
ar
X

iv
:1

41
1.

50
03

v3
 [

cs
.N

I]
 1

9
M

ay
 2

01
5

1

Survey of End-to-End Mobile Network
Measurement Testbeds, Tools, and Services

Utkarsh Goel, Mike P. Wittie, Kimberly C. Claffy, and Andrew Le

Abstract—Mobile (cellular) networks enable innovation, but can also stifle it and lead to user frustration when network performance falls
below expectations. As mobile networks become the predominant method of Internet access, developer, research, network operator,
and regulatory communities have taken an increased interest in measuring end-to-end mobile network performance to, among other
goals, minimize negative impact on application responsiveness. In this survey we examine current approaches to end-to-end mobile
network performance measurement, diagnosis, and application prototyping. We compare available tools and their shortcomings with
respect to the needs of researchers, developers, regulators, and the public. We intend for this survey to provide a comprehensive
view of currently active efforts and some auspicious directions for future work in mobile network measurement and mobile application
performance evaluation.

Index Terms—Mobile network, measurement, testbeds.

✦

1 INTRODUCTION

MOBILE (cellular) network applications deliver in-
teractive services, generally supported by back-

end logic deployed on cloud infrastructure. These ap-
plications support a wide breadth of functionality, such
as live video, social gaming, communication services,
and augmented reality [1]–[4]. Future services will in-
creasingly leverage cloud-based datasets and processing
power for innovative applications of live speech transla-
tion, real-time video analysis, or other computationally
intensive tasks [5], [6]. As the frequency of interactions
between mobile devices and back-end servers increases,
application responsiveness will be increasingly tightly
coupled with end-to-end network performance.

To innovate in the interactive mobile application space,
developers deploy communication protocols with so-
phisticated data delivery techniques that support re-
sponsive communications under a range of network
conditions [7]–[11]. These techniques are not always suf-
ficient and developers are sometimes forced to redesign
application functionality to mask poor network per-
formance. However, these latter optimizations require
detailed network performance data that is often not
readily available, which results in challenges across the
cellular ecosystem. For example, developers face the
undesirable choice of evaluating performance of their
mobile applications in limited private deployments that
lack geographic diversity, or distributing their code to

• U. Goel and M.P. Wittie are with the Computer Science Department,
Montana State University, Bozeman, MT 59717.
E-mail: utkarsh.goel, mwittie@cs.montana.edu

• KC Claffy is with UCSD/CAIDA, La Jolla, CA 92093
E-mail: kc@caida.com

• A.Le is with Mintybit, Santa Barbara, CA 93111
E-mail: andrew@mintybit.com

users without adequate testing [12], [13]. Researchers
lack network performance data, or tools to acquire such
data, in order to rapidly test hypotheses and focus
on realistic network performance problems. Network
operators need to monitor and troubleshoot end-to-end
network performance without degrading base station
throughput. Finally, regulators have a limited view of
network performance, especially with respect to traffic
shaping by network providers, impeding their ability
to tackle performance challenges and roadblocks for
sustained innovation in the mobile space [14], [15].

This paper provides a comparative analysis of cur-
rently available network measurement platforms for
end-to-end mobile network measurement, monitoring,
and experimentation. We further categorize measure-
ment platforms as research testbeds for network ex-
perimentation, extensible distributed measurement tools,
and services for widespread monitoring of networks
performance. In the following sections describe the most
salient features of each platform, and how some features
differ across them. Table 1 compares the testbeds and
tools in terms of their experimentation flexibility, device
selection criteria, resource protection, and other features.

Based on our review of current measurement efforts,
we observe that although existing approaches comprise
only a patchwork of needed functionality, they already
generate powerful insights to guide development, re-
search, and regulatory actions. However, in spite of
the relative maturity of several measurement platforms,
daunting problems remain including support for wide-
scale application prototyping and deployment, detection
of traffic shaping, and long-term network performance
monitoring. Most existing mobile measurement tools
have been developed in isolation, and one motivation
for this survey is to foster more concerted and coopera-
tive efforts at standardization of measurement libraries,

http://arxiv.org/abs/1411.5003v3

2

Network Testbeds Network Tools Network Services

Uncurated Curated Standalones Libraries
Network

Monitoring

Network
Discovery &

Diagnosis

M
IT

A
T

E

S
e
a
tt

le

P
h

a
n

to
m

N
e
t

P
h

o
n

e
L

a
b

S
ci

W
iN

e
t

L
iv

e
L

a
b

s

F
C

C
S

p
e
e
d

T
e
st

W
in

d
R

id
e
r

M
y

S
p

e
e
d

T
e
st

M
o

b
it

e
st

R
IL

A
n

a
ly

z
e
r

M
o

b
ip

e
rf

A
L

IC
E

O
o

k
la

S
p

e
e
d

T
e
st

R
a
d

io
O

p
t

O
p

e
n

S
ig

n
a
l

N
e
tP

e
rf

o
rm

N
D

T

N
e
ta

ly
z
r

P
o

rt
o

L
a
n

Measurement Capabilities
Traffic shaping/DPI X X X X X

Active measurements X X X X X X X X X X X X X X X X X X X

Passive measurements X X X X X X X X X

Measurement data publicly
available

2 X 2 X X X X

Custom packet content X X X X 1
Peer-to-peer traffic 2 X X

ICMP traceroutes 2 X X X 3 X

Programmable execution
environment

4 X X X X X X

Access to mobile device
sensor data

X 2 X X X 5 6 7 5,6 5,7 5 5,6,
7

5,6,
7

5,6,
7

5,7 X

Experiments can be sched-
uled on specific clients

X X X X X X X X

IPv6 support 2 2 X X X

Allow traffic on ports <

1024
3 3 X

Reports network problems X X X

Supported mobile OS plat-
form

8 8,9,
12

8 8 8 8,9 8,9 10 8 8,9,
11

8 8 8 8,9,
10,13

8,9,
10,11

8,9 8,9 8 8 8

Network coverage map X X

Device Selection Criteria
Geographic location X X X X X Q
Device model X X X

Device type (GSM/CDMA) Q
Battery charge level X X X Q
Carrier signal strength X X Q
Network carrier X X Q
Network type (Wi-
Fi/Cellular)

