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Abstract—In Vehicle-to-Everything (V2X) networks that in-
volve multi-hop communication, the Road Side Units (RSUs) typi-
cally desire to gather the location information of the participating
vehicles to provide security and network-diagnostics features.
Although Global Positioning System (GPS) based localization is
widely used by vehicles for navigation; they may not forward
their exact GPS coordinates to the RSUs due to privacy issues.
Therefore, to balance the high-localization requirements of RSU
and the privacy of the vehicles, we demonstrate a new spatial-
provenance framework wherein the vehicles agree to compromise
their privacy to a certain extent and share a low-precision variant
of its coordinates in agreement with the demands of the RSU.
To study the deployment feasibility of the proposed framework
in state-of-the-art wireless standards, we propose a testbed
of ZigBee and LoRa devices and implement the underlying
protocols on their stack using correlated Bloom filters and Rake
compression algorithms. Our demonstrations reveal that low-to-
moderate precision localization can be achieved in fewer packets,
thus making an appealing case for next-generation vehicular
networks to include our methods for providing real-time security
and network-diagnostics features.

Index Terms—Bloom filters, Spatial provenance, V2X, Privacy,
ZigBee, LoRa, XBee.

I. INTRODUCTION

V2X networks, which typically include communication

among vehicles and Road Side Units (RSU), are expected

to enhance road safety and traffic efficiency as part of

smart city initiatives [1]. Given that mission-critical data

are conveyed through their packets over a wireless medium,

V2X networks are also susceptible to cyber-security threats

from external adversaries [2]. As a result, next-generation

V2X networks should possess the capability to detect such

security threats and initiate appropriate mitigation strategies.

This demonstration paper focuses on the feasibility of

implementing wireless protocols which capture the data-flow

logs at the RSUs to detect security threats on V2X networks.

A. Importance of Spatial-Provenance

In V2X networks, vehicles may not be able to communicate

directly with other vehicles or RSUs either because of

transmit-power constraints or signalling blockage-effects.

Therefore, vehicles should be connected in such a way that

messages from source vehicle are communicated to the RSU

with the help of several intermediate vehicles in a multi-hop

fashion. In such scenarios, the RSU must be able to remotely

learn the state of the network when it receives packets, such

as the identity of the packet forwarders, path travelled by

the packet [3], [4] and [5], the location of the vehicles that

forwarded or originated the packet, and other diagnostic

parameters. In particular, if the RSU has the knowledge about

the vehicles’ locations, it can offer location-based security

features and other network diagnostic features.

B. Privacy Issues with Spatial-Provenance

To assist location-based security features, vehicles may em-

bed their Global Positioning System (GPS) coordinates when

forwarding the packet, as GPS is anyway used by vehicles for

navigation purposes. However, in a multi-hop communication

setup, the participating vehicles may not want to share their

exact location since the RSU and the other vehicles can learn

their exact location from the packet. Although embedding

an encrypted version of their GPS coordinates in the packet

is one way to keep their location private from third-party

observers, such a process will reveal their exact location to

the RSU, and also increase end-to-end delay on the packets.

Based on the above discussion, it is clear that while the RSU

may want the exact location of the vehicles, the forwarding

vehicles may not want to reveal the same. Therefore, to

achieve a balance between the RSU’s expectations and

vehicles’ privacy, we present an amicable solution wherein

the RSU first divides its coverage area into several fragments

of equal size, and then requests the vehicles to embed the

identities of their fragments when forwarding the packets.

Since the size of each fragment represents the granularity of

localization, the vehicles can agree upon a suitable size of

the fragments without revealing their exact location. Thus,

the choice of the fragment size serves as the underlying

parameter for preserving privacy on spatial-provenance.
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Fig. 1: A depiction of area fragmentation wherein the coverage area of
an RSU has been divided into 5 segments, and the vehicles are asked
to reveal the identity of their segments instead of their exact location.

In the context of vehicular networks, since roads can

be linearly modelled, a linear stretch of road in the

communication range of RSU can be divided into linear

segments of equal length, exemplified in Fig. 1. Subsequently,

the RSU can broadcast the segmentation information to

vehicles in the form of a dictionary. Finally, with the help
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of the dictionary received from RSU, the vehicles can learn

the identity their segment using their own GPS coordinates,

and then embed the same information in their packets. In the

next section, we discuss implementation aspects of the above

framework and also highlight the need for demonstrating the

same on state-of-the-art wireless protocols.

C. Impact of this Testbed

In order to implement the proposed framework, we

use space-efficient Bloom filters as the underlying data

structures to carry the information on spatial-provenance.

As a consequence, each vehicle will embed its segment

identity on a dedicated set of shared bits in the packet

before forwarding it to the next vehicle, en-route to the RSU.

This process facilitates the RSU to recover the segment

identity of each vehicle through a simple constant complexity

verification-task. While the idea of a Bloom-filter based

solution for the proposed framework is appealing, it is not

clear whether it is feasible to implement such strategies on

a state-of-the-art payload constrained wireless protocols such

as ZigBee and LoRa. Specifically, some of the underlying

questions regarding the feasibility of implementation are

1) What is the percentage of the payload space of ZigBee

and LoRa occupied for spatial-provenance as a function

of the number of vehicles, number of segments, and the

reliability of provenance recovery?

2) What is the end-to-end delay overhead in implementing

the proposed spatial-provenance framework on ZigBee

and LoRa networks?

