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Abstract—The overhead of internal network monitoring moti-  loss rates estimatiori_[10], topology recovery|[15].][16)da
vates techniques of network tomography. Network coding (N&  delay tomography ]7], etc. In this field there are severaldss
presents a new opportunity for network tomography as NC j, tarmg of tomography performance such as the accuracy of

introduces topology-dependent correlation that can be futher t | d bi lexity of active t
exploited in topology estimation. Compared with traditional Opology recovery, and probing compiexity ot active tonmegr

methods, network tomography with NC has many advantages Phy. It is a non-trivial task to find an appropriate approazh t
such as the improvement of tomography accuracy and the deal with the performance problems.

reduction of complexity in choosing monitoring paths. In this Network Coding (NC) emerged at the beginning of the last
paper we first introduce the problem of tomography with NC and decade with the primary aim of improving the throughput of

then propose the taxonomy criteria to classify various methds. o
We also present existing solutions and future trend. We exmé networks [17], [18], [19], [[2D]. It breaks the tradition tha

that our comprehensive review on network tomography with NC @ntermedjate_ nodes only forward data and the processﬁng of
can serve as a good reference for researchers and practitiers information is performed only at end nodes. In multicast

working in the area. networks where simple linear operations of NC are performed
Index Terms—network tomography, network coding, topology 0N incoming packets, we can achieve the min-cut through-
recovery, link loss estimation, link delay inference, boteneck put of the network to each receiver. Since the receiver has
discovery, failure localization to recover original packets by solving a system of linear
equations over a finite field, NC packets introduce topology-
dependent correlation which can be exploited for network
tomography. Compared with traditional methods, network to
Network tomography(]1] studies internal characteristits anography based on NC has many advantages, such as the
Internet using information derived from end nodes. One advamprovement of accuracy and the reduction of complexity in
tage of network tomography is that it requires no partiégpat choosing monitoring paths [21]. These advantages motivate
from network elements other than the usual forwarding eésearch in NC based tomography.
packets. This feature is particularly important, when anon There are many surveys on NC and its applications in the lit-
mous internal router5§[2][3] do not respond to ICMP messagegature. Tutorials on NC theory can be found.in| [22]] [23H][2
which are required by traditiondtaceroutebased topology while surveys of NC applications could be found[inl[25],][26]
estimation methods. Since we focus on applications of NC, research of NC theory
Y. Vardi was one of the first to rigorously study thes beyond the scope of this survey. Authors[in][25] reviewed
problem of inferring routing topology and coined the ternvarious NC applications such as content distribution and NC
network tomography([4] due to the similarity between nefor wireless networks. However, its main purpose of apply-
work inference and medical tomography. According to thieg NC is to enhance the performance for existing network
type of data acquisition and the performance parameterssystems.
interest [5], network tomography can be classifiedajptink- In this paper we focus on the new emerging NC application
level parameter estimation based on end-to-end, patlh-leseeas especially in the domain of Network Tomography (NT)
traffic measurements [[6]][7], and) sender-receiver path-and sum up the state-of-the-art research on NC tomography.
level traffic intensity estimation based on link-level firaf To the best of our knowledge, this is the first comprehensive
measurements_[[8],]9]. Based on whether or not expligurvey on NC based NT problems.
control messages are required, network tomography could b&he remainder of the paper is structured as follows. In
classified as active tomography! [7]._[10[,_[11] and passiv@ectior 1], we introduce the problem of tomography with NC
tomographyi[8],[12],[[18],[[14]. The former needs to exjilic and propose the taxonomy criteria to classify various nutho
send out probing messages to estimate the end-to-end pBletion[1l] and Sectiofi IV present existent applicationd an
characteristics, while the latter merely utilizes the tagdata new proposed applications of NT with NC, respectively. In
flow for further analysis. According to different applicati Section[Y, we provide some NC based methods that are in
contexts, network tomography can also be categorizedimio | practical use and discuss lessons and existing problenthwhi

|. INTRODUCTION
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need further research. Section VI concludes the paper.  provide more information for improving network performanc
Topology inference (TI) is the core part of NT technology
[I. PROBLEM STATEMENT AND CLASSIFICATION and is the basic step to other performance inference such

Prior work on NT considered networks that implemerS the loss tomography. For Link Loss Inference (LLI), the
multicast and unicast forwarding. In this paper, we considéason why we analyze wireless network scenario separately
networks where internal nodes implement network coding aff that NC changes the fundamental mode between end-
we re-visit some classic network tomography problems suf¢rénd observations and network characteristics from-=
as link loss inference and topology inference. We develap ndleep(l — ac) t0 5 = min.cp(l — ac), where 5 and o,
techniques that make use of the network coding capabilitidgnote the path successful transmission probability aed th
and we show that they can improve several aspects of interdidf l0ss probability, respectively. It means that the path
(including identifiability of links, accuracy of estimatipand successful transmission probability is not the product lbf a
complexity of probe path selection) over traditional teigiues. link successful transmission probabilities but the minimaof
We also seek to propose new tomography applications witll link successful transmission probabilities on thishpdtor
network coding such as bottleneck discovery and failuf®k delay inference (LDI), which is an important parameter

localization. These extend the scope of traditional torapgy. for performance evaluation and |°"?‘d balance: we introduce
a DCE measurement methdd [27] in our previous work and

discuss the trend for adding NC in future.

To further exploit benefits of NC, we also present new
application scenarios for NCT in addition to the above tra-
ditional tomography areas. For example, in a NC based P2P
network [28], we are able to make use of the subspace
characteristics for bottleneck discovery and re-routeketsc
in a distributed manner with less overhead.

IIl. EXISTENT APPLICATIONS OFNT wITH NC
A. Topology Inference (TI)

Topology identification is the core component of network
tomography technology and is the first step to other perfor-
mance inference such as the link loss tomography.