X X X Q

Time of day X X X X X X X

Resource Usage Limit
Transmission rate X

Bandwidth cap X X X X X X X X X

Minimum battery charge X 2 X X

Port restrictions X X

Misc.
Measurement scheduling
API

X X X X X X

Supports devices behind
NAT/Wi-Fi

X X X X X X X X X X X X X X X X

Requires rooted phones X X X X

Open to public X X X X X X X X X X X X X X X X X X X

User incentive model R R,A U S,U C C C A C,S S C C,S C,S C,S S S A
Experiments require IRB
approval

X X

Open-source X X X X X X X X X

Currently active D X D X D D X X X X X X D X X X X X X

Records hardware specs O X X X X X X X X

Records hardware perfor-
mance

O O O X 6 X X

3

Legends:

1 – measurements can be directed to specific Web servers.
2 – planned functionality.
3 – on rooted phones only.
4 – through multiple experiment rounds on the same device.
5 – GPS readings.
6 – battery readings.
7 – radio state.
8 – Android.
9 – iOS.
10 – Windows.
11 – Blackberry.
12 – Nokia.
13 – Amazon FireOS
A – user Altruism to support measurement capacity.
D – under Deployment.
O – Optionally.
C – user Curiosity to understand their own network performance.
Q – only at query time.
R – Reciprocal (tit-for-tat).
S – provides Service to clients other than measurement data.

TABLE 1
Experimentation flexibility matrix of end-to-end measurement testbeds, tools, and services.

privacy policies, and technology exchange [16]–[19].
The rest of this paper is organized as follows. Section 2

reviews goals of end-to-end mobile network measure-
ment. Sections 3, 4, and 5 respectively discuss measure-
ment testbeds, tools, and services for end-to-end mobile
network measurement. Section 6 presents directions for
future work and concluding thoughts.

2 GOALS OF END-TO-END MOBILE
NETWORK MEASUREMENT

The 2014 CAIDA workshop on Active Internet Mea-
surements (AIMS 2014) brought together developers,
researchers, network operators, and regulators interested
in mobile (and wireless) network performance [18].
Although these communities share the goals of under-
standing and improving performance of current mobile
networks, they focus on different metrics, and thus the
tools they produce (Section 3) take different approaches.

2.1 Developers’ View of Network Performance

Developers want to provide a responsive application
experience to their users. Although much of the delay ex-
perienced by user requests is due to back-end processing
and front-end rendering [10], as hardware and software
processing speed improves, network latency becomes
a dominant concern. Moreover, network latency does
not necessarily benefit from advances in communication
technology. Internet Service Providers (ISPs) typically
engineer their networks to minimize forwarding costs,
which is not always aligned with minimal end-to-end
latency. Specifically, ISPs may direct traffic onto inexpen-
sive but circuitous routes, which inflates hop counts and
path latency [20]. ISPs may also configure cellular sched-
ulers to delay transmissions until carrier channel condi-
tions are favorable [21]. Additionally, mobile networks

remain bandwidth-constrained, which motivates ISPs to
deploy traffic shaping mechanisms on video streaming
and P2P traffic to increase the usable bandwidth for all
mobile users [22]. Traffic shaping can induce high latency
that impedes the performance of dynamic content appli-
cations such as interactive Web, live video, and group
communication and collaboration tools [23].

To cope with the complexity of mobile network per-
formance dynamics, developers need to measure and
incorporate mitigation strategies in their applications.
Although not all mobile applications are equally affected
by poor network performance, the responsiveness of net-
work applications such as games, interactive video, and,
to a lesser extent, in-car navigation and augmented real-
ity requires low latency, stable bandwidth, or both [24].
To improve application responsiveness when latency is
high, developers might redesign application communica-
tion protocols and message structures to pack more data
in fewer round trips between mobile clients and back-
end servers [25]. Developers might also strategically co-
locate back-end servers in areas, or networks, where
users tend to experience higher latencies [26]. To coun-
teract the effects of low bandwidth, developers, might
reduce the size and/or resolution of images and video,
or reduce the frequency of application state updates by
using techniques such as CloudFlare’s Mirage [27] or
Opera’s Turbo [28].

To apply such performance adaptation techniques,
developers need tools to study the performance of their
application traffic in mobile networks to their application
servers. Such in situ testing is useful during the applica-
tion design process to reduce the risk of poor application
performance at launch, especially when steep user base
ramp-up is expected. For example, developers may want
to evaluate a cloud server placement strategy and mea-
sure message delays across geographic areas to vali-

4

date whether application transactions meet their needs.
Developers may also want to load-test their back-end
infrastructure to ensure responsive service, irrespective
of user location, server selection, and server load. Results
from such analysis help mobile developers to design
appropriate back-end deployment strategies. Network
testbeds are useful for such early testing, because they
save developers the trouble of writing testing code,
or deploying dedicated back-end servers in multiple
locations. Even during beta testing an application may
not have a sufficiently large or distributed user base
to generate statistically significant observations, and so
community-maintained testbeds are a good alternative
starting point.

Few testbeds support such realistic experimentation
prior to application deployment. Most mobile network
testbeds allow users to measure only upload and down-
load speeds, ping latency, and traceroutes, but do not
support prototyping of mobile application traffic, or
detect traffic shaping in cellular networks. An alterna-
tive to public testbeds are paid services that evaluate
application performance across multiple types of mo-
bile devices. However, these services currently provide
access only to stationary cellular devices, which limits
measurement realism in terms of geographic and net-
work diversity [12], [13].

