1}.

Remarks: From the above theorem (see (10)-(11)) the
difference,

V ∆(x)−V ∗(x) ≤ p ·pd (D2(1) + ||x||∞D1(1)) for each x,

where constants D1(1), D2(1) are independent of p. Thus
clearly as p → 0, we have p · pd = p2Cp → 0 and thus the
objective function V ∆(x) evaluated under stationary policy
π∆ of (9) approaches the value function V ∗(x). In fact this
approach is uniform in all x ∈ XB for any B < ∞, where
XB := {x : gn = ψ or gn < hn and hn ≤ B ∀ n}.

Thus π∆ is ϵ-optimal when initial condition belongs to
XB and when p

√
Cp <

√
ϵ/(D1(1)(B + 1) +D2(1)). This

establishes near-optimality of π∆ when p2 is sufficiently
small (observe Cp ≤ d for all p).

Observe that the above approximation is good as p2 → 0
and this already suggests that even for moderate p (and for
which p2 is negligible) one can have a good approximation.
In fact, more interestingly we observe via simulations in the
next section that the π∆ policy performs significantly well
even for values of p close to one, in comparison with the
policies known in literature.

V. SIMULATIONS

In this section, we compare the performance of our pro-
posed policy with the policies in the existing literature. To
the best of our knowledge, it appears that there is no work
in the literature that considers our scenario, i.e., unreliability
at packet generation and transfer; further the decision maker
does not have access to the channel conditions.

The authors in [7] consider generic binary channels (for
example, a kind of Markovian channel) but assume the

availability of the packets at all the sources, in each time slot;
they also assume the knowledge of the channel conditions
before taking a decision. Their policy is to select a subset of
sources (among the sources with good channel conditions)
with the highest AoIs at destination for transfer, in each time
slot.

On the other hand, [8] considers a framed slotted structure,
with each source having a packet at the beginning of the
frame. They propose a modified Robin Round (greedy) pol-
icy, which order the sources in the decreasing order of AoIs
at the destination in the first frame. Henceafter, they follow
the Round Robin policy, i.e., chooses sources one after the
order, with switching only once the packet is transferred.
The specific choice in the first frame and the Round Robin
henceafter ensures that the source selected in any time slot
is the one with the highest AoI at the destination.

We compare our ϵ-optimal policy (9) with the one obtained
by adapting the policies in [7] and [8] to our scenario, i.e.,
to the case with unreliable packet generation — basically, at
any time instance we choose a subset of sources based on
the order of the AoIs at the destination among the sources
with packets to transfer. Since this policy does not consider
the AoI at sources, we refer it as partial information (PI)
policy.

We also compare our policy (referred to as ϵ-O policy)
with a complete blind policy, which chooses sources for
transfer one after the other, irrespective of the AoIs and the
transfer status of the packets. We refer it as Round Robin
(RR) policy.

In Figures 2-3, we consider an example with packet arrival
probabilities qn = .5 for all sources n ∈ N and d = 1. We
consider comparison across different number of sources or
different values of transmission probability p, in this study.
One can make several observations as below,
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Fig. 2. Packet arrivals, qn = 0.5 ∀ n: Value function (on log scale)
in left sub-figure and percentage improvement in the right figure versus
transmission probability p with d = 1

(a) In Figure 2, we consider comparison across various p for
two different values of N , the solid lines are for N = 5,
while the dash lines are for N = 30. Different policies
are represented by different colours. It is easy to see
from the figures that the improvement in value function
as compared to the PI policy is almost negligible for
smaller values of p while it is large and up to 55% for
higher values of p. Further, even though for ϵ-O policy,
theoretical guarantees have been established for smaller
values of p, it still performs better than RR and PI for
higher values of p.
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Fig. 3. Packet arrivals, qn = 0.5 ∀ n: Value function (on log scale) in left
sub-figure and percentage improvement in the right figure versus number
of sources N with d = 1

(b) In Figure 3, we consider comparison across various
number of sources for two different values of p, the
solid lines are for p = 0.65, while the dash lines are
for p = 0.35. Different policies are again represented by
different colours.
Clearly, ϵ-O policy and PI policy outperforms the RR
policy (given by red curves); this is true even in Figure 2.
However, more interestingly, as the number of sources
increases, the performance of RR policy also approaches
the performance of the remaining two policies (one can
see the convergence towards the right of the Figure 3,
and the percentage improvement is less than 5%, in both
the cases, when the number of sources is near 100). In
fact, we observe this in many other examples. Thus one
can use this much simplified blind RR policy when the
number of sources is extremely large.