We first summarize the basic idea of network coding as 1) Active Tl with tree structureFor active detection in tra-
shown in Fig.[l.S is the source node whilé?; and R, ditional network tomography area, probing packets arellysua
correspond to the receiver nodes. Intermediate nOdeas sent to multiple receivers by a multicast tree, and then they
two input links and one output link, and we call nodes IKe are used to recover the topology structure with informatibn
the coding nodesOn the other hand, nodes B andD only received data packets at different nodes. These methodlisereq
forward received packets without coding .transmits original that each receiver should obtain enough probing packets.
packetsz; andxs to its two output links(S, A) and (S, B), Comparatively, authors in papér [29] propose a method of Tl
respectively, and by encoding, z» into z; & z2 with XOR with NC for a tree structure. The topology is discovered by
operation at coding nod€, R; receivesr; andz; ¢z, while sending probes between multiple sources and receiverg at th
Rs receiveszrs andz; @ xo. In this way, we obtain a systemedge of the network, while intermediate nodes locally carabi
of equations at receiveR; shown in Eq[(lL) and the originalincoming probes before forwarding them. Since NC brings
packets ofzq, z2 can be retrieved by solving it. topology dependence into data packets which can be observed
at the receiver nodes, this information is used to infer the

Fig. 1. lllustration of network coding principle

h 10 network structure. The basic idea is described as follows.
C I ( 1 ) (1) Consider the network shown in F[d. 3(a). Assume that nodes
LE 11 T2 A and P act as sources while the rest nodes as receivers.
Ya 01 Thus, nodesi and P sendz;=[1 0] andz>=[0 1] respectively.

According to the performance parameters of interest, inmtermediate nodes duplicate and forward the arriving pack
plementation manners, and application scenarios, netwwerk if only one packet is received. If two packets arrive at a nibde
mography with network coding (NCT) can be classified intwill perform NC operations and forward the NC coded packet.
the following two categories (the existent applicationsl arin this case since;; andz2 meet at noded, leaf nodesB,
proposed new applications of NCT) withD subclasses, asC, D will receive packetr,, leaf nodesM, O will receive
shown in Fig[D. packetzs and leaf noded(, L will receive packetrs = 1 ®

Active NT needs to explicitly send out probing messages=[1 1]. Thus, the tree will be divided into three areAs, =
to estimate the end-to-end path characteristics, whilsiyas {A, B, C, D} containingz;, A, = {M, O, P} containingzs,

NT merely utilizes the regular data flow for further analyand A\, = {K, L} containingzs, as shown in Fig.13(b).
sis. Compared with single-source methods, multiple sourceTo infer the structure that connects leaf nodds B, C, D}
network tomography can infer more accurate topology and node G and the structure that connects leaf nodes
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Fig. 2. Taxonomy of network tomography with network coding

If one area/\; contains only one or two leaf nodes, it can be
replaced with either one or two edges. The overall topoldgy o
Fig.[3(a) can be deduced from Fid. 3(d) by removing vertices
of degree two.

2) Active TI with general network structuréfo extend TI
research from the tree structure to general networks, eaitho
paper[[30] propose a tomography scheme with NC for directed
acyclic graphs with multiple sources and multiple recesver

(a) A network topology with 9 leaves (b) Estimated topology after the first
and 7 intermediate nodes iteration

(a) Type I (b) Type I

(c) Estimated topology after the (d) Estimated topology after the third
second iteration iteration

Fig. 3. TI of tree structure with NC

{M,O, P} to nodeJ, two more iterations are needed. In
the second experiment two of these four nodes are randomly
chosen to act as sources (assume that notlemd B are
selected). Note that any probe packet leaving nadeill be
multicast to all the remaining leaf nodes. Therefore, nodesThe problem of TI in general Internet-like topology is
C,D receive z3. In this iteration, we refine the inferreddivided into two steps. The first step is built on the obséovat
network structure as shown in Fifgl 3(c). To infer the reshat any M-by-N network can be decomposed into a collection
structure in the last iteration, similarly nodés and P are of 2-by-2 sub-network components [31],[32], each of which
chosen as sources. Note that packat@andz, meet at node could be one of the four possible types shown in Elg. 4. The
N, thus nodeM receives packets. Thus, network structure second step is to develop algorithms to identify the correct
can be further refined to Figl 3(d). one from the above four possible basic 2-by-2 components.

(c) Type 11T (d) Type IV
Fig. 4. Four basic types of 2-by-2 network components



For traditional tomography methods, one may propose topology is declared as type (Il). If there are only obsdovest
coordinate transmission of multi-packet probes from the twof group (ii) or (i) with ¢;2 — ca2 > 0, it is declared as type
sources and measure the packet arrival order at the t{ild). If there are observations of group (ii) or (iii) withdth
receivers to obtain information about the 2-by-2 topology;s —coe < 0 @andeiz —co2 > 0, it is declared as type (1V). If
However, it is not able to distinguish between the last threee have only observed group (ii) packets, then the topology
unshared types since one cannot extract features betwemn tis declared as type (I) since no case in group (iii) can occur.
just from the packet number received at sink nodgsand Authors in [33] extend the above work to merge net-
Rs. Fortunately, by allowing intermediate nodes to perforrwork topologies. Compared to active tomographic tech-
linear network coding, we can accurately distinguish them. niques [[32] [34] without NC, Tl with NC has the following

The observations at receivers d&e = c11x1+ci229, Rs = advantages: (i) it can exactly identify the 2-by-2 type, as
co171 +caaxo, respectively. In particular, in a lossless scenarigpposed to just distinguish between shared and non-shared
R; and R, obtain the following information in each 2-by-2types; and (ii) the merging algorithms can precisely lo¢hée

type: joining points with respect to the branching points, as ejlo
o type (): Ry = 21 + 22, Ra = 21 + 2 to only provide b_ounds. _ _
e type (I): Ry = a1 + 29, Ro = 1 + 25 An open question remains: are there only four 2-by-2 basic
. type (II): Ry = z1 + 2:;2 Ry = &, + oo components? For example why Figl (5)[in][35] is not included?

o type (IV): Ry = 21 + 22, Ro = 21 + 22

In this case type (I) and type (IV) have the same result and
are indistinguishable. To address the problem we noteypat t
(IV) has two different joining points (namely; and.Jy) if we
let Sy send packet later tha$i; with an offset ofu to force
the packets to meet only at one of the joining points but not
at the other, the receivers will have different observatians
Case 3 and Case 4 shown in Table I.

TABLE |
OBSERVATIONS OF TYPE(l) AND TYPE (IV)IN THE LOSSLESS SCENARIO
WITH OFFSET OFu

Fig. 5. Example: a new 2-by-2 component

Obs. number Type () Type (IV) . . .
' Ri Ry R Ry 3) Passive Tl:Compared with active tomography the pas-
822:; 2 e B D e 0 N W o B W o sive Tl does not need to explicitly send probing packets at
€T x x x
Case 3 - : o J:mz mi source node but makes use of regular data packets observed
Case 4 z1 71 + 72 at edge nodes to recover the network structure.