Additionally, while there are published best practices
for mobile developers [7], there are not many tools
to track an application’s communication performance
throughout its lifetime. For example, developers may
want to perform A/B testing to evaluate whether tweaks
to communication protocols, or server endpoints, might
improve performance. Such studies generally target cer-
tain users, networks, or time intervals, and thus require
expressive test device selection criteria. Although A/B
testing may be implemented in the application itself,
third party application optimization libraries offer an
easier, safer, and less disruptive starting point [29]–[31].
However, currently available A/B testing libraries focus
primarily on testing application layout with respect to
application adoption, user retention, and in-app revenue,
but do not collect performance metrics needed to opti-
mize application network performance.

Although server monitoring and reporting tools
(e.g., [7]) enable logging and monitoring of application
performance indicators such as request queue length at
a server, they do not support end-to-end network mea-
surement. Other analytics tools, for example the Google
Analytics platform, provide performance measurement
from a client perspective, but capture only the timing
of the request-response cycle, and not response char-
acteristics, e.g., size, compression, protocol [32]. Thus,
developers need to measure and understand application
performance in a realistic network environment before
and after deployment, particularly as data needs and
application requirements evolve.

2.2 Researchers’ View of Network Performance

The research community has produced several testbeds
that offer significant flexibility to execute a variety of
network experiments [20], [33]–[45]. Yet, the availability
of these testbeds and knowledge of how to use them
often remains limited by practical barriers to collabo-
ration across research groups. Researchers may need to
set up their own infrastructure for data collection [46],
obtain Institutional Review Board (IRB) approvals [34],
or revive code that is no longer maintained [47], [48].
Even when maintainers of a given testbed help to set
up experiments, communication rounds take time, es-
pecially when software modifications are needed. As
a result, researchers often decide it is more expedient
to develop new tools, even when it duplicates others’
efforts and achieves only a small scale evaluation [34],
[37].

Several organizations are working to lower the barrier
to entry and promote concerted development of network
measurement tools. For example, M-Lab maintains a
repository of measurement tools, including MobiPerf,
WindRider, and NDT (Mobile client), discussed in sec-
tions 4.2.1, 4.1.2, 5.2.1 respectively [49]. One of M-Lab’s
goals is for new tools to leverage existing code base,
for example the Mobilizer library [41]. M-Lab also sup-
ports the development of common ethical guidelines
for network measurement data collection [16]. However,
the continued flow of proposals for new, independently
deployed cellular tools (five in 2014 [37], [41], [44], [45],
[50], eight in 2013 [20], [33]–[36], [42], [51], [52], three in
2012 [12], [40], [53], one in 2011 [38], one in 2010 [43],
and two in 2009 [54], [55]) suggests that more needs to be
done to improve collaboration among different research
groups.

The research community has also worked to decrease
the need for and the cost of redundant experimentation
and created several repositories of wireless network
measurement data [56]–[58]. While data repositories fa-
cilitate reproducibility of research results, they have their
limitations. For example, to study current phenomena,
such as changes in network traffic management policies
expected after new FCC Net Neutrality regulations [59],
researchers need new measurement data quickly, rather
than waiting for a new dataset to be released after
another group’s publication. Additionally, data in repos-
itories may be obfuscated, suitable for one experiment,
but lacking in sufficient detail for another, or may be
difficult to correlate when multiple datasets are collected
at different times or under different conditions. For these
reasons, live testbeds and measurement tools form a
critical foundation of innovative research and education
environments.

2.3 Network Operators’ View of Network Perfor-
mance

In addition to their operational monitoring of cellular
network performance from base stations and other net-

5

work elements, network operators are also interested
in end-to-end network measurement from the device’s
perspective, to provide responsive and reliable service at
reasonable operating cost, including the cost of fielding
customer support calls. Network operators also want to
simplify and speed up the deployment of new access
technologies and over-the-top services. A key element
in these processes is the ability to troubleshoot net-
work performance issues without affecting base station
throughput.

However, industry insiders describe troubleshooting
cellular networks as “an art with few scientific princi-
ples.” To increase their insight into end-to-end network
performance and network factors that may affect it, e.g,
received signal strength, many network operators have
deployed Carrier IQ on handsets in their networks [60],
[61], and then faced customer backlash [62], [63] due to
this application’s approach (or lack thereof) to user pri-
vacy protection. Although network operators continue to
use Carrier IQ, users continue to uninstall it on rooted
phones [64], [65]. As a result network operators, like
ATT, are looking for new methods to monitor and trou-
bleshoot user network performance that can match the
scale and efficiency of embedded end-host monitoring
provided by Carrier IQ [66].

2.4 Regulators’ View of Network Performance

Finally, regulators need monitoring tools to inform
their understanding of availability, reliability, and per-
formance of mobile networks over time. Constrained
network performance and delayed upgrades to next
generation technologies, e.g., 4G, have long been seen
as stifling innovation in the US [67], [68]. Further, traffic
shaping mechanisms and anti-competitive behavior by
some network providers impede deployment of new
services [15], [69]–[76]. Even developers of popular mea-
surement tools struggle to create incentives for longitudi-
nal and widespread measurement [52]. A few tools that
have gained traction with users rely on user-initiated
network tests, which limits measurement frequency and
representativeness [38], [43].

2.5 Shared Challenges

Developers, researchers, network operators, and regula-
tors face the same challenges in deploying end-to-end
mobile measurement tools: incentivizing a statistically
significant sample of users to install and execute the
tool; protecting those users’ resources from abuse; and
preserving user privacy.

To motivate user participation, testbed designers
have used schemes such as bundling testbed code with
other functionality [46], offering free devices [34], press
coverage [43], [52], or simply appealing to user altruism
and curiosity [52]. These approaches result in either a
narrowly focused user base or short-lived deployments,
both of which limit testbed utility.

The second challenge is how to protect contributed
testbed resources from abuse. Some peer-to-peer systems
have used tit-for-tat mechanisms to ensure fair resource
sharing [77], but mobile network measurement testbeds
thus far rely on user altruism on the one hand and
conscientiousness on the other [38]–[40], [52]. Scaling
and sustaining measurement testbeds over the long term
will require more rigorous resource protection methods
in existing tools.

