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Abstract—The overhead of internal network monitoring moti-
vates techniques of network tomography. Network coding (NC)
presents a new opportunity for network tomography as NC
introduces topology-dependent correlation that can be further
exploited in topology estimation. Compared with traditional
methods, network tomography with NC has many advantages
such as the improvement of tomography accuracy and the
reduction of complexity in choosing monitoring paths. In this
paper we first introduce the problem of tomography with NC and
then propose the taxonomy criteria to classify various methods.
We also present existing solutions and future trend. We expect
that our comprehensive review on network tomography with NC
can serve as a good reference for researchers and practitioners
working in the area.

Index Terms—network tomography, network coding, topology
recovery, link loss estimation, link delay inference, bottleneck
discovery, failure localization

I. I NTRODUCTION

Network tomography [1] studies internal characteristics of
Internet using information derived from end nodes. One advan-
tage of network tomography is that it requires no participation
from network elements other than the usual forwarding of
packets. This feature is particularly important, when anony-
mous internal routers [2] [3] do not respond to ICMP messages
which are required by traditionaltraceroutebased topology
estimation methods.

Y. Vardi was one of the first to rigorously study the
problem of inferring routing topology and coined the term
network tomography [4] due to the similarity between net-
work inference and medical tomography. According to the
type of data acquisition and the performance parameters of
interest [5], network tomography can be classified asa) link-
level parameter estimation based on end-to-end, path-level
traffic measurements [6], [7], andb) sender-receiver path-
level traffic intensity estimation based on link-level traffic
measurements [8], [9]. Based on whether or not explicit
control messages are required, network tomography could be
classified as active tomography [7], [10], [11] and passive
tomography [8], [12], [13], [14]. The former needs to explicitly
send out probing messages to estimate the end-to-end path
characteristics, while the latter merely utilizes the regular data
flow for further analysis. According to different application
contexts, network tomography can also be categorized into link

loss rates estimation [10], topology recovery [15], [16], and
delay tomography [7], etc. In this field there are several issues
in terms of tomography performance such as the accuracy of
topology recovery, and probing complexity of active tomogra-
phy. It is a non-trivial task to find an appropriate approach to
deal with the performance problems.

Network Coding (NC) emerged at the beginning of the last
decade with the primary aim of improving the throughput of
networks [17], [18], [19], [20]. It breaks the tradition that
intermediate nodes only forward data and the processing of
information is performed only at end nodes. In multicast
networks where simple linear operations of NC are performed
on incoming packets, we can achieve the min-cut through-
put of the network to each receiver. Since the receiver has
to recover original packets by solving a system of linear
equations over a finite field, NC packets introduce topology-
dependent correlation which can be exploited for network
tomography. Compared with traditional methods, network to-
mography based on NC has many advantages, such as the
improvement of accuracy and the reduction of complexity in
choosing monitoring paths [21]. These advantages motivate
research in NC based tomography.

There are many surveys on NC and its applications in the lit-
erature. Tutorials on NC theory can be found in [22], [23], [24]
while surveys of NC applications could be found in [25], [26].
Since we focus on applications of NC, research of NC theory
is beyond the scope of this survey. Authors in [25] reviewed
various NC applications such as content distribution and NC
for wireless networks. However, its main purpose of apply-
ing NC is to enhance the performance for existing network
systems.

In this paper we focus on the new emerging NC application
areas especially in the domain of Network Tomography (NT)
and sum up the state-of-the-art research on NC tomography.
To the best of our knowledge, this is the first comprehensive
survey on NC based NT problems.

The remainder of the paper is structured as follows. In
Section II, we introduce the problem of tomography with NC
and propose the taxonomy criteria to classify various methods.
Section III and Section IV present existent applications and
new proposed applications of NT with NC, respectively. In
Section V, we provide some NC based methods that are in
practical use and discuss lessons and existing problems which
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need further research. Section VI concludes the paper.

II. PROBLEM STATEMENT AND CLASSIFICATION

Prior work on NT considered networks that implement
multicast and unicast forwarding. In this paper, we consider
networks where internal nodes implement network coding and
we re-visit some classic network tomography problems such
as link loss inference and topology inference. We develop new
techniques that make use of the network coding capabilities
and we show that they can improve several aspects of interest
(including identifiability of links, accuracy of estimation, and
complexity of probe path selection) over traditional techniques.
We also seek to propose new tomography applications with
network coding such as bottleneck discovery and failure
localization. These extend the scope of traditional tomography.

A
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x1 x2

S
x1 x2
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x1 x2

x1 x2x1 x2

Fig. 1. Illustration of network coding principle

We first summarize the basic idea of network coding as
shown in Fig. 1.S is the source node whileR1 and R2

correspond to the receiver nodes. Intermediate nodeC has
two input links and one output link, and we call nodes likeC
thecoding nodes. On the other hand, nodesA, B andD only
forward received packets without coding.S transmits original
packetsx1 andx2 to its two output links(S,A) and (S,B),
respectively, and by encodingx1, x2 into x1 ⊕ x2 with XOR
operation at coding nodeC, R1 receivesx1 andx1⊕x2 while
R2 receivesx2 andx1 ⊕ x2. In this way, we obtain a system
of equations at receiverR1 shown in Eq.(1) and the original
packets ofx1, x2 can be retrieved by solving it.
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According to the performance parameters of interest, im-
plementation manners, and application scenarios, networkto-
mography with network coding (NCT) can be classified into
the following two categories (the existent applications and
proposed new applications of NCT) with10 subclasses, as
shown in Fig. 2.

Active NT needs to explicitly send out probing messages
to estimate the end-to-end path characteristics, while passive
NT merely utilizes the regular data flow for further analy-
sis. Compared with single-source methods, multiple source
network tomography can infer more accurate topology and

provide more information for improving network performance.
Topology inference (TI) is the core part of NT technology
and is the basic step to other performance inference such
as the loss tomography. For Link Loss Inference (LLI), the
reason why we analyze wireless network scenario separately
is that NC changes the fundamental mode between end-
to-end observations and network characteristics fromβ =
Πε∈P (1 − αε) to β = minε∈P (1 − αε), where β and αε

denote the path successful transmission probability and the
link loss probability, respectively. It means that the path
successful transmission probability is not the product of all
link successful transmission probabilities but the minimum of
all link successful transmission probabilities on this path. For
link delay inference (LDI), which is an important parameter
for performance evaluation and load balance, we introduce
a DCE measurement method [27] in our previous work and
discuss the trend for adding NC in future.

To further exploit benefits of NC, we also present new
application scenarios for NCT in addition to the above tra-
ditional tomography areas. For example, in a NC based P2P
network [28], we are able to make use of the subspace
characteristics for bottleneck discovery and re-route packets
in a distributed manner with less overhead.

III. E XISTENT APPLICATIONS OFNT WITH NC

A. Topology Inference (TI)

Topology identification is the core component of network
tomography technology and is the first step to other perfor-
mance inference such as the link loss tomography.