A passive approach for topology inference on top of random
NC has been proposed in_|36]. As regular data flows are
Based on the above observations, by comparing coefficiemtsnsmitted, intermediate nodes choose coding coeffiiént
of co2 andc;2 one can easily identify four different types. Foluniformly at random out of a finite field¢ ,. The basic idea
example, ifcao > 12 we know that the topology componentis that under assumptions of a large enough and strong
should be type (Il), and Type (IV) is identified by the firstonnectivity, the transfer matril’] from sender to receiver
different observation betweeR;, R;. is distinct between any pair of network structure. Thusebas
However, in a lossy network one can no longer guarantea the original messagg«’] and the received resulf§’], an
the meeting ofz; andx; at the joining points and predictableappropriate topology that matchgs] = [T][X] can be found.
observations at the receivers. In this case all possiblerebs Take the four basic 2-by-2 network components (shown
vations are enumerated in Tallé Il and divided into thrée Fig. [d) for example, transfer matrices are provided in
groups: (i) at least one of the receivers does not recei#®.[8. The approach iri [36] tries to distinguish them based
any packet due to loss, (ii) both receivers have the samme [T]. Note that[T| is obviously unique in terms of for
observationR; = R», and (iii) the two receivers have differenteach component. For example, if @lare equal to [, then

observations?; # R». [T]1 # [T]2 with
We focus on the coefficient af, and look at the difference ], = 11
of ¢12 — c22. Table[Tl shows that;s — 22 < 0 can only occur ! 11

in type () or type (1V) topology; while:y2 —ceo > 0 can only
occur in a type (Ill) or (IV) topology. The details of inferem [T]y = { 1 ; }
are described as follows.
By performing several independent experiments and cellect Papers [[37] [[38] extend the above work to erroneous
ing several observations of group (iii), candidate top@eg networks. With the assumptions that each intermediate node

are distinguished. If after experimentsA is a threshold to
9 P 7( 1Coding coefficients3 can be different in practice. They are selected from

indicate the p_robing times frpm sourée and SQ) there are a large finite fieldr ; to guarantee that any type of topologies is likely to be
only observations of group (ii) or (iii) witl;2 — coo < 0, the  distinguishable.



TABLE Il
OBSERVATIONS OF FOUR TYPES OF TOPOLOGY COMPONENTS IN THE LOBSCENARIO

Type (1) Type (IN) Type (Il) Type (IV)
# | Group 7 5 Group 7 5 Group 7 1 Group 7 T
1 [0) - - [0) - - [0) - - [0) - -
2 - 1 + x2 - x1 + 2x2 x1 + 2x2 - - 1 + 22
3 T - 1 + x2 1 + 22 - - x1
4 To - T1 T1 - - x9
5 1 + T2 - - z2 z2 - 1 + T2
6 T - ] + a2 - - 1 + 22 T
7 To - T1 - - x1 To
8 (ii) 1+ 20 | 1+ 22 To - - To (ii) 1 +x2 | 1+ 20
9 T 1 (ii) r1+x2 | w1+ @2 (ii) x1+w2 | w1+ 22 T T1
10 To To T1 T1 T1 1 To To
11 To To To To (iii) T T + x2
12 (iii) 1+ 20 | 71+ 229 (iii) T1 + 222 | x1 + 22 T + xo 1
13 T 1 + x2 1 + 22 x1 T x2
14 T1 o To x1 To x1
15 1 + T2 z2 z2 1 + T2 1 + T2 2
16 To x1 + T2
(7], = Bsy7,0B - BiB,BR, Ps.7,0B - BIB,BR:
Bs.0,08 - BiB,BR, PS20,0B - BIB,BR:
-~ Bs17:1,0.B1 - BJB1,BiR: Bs1J1,01B1 - BIB1,B1J2 - BB1Js, JaRo
[T]2 =
/3S2B27B2J‘1 .ﬁB2J17J]B] 'ﬁJlBl,B'lR'l ﬁS2B2,B2J2 ./BB2J2,J2R2 +ﬁ52Bz,B2J1 .ﬁB2J‘1,JlBl ./3J1B1,B'1J2 ./BBlJ2aJ2R2
- B8,Js,05B, - BIaBi,Bry - BBLJL, IR BS1Ja,JaBy - BIsB1,Bi R,
[T]s =
BS2Ba,Bady " BBy, iRy + BS2Bs,Bods - BBodo,JoBy - BroBy,BiJy - BBi,JiR1 BS2Bs,Bsds - BBods,JoBy - BJ2B1,B1Rs

[T]4 — /leBl,BlJl . /BBljl,JlRl /leBl,BlJQ : /BBlJQ.,Jsz
BS3Bs,Bady " BBagy,siRy BS2By.Bads * BByJs,JaRs

Fig. 6. Example: transfer matrixes for four types of 2-byepdlogies when NC is applied at intermediate nodes withrgpdbefficients

knows its one-hop neighbors and that all nodes in the network I\ .
sharecommon randomnesise., the receiver knows the random /u I(e)=[1 8]
code-books of other nodes, they present algorithms foriyEass 2 e I(e»)=[0 3]"
topology tomography in the presence of network failuree Th € \ . >@ ? .
basic idea is described as follows. G>< i\ P I(e3)=[0 4]T
Let C be the min-cut froms to ». The length€' impulse 62\@4/ I(ey)=[10]
response vecto(lRV) I(e) for an edgee € ¢ is defined:s \3/4 I(es)=[0 17"

transmits the all-zero packet on all outgoing edges and edge

injects a nonzero packete). In this case the received packet

atr is [Y] = I(e)z(e), wherel(e) is the IRV. Thus all the Fig. 7. A network with IRV of each link
nonezero columns df’] are equivalent td (e) multiplied by

a scalar. Each IRV can be computed using[Bg.(2): successful communication roufids

o Step (I): » computesM (i) using ECC. ThenE(i), =
Y (i); — Y (¢), M (i) where the source messageXgi) =

I(e) = Z Ble,v,ei)I(es) (@) [Ic M(3)], Ic is the coefficient matrix) (i) is the data
1sisd messagey (i), is the matrix consisting of the first’
columns ofY (i) andY (¢); consisting of the last — C
wheree is an incoming edge of nodeande;(1 < i < d) are columns ofY (i).
the outgoing edges. « Step (Il): If the calculated resulE(s), N E(j), = 1 for
anyi,j € [1 7] pair, E(i), N E(j), is added to the IRV

Take the network of Figl]7 for example. Local encoding
vectors are labeled at each intermediate node. Based dB)Eq.( setl.
we can calculate that(es) = [1 0], I(e5) = [0 1]T, I(es) = Based on/ of IRV result and the common random code-

3I(es) = [0 3]7, I(e3) = 4I(es) = [0 4]7, I(e1) = 2I(e3) + booksR, vertex setV is initialized with sources, receiverr

I(eq) = [1 8]7.
Bef | h . d find the IR 2A successful round means the number of errors does not excedmbund
efore topology recovery, there is a need to find the IRY,g receiver node can decode the source message correctly using network

of each link using the following two steps farindependent error correcting code (ECC).