Finally, a testbed should isolate personally identifiable
information from experimental data collected on a mo-
bile device. Measurement tools discussed in this paper
offer a range of solutions to maintain this separation.
Google has supported the development of a proposed
set of ethical guidelines for the design of mobile-based
network measurement tools [16]. These guidelines have
informed the design of some tools, specifically MITATE
and Mobiperf, but the disparate legal frameworks for
user privacy around the world make it difficult to create
conformant tools for the global mobile Internet [18].

3 NETWORK TESTBEDS

Mobile application developers need to know how well
a network can deliver their application content. Custom
network experiments that emulate communication pro-
tocols of their applications create performance profiles in
different network settings to inform application design.
End-to-end systems that support such functionality need
to balance the flexibility of their feature set against po-
tential abuse of contributed user resources and threats to
user privacy. We divide systems according to how they
resolve this conflict for new experiments from external
researchers into uncurated and curated approaches.

3.1 Uncurated Network Testbeds

Uncurated network testbeds allow users immediate ac-
cess upon registration. Users experiments and changes
to these experiments do not need to go through an
approval process. Although their open nature allows
these platforms to scale, they are limited in the type of
personal information they collect without going through
an Institutional Review Board (IRB) approval process.

3.1.1 MITATE

Mobile Internet Testbed for Application Traffic Ex-
perimentation (MITATE), developed at Montana State
University (MSU) in April 2013, enables experimenta-
tion with mobile application traffic in live mobile net-
works [20]. Experiments execute on user-volunteered de-
vices that meet specified criteria, such as signal strength,
geographic location, or network provider. Developers
can use MITATE to evaluate the performance of mobile
application communications under a wide range of con-
ditions before their applications are deployed, or even
fully developed. MITATE supports configurable active
network measurements to detect network traffic shaping

6

by ISPs, and integration with other tools, for exam-
ple CPLEX to explore protocol configuration tradeoffs
through parameter search and optimization [78].

Functionality: MITATE supports active network mea-
surements on mobile devices. MITATE experiments are
configured through XML files that describe the content
of experiment data transfers, transport layer protocols,
network endpoints, and timing. An XML configuration
also describes criteria that volunteered devices must
meet to execute an experiment, such as network type
(cellular or Wi-Fi), signal strength, geographic location,
network carrier, minimum battery power, and device
model. To ensure that experiments are defined correctly,
MITATE servers validate new XML configuration files
against an XML schema definition (XSD). Users interact
with MITATE through an API that allows upload of XML
configuration files and download of collected data.

Each mobile device polls a central MITATE server at
MSU for new experiments whose criteria matches that
device’s capabilities. Devices download static traffic def-
initions that specify what traffic to exchange between the
mobile device and back-end servers. MITATE mobile de-
vices can interact with third party systems, for example
DNS and CDN servers, through explicitly configured,
well-formed request packets, and by recording reply
content and delay. Although each MITATE experiment
is a series of static transmissions, complex logic can
be implemented across processing rounds, e.g., DNS
lookups and ping transactions require two rounds. Such
an experiment specifies a device ID as a criteria, which
allows for the same device to issue DNS lookups in
round one and subsequent pings in round two.

Data Collection: MITATE records the delay of each data
transfer as well as metadata such as signal strength,
accelerometer readings, and device location. This delay
measurement allows calculation of 42 metrics, including
uplink and downlink latency, throughput, jitter, and loss,
as well as mobile sensor readings [79]. For example, an
experiment estimates available bandwidth by dividing
the size of a large transfer by its duration. MITATE
experiments may also use a series of small transfers to
estimate packet round trip time (RTT), loss, and jitter.
At the start of an experiment, MITATE estimates the
clock offsets between a device and each server end-
point, which allows separate measurement of uplink and
downlink latency.

Collected data is available for download in the form
of SQL insert statements to populate a local instance of
a MySQL database for each user. MITATE allows users
to download data only for their own experiments and
those whose data is made public. Aggregate metrics, for
example mean latency, are computed through queries to
the local database instance. This design reduces the load
on the MITATE database servers and allows users to run
arbitrary queries over their experiment data.

Resource Incentives and Protection: MITATE is a col-
laborative framework built around incentives for user
participation, inspired by BitTorrent’s tit-for-tat mecha-
nism [77]. MITATE users earn data credit by contributing
their mobile resources. Users can then spend credit to
run experiments on others’ devices. Earned credit ex-
pires after 24 hours to prevent its accumulation and use
for large experiments that might overwhelm available
system-wide resources at any point in time.

MITATE’s credit system encourages ongoing partici-
pation and protects contributed resources from abuse.
Users can leverage MITATE resources in direct propor-
tion to how much data they contribute to the system. MI-
TATE does not rate-limit device transmissions (although
users can set monthly data caps and battery limits on
their devices), which permits realistic load-testing exper-
iments. Although distributed denial of service (DDoS)
attacks launched from multiple devices are technically
possible in MITATE, they are destined to be short lived,
because rapid transmissions from multiple devices will
quickly deplete the malicious user’s earned credit.

Privacy Protection: A significant challenge to expanding
measurement systems on volunteered personal devices
is the threat to user privacy. To limit the exposure of per-
sonally identifiable information, MITATE captures data
only from active traffic experiments and does not mon-
itor non-MITATE device traffic. Collected data is also
indexed by virtual device IDs, rather than personally
identifiable phone and International Mobile Equipment
Identity (IMEI) numbers.

Remaining Challenges: MITATE is still in active de-
velopment; project goals for the next couple of years
include: deployment on M-Lab, support for peer-to-peer
transmission between mobiles (important for IoT and
gaming experimentation), and iOS device support.

3.1.2 Seattle
The Seattle testbed, originally developed in March 2009
at the University of Washington to support wired host
experimentation, now also supports mobile application
prototyping [80]. The design goal was to increase the
diversity of testbed hardware to provide a more realistic
prototyping environment than testbeds relying on dedi-
cated hardware (e.g., PlanetLab, Emulab, or GENI [81]–
[83]). Seattle runs on volunteered devices in last mile
networks, and on institutional servers. As of 2015, Seattle
includes about 800 mobile devices and over 10,000 nodes
in total.