1) Active TI with tree structure:For active detection in tra-
ditional network tomography area, probing packets are usually
sent to multiple receivers by a multicast tree, and then they
are used to recover the topology structure with informationof
received data packets at different nodes. These methods require
that each receiver should obtain enough probing packets.
Comparatively, authors in paper [29] propose a method of TI
with NC for a tree structure. The topology is discovered by
sending probes between multiple sources and receivers at the
edge of the network, while intermediate nodes locally combine
incoming probes before forwarding them. Since NC brings
topology dependence into data packets which can be observed
at the receiver nodes, this information is used to infer the
network structure. The basic idea is described as follows.

Consider the network shown in Fig. 3(a). Assume that nodes
A and P act as sources while the rest nodes as receivers.
Thus, nodesA andP sendx1=[1 0] andx2=[0 1] respectively.
Intermediate nodes duplicate and forward the arriving packet
if only one packet is received. If two packets arrive at a nodeit
will perform NC operations and forward the NC coded packet.
In this case sincex1 andx2 meet at nodeH , leaf nodesB,
C, D will receive packetx1, leaf nodesM , O will receive
packetx2 and leaf nodesK, L will receive packetx3 = x1⊕
x2=[1 1]. Thus, the tree will be divided into three areas,

∧

1 =
{A,B,C,D} containingx1,

∧

2 = {M,O,P} containingx2,
and

∧

3 = {K,L} containingx3, as shown in Fig. 3(b).
To infer the structure that connects leaf nodes{A,B,C,D}

to node G and the structure that connects leaf nodes
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Fig. 2. Taxonomy of network tomography with network coding
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Fig. 3. TI of tree structure with NC

{M,O,P} to node J , two more iterations are needed. In
the second experiment two of these four nodes are randomly
chosen to act as sources (assume that nodesA and B are
selected). Note that any probe packet leaving nodeE will be
multicast to all the remaining leaf nodes. Therefore, nodes
C,D receive x3. In this iteration, we refine the inferred
network structure as shown in Fig. 3(c). To infer the rest
structure in the last iteration, similarly nodesO and P are
chosen as sources. Note that packetsx1 andx2 meet at node
N , thus nodeM receives packetx3. Thus, network structure
can be further refined to Fig. 3(d).

If one area
∧

i contains only one or two leaf nodes, it can be
replaced with either one or two edges. The overall topology of
Fig. 3(a) can be deduced from Fig. 3(d) by removing vertices
of degree two.

2) Active TI with general network structure:To extend TI
research from the tree structure to general networks, authors in
paper [30] propose a tomography scheme with NC for directed
acyclic graphs with multiple sources and multiple receivers.

S1 S2

J

B

R2R1

J1=J2

B1=B2

(a) Type I

S1 S2

B2

B1

R2R1

(b) Type II

J1

J2

S1 S2

B2

B1

R2R1

(c) Type III

J2

J1

S1 S2

B2

B1

R2R1

(d) Type IV

J1 J2

Fig. 4. Four basic types of 2-by-2 network components

The problem of TI in general Internet-like topology is
divided into two steps. The first step is built on the observation
that any M-by-N network can be decomposed into a collection
of 2-by-2 sub-network components [31], [32], each of which
could be one of the four possible types shown in Fig. 4. The
second step is to develop algorithms to identify the correct
one from the above four possible basic 2-by-2 components.
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For traditional tomography methods, one may propose to
coordinate transmission of multi-packet probes from the two
sources and measure the packet arrival order at the two
receivers to obtain information about the 2-by-2 topology.
However, it is not able to distinguish between the last three
unshared types since one cannot extract features between them
just from the packet number received at sink nodesR1 and
R2. Fortunately, by allowing intermediate nodes to perform
linear network coding, we can accurately distinguish them.

The observations at receivers areR1 = c11x1+c12x2, R2 =
c21x1+c22x2, respectively. In particular, in a lossless scenario
R1 andR2 obtain the following information in each 2-by-2
type:

• type (I): R1 = x1 + x2, R2 = x1 + x2

• type (II): R1 = x1 + x2, R2 = x1 + 2x2

• type (III): R1 = x1 + 2x2, R2 = x1 + x2

• type (IV): R1 = x1 + x2, R2 = x1 + x2

In this case type (I) and type (IV) have the same result and
are indistinguishable. To address the problem we note that type
(IV) has two different joining points (namelyJ1 andJ2) if we
let S2 send packet later thanS1 with an offset ofu to force
the packets to meet only at one of the joining points but not
at the other, the receivers will have different observations as
Case 3 and Case 4 shown in Table I.

TABLE I
OBSERVATIONS OF TYPE(I) AND TYPE (IV) IN THE LOSSLESS SCENARIO

WITH OFFSET OFu

Obs. number
Type (I) Type (IV)

R1 R2 R1 R2

Case 1 x1 + x2 x1 + x2 x1 + x2 x1 + x2

Case 2 x1 x1 x1 x1

Case 3 x1 + x2 x1

Case 4 x1 x1 + x2

Based on the above observations, by comparing coefficients
of c22 andc12 one can easily identify four different types. For
example, ifc22 > c12 we know that the topology component
should be type (II), and Type (IV) is identified by the first
different observation betweenR1, R2.

However, in a lossy network one can no longer guarantee
the meeting ofx1 andx2 at the joining points and predictable
observations at the receivers. In this case all possible obser-
vations are enumerated in Table II and divided into three
groups: (i) at least one of the receivers does not receive
any packet due to loss, (ii) both receivers have the same
observationR1 = R2, and (iii) the two receivers have different
observationsR1 6= R2.

We focus on the coefficient ofx2 and look at the difference
of c12− c22. Table II shows thatc12− c22 < 0 can only occur
in type (II) or type (IV) topology; whilec12−c22 > 0 can only
occur in a type (III) or (IV) topology. The details of inference
are described as follows.

By performing several independent experiments and collect-
ing several observations of group (iii), candidate topologies
are distinguished. If afterτ experiments (τ is a threshold to
indicate the probing times from sourceS1 andS2) there are
only observations of group (ii) or (iii) withc12 − c22 ≤ 0, the

topology is declared as type (II). If there are only observations
of group (ii) or (iii) with c12 − c22 ≥ 0, it is declared as type
(III). If there are observations of group (ii) or (iii) with both
c12− c22 < 0 andc12− c22 > 0, it is declared as type (IV). If
we have only observed group (ii) packets, then the topology
is declared as type (I) since no case in group (iii) can occur.

Authors in [33] extend the above work to merge net-
work topologies. Compared to active tomographic tech-
niques [32] [34] without NC, TI with NC has the following
advantages: (i) it can exactly identify the 2-by-2 type, as
opposed to just distinguish between shared and non-shared
types; and (ii) the merging algorithms can precisely locatethe
joining points with respect to the branching points, as opposed
to only provide bounds.

An open question remains: are there only four 2-by-2 basic
components? For example why Fig. (5) in [35] is not included?

S1 S2

J2

B1

R2R1

J1

B2

Fig. 5. Example: a new 2-by-2 component

3) Passive TI:Compared with active tomography the pas-
sive TI does not need to explicitly send probing packets at
source node but makes use of regular data packets observed
at edge nodes to recover the network structure.

A passive approach for topology inference on top of random
NC has been proposed in [36]. As regular data flows are
transmitted, intermediate nodes choose coding coefficients β
uniformly at random out of a finite field̥ q. The basic idea
is that under assumptions of a large enough̥q and strong
connectivity, the transfer matrix[T ] from sender to receiver
is distinct between any pair of network structure. Thus, based
on the original messages[X ] and the received results[Y ], an
appropriate topology that matches[Y ] = [T ][X ] can be found.