(c) In all the case studies, the ϵ-O policy outperforms the
other two. The percentage improvement over the partial
information or PI policy is up to 80% (higher when the
number of sources is small) and that against blind RR
policy is even higher.

Next, we consider an example with even rarer packet
arrivals, where qn = .1 for all n ∈ N in Figures 4-5.
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Fig. 4. Rare packet arrivals, qn = 0.1 ∀ n: Value function (on log
scale) in left sub-figure and percentage improvement in the right figure
versus transmission probability p with d = 1

In contrast to the previous example, we see even bigger
improvements for this rare arrival case study; one can an-
ticipate this as the AoIs at sources also convey significant
information in such cases and we managed to derive a simple
stationary policy that uses both sets of AoI; the increase in
the complexity is minimal (one needs to order according
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Fig. 5. Rare packet arrivals, qn = 0.1 ∀ n: Value function (on log
scale) in left sub-figure and percentage improvement in the right figure
versus number of sources N with d = 1

the differences in AoIs at the source and the destination
as compared to ordering according to AoIs just at the
destination), yet ϵ-O policy effectively provides significant
improvement.

Similar trends are observed for other case studies with
multiple channels (with d = 3) in Figures 6-9; now the
improvements are even higher, for example in the right sub-
figure of Figure 6 when p is close to 1 and the number of
sources N = 30, the improvement is up to 90%, even for the
case with reasonable packet arrival rates, i.e., with qn = .5.
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Fig. 6. Packet arrivals, qn = 0.5 ∀ n: Value function (on log scale)
in left sub-figure and percentage improvement in the right figure versus
transmission probability p with d = 3
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Fig. 7. Packet arrivals, qn = 0.5 ∀ n: Value function (on log scale) in left
sub-figure and percentage improvement in the right figure versus number
of sources N with d = 3

VI. CONCLUSION

We consider a system with multiple sources trying to
transmit information packets to a common destination via
multiple orthogonal channels. Each source has its own buffer
with single storage capacity. The packets arrive to each of the
sources according to a Bernoulli process while the transfer
times are geometric. We formulate it as a finite horizon
Markov Decision Process (MDP) and derive a near optimal
policy. Interestingly, the derived policy (defined only in terms
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Fig. 9. Rare packet arrivals, qn = 0.1 ∀ n: Value function (on log
scale) in left sub-figure and percentage improvement in the right figure
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of the differences in AoIs at the sources and the destination)
is stationary and further does not depend on the packet arrival
rates to any of the sources; this additional computational
advantage is mainly due to the fact that the policy is near
optimal. We demonstrate the superiority of the proposed
policy by comparing it with the adaptations of the existing
policies in literature for our case with unreliable packet
generation, through numerical experiments. There are several
future directions here, for example, to study the source
selection policy for multiple sources transmitting packets to
multiple destinations via multiple channels.

REFERENCES

[1] Ahmed M Bedewy, Yin Sun, and Ness B Shroff. Optimizing data
freshness, throughput, and delay in multi-server information-update
systems. In 2016 IEEE International Symposium on Information
Theory (ISIT), pages 2569–2573. IEEE, 2016.

[2] Peter Corke, Tim Wark, Raja Jurdak, Wen Hu, Philip Valencia, and
Darren Moore. Environmental wireless sensor networks. Proceedings
of the IEEE, 98(11):1903–1917, 2010.

[3] Sanjit Kaul, Marco Gruteser, Vinuth Rai, and John Kenney. Minimiz-
ing age of information in vehicular networks. In 2011 8th Annual
IEEE communications society conference on sensor, mesh and ad hoc
communications and networks, pages 350–358. IEEE, 2011.