Functionality: Seattle experiments run on sandboxed
virtual machines in a pared down implementation of
Python called Repy. Seattle libraries support Repy func-
tions such as data serialization, cryptography, and pro-
cessing URLs, HTTP messages, and other protocols.
Repy code is pushed to Seattle-registered through an
API. Users can select devices by location and network

7

type (Wi-Fi or cellular) to which device is connected,
but Seattle does not support selection by device travel
speed, provider, or model. Seattle also supports P2P
communication among devices.

Data Collection: Seattle does not collect network per-
formance data by default. Instead users define their
own metrics through experiments implemented in Repy.
Seattle does not provide access to device sensors [84].
although sensor applications can make sensor data avail-
able to Repy programs through an API. The Sensibility
testbed is an extension of Seattle, which allows Repy
experiments to interact with mobile sensor data, but not
to transmit or capture network traffic [85].

Resource Incentives and Protection: The Seattle incentive
model is based on a tit-for-tat approach, where a user has
access to ten volunteered devices for every device she
registers with the system. While this policy makes sense
in the wired setting, where devices are not generally
restricted by monthly data caps, users who register
wired hosts but experiment with others’ mobile devices
can deplete the mobile data cap. As a mitigating step,
by default Seattle limits data transmissions to 10 Kbps,
so even if the experiment fully uses that transmission
rate, the owner can likely continue using their device.
This limit prevents Seattle experiments from measuring
available bandwidth and generating load-testing traffic –
limitations not present in MITATE’s credit-based model.

Privacy Protection: Seattle protects user privacy by al-
lowing experiment code execution only in sandboxed
virtual machines, which isolates experiment processes
from each other and from non-Seattle processes.

Limitations: The authors of Seattle list several limitation
of the current system, including inability for Seattle
nodes to host services on ports below 1024, increase
the transmission limit on donated resources, send ICMP
traffic due to Repy restrictions, and put a limit on battery
drain [33].

3.1.3 Emerging Systems

PhantomNet, being developed at University of Utah,
is an emerging testbed based on a network of small-
cell base stations connected through a software-defined
network (SDN) backbone [45]. Users will be able to not
only experiment with end-to-end services, but also mod-
ify backbone traffic forwarding for their experiments.
PhantomNet devices will have dual-radio interfaces,
which will allow integration with a reseller network, for
example through SciWiNet. PhantomNet also leverages
management tools from other systems, notably Emulab
and Seattle. Currently, PhantomNet remains under de-
velopment.

3.2 Curated Network Testbeds

Curated network testbeds vet network experiments prior
to deployment. In particular, vetting involves passive
monitoring experiments that collect privacy sensitive
data, such as users’ traffic, or location history and may
need to go through an IRB review. Other experiments
may require changes to the testbed itself and need to be
approved by the testbed’s developer team [86].

3.2.1 PhoneLab
PhoneLab is a programmable smartphone testbed, de-
veloped at the University at Buffalo in November 2013,
to support flexible experimentation intended to emulate
application deployment scenarios [34], [87]. PhoneLab
experiments are implemented as mobile applications
pushed to rooted Android smartphones given to stu-
dent volunteers at the University at Buffalo. PhoneLab’s
model supports long-term, passive experiments that can
record network transitions, battery drain, and use of
other applications on the device.

Functionality: PhoneLab experiments are pushed to par-
ticipants either via the Google Play Store, or separate
as over-the-air updates. PhoneLab can benchmark third-
party mobile applications without modifications to their
code, which may be required in other testbeds. PhoneLab
mobile applications can run experiments in the back-
ground or interactively. PhoneLab also supports experi-
ments at the OS level, with modifications to the Android
runtime system. Platform experiments are vetted by
the PhoneLab development team and go through pre-
deployment testing. Researchers submit experiments as
XML configuration files that specify background exper-
iments to start or stop, log tags to collect, and where to
upload collected data. The PhoneLab Conductor fetches
configuration files from PhoneLab servers and pushes
them to testbed devices.

Data Collection: PhoneLab data collection relies on the
Android logging interface, which gives experiments ac-
cess to device operational data (such as phone status,
battery level, etc.), as well as custom application log data.
All log data is uploaded to the central server when a de-
vice is charging. When their experiment completes, users
receive an archive of data that matches experiment tags
from all devices that participated in their experiment.

Resource Incentives and Protection: Unlike MITATE and
Seattle, which rely on volunteered devices, PhoneLab
provides phones with discounted data plans to its par-
ticipants. In spite of this incentive scheme, the PhoneLab
team has faced significant participant attrition, with only
43 of 191 volunteers continuing after the first year [34].
PhoneLab limits the number of simultaneously active of
experiments on each device to balance device utilization
against interference between experiments.

Privacy Protection: To protect user privacy, experiments

8

submitted to PhoneLab need IRB approval or exemption.
PhoneLab participants choose to participate in a partic-
ular experiment after reviewing what information will
be collected. Participants can opt-out of an experiment
at any time.

Limitations: PhoneLab’s use of data plan subsidy po-
tentially limits the scalability of the testbed. Also if
phones are not replaced frequently, testbed hardware
will eventually lag behind phone models used by the
general public. Finally, PhoneLab code is not publicly
available, which precludes the possibility of private de-
ployments [88].

3.2.2 SciWiNet
Science Wireless Network (SciWiNet), being developed
at Clemson University, is a NSF-funded re-seller of
network infrastructure, based on Mobile Virtual Net-
work Operator (MVNO) model, which provides the
research community with a service on Sprint’s cellu-
lar network infrastructure (and T-Mobile’s infrastructure
by late 2014) [44]. SciWiNet supports experimentation
over 3G and 4G cellular networks, but without support
for SMS, MMS, or voice services. SciWiNet provides
additional infrastructure to the research community in
the form of a shared pool of wireless devices (smart-
phones and USB LTE dongles), a common set of Android
applications (WiFi hotspot, VPN tunnels, performance
monitoring programs), and a set of wireless network ser-
vices (VPN tunnel termination, secure database backend,
performance monitor servers and backend).