Take the four basic 2-by-2 network components (shown
in Fig. 4) for example, transfer matrices are provided in
Fig. 6. The approach in [36] tries to distinguish them based
on [T ]. Note that[T ] is obviously unique in terms ofβ for
each component. For example, if allβ are equal to 11, then
[T ]1 6= [T ]2 with

[T ]1 =

[

1 1
1 1

]

[T ]2 =

[

1 1
1 2

]

Papers [37] [38] extend the above work to erroneous
networks. With the assumptions that each intermediate node

1Coding coefficientsβ can be different in practice. They are selected from
a large finite field̥ q to guarantee that any type of topologies is likely to be
distinguishable.
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TABLE II
OBSERVATIONS OF FOUR TYPES OF TOPOLOGY COMPONENTS IN THE LOSSY SCENARIO

# Group Type (I) Group Type (II) Group Type (III) Group Type (IV)
R1 R2 R1 R2 R1 R2 R1 R2

1 (i) - - (i) - - (i) - - (i) - -
2 - x1 + x2 - x1 + 2x2 x1 + 2x2 - - x1 + x2

3 - x1 - x1 + x2 x1 + x2 - - x1

4 - x2 - x1 x1 - - x2

5 x1 + x2 - - x2 x2 - x1 + x2 -
6 x1 - x1 + x2 - - x1 + x2 x1 -
7 x2 - x1 - - x1 x2 -
8 (ii) x1 + x2 x1 + x2 x2 - - x2 (ii) x1 + x2 x1 + x2

9 x1 x1 (ii) x1 + x2 x1 + x2 (ii) x1 + x2 x1 + x2 x1 x1

10 x2 x2 x1 x1 x1 x1 x2 x2

11 x2 x2 x2 x2 (iii) x1 x1 + x2

12 (iii) x1 + x2 x1 + 2x2 (iii) x1 + 2x2 x1 + x2 x1 + x2 x1

13 x1 x1 + x2 x1 + x2 x1 x1 x2

14 x1 x2 x2 x1 x2 x1

15 x1 + x2 x2 x2 x1 + x2 x1 + x2 x2

16 x2 x1 + x2

[T ]1 =

[

βS1J,JB · βJB,BR1
βS1J,JB · βJB,BR2

βS2J,JB · βJB,BR1
βS2J,JB · βJB,BR2

]

[T ]2 =

[

βS1J1,J1B1
· βJ1B1,B1R1

βS1J1,J1B1
· βJ1B1,B1J2

· βB1J2,J2R2

βS2B2,B2J1
· βB2J1,J1B1

· βJ1B1,B1R1
βS2B2,B2J2

· βB2J2,J2R2
+ βS2B2,B2J1

· βB2J1,J1B1
· βJ1B1,B1J2

· βB1J2,J2R2

]

[T ]3 =

[

βS1J2,J2B1
· βJ2B1,B1J1

· βB1J1,J1R1
βS1J2,J2B1

· βJ2B1,B1R2

βS2B2,B2J1
· βB2J1,J1R1

+ βS2B2,B2J2
· βB2J2,J2B1

· βJ2B1,B1J1
· βB1J1,J1R1

βS2B2,B2J2
· βB2J2,J2B1

· βJ2B1,B1R2

]

[T ]4 =

[

βS1B1,B1J1
· βB1J1,J1R1

βS1B1,B1J2
· βB1J2,J2R2

βS2B2,B2J1
· βB2J1,J1R1

βS2B2,B2J2
· βB2J2,J2R2

]

Fig. 6. Example: transfer matrixes for four types of 2-by-2 topologies when NC is applied at intermediate nodes with coding coefficientβ

knows its one-hop neighbors and that all nodes in the network
sharecommon randomness, i.e., the receiver knows the random
code-books of other nodes, they present algorithms for passive
topology tomography in the presence of network failures. The
basic idea is described as follows.

Let C be the min-cut froms to r. The length-C impulse
response vector(IRV) I(e) for an edgee ∈ ξ is defined:s
transmits the all-zero packet on all outgoing edges and edgee
injects a nonzero packetz(e). In this case the received packet
at r is [Y ] = I(e)z(e), whereI(e) is the IRV. Thus all the
nonezero columns of[Y ] are equivalent toI(e) multiplied by
a scalar. Each IRV can be computed using Eq.(2):

I(e) =
∑

1≤i≤d

β(e, v, ei)I(ei) (2)

wheree is an incoming edge of nodev andei(1 ≤ i ≤ d) are
the outgoing edges.

Take the network of Fig. 7 for example. Local encoding
vectors are labeled at each intermediate node. Based on Eq.(2)
we can calculate thatI(e4) = [1 0]T , I(e5) = [0 1]T , I(e2) =
3I(e5) = [0 3]T , I(e3) = 4I(e5) = [0 4]T , I(e1) = 2I(e3) +
I(e4) = [1 8]T .

Before topology recovery, there is a need to find the IRV
of each link using the following two steps forτ independent

s

u

re1

e2

v

e3

e4

e5

1

2

3

4

I(e1)=[1 8]
T

I(e2)=[0 3]T

I(e3)=[0 4]
T

I(e4)=[1 0]
T

I(e5)=[0 1]T

Fig. 7. A network with IRV of each link

successful communication rounds2.

• Step (I): r computesM(i) using ECC. ThenE(i)r =
Y (i)l−Y (i)hM(i) where the source message isX(i) =
[IC M(i)], IC is the coefficient matrix,M(i) is the data
message,Y (i)h is the matrix consisting of the firstC
columns ofY (i) andY (i)l consisting of the lastn− C
columns ofY (i).

• Step (II): If the calculated resultE(i)r ∩ E(j)r = 1 for
any i, j ∈ [1 τ ] pair, E(i)r ∩ E(j)r is added to the IRV
setI.

Based onI of IRV result and the common random code-
booksR, vertex setV is initialized with sources, receiverr

2A successful round means the number of errors does not exceedthe bound
and receiver noder can decode the source message correctly using network
error correcting code (ECC).
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and all its upstream neighbors.ξ is initialized with the edges
incoming tor. Let Ī be the set of IRVs that are calculated from
the currently recovered network structure and the common
random code-bookR. The basic idea for recovering topology
is shown in the following.

For each nodev 6= s, let e1, ..., ed be the outgoing links
of it. If Ī(e1), ..., Ī(ed) has rank greater than1, then the IRV
for each candidate incoming linke of v is calculated using
Eq.(2). If the obtained IRV belongs to the IRV setI, then the
link and associated node are added toξ andV , respectively.
This process proceeds up to the sources.

It has been demonstrated that the above algorithm can
recover the accurate topology by performingO(|ξ|4|V |C)
operations over̥ q with probability 1 − O(|ξ|4|V |C/q) if I
contains all links’ IRVs.

B. Link Loss Inference (LLI)

Inferring the link loss rate in network layer and application
layer is particularly important for a variety of traffic control
methods. Many network tomography schemes with NC capa-
bility have been proposed for LLI [10], [39] where coding
vectors implicitly containing topology correlated information
can be utilized to collect coded packets at receiver nodes for
estimating link loss rates.