. . S . TABLE Il
and all its upstream neighboi&.s initialized with the edges ogservations AT NODESE, F AND THE CORRESPONDING LINK STATUS

incoming tor-. Let I be the set of IRVs that are calculated from FOR THEFIG.[B, WHERE ¢ INDICATES NO PACKET IS RECEIVED AT
the currently recovered network structure and the commdFCEIVERS ANDf;é\é S}_i“\‘ﬁ;;ITSZTOSNUEE';ii?T“I-VAENLS NOTSUCCESSFUL
random code-boolR. The basic idea for recovering topology ’

is shown in the following. Received at Link status
For each node # s, let e, ...,eq be the outgoing links NodeF | NodeF | AC | BC | CD | DE | DF
of it. If I(e1),...,I(eq) has rank greater thah then the IRV il “’;1 ‘Sq % g ‘Sq ff
for each candidate incoming link of v is calculated using x; s N T 5T 5T 5 T3
Eq.[2). If the obtained IRV belongs to the IRV sktthen the T2 é N | N| S| S| N
link and associated node are addecttand V, respectively. 3 3 g g g g ;
This process proceeds up to the sousce . “(’; fl TN T 5N T3
It has been demonstrated that the above algorithm can ) Zo N | S| S| NS
recover the accurate topology by performiay|¢[4|V|C) é z3 ST ST SINTS
operations ovef , with probability 1 — O(|¢|*|V|C/q) if I *; ]*\q/ g % %
contains all links’ IRVs. Nl sl|s | NIN
¢ ¢ S| N | N| - | -
S| s | N | - | -
B. Link Loss Inference (LLI) ]NV ff N = -

Inferring the link loss rate in network layer and applicatio
layer is particularly important for a variety of traffic coat
methods. Many network tomography schemes with NC capa-. _ .
bility have been proposed for LLLT10][[39] where Codingestlmanon can be used to infer the underlying loss rates of

L ‘o ; . each link.
vectors implicitly containing topology correlated infoation . . .
can be utilized to collect coded packets at receiver nodes fo Pe}per [[4D] also studies the link loss tomography using
estimating link loss rates. multiple sources of probes for tree structure network. It

further concludes that by appropriately choosing the numbe
of sources and receivers, as well as their locations, afgignt
improvement on the estimation accuracy can be obtained.

S, R; @
S, °
R4
(19)
R, °

R,

Fig. 8. Structure for link loss rate inference

1) Wireline LLI of tree structure:Consider the network Fig. 9. Example: Tree network for link loss rate inferencétwdriented link
shown in Fig.[8. NodesA, B send probess; = [1 0], direction
x5 = [0 1], respectively. If node” receives onlyz; (or ) it Consider the tree structure shown in Hig. 9. Demonstrated
will forward z, (or z») to its child, while if nodeC receives by simulations for three cases: (1) a multicast tree witlre@u
both, it will encode them into packet; = 2, @ 2o = [1 1] at node 1, (2) a multicast tree with source at node 2, (3) two
and forward it. Nodes?, F' receive packets from nod@. The sources at nodes 1 and 2 and a coding point at 4, authors
basic idea is described as follows [21]. of [4Q] find the last one outperforms the former two cases.

Assuming that nodesd4, B are synchronized and eachThis is because coding points partition the tree into smalle
operation occurs in one time slot, probe packetsz, sent Multicast components and between two multicast trees with
from A, B arrive at nodesE, F depending on a randomthe same number of receivers, better performance is achieve
link loss following an i.i.d. Bernoulli distribution. Tablllll by the tree that is more “balanced” with the smallest height.
gives the relationship between received packets at n&dés Based on these observations, guidelines on how to choose
and link transmission status’( N denote the successful andhe best “points of view” of a network for LLI tomography
unsuccessful link transmission). For example, the scerhat are listed as follows:
x3 = 11 Do can be received at node but nothing is received « Select a fraction of sources to receivers that partition the
at nodeF' occurs only when packet on linR I is lost with the tree into roughly equal-size subcomponents, where each
probability of (1 — aac)(1—ape)(l —acp)(l—apr)apr, subcomponent should have at least 2-3 receivers.
whereay;,, ;. denotes the packet loss rate of a link. By repeating « Distribute the sources in roughly equal distances along
the experiment many times, the Maximum Likelihood (ML)  the periphery of the network.



Nevertheless, in papef_[21] and _[40], only sub-optimal Compared with traditional tomography using multicast or
algorithms are developed for multiple source loss tomdgyap unicast in general networks [43], NC based LLI uses exactly
To address this issue a low complexity maximum likelihoodne probe per link to save bandwidth, and it also avoids
estimator in [41] is provided for LLI with network coding suboptimal combination of measurements from differerggre
capabilities. 3) Wireless network LLIWireless network scenario is quite

2) Wireline LLI of general structureln paper[42] authors different from that of wireline environment for its highly
investigate an active probing method for LLI with NC instochastic nature. Therefore, it is desirable to monitot ioL
general network topology. With this approach each link isireless networks.
traversed by exactly one packet which results in a greatPaper [44] makes the pioneer work to address link loss
bandwidth saving compared to traditional multicast or asic tomography in wireless networks with NC capability. Au-
tomographic techniques. thors of [44] prove that network coding changes the fun-

Two main issues of LLI in general graphs are discussedamental connection between path and link loss rates from
The first is that a network with cycles may result in probe8 = I.cp(1 — ) t0 5 = min.ep(1 — ac), wheres anda.
being trapped inside a cycle, i.e., a positive feedback lodgnote the path successful transmission probability amd li
that consumes network resources without aiding the esomatloss probability, respectively. This is because a wirelegs
process. To solve this problem, they proposeCaientation ¢ can be modeled as a binary erasure channel with capacity
Algorithm (OA)that creates an acyclic graph with the maxii — a. [45] and with NC the transmission on each link is
mum number of identifiable linBs OA achieves the goal by equipped with an erasure code that achieves the link cgpacit
sequentially visiting the vertices of the graph, startingni when code lengthi is large enough. Moreover, the capacity
the sources, and selecting an orientation for all edgesef thf any graph is the min-cut[46]. Thus, the capacity of this
visited vertex. To maximize the number of identifiable edgepath P (it can also be modeled as a binary erasure channel) is
OA selects an orientation such that each intermediate werte minimum capacity of any linknin.c p(1—a.). Therefore,
(i.e., not a source or a receiver) has at least one incomidg ah= min.cp(1 —a.) [45] and new tomography methods need
at least one outgoing edge. to be developed.