Deployment: The SciWiNet project has two proposed
project phases and is in phase-I as of September 2014.
In phase-I, the project aims to determine the potential
user community for SciWiNet infrastructure and inves-
tigate capabilities that it should support. In phase-II, the
project will develop, deploy and operate the functional
SciWiNet network infrastructure based on what was
learned in phase-I.

Device support: Since SciWiNet uses Sprint’s cellular net-
work as its back-end cellular infrastructure, Sprint main-
tains a whitelist of mobile devices that are authorized
to access SciWiNet’s network and therefore eliminates
the need to install a SIM card in every mobile device.
Although SciWiNet records device MAC address, it does
not make the device MAC publicly available. SciWiNet
maintains a list of popular devices and blacklisted de-
vices. iOS devices are excluded because they do not sup-
port re-seller networks [89]. SciWiNet helps researchers
access testbed resources by providing them with 1-2
mobile devices and a prepaid data plan for a limited
time, typically six months. Alternatively researchers can
access SciWiNet from their own devices and SciWiNet
covers part of the data usage costs.

Data Collection: SciWiNet Android app collects the fol-

lowing network measurements over cellular and Wi-Fi
networks: throughput for TCP and UDP traffic flows,
packet loss, and ping latency. It can also detect location-
based services such as base station identity, location, and
wireless signal strength.

Resource Incentives and Protection: Users can login to
their account to check their data usage, or data con-
tributed by others to their experiments. Data usage is
limited by a leaky bucket rate limiter, where a user
receives a number of tokens, which he can share among
multiple devices. Once the data rate is exceeded, the
device is temporarily restricted from accessing the Sci-
WiNet network.

Remaining Challenges: As of September 2014, it is un-
clear how SciWiNet will provide access to its devices
and network resources to the research and developer
community. One possibility is to offer incentives for
user participation by providing free or discounted device
access.

3.2.3 LiveLabs
LiveLabs, designed at Singapore Management Univer-
sity in February 2014, is a mobile testbed intended
to evaluate location-based services, such as commercial
promotions to shopping mall customers [37]. LiveLabs
has been tested on the campus of the Singapore Manage-
ment University (SMU) and is currently being deployed
at a large shopping mall near SMU campus, Singapore
Changi International Airport terminal, and on the Sen-
tosa resort island. The testbed is available to the three
partnering venue operators, but not the general public.

Functionality: To facilitate evaluation of location-based
services, LiveLabs supports device location discovery in
indoor settings as well as characterization of user behav-
ior. LiveLabs is designed for continual operation, thus
the design has focused on low energy usage, for example
by allowing multiple experiments to concurrently use
sensor readings such as GPS, or WiFi signal strength.
Researchers and participating companies use LiveLabs
to evaluate location-based applications, for example real-
time promotions to users at a shopping mall. LiveLabs
is available for Android and iOS systems.

Data Collection: Unlike other testbeds discussed in this
section, LiveLabs does not collect network performance
metrics, but instead focuses on discovering user be-
havior, by recording device ID and a variety of sensor
readings. The LiveLabs backend then supports higher
level functions to detect and record user behavior, such
as history of movement, group size, user physical queue
length, and activities such as standing, walking, or sit-
ting. LiveLabs also records information about participat-
ing users, such as their nationality.

Resource Incentives and Protection: LiveLabs has three

9

mechanisms for garnering user participation: rebates on
users’ monthly data bills; context-based apps that offer
rebates on specific commercial services in deployment
locations [90]; and a “lucky draws” lottery, though de-
tails of frequency and prizes are not specified [37].

Privacy Protection: Data collected by LiveLabs has the
potential to disclose private user information, such as
location, shopping patterns, and nationality. As such,
experiments launched on LiveLabs go through SMU’s
IRB approval process [91]. Users are also asked to opt-in
to data collection on their devices.

Limitations: LiveLabs is not designed for mobile network
measurement (does not collect network metrics) and so
it offers functionality distinct from MITATE, Seattle, and
PhoneLab. At the same time, LiveLabs supports experi-
mentation with new services in the mobile environment
similarly to PhoneLab and has attracted participation of
30,000 users through its incentive model and business
partnerships.

4 MEASUREMENT TOOLS

Mobile network performance characterization requires
wide scale and ongoing measurement from a variety of
devices across different networks and locations. Tools in
this space, developed by industry, research, and regu-
latory communities, differ in how they obtain network
metrics and how they select devices for measurement.
Although network measurement tools presented in this
section are not testbeds, in that they only support a fixed
set of experiments, these tools do support long-term and
wide-scale network monitoring, which offers important
insights to developers, researchers, and regulators.

4.1 Standalone Measurement Tools

Standalone measurement tools are ready-to-deploy so-
lutions with pre-defined network measurement func-
tionality. The open-source nature of these tools allows
other to modify them, although many of the tools offer
measurement customization options. Data collected by
these tools is generally, though not always, publicly
available.

4.1.1 FCC Speed Test
The FCC Speed Test app, released in November 2013,
was designed to provide insight to regulators and the
public on the performance of mobile networks across
the United States [52]. Developed in collaboration with
SamKnows and major wireless service providers, the free
application is available on Google Play Store for Android
smartphones [92]. An iOS version of the application is
also slated for release, though limitations of the iOS API
prevent collection of some metadata that is collected by
the Android version [14], [93].

Functionality: At the start of a measurement, the FCC

Speed Test app pings available measurement servers to
identify the one with lowest round trip time (RTT) to
the mobile device. The selected server then sends a list
of measurement instructions to the mobile device. If the
mobile device is currently using less than 64 Kbps of
bandwidth for other tasks, it starts the measurements,
otherwise the device postpones measurement until its
bandwidth usage drops.