A

C

B

D

E F

x1 x2

x3

x3 x3

Fig. 8. Structure for link loss rate inference

1) Wireline LLI of tree structure:Consider the network
shown in Fig. 8. NodesA, B send probesx1 = [1 0],
x2 = [0 1], respectively. If nodeC receives onlyx1 (or x2) it
will forward x1 (or x2) to its child, while if nodeC receives
both, it will encode them into packetx3 = x1 ⊕ x2 = [1 1]
and forward it. NodesE,F receive packets from nodeD. The
basic idea is described as follows [21].

Assuming that nodesA,B are synchronized and each
operation occurs in one time slot, probe packetsx1, x2 sent
from A,B arrive at nodesE,F depending on a random
link loss following an i.i.d. Bernoulli distribution. Table III
gives the relationship between received packets at nodesE,F
and link transmission status (S, N denote the successful and
unsuccessful link transmission). For example, the scenario that
x3 = x1⊕x2 can be received at nodeE but nothing is received
at nodeF occurs only when packet on linkDF is lost with the
probability of (1−αAC)(1−αBC)(1−αCD)(1−αDE)αDF ,
whereαlink denotes the packet loss rate of a link. By repeating
the experiment many times, the Maximum Likelihood (ML)

TABLE III
OBSERVATIONS AT NODESE,F AND THE CORRESPONDING LINK STATUS

FOR THEFIG. 8, WHEREφ INDICATES NO PACKET IS RECEIVED AT
RECEIVERS ANDS , N DENOTE THE SUCCESSFUL AND NOT-SUCCESSFUL

LINK TRANSMISSION, RESPECTIVELY.

Received at Link status
NodeE NodeF AC BC CD DE DF

x1 x1 S N S S S

x1 φ S N S S N

x2 x2 N S S S S

x2 φ N N S S N

x3 x3 S S S S S

x3 φ S S S S N

φ x1 S N S N S

φ x2 N S S N S

φ x3 S S S N S

φ φ

S S S N N
S N S N N
N S S N N
S N N − −
S S N − −
N S N − −
N N − − −

estimation can be used to infer the underlying loss rates of
each link.

Paper [40] also studies the link loss tomography using
multiple sources of probes for tree structure network. It
further concludes that by appropriately choosing the number
of sources and receivers, as well as their locations, a significant
improvement on the estimation accuracy can be obtained.

2

5

4

6

9

10
3

1

7 8

S1

S2

R1 R2

R4

R3

Fig. 9. Example: Tree network for link loss rate inference with oriented link
direction

Consider the tree structure shown in Fig. 9. Demonstrated
by simulations for three cases: (1) a multicast tree with source
at node 1, (2) a multicast tree with source at node 2, (3) two
sources at nodes 1 and 2 and a coding point at 4, authors
of [40] find the last one outperforms the former two cases.
This is because coding points partition the tree into smaller
multicast components and between two multicast trees with
the same number of receivers, better performance is achieved
by the tree that is more “balanced” with the smallest height.

Based on these observations, guidelines on how to choose
the best “points of view” of a network for LLI tomography
are listed as follows:

• Select a fraction of sources to receivers that partition the
tree into roughly equal-size subcomponents, where each
subcomponent should have at least 2-3 receivers.

• Distribute the sources in roughly equal distances along
the periphery of the network.



7

Nevertheless, in paper [21] and [40], only sub-optimal
algorithms are developed for multiple source loss tomography.
To address this issue a low complexity maximum likelihood
estimator in [41] is provided for LLI with network coding
capabilities.

2) Wireline LLI of general structure:In paper [42] authors
investigate an active probing method for LLI with NC in
general network topology. With this approach each link is
traversed by exactly one packet which results in a great
bandwidth saving compared to traditional multicast or unicast
tomographic techniques.

Two main issues of LLI in general graphs are discussed.
The first is that a network with cycles may result in probes
being trapped inside a cycle, i.e., a positive feedback loop
that consumes network resources without aiding the estimation
process. To solve this problem, they propose anOrientation
Algorithm (OA) that creates an acyclic graph with the maxi-
mum number of identifiable links3. OA achieves the goal by
sequentially visiting the vertices of the graph, starting from
the sources, and selecting an orientation for all edges of the
visited vertex. To maximize the number of identifiable edges,
OA selects an orientation such that each intermediate vertex
(i.e., not a source or a receiver) has at least one incoming and
at least one outgoing edge.

The second challenge is the identifiability of a link. In tree
networks we know that it is sufficient for intermediate nodes
to performXOR operations (with finite field̥ 2) while it is
insufficient in general networks.

Take Fig. 10 for example where intermediate nodes only
do XOR operations. Since path (1-6-7-8-9) and (1-6-10-8-9)
meet at nodes 6 and 8,XOR operations will cancel each other
and result in the same observations as the case that both paths
break down.

1

6

2

3

4 7

5

8

9

10

e1

e2

e3

e4

e5

e6

e7

e9

e8

e10

e11

e12

e13

e14

e15

Fig. 10. General network for link loss rate inference

To solve this issue a larger finite field̥ q for coding
coefficients is chosen. For instance, nodes7 and 8 may use
coefficients of[1 1] and [1 2], respectively.

Based on all the above, the basic idea of LLI in general
networks can be summarized as follows. Given a selected set
of sources, the OA algorithm eliminates cycles and determines
the transmitted paths of probes. Then sources send probing
packets with NC operations at intermediate nodes over a large
enough finite field̥ q. Finally, receivers use both the number
and content of received packets for LLI of all links.

3A link is said to beidentifiableunder a given monitoring scheme namely,
choice of sources, receivers, intermediate node operations, if its associated loss
rate can be reliably inferred from the measurements observed at the receiver.

Compared with traditional tomography using multicast or
unicast in general networks [43], NC based LLI uses exactly
one probe per link to save bandwidth, and it also avoids
suboptimal combination of measurements from different trees.

3) Wireless network LLI:Wireless network scenario is quite
different from that of wireline environment for its highly
stochastic nature. Therefore, it is desirable to monitor LLI in
wireless networks.

Paper [44] makes the pioneer work to address link loss
tomography in wireless networks with NC capability. Au-
thors of [44] prove that network coding changes the fun-
damental connection between path and link loss rates from
β = Πε∈P (1− αε) to β = minε∈P (1− αε), whereβ andαε

denote the path successful transmission probability and link
loss probability, respectively. This is because a wirelesslink
ε can be modeled as a binary erasure channel with capacity
1 − αε [45] and with NC the transmission on each link is
equipped with an erasure code that achieves the link capacity
when code lengthK is large enough. Moreover, the capacity
of any graph is the min-cut [46]. Thus, the capacity of this
pathP (it can also be modeled as a binary erasure channel) is
the minimum capacity of any link:minε∈P (1−αε). Therefore,
β = minε∈P (1−αε) [45] and new tomography methods need
to be developed.

Unlike research work in wireline networks, wireless links
have an important consequence on LLI: the most lossy link
on a path essentially blocks the information of all other links
on the same path. Hence, it is infeasible to determine the
exact loss rates of all links. Therefore, only algorithms for
determining highly lossy links in wireless sensor networksare
proposed.