The second challenge is the identifiability of a link. In tree Unlike research work in wireline networks, wireless links
networks we know that it is sufficient for intermediate nodesave an important consequence on LLI: the most lossy link
to perform XOR operations (with finite field~,) while it is on a path essentially blocks the information of all othekdin
insufficient in general networks. on the same path. Hence, it is infeasible to determine the

Take Fig.[I0 for example where intermediate nodes ongxact loss rates of all links. Therefore, only algorithms fo
do XOR operations. Since path (1-6-7-8-9) and (1-6-10-8-@etermining highly lossy links in wireless sensor netwaaks
meet at nodes 6 and & O R operations will cancel each otherproposed.
and result in the same observations as the case that both path
break down.

—_
W
(=}

Fig. 10. General network for link loss rate inference O

To solve this issue a larger finite fieler, for coding
coefficients is chosen. For instance, nodeand8 may US€ Fig 11. Example: wireless sensor network model for linkslcate inference,
coefficients of{1 1] and[1 2], respectively. where nodes\, B are terminals and nodes, D are relay node and sink node,

Based on all the above, the basic idea of LLI in genergspectively
networks can be summarized as follows. Given a selected seln this scenario the sensor network is assumed to be a
of sources, the OA algorithm eliminates cycles and detegmindirected graph, where each node represents either a términa
the transmitted paths of probes. Then sources send probéngelay node, or the sink node, each directed edge represents
packets with NC operations at intermediate nodes over & laige link between them (as shown is Figl 11). The main idea of
enough finite fieldr ,. Finally, receivers use both the numbeNC based data collecting protocol is that: Each terminakenod
and content of received packets for LLI of all links. partitions the data packets smegmentswhich are attached

3A link is said to beidentifiableunder a given monitoring scheme namely,Wlth a sequence number conS|$t|ng[6fdata paCkeF; Assume
choice of sources, receivers, intermediate node opegtibits associated loss that there are: termmal nodes in the network. ThE* group
rate can be reliably inferred from the measurements obdevéhe receiver. 0f segments consists dfn source packets. Note that when



multiple nodes transmit coded packets to a common child, plbsterior probabilities”(a.|D), of link rates. At last Eq.{5)
these packets are encoded together and the coding codficiand the threshold; are used to obtain the output.
corresponding to the absent source packets are zeros. For

instance, in Fig[Clll the coded packets sent frdmo C )1 af le P(ae|D)da. < 1/2 (5)
have the first two coefficients of zero when the segment length e = 0 if [;' P(a:|D)da. > 1/2
K =2.

For LLI in wireless scenario with NC, the basic idea is The second algorithm iBayesian inference using gibbs
described as follows. The decoding matrix is dividedtsub- Sampling which is called BIGS for short. The Gibbs sampling
matrices so that each submatrix wil columns corresponds &lgorithm belongs to the family of Markov Chain Monte
to the same segment packets from one terminal. For exam@&rio (MCMC) algorithms[[48], which is particularly useful
the grey and white columns of the coefficients at the sink jhmarginal distributions are very difficult to compute ditty.
Fig.[T] represent the two submatices from nodes. If the BIGS starts with an arbitrary initial assignment of linkeat,
successful transmission probabilifyof pathi is higher than then a Ii_nks is chosen to compute the posterior distribution
that of pathj, the rank of submatrix reachesk earlier than ©f @ using Eq[(B):
that of j. The information of$ is contained in the relative
times that are useful to infer link loss rates. _ P(D|oe, {ae})P(ae)

Formally speaking, let; denote the time when submatrix P(ac|D, {ac}) = T P(D|az, {a.})P(az)da.
i is full rank, and letd; represent the length of th¢" path, o

thust; = f, — d; represents the wasted time due to link losgVnere{ac} = Us{ay}. . .
The inference methods use the timBs= {t1,...,¢,} and a The third one is thesmallest consistent failure setethod,

link rate thresholdl} as the inputsZ; is a threshold value so which is called SCFS for short. It modifies the SCFS approach

that a link is declared to be good with = 1 if its rate is Proposed in[[49]. The basic idea of the SCFS approach is that,

higher than7, and bad withs. = 0 otherwise. As a result, if there are multiple choices to assign whether links aredgmo
the output of LLI is the states of all link§ = {s.}, where bad in order to satisfy the end-to-end observations, onelého
ceE. select the smallest set of bad links, under the assumptain th

Three different inference algorithms to infer highly lossy large fraction of the network behaves well.

links are proposed below. Two of them are based on theAuthors in [50] address the LLI in wireless networks
Bayesian principle while the last one is the Smallest Comsts USing subspace properties of NC. They propose the PLI-RLC

(6)

Failure Set inference method. algorithm to infer link loss rate which performis% better
The first one isBayesian inference using factor graphdhan Bayesian inference algorithms of previous paper [44]
which is called BIFG for short. in terms of false detection. The algorithm is composed of

two parts. In the first part, it calculates the dimension ¢f al
subspaces at every time slot according to the buffered packe
and the packets which are received in that time slot. In the
second part, it estimates the packet loss rate based on the
dimension of the subspaces using Eq.(7) andEq.(8):

dim(T1, (1))

t—tl+1

P(Bio L0 ) P(t/B1)

ds(t) =1- (7)

wheres is a source nodey; is the loss rate of the patR;,

@5 (t) is the estimation ofy, at timet¢, [],(¢) represents the
subspace spanned by coefficients of the packets at nadd

t! denotes the time at which the sink expects to receive the

BIFG firstly constructs the factor graph]47] using [Eg.(3)'St Packet of source.
and Eqli): dim([, (+)

Gp(t) =1-— )
1 iff; = min(a;) t=t, +
0 otherwise

P(B2o 0 ) P(t2/B> )

Fig. 12. Example: the factor graph of FigJ11

(8)

P(3il{os,}) = { @)

wherew is avirtual nod@, «, is the loss rate of the patR,,
G, (t) is the estimation ofy, at timet, [] (¢) represents the
subspace spanned by coefficients of the packets at madel
t! denotes the time at which the sink expects to receive the
first packet of source.

Then, for each linK, if ajeqq) > Qrai), its link loss rate
Sh = Chead(t)s where head(l) and tail(l) denote the nodes
attached to the head and tail of liikrespectively.