The FCC Speed Test app supports active traffic mea-
surements over four types of connections: single connec-
tion HTTP GET and POST, as well as multi-connection
GET and POST. Multi-connection transfers test mul-
tithreaded download performance over three parallel
downloads of 256KB data chunks. To measure packet
loss and RTT, the FCC Speed Test app exchanges a series
of UDP packets with the nearby server. Following a
measurement, the mobile device uploads measurement
data and associated metadata to an FCC server.

Data Collection: The FCC Speed Test app reports upload
and download rates, packet loss, and RTTs based on
HTTP and UDP transfers. Packet loss on a path is
inferred based on failure to receive a UDP packet on
that path within three seconds. The app records the
number of packets sent each hour, the average RTT, total
packet loss for performed tests, and throughput in 5-
second intervals [94]. The app also collects device-related
as well as network metadata, including signal strength
reported by the device, connection type (3G/4G/Wi-
Fi), location and ID of cell towers, GPS location, device
model, OS version, network country code, SIM’s opera-
tor ID, SIM’s country code, network carrier, phone type
(GSM/CDMA), and the device’s roaming status.

Resource Incentives and Protection: To build nationwide
measurement capacity the FCC Speed Test app relies
on user curiosity about their network performance. In-
strumental to the app’s popularity and success was a
press campaign [93], [95]–[98], which was followed by
application installation and measurements from more
than 50,000 devices in about 1.5 years. These numbers
have declined over the life of the system, so the effective-
ness of a publicity-driven approach to support long-term
network monitoring remains to be seen.

Privacy Protection: The FCC app collects measurement
data on the mobile device in the application sandbox,
as opposed to through the standard Android logging
interface, so data is not visible to other applications.
The collected data are uploaded to FCC servers over
encrypted connections. Once the data are uploaded, or
become stale, they are automatically deleted from the
application’s sandbox storage. The FCC Speed Test app
does not collect personally identifiable information, such
as phone number or IMEI [99].

Limitations: The FCC Speed Test app executes only ex-
periments configured by the FCC, i.e., it does not support

10

custom network measurement. As of October 2014, the
configured tests do not detect traffic shaping in mobile
networks, which is of increasing interest to regulators
and the general public [15], [69]–[76]. With respect to
resources used on the device, the FCC application runs
at startup and prevents the phone from sleeping, which
can drain the phone battery.

4.1.2 WindRider
Content-based traffic discrimination has recently been
considered a threat to mobile application perfor-
mance [15], [69]–[76]. WindRider, a measurement tool
developed in 2009 at Northwestern University, detects
application and service-based traffic discrimination by
mobile ISPs [39].

Functionality: WindRider supports active and passive
measurement of traffic shaping [54]. Active measure-
ments exchange traffic between a user’s mobile devices
and a randomly chosen M-Lab server. The mobile de-
vice initiates a series of uploads and downloads and
records their observed performance. To detect port-based
traffic shaping, WindRider compares delay of identical
transfers to different ports on M-Lab servers. Passive
measurements record packet latency to well-known web
servers during normal user browsing activity. To detect
content-based traffic shaping, WindRider compares the
observed packet delay to that reported by other devices
in different carrier networks and locations to the same
destinations. Active measurement results are stored on
M-Lab servers, while passive measurement data, col-
lected with user permission, are stored on WindRider
servers.

Data Collection: The WindRider mobile application col-
lects experiment-related data such as connection start
time, connection establishment time, connection finish
time, and number of inbound and outbound bytes [39].
WindRider also collects metadata such as device IMEI,
device location (as ZIP code), network carrier, and
browsing history. WindRider also collects device hard-
ware performance metrics that can help interpret ob-
served traffic delays, such as CPU execution time, virtual
memory size, page faults per minute, and other metrics
as permitted by the OS API.

Resource Incentives and Protection: WindRider relies on
user curiosity for its network measurements.

Privacy Protection: WindRider optionally collects device
IMEI, which can be linked with a user’s browsing his-
tory. To protect user privacy, users can choose whether
to make this information available to the application.

Limitations: Although WindRider supports detection of
traffic shaping in mobile networks, it has two significant
limitations. First, the measurement traffic is sent only to
M-Lab servers, but developers may want to investigate

traffic shaping on other paths. Second, WindRider only
detects content-based traffic shaping as discrimination
based on traffic sources, i.e., well-known Web servers,
rather than type of traffic, for example BitTorrent.

4.1.3 MySpeedTest
The MySpeedTest mobile application, launched in
June 2012 by Georgia Tech, measures network perfor-
mance of mobile devices with the goal of observing
and explaining patterns of user behavior in mobile
ISPs to application developers [100], [101]. Such analysis
may allow developers and service providers to tune
application performance [102]. The MySpeedTest mobile
application is available on Google Play and has more
than 900 active users from 115 different countries, as of
February 2013 [102]. As of April 2013, MySpeedTest is
in the process of sharing a subset of their data with
Google’s M-Lab to help researchers benefit from data
collected by each others’ experiments [100].

Functionality: MySpeedTest performs passive and active
measurements. Passively, MySpeedTest records the total
number of bytes sent and received by each active ap-
plication since the device booted. Information such as
package name, bytes transmitted and received, appli-
cation status (active vs. background) helps users know
which applications consume the most data and power,
and which applications may affect performance of other
applications on the device.

Active measurements include a recurring test to mea-
sure TCP uplink and downlink throughput, inter-packet
delay, and packet loss. MySpeedTest also measures net-
work latency with 40 parallel ICMP pings to five servers
in the U.S. and Europe. These tests store the minimum,
average, and maximum latency to each of the five
servers. The collected data help researchers and devel-
opers understand the performance of paths to potential
application servers [102].