D

A B

C

1 5 0 0

2 7 0 0

0 0 8 2

0 0 3 7

3 9 1 2

7 6 4 8

1 3 8 4

9 5 6 7

terminal

sink

terminal

a

b c

Fig. 11. Example: wireless sensor network model for link loss rate inference,
where nodesA,B are terminals and nodesC,D are relay node and sink node,
respectively

In this scenario the sensor network is assumed to be a
directed graph, where each node represents either a terminal,
a relay node, or the sink node, each directed edge represents
the link between them (as shown is Fig. 11). The main idea of
NC based data collecting protocol is that: Each terminal node
partitions the data packets tosegments, which are attached
with a sequence number consisting ofK data packets. Assume
that there aren terminal nodes in the network. Theith group
of segments consists ofKn source packets. Note that when
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multiple nodes transmit coded packets to a common child, all
these packets are encoded together and the coding coefficients
corresponding to the absent source packets are zeros. For
instance, in Fig. 11 the coded packets sent fromA to C
have the first two coefficients of zero when the segment length
K = 2.

For LLI in wireless scenario with NC, the basic idea is
described as follows. The decoding matrix is divided ton sub-
matrices so that each submatrix withK columns corresponds
to the same segment packets from one terminal. For example,
the grey and white columns of the coefficients at the sink in
Fig. 11 represent the two submatices from nodesA,B. If the
successful transmission probabilityβ of path i is higher than
that of pathj, the rank of submatrixi reachesK earlier than
that of j. The information ofβ is contained in the relative
times that are useful to infer link loss rates.

Formally speaking, let̂ti denote the time when submatrix
i is full rank, and letdi represent the length of theith path,
thus ti = t̂i − di represents the wasted time due to link loss.
The inference methods use the timesD = {t1, ..., tn} and a
link rate thresholdTl as the inputs.Tl is a threshold value so
that a link is declared to be good withsε = 1 if its rate is
higher thanTl and bad withsε = 0 otherwise. As a result,
the output of LLI is the states of all linksS = {sε}, where
ε ∈ E.

Three different inference algorithms to infer highly lossy
links are proposed below. Two of them are based on the
Bayesian principle while the last one is the Smallest Consistent
Failure Set inference method.

The first one isBayesian inference using factor graphs
which is called BIFG for short.

b

a

1 t1

c

2 t2

P( 1| a , b )

P( 2| a , c )

P(t1| 1 )

P(t2| 2 )
Fig. 12. Example: the factor graph of Fig. 11

BIFG firstly constructs the factor graph [47] using Eq.(3)
and Eq.(4):

P (βi|{αεj}) =

{

1 ifβi = min(αεj )
0 otherwise

(3)

P (ti|βi) =

(

ti − 1
K − 1

)

βK
i (1 − βi)

ti−K . (4)

It then sets the prior distributions of the vertices representing
link rates and path rates to the uniform distribution, assuming
no prior knowledge on them. It further sets the evidence on
the vertexti representing the full rank times with the observed
dataD. Afterwards, the sum product algorithm [47] is operated
on this graph to compute the marginal probabilities, i.e., the

posterior probabilitiesP (αε|D), of link rates. At last Eq.(5)
and the thresholdTl are used to obtain the output.

sε =

{

1 if
∫ Tl

0
P (αε|D)dαε < 1/2

0 if
∫ Tl

0 P (αε|D)dαε ≥ 1/2
(5)

The second algorithm isBayesian inference using gibbs
sampling, which is called BIGS for short. The Gibbs sampling
algorithm belongs to the family of Markov Chain Monte
Carlo (MCMC) algorithms [48], which is particularly useful
if marginal distributions are very difficult to compute directly.
BIGS starts with an arbitrary initial assignment of link rateα,
then a linkε is chosen to compute the posterior distribution
of αε using Eq.(6):

P (αε|D, {ᾱε}) =
P (D|αε, {ᾱε})P (αε)

∫

αε
P (D|αε, {ᾱε})P (αε)dαε

(6)

where{ᾱε} = ∪f 6=ε{αf}.
The third one is thesmallest consistent failure setmethod,

which is called SCFS for short. It modifies the SCFS approach
proposed in [49]. The basic idea of the SCFS approach is that,
if there are multiple choices to assign whether links are good or
bad in order to satisfy the end-to-end observations, one should
select the smallest set of bad links, under the assumption that
a large fraction of the network behaves well.

Authors in [50] address the LLI in wireless networks
using subspace properties of NC. They propose the PLI-RLC
algorithm to infer link loss rate which performs11% better
than Bayesian inference algorithms of previous paper [44]
in terms of false detection. The algorithm is composed of
two parts. In the first part, it calculates the dimension of all
subspaces at every time slot according to the buffered packets
and the packets which are received in that time slot. In the
second part, it estimates the packet loss rate based on the
dimension of the subspaces using Eq.(7) and Eq.(8):

α̂s(t) = 1−
dim(

∏

s(t))

t− t1s + 1
(7)

wheres is a source node,αs is the loss rate of the pathPs,
α̂s(t) is the estimation ofαs at time t,

∏

s(t) represents the
subspace spanned by coefficients of the packets at nodes and
t1s denotes the time at which the sink expects to receive the
first packet of sources.

α̂v(t) = 1−
dim(

∏

v(t))

t− t1v + 1
(8)

wherev is a virtual node4, αv is the loss rate of the pathPv,
α̂v(t) is the estimation ofαv at time t,

∏

v(t) represents the
subspace spanned by coefficients of the packets at nodev and
t1v denotes the time at which the sink expects to receive the
first packet of sourcev.

Then, for each linkl, if αhead(l) > αtail(l), its link loss rate
el = αhead(l), wherehead(l) and tail(l) denote the nodes
attached to the head and tail of linkl, respectively.

4In this paper each intermediate network coding node is called a virtual
source.
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A

B

D
e2

e3

C

e4

e5

e6

re7s e1

Fig. 13. A graph with 3 paths froms to r

In [51] an Linear Algebraic (LA) approach to developing
consistent estimators of link loss rates by estimating not only
the success rate of a single path but also the success rate of
any combination of paths is proposed. It is unique to NC based
networks and cannot be achieved by only routing probes. Basic
idea is described by the following example shown in Fig. 13
where the path-link matrix is Eq.(9):

M =
P1

P2

P3

e1 e2 e3 e4 e5 e6 e7
[ ]

1 1 0 0 1 0 1
1 1 0 1 0 1 1
1 0 1 0 0 1 1

(9)

If e1 ande7 are referred as onevirtual link ev1, the type1
modified path-link matrix is shown in Eq.(10):

M =
P1

P2

P3

ev1 e2 e3 e4 e5 e6
[ ]

1 1 0 0 1 0
1 1 0 1 0 1
1 0 1 0 0 1

(10)

and the system can be represented by Eq.(11):

Mâ = b̂ (11)

By defining℘ as the power set of pathP : |℘| = 2|P |, each
element of℘ is a subset ofP that can be used to represent
combinations of paths. Accordingly, a modified path-link type
2 matrix M(2) = (mi,j)(|℘|−1)×|εI∪εV | is given as follows:
mi,j is equal to1 if there is a path in theith path set including
the jth link. Otherwise, it is equal to0.