P(t:|B;) = ( tj(__ll )Bf((l — Btk ()

It then sets the prior distributions of the vertices repnéisg

link rates and path rates to the uniform distribution, assgm
no prior knowledge on them. It further sets the evidence
the vertext; representing the full rank times with the observe

datal_)- Afterwards, the sum product a'gorithﬁlﬂ] _iS operated 4In this paper each intermediate network coding node is cal@irtual
on this graph to compute the marginal probabilities, ilee t source



C. Link Delay Inference
€2 The distribution of link delay is an important parameter for

65\
®—€1—’@>/\ €4 /@_67_’@ performance evaluation and load balance. Besides dek§; its
e3\b/66 the delay correlation between end hosts is particularlyulse
for some tomography tasks, for example the topology regover
Current literatures either use one way end-to-end measnem
Fig. 13. A graph with 3 paths from to r (OTT) [53] or round trip time (RTT)[54] to obtain it. The main

difference between OTT and RTT is that for OTT, series of

In [51] an Linear Algebraic (LA) approach to developingoackets are sent from sources and collected at receivets whi
consistent estimators of link loss rates by estimating mby o for RTT, packets are both sent and received at the source: How
the success rate of a single path but also the success ratévefr, OTT usually requires precise time synchronizatioitevh
any combination of paths is proposed. It is unique to NC basBI T needs the cooperation from receivers, which injecteextr
networks and cannot be achieved by only routing probescBagperation delay and causes inaccurate measurement. In this
idea is described by the following example shown in Eig. 1Section we first introduce a DCE measurement method [27]
where the path-link matrix is E@J(9): without any time synchronization and then discuss the trend
for adding NC in future.

1) DCE delay correlation inferenceThe basic idea of

€1 €9 €3 €4 (&34 €g (rd . . . . .
Pri 1 0 0 1 0 1 delay correlation estimation (DCE) is described as follows
M=P |1 1 0 1 0 1 1] €)
Py 10 1 0 0 1 1 o~

If e; ande; are referred as ondrtual link e, the typel
modified path-link matrix is shown in E@.(1L0):

and the system can be represented by[Eh.(11): “ b

Fig. 14. The tree structure: a sendérnd two receivers:, b
Ma=b (11) A simple model we use is shown iRig[I4 The routing
. structure from the sendef to the receivers andb must be
By definingp as the power set of path: [p| = 2/7l, each 4 tree rooted aff. Otherwise, there is a routing loop which
element ofp is a subset ofP that can be used to represenfyst be corrected. Assume that routeis the ancestor node
combinations of paths. Accordingly, a modified path-linkey of poth ¢ andb. Assume that the sender uses unicast to send
2 matrix M(2) = (mij)(p|-1)x|e;uey | 1S given as follows: messages to receivers, and assume that packets are sent in a
m;,; is equal tol if there is a path in théth path set including pack-to-back pair. For the-th pair of back-to-back packets,
the jth link. Otherwise, it is equal to. denoted as:* andb*, sent fromf to a and b, respectively.
We use the following notation:

rt 1 0 0 1 07

1 1. 0 1 0 1 o tq(k): the time wheru receivesa® in the k-th pair.

1 0 1 0 0o 1 « ty(k): the time whenb receivesb” in the k-th pair.
o o d.(k): the latency ofa* along the path frony to a.

My=11 1 0o 1 1 1 (12) « dy(k): the latency oft* along the path frony to b.

1 1 1 0 1 1 « ty(k): the time whenf sends thek-th pair of packets.
1 1 1 1 0 1 Using network model ofig[I4 we obtainEq.[I5) for a°
(1t 1 1 1 1 1} (we start the index with O for convenience):

o ta(0) = t7(0) + da(0) (15)
Thus the system matrix is extended to Eql.(13):

Similarly, for a* we have
ta(k) =tp(k) + do(k) (16)

Let Eq.(I8) — Eq.[IB)andd.(k) = t.(k) — t,(0), we can
obtainEq.(I7)

@ = (My M) My é (14) Salk) = (t5(k) = t£(0)) + (da(k) — da(0))  (17)

Mya = ¢ (13)

At last it has been shown that: If/,a = ¢ is given, them:
can be determined by least-squared [52], where
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Denote the time interval between two consecutive pairs obrresponding host pair has been measured (if the number of
packets ag. We assume that is a constant for simplicity at packets sent to them with indicatbiR reachesr wherer is
this moment, and relax this assumption later. In this case weunable threshold).
usekd = k- § to replacet (k) — t;(0) in Eq.(IT) then we  2) Trend of adding network coding to DCENC requires

have to combine different data packets into a new one to gain
do (k) = 6a(k) — ko + dqa(0) (18) benefits, for example improving network throughput; while

, B i i DCE tomography only needs to record the packet arriving time

Lt.at 0q(k) = da(k) — k4, Eq.(18)is transformed intcEq. at receivers and does not further make use of the content of

(9: coded packets. It seems that in this scenario NC is not able to

da(k) = 04 (k) + da(0) (19) directly introduce benefits to delay tomography. Neveebs)|

We can achieve similar results at receiveas inEq.[20) it Still can bring extra bonus. o _
For instance, for the passive realization of DCE mechanism
dy(k) = 0y(k) + dy(0) (20) in practical, NC based network scenarios may alleviate the
whered] (k) = 6,(k) — ks. problems when high traffic background leads to great bias on

Based on above equations, we prove that the correlatitcpr? tomography accurady [27]. If the transmitted data pecke

between delay variables, (k) andd, (k) is equivalent to the are network coded, each received packet increases the fank o

. . . decoding matrix (when the finite field, is large enough). As
/ q
correlation between variables; (k) andd; (k), which means such there is no need for retransmitting lost data, and tia to

traffic will be reduced.

2 _ 2
Tda(k),dy(k) = T3, (k),5 (k) (21) Furthermore, we note that in practical network coding [55]
The unbiased estimator of the correlation on shared patrdgta packets are combined by the unitgeneration This
also provided as E@.(22) shows: means only packets within the same generation can be ljnearl

coded with coefficient selected from a common figlg. In
1 < — — this situation the mechanism gfenerationintroduces time-
~2 — ! _ / Y
Ton.0, = 1 Z[‘Sa(k) 5[0, (k) — 4] (22) related information that can be utilized for further anays
k=1 This is another direction of combining NC with delay tomog-

whereé_g is the sample mean & (k),_, for i = a,b. raphy.
To reduce explicit probing, we develop a mechanism for
passive realization in real networks. IV. NEW PROPOSEDAPPLICATIONS OFNT WITH NC
A. NT of bottleneck discovery
i = Peer-to-peer (P2P) network is widely used in practice due
T ab2 to its excellent capability of content distribution. It,aever,
. source faces the issue of node collaboration. The introduction of
) desn NC can eliminate the data difference by combining multiple
2 { e packets, thus is able to solve the above problem. Typi-
ol cal application of NC in P2P is “Avalanche” developed by
al 1 W L5 @ router Microsoft [56], [57], [58]. It uses random network coding
seria des2 for content distribution. However, P2P content distribati

relies heavily on connectivity of the overlay network, waer

detecting bottleneck links is crucial for improving the caié

-~ @N performance (see the example shown in Eig. 16). All the above
reasons motivate our research in NC capabled P2P scenario fo

Fig. 15. The mechanism for passive tomography veturceand N end  bottleneck discovery, which aims at detecting bottlenéuks|

hosts. and rewiring them to guarantee network capability.