[4] Veeraruna Kavitha and Eitan Altman. Controlling packet drops to
improve freshness of information. In Network Games, Control and Op-
timization: 10th International Conference, NetGCooP 2020, France,
September 22–24, 2021, Proceedings 10, pages 60–77. Springer, 2021.

[5] Yin Sun, Elif Uysal-Biyikoglu, Roy D Yates, C Emre Koksal, and
Ness B Shroff. Update or wait: How to keep your data fresh. IEEE
Transactions on Information Theory, 63(11):7492–7508, 2017.

[6] Roy D Yates and Sanjit Kaul. Real-time status updating: Multiple
sources. In 2012 IEEE International Symposium on Information
Theory Proceedings, pages 2666–2670. IEEE, 2012.

[7] Vishrant Tripathi and Sharayu Moharir. Age of information in multi-
source systems. In GLOBECOM 2017-2017 IEEE Global Communi-
cations Conference, pages 1–6. IEEE, 2017.

[8] Igor Kadota, Abhishek Sinha, Elif Uysal-Biyikoglu, Rahul Singh,
and Eytan Modiano. Scheduling policies for minimizing age of

information in broadcast wireless networks. IEEE/ACM Transactions
on Networking, 26(6):2637–2650, 2018.

[9] Yu-Pin Hsu, Eytan Modiano, and Lingjie Duan. Age of information:
Design and analysis of optimal scheduling algorithms. In 2017 IEEE
International Symposium on Information Theory (ISIT), pages 561–
565. IEEE, 2017.

[10] Igor Kadota and Eytan Modiano. Minimizing the age of information
in wireless networks with stochastic arrivals. In Proceedings of
the Twentieth ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 221–230, 2019.

[11] Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

APPENDIX

Proof of Theorem 1: We directly compute the difference
between the objective function under the optimal policy (i.e,
value function) and that under the policy (9). We derive
it by solving the following DP equations using backward
recursion.

V ∗
T (x) = c(x) for all x and for any t < T, ∀ x,
V ∗
t (x) = min

a∈Ax

[
c(x,a) + E

[
V ∗
t+1(X

′)|x,a
]
.

(12)

Recall now a = (a1, a2 · · · , aNd
x
) is the subset of sources

that attempted transition at state x in the previous slot.
At terminal epoch, i.e., at t = T : There are no further
transmission attempts and hence from (5) and (12),

V ∗
T (x) = c(x) =

∑
n∈N

hn for all x. (13)

At decision epoch t = T − 1: Towards computing value
function, one needs to derive Q-functions corresponding to
each possible action, and then

V ∗
T−1(x) = min

a∈Ax

QT−1(x,a). (14)

Consider any x and any a ∈ Ax. We begin with computing
Q(x,a). Towards that, let H ′

n be the age of the packet
corresponding to source n at destination in time slot T when
sources in subset a are chosen for transfer – observe that
H ′
n = hn + 1 for all n /∈ a and otherwise H ′

n = gn + 1 or
hn+1 depending upon the success of the transfer of packet
from source n. Thus from (12)-(14),

QT−1(x,a) =
∑
n∈N

hn + E

[∑
n∈N

H ′
n|x,a

]
,

= 2
∑
n∈N

hn +N + pl(x,a) with,

l(x,a) :=

Nd
x∑

i=1

(gai − hai),

where the last equality follows from Lemma 1. Hence, using
(9) with l(x) = l∆(x) := mina∈Ax

l(x,a),we have for all x

V ∗
T−1(x) = 2

∑
n∈N

hn +N + pl∆(x) = V ∆
T−1(x). (15)

Observe that the last equality follows as the decisions while
defining V ∗

T−1 are the same as in that in π∆ of (9).
At decision epoch t = T − 2: We again compute
the Q-functions using (15) and with {H ′

n}, {G′
n}, X ′ now

representing the quantities at T − 1. For any x and a ∈ Ax,



QT−2(x,a)

=
∑
n∈N

hn + E
[(

2
∑
n∈N

H ′
n +N +pl∆(X ′)

)∣∣∣∣x,a],
= 3

∑
n∈N

hn + 3N + 2pl(x,a) + pE[l∆(X ′)|x,a],

= 3
∑
n∈N

hn + 3N + 2pl(x,a) + p(1− pdx)U(x)

+p · pdV(x,a),

where the last equality follows from simple algebra and
Lemma 2 with U(x) and V(x,a) as defined in Lemma 2.
Thus for any x,

V ∗
T−2(x) = 3

∑
n∈N

hn + 3N + p(1− pdx)U(x)

+p min
a∈Ax

[
2l(x,a) + pdV(x,a)

]
.