M2 =













































1 1 0 0 1 0
1 1 0 1 0 1
1 0 1 0 0 1
− − − − − −
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

(12)

Thus the system matrix is extended to Eq.(13):

M2â = ĉ (13)

At last it has been shown that: IfM2â = ĉ is given, then̂a
can be determined by least-squares [52], where

â = (MT
2 M2)

−1MT
2 ĉ (14)

C. Link Delay Inference

The distribution of link delay is an important parameter for
performance evaluation and load balance. Besides delay itself,
the delay correlation between end hosts is particularly useful
for some tomography tasks, for example the topology recovery.
Current literatures either use one way end-to-end measurement
(OTT) [53] or round trip time (RTT) [54] to obtain it. The main
difference between OTT and RTT is that for OTT, series of
packets are sent from sources and collected at receivers while
for RTT, packets are both sent and received at the source. How-
ever, OTT usually requires precise time synchronization while
RTT needs the cooperation from receivers, which inject extra
operation delay and causes inaccurate measurement. In this
section we first introduce a DCE measurement method [27]
without any time synchronization and then discuss the trend
for adding NC in future.

1) DCE delay correlation inference:The basic idea of
delay correlation estimation (DCE) is described as follows.

a b

s

f

Fig. 14. The tree structure: a senderf and two receiversa, b

A simple model we use is shown inFig.14. The routing
structure from the senderf to the receiversa and b must be
a tree rooted atf . Otherwise, there is a routing loop which
must be corrected. Assume that routers is the ancestor node
of both a andb. Assume that the sender uses unicast to send
messages to receivers, and assume that packets are sent in a
back-to-back pair. For thek-th pair of back-to-back packets,
denoted asak and bk, sent fromf to a and b, respectively.
We use the following notation:

• ta(k): the time whena receivesak in the k-th pair.
• tb(k): the time whenb receivesbk in the k-th pair.
• da(k): the latency ofak along the path fromf to a.
• db(k): the latency ofbk along the path fromf to b.
• tf (k): the time whenf sends thek-th pair of packets.

Using network model ofFig.14 we obtainEq.(15) for a0

(we start the index with 0 for convenience):

ta(0) = tf (0) + da(0) (15)

Similarly, for ak we have

ta(k) = tf (k) + da(k) (16)

Let Eq.(16)− Eq.(15)and δa(k) ≡ ta(k) − ta(0), we can
obtainEq.(17):

δa(k) = (tf (k)− tf (0)) + (da(k)− da(0)) (17)
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Denote the time interval between two consecutive pairs of
packets asδ. We assume thatδ is a constant for simplicity at
this moment, and relax this assumption later. In this case we
usekδ ≡ k · δ to replacetf (k) − tf (0) in Eq.(17), then we
have

da(k) = δa(k)− kδ + da(0) (18)

Let δ′a(k) ≡ δa(k) − kδ, Eq.(18) is transformed intoEq.
(19):

da(k) = δ′a(k) + da(0) (19)

We can achieve similar results at receiverb as inEq.(20):

db(k) = δ′b(k) + db(0) (20)

whereδ′b(k) ≡ δb(k)− kδ.
Based on above equations, we prove that the correlation

between delay variablesda(k) anddb(k) is equivalent to the
correlation between variablesδ′a(k) andδ′b(k), which means

σ2
da(k),db(k)

= σ2
δ′a(k),δ

′

b
(k) (21)

The unbiased estimator of the correlation on shared path is
also provided as Eq.(22) shows:

σ̂2
δ′a,δ

′

b
=

1

n− 1

n
∑

k=1

[δ′a(k)− δ′a][δ
′
b(k)− δ′b] (22)

whereδ′i is the sample mean ofδ′i(k)
n

k=1 for i = a, b.
To reduce explicit probing, we develop a mechanism for

passive realization in real networks.

source

1 2

router
des2

des1

desN

des2

des1

desN

serial 1

N

des2

des1

desN

2

Fig. 15. The mechanism for passive tomography withsourceand N end
hosts.

As Fig.15 shows, passive realization works as follows. In
practical networks (for example, P2P networks) ifN end hosts
request common contents from asource, it will distribute
packets. In this situation thesource first chooses theNo.1
requested data block which is duplicated into packetserial 1
and is sent out to allN hosts simultaneously to guarantee that
there exist two successive packets in a back-to-back manner.
An indicator (IR) is needed to tell if the received packet at each
host belongs to the back-to-back pair. If serial ofNo.1 is sent
completely, thesourcerepeats to the next until all requested
contents are received byN hosts. As regular data flow proceeds
transmitting, we change destination address of the current
two successive packets when delay correlation between the

corresponding host pair has been measured (if the number of
packets sent to them with indicatorIR reachesτ whereτ is
a tunable threshold).

2) Trend of adding network coding to DCE:NC requires
to combine different data packets into a new one to gain
benefits, for example improving network throughput; while
DCE tomography only needs to record the packet arriving time
at receivers and does not further make use of the content of
coded packets. It seems that in this scenario NC is not able to
directly introduce benefits to delay tomography. Nevertheless,
it still can bring extra bonus.

For instance, for the passive realization of DCE mechanism
in practical, NC based network scenarios may alleviate the
problems when high traffic background leads to great bias on
the tomography accuracy [27]. If the transmitted data packets
are network coded, each received packet increases the rank of
decoding matrix (when the finite field̥q is large enough). As
such there is no need for retransmitting lost data, and the total
traffic will be reduced.

Furthermore, we note that in practical network coding [55]
data packets are combined by the unit ofgeneration. This
means only packets within the same generation can be linearly
coded with coefficient selected from a common field̥q. In
this situation the mechanism ofgenerationintroduces time-
related information that can be utilized for further analysis.
This is another direction of combining NC with delay tomog-
raphy.

IV. N EW PROPOSEDAPPLICATIONS OFNT WITH NC

A. NT of bottleneck discovery

Peer-to-peer (P2P) network is widely used in practice due
to its excellent capability of content distribution. It, however,
faces the issue of node collaboration. The introduction of
NC can eliminate the data difference by combining multiple
packets, thus is able to solve the above problem. Typi-
cal application of NC in P2P is “Avalanche” developed by
Microsoft [56], [57], [58]. It uses random network coding
for content distribution. However, P2P content distribution
relies heavily on connectivity of the overlay network, where
detecting bottleneck links is crucial for improving the overall
performance (see the example shown in Fig. 16). All the above
reasons motivate our research in NC capabled P2P scenario for
bottleneck discovery, which aims at detecting bottleneck links
and rewiring them to guarantee network capability.

Traditional method without NC in paper [59] determines the
multicast tree structure and detects bandwidth bottlenecks by
distinguishing the loss model correlation of sinks and mea-
suring how network disrupts the fine packet timing structure.
However, a drawback is that its implementation is centralized,
and it needs to send probes actively. Therefore, the scalability
to P2P network and other non-tree structure application areas
is limited.