As Fig[I3 shows, passive realization works as follows. In Traditional method without NC in papér [59] determines the
practical networks (for example, P2P networkd)\iend hosts multicast tree structure and detects bandwidth bottlenégk
request common contents from siurce it will distribute distinguishing the loss model correlation of sinks and mea-
packets. In this situation theource first chooses theNo.1 suring how network disrupts the fine packet timing structure
requested data block which is duplicated into padestal 1 However, a drawback is that its implementation is centealjz
and is sent out to alN hosts simultaneously to guarantee thaind it needs to send probes actively. Therefore, the stigfabi
there exist two successive packets in a back-to-back manterP2P network and other non-tree structure applicatioasare
An indicator (R) is needed to tell if the received packet at eacis limited.
host belongs to the back-to-back pair. If serialNif.1lis sent  To address the above shortcomings, articlé [28] studies P2P
completely, thesourcerepeats to the next until all requestedhetwork using NC. Based on characteristics of subsgade [60]
contents are received Y hosts. As regular data flow proceedsind the observation that subspace spanned by coded packets
transmitting, we change destination address of the curreateived at each node reveals topological information ef th
two successive packets when delay correlation between trework, authors in[[28] propose distributed algorithms fo



11

on link to a particular neighboi, if it receivesk > 0,
non-innovative coding vectors fror) wherek is a tunable
parameter.

B. NT of failure localization

NT of failure localization is different from link loss infer
ence (LLI) that we need to localize the accurate position of
which link is unavailable or some random errors occur on a
link, while LLI concerns the total link loss rate of each link

Paper([61] is the first to show that coding coefficients used
in randomized network coding play double duties by allowing
link failure monitoring in addition to allowing the sink ned
to correctly decode the incoming data under different failu
patterns, since link failure affects the coding vectorseiesd
at sink node. This paper derives the probability that an even
discovering bottlenecks and breaking clusters. The basa i is identified among a given set of failure events. It also sets
is in the following. bounds on the required finite field size,, and analyzes the
complexity for designing robust network code. Details are
described as follows.

Given a distinguishatﬂefailure event seC” and a specific
failure eventc € C, the upper bound on the probability of
tomography ambiguity in a random linear network code is

L
paio (1192 -

where L denotes the maximum number of logical links on a
source-sink pathy is the finite field size of ,. From Eq[(ZB),
the probability of tomography ambiguity decreases invgrse
with field sizegq.

Similarly, the required field size and complexity for design
() (b) ing a robust network code that distinguishes among a given
set of failure events are also bounded by [Ed.(24) and Hq.(25)
respectively, for a valid network code field size in Egl(26).

Fig. 16. Example: a P2P network with 2 clusters and bottlerieks

Fig. 17. Example: a bottleneck linksy- in practical P2P networks

Assume that at a given timg each node knows its own |C|—1
subspace and the subspaces it has received from its parent q=C] < 2 + d) (24)
nodes. Lefll; = 11, U...UTI. denote the subspace spanned by
the coding vectors has collected, wherﬁi, ..., I1. denote the
subspaces that it has received fromdtaeighborsuy, ..., u., ((
respectively. The overlap of subspaces from the neighbors
reveals information about a bottleneck. Consider the netwo c| -1
depicted in Fig.[1l7(a), where edges correspond to logical q=1[C| (T +d) (26)
links. The sourceS hasn packets to distribute to four peers.
NodesA, B andC are directly connected t6, while nodeD whered is the number of sinks; is the total number of links
is connected to noded, B and C. However, logical links in the network,/ is the maximum in-degree of a nodeand
SA,SB,SC share the bandwidth of the same underlyingare the number of sources and terminal links, respectively.
physical link SV as shown in Fig[17(b), which forms a Paper [[3V] provides the first polynomial time algorithm
bottleneck between the source and the remaining nodes of thelocating the edges that are subject to random errors and
network. random erasures. The basic idea is that sink nodestly

In this case when noded, B, C receive the same packetcalculates random error vector 96t according to the network
from S, the coding vectors collected by them will span thetructure, and then tests each impulse response vedi(y)
same subspace. Hence the coded packets they offer tolmodt see if it belongs td7,. If so, it can be determined that the
will overlap subspaces significantly. From this informatio corresponding link belongs to the error link set.

node D knows that there is a bottleneck between nodes

A.B.C andS. 5For a network with sources and sinks, we consider two faipatterns
7 . L . and ps to be indistinguishable if the set of source-sink paths aioirig

Paper[[ZB] also defines some criteria for bottleneck dBCOS{I'IeaSt one link inp; is identical to the set of source-sink paths containing

ery. For example, a node can decide there is a bottlenethkeast one link iz, and distinguishable otherwise.

n
#) |C| (I + dr??™ + |C|rt)) (25)
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I —+2+ 3 — 3 authors extend this to propose that any M-by-N network

er €3 Y=(32]" can be decomposed into a collection of four 2-by-2 sub-
network components as shown in Fig. 4. However, the above

traditional tomography methods are not able to distinguish
. between the last three unshared types. Independently, NC

e, “ E=[201" pased tomography if [30] is able to exactly identify the 2-

by-2 type, as opposed to just distinguish between shared and
(a) Routing scheme non-shared types. In addition, the 2-by-2 component mgrgin
algorithms in [38] can precisely locate the joining pointishw
respect to the branching points, as opposed to only provide
1 —+2» 3 — 3+2:2=7 bounds by traditional methods.

e e; Y=[75]" .