Similarly, under π∆ of (9), with a∆ = d∆(x), V ∆
T−2(x) =

QT−2(x,a
∆). Now with l∗(x) := l(x,a∗) and a∗ :=

argmina∈Ax [2l(x,a) + pdV(x,a)],∣∣∣V ∆
T−2(x)− V ∗

T−2(x)
∣∣∣ = V ∆

T−2(x)− V ∗
T−2(x),

= 2p
[
l∆(x)− l∗(x)

]
+p · pd

(
V(x,a∆)− V(x,a∗)

)
,

≤ p · pd
(
V(x,a∆)− V(x,a∗)

)
,

≤ p · pd (2d||x||∞) ,

where the last inequality again follows from Lemma 2. Hence
at t = T − 2, V ∗

t (x) = V ∆
t (x) − p · pdZt(x) where the

difference function is bounded as 0 ≤ Zt(x) ≤ 2d||x||∞.
Next, assume that the value function and the objective under
policy π∆ has the following form for any k ≥ 2,

V ∗
T−k(x) = V ∆

T−k(x)− p · pdZT−k(x), (16)

V ∆
T−k(x) = (k + 1)

∑
n∈N

hn +K(k) + pṼT−k(x) with (17)

K(k) = kN +K(k − 1), (18)

ṼT−k(x) = FT−k(x) + kl∆(x) (19)

for some appropriate functions, FT−k and ZT−k which can
be upper bounded as below,
FT−k(x) ≤ C1(k)||x||∞ + C2(k), (20)
ZT−k(x) ≤ D1(k)||x||∞ +D2(k), with, (21)

C1(k) = (1 + pd)C1(k − 1) + 2(k − 1)d, (22)
C2(k) = (1 + pd)

[
C1(k − 1) + C2(k − 1)

]
, (23)

D1(k) = (1 + pd)D1(k − 1) + 2C1(k − 1) + 2(k − 1)d,(24)
D2(k) = (1 + pd)

[
D1(k − 1) +D2(k − 1)

]
+2

[
C1(k − 1) + C2(k − 1)

]
. (25)

Observe that for k = 2, (16)-(25) are satisfied with,

FT−2(x)= (1− pdx)U(x) + ·pdV(x,a∆), K(1) = N,

ZT−2(x)=
2

pd

[
l∆(x)− l∗(x)

]
+ V(x,a∆)− V(x,a∗).

and FT−2(x) ≤ (1 + pd)d||x||∞ (with C1(2) = (1 + pd)d
and C2(2) = 0) by Lemma 2, which satisfies (20); it is

already proved that the bound on ZT−2(x) (with D1(2) = 2d
and D2(2) = 0) satisfies (21). By backward mathematical
induction, it suffices to show that the value function and the
objective have the above form at t = T − (k + 1). For any
x and a ∈ Ax using Lemma 1,

QT−(k+1)(x,a)

=
∑
n∈N

hn + E
[
(k + 1)

∑
n∈N

H ′
n +K(k) + pṼT−k(X

′)

−p · pdZT−k(X
′)

∣∣∣∣x,a] ,

= (k + 2)
∑
n∈N

hn +K(k + 1) + (k + 1)pl(x,a)

+pE
[
ṼT−k(X

′)− pdZT−k(X
′)

∣∣∣∣x,a] , (26)

with K(k + 1) = (k + 1)N + K(k) which satisfies same
equation as (18), but at k+1. Further using (19) and Lemma
2 (with U(x) and V(x,a) defined there and bounded by
d||x||∞) the last but one term of (26),

E
[
ṼT−k(X

′)|x,a
]

= E[FT−k(X
′)|x,a] + k

[
(1− pdx)U(x) + pdV(x,a)

]
.