To address the above shortcomings, article [28] studies P2P
network using NC. Based on characteristics of subspace [60]
and the observation that subspace spanned by coded packets
received at each node reveals topological information of the
network, authors in [28] propose distributed algorithms for
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Fig. 16. Example: a P2P network with 2 clusters and bottleneck links

discovering bottlenecks and breaking clusters. The basic idea
is in the following.
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(a) (b)

Fig. 17. Example: a bottleneck linkeSV in practical P2P networks

Assume that at a given timet, each nodei knows its own
subspace and the subspaces it has received from its parent
nodes. LetΠi = Π̂1∪ ...∪ Π̂c denote the subspace spanned by
the coding vectorsi has collected, wherêΠi, ..., Π̂c denote the
subspaces that it has received from itsc neighborsu1, ..., uc,
respectively. The overlap of subspaces from the neighbors
reveals information about a bottleneck. Consider the network
depicted in Fig. 17(a), where edges correspond to logical
links. The sourceS hasn packets to distribute to four peers.
NodesA,B andC are directly connected toS, while nodeD
is connected to nodesA,B and C. However, logical links
SA, SB, SC share the bandwidth of the same underlying
physical link SV as shown in Fig. 17(b), which forms a
bottleneck between the source and the remaining nodes of the
network.

In this case when nodesA,B,C receive the same packet
from S, the coding vectors collected by them will span the
same subspace. Hence the coded packets they offer to nodeD
will overlap subspaces significantly. From this information,
node D knows that there is a bottleneck between nodes
A,B,C andS.

Paper [28] also defines some criteria for bottleneck discov-
ery. For example, a node can decide there is a bottleneck

on link to a particular neighbori, if it receives k > 0,
non-innovative coding vectors fromi, wherek is a tunable
parameter.

B. NT of failure localization

NT of failure localization is different from link loss infer-
ence (LLI) that we need to localize the accurate position of
which link is unavailable or some random errors occur on a
link, while LLI concerns the total link loss rate of each link.

Paper [61] is the first to show that coding coefficients used
in randomized network coding play double duties by allowing
link failure monitoring in addition to allowing the sink nodes
to correctly decode the incoming data under different failure
patterns, since link failure affects the coding vectors received
at sink node. This paper derives the probability that an event
is identified among a given set of failure events. It also sets
bounds on the required finite field size̥q, and analyzes the
complexity for designing robust network code. Details are
described as follows.

Given a distinguishable5 failure event setC and a specific
failure eventc ∈ C, the upper bound on the probability of
tomography ambiguity in a random linear network code is

P ≥ 1−

(

1−
|C| − 1

q

)L

(23)

whereL denotes the maximum number of logical links on a
source-sink path,q is the finite field size of̥ q. From Eq.(23),
the probability of tomography ambiguity decreases inversely
with field sizeq.

Similarly, the required field size and complexity for design-
ing a robust network code that distinguishes among a given
set of failure events are also bounded by Eq.(24) and Eq.(25),
respectively, for a valid network code field size in Eq.(26).

q ≥ |C|

(

|C| − 1

2
+ d

)

(24)

O

((

γ

γ − 1

)η

|C|
(

ηIγ + dr2.376 + |C|rt
)

)

(25)

q = γ|C|

(

|C| − 1

2
+ d

)

(26)

whered is the number of sinks,η is the total number of links
in the network,I is the maximum in-degree of a node,r and
t are the number of sources and terminal links, respectively.

Paper [37] provides the first polynomial time algorithm
for locating the edges that are subject to random errors and
random erasures. The basic idea is that sink noder firstly
calculates random error vector setEr according to the network
structure, and thenr tests each impulse response vectorI(e)
to see if it belongs toEr. If so, it can be determined that the
corresponding link belongs to the error link set.

5For a network with sources and sinks, we consider two failurepatterns
p1 and p2 to be indistinguishable if the set of source-sink paths containing
at least one link inp1 is identical to the set of source-sink paths containing
at least one link inp2, and distinguishable otherwise.
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Fig. 18. Example for locating an error at edgee1 where the routing scheme
is not enough to locate the error ate1 or e2 while using NC at intermediate
nodes the received information is able to locate the error edge e1

Consider network of Fig. 18(a). Sources sends symbols 1
and 2 to nodeu via edgese1 ande2 respectively. Due to the
error introduced ine1, r receives a vectorY = [3 2]T . Then
r computes the error vector to beEr = Y − [1 2]T = [2 0]T .
According toEr, r knows that error happens one1 or e3 but
cannot locate the error.

However, if NC is used at intermediate nodeu, we can
locate the error link accurately (shown in Fig. 18(b)). In this
scenario,x3 = x1 + 2x2 andx4 = x1 + x2, wherex1, x2 are
symbols received frome1, e2 and x3, x4 are symbols to be
sent viae3, e4. With error at linke1, r receivesY = [7 5]T .
Similarly, r can compute the error vectorEr = Y − [1 + 2 · 2
1+2]T = [2 2]T . Thenr obtains each impulse response vector
I(e1) = [1 1]T , I(e2) = [2 1]T , I(e3) = [1 0]T , I(e4) = [0
1]T . UsingEr = [2 2]T , r knows that error is injected toe1
with 2.

C. Comparison with traditional tomography methods

The introduction of NC to network tomography not only
brings advantages such as high tomography efficiency and low
cost, but also broadens the scope of tomography. For example,
it extends the bottleneck discovery to P2P networks. To
compare its performance with non-NC tomography methods,
we present a summary of traditional solutions.

A comprehensive survey on network tomography can be
found in [5] which focuses exclusively on inferential network
monitoring techniques that require minimal cooperation from
network elements. Tools for active/passive measurement of
networks can be found in [63], for example,mper is a probing
engine that clients can use to conduct topology and perfor-
mance measurements using ICMP, UDP, and TCP probes.

For traditional topology inference [64], probing packets are
sent to multiple receivers by a multicast tree, and then they
are used to recover the topology structure with information
of received data packets at different nodes. In [31] [32],

authors extend this to propose that any M-by-N network
can be decomposed into a collection of four 2-by-2 sub-
network components as shown in Fig. 4. However, the above
traditional tomography methods are not able to distinguish
between the last three unshared types. Independently, NC
based tomography in [30] is able to exactly identify the 2-
by-2 type, as opposed to just distinguish between shared and
non-shared types. In addition, the 2-by-2 component merging
algorithms in [33] can precisely locate the joining points with
respect to the branching points, as opposed to only provide
bounds by traditional methods.

Moreover, [36] proves that the transfer matrices[T ] for
detectably different networks are distinct and can be utilized to
distinguish between any network topology. [37] [38] extends
the above work to erroneous networks to passively infer
network topology without explicit probing. Also [60] shows
that subspace spanned by coded packets received at each node
reveals topological information of the network which can be
used for passive topology recovery.

For traditional link loss inference [65], a maximum-
likelihood estimator for loss rates on internal links observed by
multicast receivers is developed. However, LLI over general
graphs with an arbitrary structure is beyond its scope. For
general graphs, authors of [43] [66] use multiple multicast
trees and/or multiple unicast paths to cover the network graph,
and then combine the link loss rates estimated from the dif-
ferent paths/trees. However, the above traditional methods are
suboptimal with respect to the following optimality criteria:
identifiability, estimation accuracy and bandwidth efficiency.
Independently, NC based tomography in [21] is the first to
use network coding for inferring link loss rates in overlay
networks with advantages of less bandwidth consumption,
less complexity for realization and high inference accuracy.
Paper [40] extends [21] and further presents that appropriately
choosing the number of sources and receivers, as well as their
location, can have a significant effect on the accuracy of the
estimation. In [42], with NC each link is traversed by exactly
one packet, resulting in a great bandwidth saving compared to
traditional multicast or unicast tomographic techniques.