! Moreover, [36] proves that the transfer matricdg for
detectably different networks are distinct and can bezgtilito
distinguish between any network topolody. [[37]1[38] extend

. the above work to erroneous networks to passively infer
ey €4 E=[22]
—_

_ network topology without explicit probing. Alsd [60] shows
2 —» 3+2=5 .
that subspace spanned by coded packets received at each node
(b) Coding scheme reveals topological information of the network which can be
used for passive topology recovery.
Fig. 18. EX%"EP'F f0ft 'Ot%aﬁng an ‘i”or at ef]RjJIﬁWh?fe :\E‘Ce “;U_ti?g SCZ‘?Te For traditional link loss inference[ [65], a maximum-
o o o o he orrol & O e2 locate the errgeed - likelihood estimator for loss rates on internal links obserby
multicast receivers is developed. However, LLI over gehera
) . graphs with an arbitrary structure is beyond its scope. For
Consider network of Fid. 18(a). Soursesends symbols 1 general graphs, authors df J43] 66] use multiple multicast
and 2 to node: via edgesc; ande; respectively. D}Je to the {rees and/or multiple unicast paths to cover the networkiyra
error introduced ire,, 1 receives a vector” = [?’T2] : Th?” and then combine the link loss rates estimated from the dif-
r computes the error vector to g =Y —[1 2] = [20]".  ferent paths/trees. However, the above traditional metaoe
According to £,  knows that error happens @ or e but  g,poptimal with respect to the following optimality crieer
cannot locate the error. _ , identifiability, estimation accuracy and bandwidth effimig.
However, if NC is used at intermediate node we can |nqependently, NC based tomography [nl[21] is the first to
locate the error link accurately (shown in Fig] 18(b)). listh ;s network coding for inferring link loss rates in overlay
scenarioxs = x1 + 2z andzy = 1 + x2, Wherez,, x; aré  payorks with advantages of less bandwidth consumption,
symbols received from, e, and z3, 4 are symbols 0 be |55 complexity for realization and high inference accyrac
sent viaes, 4. With error at linkey, r receivesy” = [7 5]7. Paper[[4D] extend$§ [21] and further presents that appriayia
S'm'l‘:}rly' r ca:rrl compute the error vectdh. =Y —[1+2-2  cnoosing the number of sources and receivers, as well as thei
1427 = 2 2]T - Thenr obtalr;s each |mpulseTresponse VeCt9hcation, can have a significant effect on the accuracy of the
I(gl) = (117, I(eQ)T: 2 1]7, I(es) = [1 0_] ' {(64) =10 estimation. In[[4R], with NC each link is traversed by exgpctl
1]7. Using E, = [2 2]7, r knows that error is injected to1 e packet, resulting in a great bandwidth saving compared t
with 2. traditional multicast or unicast tomographic techniques.
) ) N Moveover, [44] is the first to address loss inference in
C. Comparison with traditional tomography methods wireless networks using network coding and it changes the
The introduction of NC to network tomography not onlffundamental connection between path and link loss rates fro
brings advantages such as high tomography efficiency and I6w= T.cp(1 — o) t0 8 = min.cp(1 — a.). To make use
cost, but also broadens the scope of tomography. For exampliesubspace properties of network coding for LLI in wireless
it extends the bottleneck discovery to P2P networks. Bensor networks| [50] proposes a PLI-RLC algorithm to infer
compare its performance with non-NC tomography methodsk loss rate.
we present a summary of traditional solutions. For traditional link delay inference, authors in_[53] use
A comprehensive survey on network tomography can llee one way end-to-end measurement (OTT) method while
found in [B] which focuses exclusively on inferential netkwo paper [54] develops a round trip time (RTT) solution. The
monitoring techniques that require minimal cooperatianfr main difference between OTT and RTT is that for OTT, series
network elements. Tools for active/passive measurementaffpackets are sent from sources and collected at receivers
networks can be found in [63], for examptaperis a probing while for RTT, packets are both sent and received at the sourc
engine that clients can use to conduct topology and perfétewever, OTT requires precise time synchronization and RTT
mance measurements using ICMP, UDP, and TCP probes.needs the cooperation from receivers. To address the above
For traditional topology inferencé [64], probing packets aissues, a novel DCE measurement mettiod [27] is proposed
sent to multiple receivers by a multicast tree, and then thegthout any time synchronization and complex cooperation.
are used to recover the topology structure with informatiorhe trend of adding network coding to DCE was discussed
of received data packets at different nodes. [31] [32h [27].



13

For new proposed applications of NT, authors[inl [28]|[60] since the length of codes cannot be infinite for the limited
[62] extend the traditional tomography scope to bottleneck link bandwidth of wireless sensor network.
discovery in P2P environment. The papkr][61] is the first e For delay tomography we introduce DCE method for
to show how the coding coefficient embedded in randomized delay correlation inference and show the bonus of using
network coding can be used to infer failure patterns, which NC coded packets. Further work, however, is required to
consumes no extra overhead for probing. combine mechanism of packet generation to time-related
A more detailed summary of NC-based tomography meth- information.
ods and the comparison with traditional techniques isdiste o For research in new application areas besides bottleneck
Table[IM, where not only existent applications but also new discovery and failure localization, utilizing the subspac
proposed solutions of NT with NC are listed. property of NC should be a good direction in future.

V. DISCUSSION ANDFUTURE TREND VI. CONCLUSIONS

In this section, we first present some NC based methods that? this paper we introduce the application of network coding

are in practical use, then discuss some lessons and existh§&twork tomography and show that with NC many benefits
problems which demand further research. can be gained. Firstly, we present taxonomy result for netwo

For NC based tomography, authors [iil[44] have developtinography with NC capabilities; Secondly, we review the
a customized pack-level network simulator in C++, with the°rresponding methods in each category. Last but not least,

implementation of randomized network coding to evaluate LIPreéSent the primary research in delay inference and présent

in wireless networks. Similarly, papef [50] implemented gagsons and trenq for future research with NC.. We expect Fhat
discrete-event packet-level simulator for the wirelesssee NS comprehensive survey on tomography with NC abilities
networks. In paper[27], the authors have implemented tHd!l attract more attention to this area.

DCE tomography method using OMNeT++, which is an open-

architecture discrete-event simulator consisting of msitde, REFERENCES

modular C++ libraries. To evaluate its performance in pract ;) o chen, J. Cao, and T. Bu, “Network tomography: Idenkifiay and

cal networks, the authors also implemented it on PlanetLab fourier domain estimation,IEEE Transactions on Signal Processing

platform. It concluded that if some traditional tomography Vol 58, no. 12, pp. 6029-6039, 2010. ,
[2] B. Yao, R. Viswanathan, F. Chang, and D. Waddington, ‘Glogy

methods, for example, tools listed 63]' are eqU|pped1W|.t inference in the presence of anonymous routersPrioceedings of the
NC capability, their performance will be much enhanced in  IEEE INFOCOM 2003San Francisco, CA, USA, April 2003, pp. 353—

practice. 363. o . .
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For implementation of NC based tomography, there are€” jyterence through active probinglEEE Communications Surveys and
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