Substituting the above in (26), we obtain,

QT−(k+1)(x,a) = (k + 2)
∑
n∈N

hn +K(k + 1) + (k + 1)pl(x,a)

+pE[FT−k(X
′)|x,a] + kp

[
(1− pdx)U(x) + pdV(x,a)

]
−p · pdE

[
ZT−k(X

′)
∣∣x,a] . (27)

Conditioning on S (flag indicating at least one successful
packet transfer) and following steps exactly as in Lemma 2,
we get functions (which depend on time) GT−k(x), G′

T−k(x),
HT−k(x,a), and H′

T−k(x,a), one can show that,

E[FT−k(X
′)|x,a] = (1− pdx)GT−k(x) + pdHT−k(x,a),

E[ZT−k(X
′)|x,a] = (1− pdx)G′

T−k(x) + pdH′
T−k(x,a).

Further observe ||X ′||∞ ≤ ||x||∞ + 1 a.s. irrespective of a
and hence, FT−k(X

′) ≤ C1(k)(||x||∞ + 1) + C2(k) using
(20). Conditioning on S = 0, we have,

E[FT−k(X
′)|x,a,S = 0] = GT−k(x).

Thus we have |GT−k(x)| ≤ C1(k)(||x||∞ + 1) + C2(k),
from above and using (20). Similar argument follows and the
upper bound for HT−k(x,a) matches with that on GT−k(x);
further G′

T−k(x) and H′
T−k(x,a) can be upper bounded with

D1(k)(||x||∞ + 1) +D2(k). Hence from (27),

V ∗
T−(k+1)(x) = (k + 2)

∑
n∈N

hn +K(k + 1) + p(1− pdx)GT−k(x)

+ kp(1− pdx)U(x)− p · pd(1− pdx)G′
T−k(x)

+ p min
a∈Ax

[
(k + 1)l(x,a) + pdHT−k(x,a)

− (pd)
2H′

T−k(x,a) + kpdV(x,a)
]
. (28)

In similar lines using (17)-(19),



V ∆
T−(k+1)(x) = (k + 2)

∑
n∈N

hn +K(k + 1) + p(1− pdx)GT−k(x)

+ kp(1− pdx)U(x) + (k + 1)pl∆(x)

+ p · pd
[
HT−k(x,a

∆) + kV(x,a∆)

]
. (29)

Now, the difference between the objective under policy of
(9) and value function is bounded as below,

p · pdZT−(k+1)(x) := V ∆
T−(k+1)(x)− V ∗

T−(k+1)(x),

= p · pd(1− pdx)G′
T−k(x) + (k + 1)p

[
l∆(x)− l∗(x)

]
+p · pd

[
HT−k(x,a

∆)−HT−k(x,a
∗)

+k
[
V(x,a∆)− V(x,a∗)

]
+ pdH′

T−k(x,a
∗)

]
,

≤ p · pd(1− pdx)G′
T−k(x)

+p · pd
[
HT−k(x,a

∆)−HT−k(x,a
∗)

+k
[
V(x,a∆)− V(x,a∗)

]
+ pdH′

T−k(x,a
∗)

]
,

≤ p · pd
[
(1 + pd)

[
D1(k)(||x||∞ + 1) +D2(k)

]
+2

[
C1(k)(||x||∞ + 1) + C2(k)

]
+ 2kd||x||∞

]
,

= p · pd
[[
(1 + pd)D1(k) + 2C1(k) + 2kd

]
||x||∞

+(1 + pd)
[
D1(k) +D2(k)

]
+ 2

[
C1(k) + C2(k)

]]
, (30)

which thus satisfies (16) and (21) using the recursive con-
stants defined as in (22)-(25). Comparing (29) with (17)-
(19), the function FT−(k+1) can be identified and bounded
as below,

FT−(k+1)(x) = (1− pdx)GT−k(x) + k(1− pdx)U(x)

+pd

[
HT−k(x,a

∆) + kV(x,a∆)

]
,

≤
[
C1(k)(||x||∞ + 1) + C2(k)

]
+ k(1 + pdx)d||x||∞,

+pd
[
C1(k)(||x||∞ + 1) + C2(k)

]
,

=
[
(1 + pd)C1(k) + kd(1 + pdx)

]
||x||∞+ (1 + pd)

[
C1(k) + C2(k)

]
,

≤
[
(1 + pd)C1(k) + 2kd

]
||x||∞ + (1 + pd)

[
C1(k) + C2(k)

]
,

= C1(k + 1)||x||∞ + C2(k + 1).