Moveover, [44] is the first to address loss inference in
wireless networks using network coding and it changes the
fundamental connection between path and link loss rates from
β = Πε∈P (1 − αε) to β = minε∈P (1 − αε). To make use
of subspace properties of network coding for LLI in wireless
sensor networks, [50] proposes a PLI-RLC algorithm to infer
link loss rate.

For traditional link delay inference, authors in [53] use
the one way end-to-end measurement (OTT) method while
paper [54] develops a round trip time (RTT) solution. The
main difference between OTT and RTT is that for OTT, series
of packets are sent from sources and collected at receivers
while for RTT, packets are both sent and received at the source.
However, OTT requires precise time synchronization and RTT
needs the cooperation from receivers. To address the above
issues, a novel DCE measurement method [27] is proposed
without any time synchronization and complex cooperation.
The trend of adding network coding to DCE was discussed
in [27].
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For new proposed applications of NT, authors in [28] [60]
[62] extend the traditional tomography scope to bottleneck
discovery in P2P environment. The paper [61] is the first
to show how the coding coefficient embedded in randomized
network coding can be used to infer failure patterns, which
consumes no extra overhead for probing.

A more detailed summary of NC-based tomography meth-
ods and the comparison with traditional techniques is listed in
Table IV, where not only existent applications but also new
proposed solutions of NT with NC are listed.

V. D ISCUSSION ANDFUTURE TREND

In this section, we first present some NC based methods that
are in practical use, then discuss some lessons and existing
problems which demand further research.

For NC based tomography, authors in [44] have developed
a customized pack-level network simulator in C++, with the
implementation of randomized network coding to evaluate LLI
in wireless networks. Similarly, paper [50] implemented a
discrete-event packet-level simulator for the wireless sensor
networks. In paper [27], the authors have implemented the
DCE tomography method using OMNeT++, which is an open-
architecture discrete-event simulator consisting of extensible,
modular C++ libraries. To evaluate its performance in practi-
cal networks, the authors also implemented it on PlanetLab
platform. It concluded that if some traditional tomography
methods, for example, tools listed in [63], are equipped with
NC capability, their performance will be much enhanced in
practice.

For implementation of NC based tomography, there are
some aspects of lessons we should take into account. For
example, the finite field used for network coding is an im-
portant parameter which needs a tradeoff between decoding
efficiency and transmitting expense. In wireless environment
this issue is even worse since both the bandwidth and memory
space are limited. In practical networks, it has been found
that the platform itself may impact performance of network
tomography. For example, there is a sharp performance drop
over the PlanetLab platform for the DCE measurement. The
main reason is that PlanetLab nodes are always heavily loaded
with multiple applications and it uses virtualization techniques
which may destroy time series for resource scheduling.

While NC based tomography in general outperforms non-
NC based tomography, there exist some problems which need
further research in future.

• For Topology inference with NC capabilities there already
exist solutions for recovery of tree structure and basic net-
work components. However, we still need to find methods
to merge them together to obtain a general multiple
sources multiple sinks network. Moreover, whether or not
only four components exist is still an open question, since
in [35] two more 2-by-2 networks are proposed.

• For link loss inference especially in wireless scenario,
although [44] demonstrates that NC changes the funda-
mental connection between path and link loss rates from
β = Πε∈P (1 − αε) to β = minε∈P (1 − αε), we would
like to point out that this is almost impossible in practice

since the length of codes cannot be infinite for the limited
link bandwidth of wireless sensor network.

• For delay tomography we introduce DCE method for
delay correlation inference and show the bonus of using
NC coded packets. Further work, however, is required to
combine mechanism of packet generation to time-related
information.

• For research in new application areas besides bottleneck
discovery and failure localization, utilizing the subspace
property of NC should be a good direction in future.

VI. CONCLUSIONS

In this paper we introduce the application of network coding
in network tomography and show that with NC many benefits
can be gained. Firstly, we present taxonomy result for network
tomography with NC capabilities; Secondly, we review the
corresponding methods in each category. Last but not least,we
present the primary research in delay inference and presentthe
lessons and trend for future research with NC. We expect that
this comprehensive survey on tomography with NC abilities
will attract more attention to this area.
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TABLE IV
SUMMARY OF NC-BASED TOMOGRAPHY METHODS AND THE COMPARISON WITH TRADITIONAL TECHNIQUES

NC-NT Objectives Network
structure

Probing
type

Scenario Advantages VS. non-NC tomography

[29] tree structure active wireline
The first to connect NC with TI tomography which
needs less probing packets and has faster convergence
rate.

[30] [33] general networks active wireline
It can distinguish four 2-by-2 components (shown in
Fig. 4) accurately which, however, is impossible with-
out NC [31], [32].

[36]
topology
inference

general networks passive wireline/wireless
It proves that the transfer matrices[T ] for detectably
different networks are distinct and can be utilized to
distinguish between any network topology.

[37] [38] general networks passive wireline It extends the above work to erroneous networks to pas-
sively infer network topology without explicit probing.

[60] tree structure passive wireline

It shows that subspace spanned by coded packets re-
ceived at each node reveals topological information of
the network which can be used for passive topology
recovery.

[21] tree structure active wireline

The first to use network coding for inferring link
loss rates in overlay networks with advantages of less
bandwidth consumption, less complexity for realization
and high inference accuracy.

[40] tree structure active wireline/wireless

It extends [21] and further presents that appropriately
choosing the number of sources and receivers, as well
as their location, can have a significant effect on the
accuracy of the estimation. It also give guidelines on
how to choose the best “points of view” of a network
for LLI tomography.

[42] general networks active wireline

It addresses two main issues of LLI in general graphs
and proposes an Orientation Algorithm to delete cy-
cles. It also chooses a larger finite field to identify
more links. With this approach each link is traversed
by exactly one packet which is a great bandwidth
saving compared to traditional multicast or unicast
tomographic techniques.

[51] loss inference general networks active wireline/wireless

They propose an LA (Linear Algebraic) approach to
developing consistent estimators of link loss rates by
estimating not only the success rate of a single path,
but also the success rate of any combination of paths,
which is unique to network coding network and cannot
be achieved by only routing probes. .

[44] general networks passive wireless

The first to address loss inference in wireless networks
using network coding and it changes the fundamental
connection between path and link loss rates fromβ =
Πε∈P (1− αε) to β = minε∈P (1− αε).

[50] tree structure passive wireless

The first to use subspace properties in network coding
for the link loss inference problem in wireless sensor
networks. They propose the PLI-RLC algorithm to
infer link loss rate. Great performance improvement
is gained compared to Bayesian inference algorithms
above in [44].

[27] delay tomog-
raphy tree structure active/

passive wireline
It proposes a novel DCE method for estimating delay
correlations between end hosts which need no precise
synchronization and complex cooperation.

[28][60][62]
bottleneck
discovery

P2P networks passive wireline It extends the traditional tomography scope to bottle-
neck discovery in P2P environment.

[61] failure local-
ization general networks passive wireline

The first paper to show how the coding coefficient
embedded in randomized network coding can be used
to infer failure patterns, which consumes no extra
overhead for probing
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