To answer the above questions, building a wireless prototype

with spatial-provenance is important as it will enable us to

measure several metrics related to space- and time-complexity,

and also study the granularity with which the RSU can learn

spatial-provenance of the vehicles when using ZigBee or

LoRa. Furthermore, this prototype will also help us in

recommending the proposed spatial-provenance framework

for implementation to standardization bodies such as IEEE,

ZigBee consortium and LoRa alliance.

In the next section, we present the implementation

aspects of our wireless prototype. Since there is no practical

implementation of spatial-provenance framework for existing

wireless networks, no dedicated bits are allocated for the

same in their packet structure. Therefore, in our prototype,

we use a portion of the payload to carry the Bloom filter for

spatial-provenance, as shown in Fig. 2.

II. TESTBED SETUP FOR SPATIAL-PROVENANCE

As shown in Fig. 3, our testbed setup consists of XBee

S2C devices, which work on ZigBee protocol in the ISM

band of 2.4 GHz with 16 channels and a bandwidth of

5 MHz. For long-range communication, we use the LoRa

modules manufactured by Semtech, which works at 868 MHz

in India. For computing purposes, we use Raspberry Pis as

well as laptops. We model a vehicle using a combination

of Raspberry Pi and XBee S2C devices to demonstrate a

static vehicular network with short-range communication.
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Fig. 2: Depiction of general structure of a network packet, where
H. implies Header. In our testbed, part of the payload will be used
to convey the spatial-provenance information.

Whereas, for long-range communication, we model a vehicle

using LoRa and Raspberry Pi. In both these cases, a high-

performance computing device plays the role of RSUs and

either an XBee device or LoRa.

Fig. 3: Testbed comprising XBee and LoRa devices to demonstrate
a static vehicular network.

A. Hardware Setup

To prepare the setup, we distribute the vehicular

nodes across a geographical area such that any node

can communicate with the RSU in a multi-hop manner. Given

that vehicles are static in our setup, we hardcode their location

information on them so that they can identify their segment

identity upon receiving the dictionary from the RSU. For the

routing protocol AODV is used for multi-hop communication

from every vehicle to RSU. For downlink communication,

RSU communicates directly with every vehicle in single hop.

B. Message Flow for Spatial-provenance

Once the vehicles are registered with the RSU and have

completed the neighbour discovery protocol, RSU initiates

the broadcast phase, wherein, the dictionary comprising the

number of segments and their identities is communicated to

all vehicles. We highlight that the chosen number of segments



is apriori decided in mutual agreement with the vehicles to

preserve their privacy.

As exemplified in Fig. 4, a source vehicle embeds its spatial-

provenance into the Bloom filter of the packet and forwards it

to the next vehicle in the path. Subsequently, the next vehicle

repeats the process of embedding its spatial-provenance until

the packet reaches the RSU. To execute these steps, we choose

the underlying parameters such as number of hash function

for Bloom filter and the Bloom filter size, based on an offline

optimization process. Furthermore, given that Bloom filters

are inherently sparse, i.e., having fewer number of ones than

zeros in their data structure, we ask each vehicle to compress

its provenance using RAKE compression [6]. Consequently,

every vehicle that intends to embed its spatial-provenance im-

plements a RAKE decompression algorithm on the reception

of a packet. Finally, once the packet is received at the RSU, it

verifies the location of the vehicles using their identities and

the dictionary. This way, every vehicle is localised at the RSU,

respecting the privacy constraints of the vehicles.
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Fig. 4: Flow of messages between RSU and nodes for conveying
spatial-provenance in a two-hop network.

III. TAKEAWAYS FROM OUR TESTBED

We conducted several experiments on our testbed and

recorded the space- and time-complexity metrics of our frame-

work for a 5-hop network of 10 vehicles spread across 5

location segments with each segment having 2 vehicles. Bloom

filter size of 100 bits are used by the vehicles along with

8 hash functions to embed the identities of their segments.

Since Bloom filters are sparse, we measure its average sparsity,

which is defined as the ratio of the sum of the number of bits lit

in a Bloom filter across all hops by the product of the number

of hops and the Bloom filter size. After implementing the

RAKE compression algorithm at each hop, we also measure

the average provenance size, which is calculated as the ratio

of the sum of the size of compressed provenance at each

node to the number of hops. With ten thousand iterations of

experiments, the above metrics are listed in Table I for Bloom

filter sizes of 100, 125 and 150. For instance, with 100 bits for

Bloom filter, the average sparsity will be 21%, which can be

compressed to 77 bits. Therefore, when using XBee, which

has a fixed payload of 255 bytes, our spatial-provenance needs

only 3.9% of the payload. Similarly, when using LoRa (data

rate 7), which has a fixed payload of 222 bytes, our spatial-

provenance occupies 4.5% of the payload. In contrast, without

compression, our spatial-provenance would occupy roughly

∼ 6% of the payload in both XBee and LoRa. While RAKE

compression reduces the space, we observe that it increases

the end-to-end packet delay compared to the scheme without

any compression algorithm.

As the LoRa network is used for long-range communication,

the coverage area is much larger, whereas the XBee coverage

area is smaller due to short-range communication. Therefore,

for the same number of segments, absolute privacy is more

in LoRa and less in XBee; however, the normalized privacy

is the same in both technologies. Overall, our testbed proves

that spatial-provenance algorithms can be accommodated

on ZigBee and LoRa as long as the RSU needs to learn

low-to-moderate resolution of localization. However, a higher

resolution of localization is possible only with a larger

percentage of payload space.

TABLE I: Compressed provenance size

Provenance size Sparsity (Avg.) Avg. Provenance size
(bits) % after compression (bits)

100 20.92 76.92
125 17.17 86.34
150 14.58 94.03
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