In the above we used (22) and (23) and then (20) is satisfied.
Further, since it is a finite horizon problem, the above
constants are bounded and since p ≤ 1, the bounds can be
independent of p. ■

Lemma 1: Given any x and a ∈ Ax, we have

E

[∑
n∈N

H ′
n|x,a

]
=
∑
n∈N

hn +N + pl(x,a).

Proof: The above conditional expectation equals,

=
∑
n∈a

[
p(gn + 1) + (1− p)(hn + 1)

]
+

∑
n/∈a

(hn + 1),

=
∑
n∈N

hn +N + pl(x,a). ■

Lemma 2: Consider any x and a ∈ Ax. For any time
t conditioned on Xt = x and At = a, and with X ′

representing the quantities at t + 1, we have the following:
there exists two non-negative-valued bounded functions U
and V such that the former depends only on x (independent
of t,a) while the latter depends on both x and a (independent
of t) and one can express the conditional expectation as,

E
[
l(X ′)|x,a

]
= (1− pdx)U(x) + pdV(x,a).

where pdx = 1 − (1 − p)N
d
x . and pd = 1 − (1 − p)d. Further

irrespective of a

|U(x)| ≤ d||x||∞ and |V(x,a)| ≤ d||x||∞.
Proof: (i) Let S be a flag indicating at least one successful
packet transfer. Then,

E
[
l(X ′)|x,a

]
= (1− pdx)E

[
l(X ′)|x,a, S = 0

]
+pdxE

[
l(X ′)|x,a, S = 1

]
.

Now, it is easy to observe that the state transitions corre-
sponding to first term are independent of the action chosen
as G′

â = 1{Râ=0}(gâ + 1) and H ′
â = hâ + 1 for all â ∈ SX′

where Râ be the indicator of new packet arrivals at source
â (observe here that with S = 0, SX ⊂ SX′ and Râ = 1 for
â ∈ SX′ \SX for almost all X ′). Thus for some appropriate
function U of x (alone), the first term equals,

(1− pdx)E
[
l(X ′)|x,a,S = 0

]
= (1− pdx)U(x).

When conditioned on S = 1, it is clear that transitions depend
not only on x but also on a. Hence, there exists a function
V(·) of x and a such that,

pdxE
[
l(X ′)|x,a, S = 1

]
= pd

pdx
pd

E
[
l(X ′)|x,a, S = 1

]
= pdV(x,a).

Now we are left to derive the upper bound on functions U
and V. Consider any source â with packet in the new state
X ′. For this source, when conditioned on S = 0, the Gâ−Hâ

term has the following probabilistic description (see (6)-(8)),

[
(G′

â −H ′
â)|x,a, S = 0

]
=

{
gâ − hâ w.p. (1− qâ),

(−1− hâ) w.p. qâ.

In either case, i.e., almost surely, (G′
â−H ′

â) is upper bounded
by hâ + 1 (recall gâ < hâ) and hence the absolute value
|l(X ′)| is a.s. upper bounded by d||x||∞. Therefore |U| is
also upper bounded by the same quantity. When conditioned
on S = 1, the Gâ−Hâ terms have the following probabilistic
description, and result follows by similar logic,[

(G′
â −H ′

â)|x,a, S = 1
]

=


gâ − hâ if Râ = 0 and â /∈ a, w.p. (1− qâ),

(−1− hâ) if Râ = 1 and â /∈ a, w.p. qâ,
(−gâ − 1) if Râ = 1 and â ∈ a, w.p. qâ. ■
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