TCP-based experiments can reduce the bandwidth
available to other applications on the device, so
MySpeedTest performs TCP-based experiments only on
user request, in a single thread for about 20 seconds,
and using the maximum-sized packets that will not be
fragmented. MySpeedTest also gauges streaming data
quality by measuring packet loss and jitter of UDP
traffic flows. MySpeedTest servers generates a stream of
64-byte UDP packets, transmission at Poisson-sampled
intervals, with timestamps and sequence numbers in
the payload. The server sends 500 packets with a data
rate less than 1 Kbps to avoid congestion. The client
calculates packet loss and jitter from every 10 packets
received. The client compiles all data collected on mobile
device into the JSON format and sends it to the server
for storage.

Data Collection: The MySpeedTest mobile application
collects experiment-related data such as TCP upload and
download throughput, ping latency, UDP jitter, UDP

11

packet loss, and time to acquire a dedicated channel for
data transmission [100]. MySpeedTest also collects de-
vice level data, such as cellular service provider, Android
version, device manufacturer, connection type, radio
firmware, hashed phone number, hashed IMEI, software
version, SIM card state and serial number, latitude and
longitude of base station, network operator ID, CDMA
system ID, CDMA network ID, Wi-Fi signal strength,
battery technology, status of battery charging, battery
health, battery voltage, battery temperature, and device
location.

Resource Incentives and Protection: Similar to the FCC
Speed Test app, MySpeedTest relies on user curios-
ity about their network performance. MySpeedTest al-
lows users to limit contribution of resources through
a monthly data cap. To protect battery resources,
MySpeedTest postpones experiments until the battery is
above 5% and the device is attached to a network.

Privacy Protection: MySpeedTest collects personally
identifiable information (phone number, IMEI, device
location), which may expose private information, such
as a user’s location when a measurement occurred.

Limitations: Similar to MobiPerf and WindRider,
MySpeedTest provides its users a limited network
measurement capability between mobile devices and
servers, as opposed to testbeds discussed in Section 3.
MySpeedTest does not support transmission of custom
traffic, such as tools to detect traffic-shaping based on
content or port.

4.1.4 Akamai Mobitest
Akamai’s Mobitest application and Web service, released
in March 2012 by Akamai Technologies, measures the
performance of mobile Web sites [12]. The application
uses the WebPageTest framework and is available for
Android, iOS, Blackberry based smartphones, tablets
and simulators [103].

Functionality: Mobitest platform relies on user partic-
ipation to install Mobitest software on their mobile
devices. Each Mobitest installation on a device acts as
an agent to the WebPageTest framework, where such
device executes experiments requested by other users
through the Mobitest Web service [104]. To measure the
page load time on a mobile device, a user enters a
URL through the Akamai Mobitest Web interface and
selects the mobile device hardware that will perform
the download [12]. Mobile devices running Mobitest
periodically poll WebPageTest servers to obtain pending
URL download requests entered by Mobitest users. Each
requested URL is then accessed from the default browser
on each device over the Wi-Fi, or cellular network,
depending on how the device is connected at the time.

Data Collection: Akamai Mobitest collects the total time

to load a Web page, individual request headers, average
Web page size, as well as screen shots of the loaded page
and optionally video of the loading page [104]. The tool
produces waterfall charts of requests and delays, and an
HTTP archive (HAR) file [105], [106]. The collected data
helps researchers and developers gain insight into the
responsiveness of Web servers and browser rendering
of different site implementations [107]. Mobitest allows
users to reuse previously collected measurements by
linking them to user accounts on Akamai Mobitest’s site.

Resource Incentives and Protection and Privacy: The
Akamai Mobitest app allows application developers to
set the frequency at which pending experiments are
downloaded from WebPageTest servers to be executed
on their mobile devices. Additionally, Akamai Mobitest
allows users to control device resource utilization
through a number of configuration options. Specifically,
users can set whether the app should poll for new
experiments after restart, whether to restart the app
after every experiment, whether to capture network
traffic, and the frequency at which screenshots for
loading pages are taken [108].

Limitations: Akamai Mobitest evaluates the webpage
load time on mobile devices, but does not allow
more general experiments with non-browser-based
application traffic, including how to characterize
traffic shaping of non-Web traffic. The WebPageTest
framework requires rooted phones, which limits the
tool’s applicability outside of dedicated test farms.

4.1.5 RILAnalyzer
RILAnalyzer, developed by the University of Cambridge
and Telefonica in October 2013, is a client-side tool for
monitoring of the mobile network control plane as well
as the data plane [109], [110]. The application is available
for rooted Android devices with Intel/Infineon XGold
chipsets, which include the popular Samsung Galaxy
S2/S3, Note 2, and Nexus devices.

Functionality: RILAnalyzer’s focus is on discover-
ing the promotions and demotions between the Ra-
dio Resource Control (RRC) states IDLE (no con-
nection), CELL_DCH (dedicated communication chan-
nel), CELL_FACH (shared communication channel), and
CELL_PCH (shared paging channel). Transitions between
these states are triggered by control messages from the
Radio Network Controller (RNC), which may them-
selves become a communication bottleneck [109]. As
mobile devices consume different levels of energy in
each of the RRC states, the devices themselves may use
Fast Dormancy to reduce tail-energy and demote to lower
energy states faster than through vendor and operator
dependent timeouts [111].

RILAnalyzer implements a background tool that polls
the device Radio Interface Layer (RIL) Daemon every
second for the current RRC state. RILAnalyzer then

12

obtains data plane network and transport headers using
NetworkLog [112] to identify applications active during
each RRC state.

Data Collection: RILAnalyzer collects RRC states at one
second intervals, headers and timestamps of outgoing
TCP and UDP packets from NetworkLog as reported by
the Linux kernel.

Resource and Privacy Protection: RILAnalyzer is in-
tended for small scale studies on dedicated devices, or
devices operated by expert users [109]. As such the tool’s
design has not made provisions to attract users with
incentives, or to allow them to set limits on resource
usage.

Limitations: RILAnalyzer is restricted to rooted phones
on the Intel/Infineon XGold chipset. Although the au-
thors of RILAnalyzer intend the tool for small scale
studies, the specificity of hardware and overhead of
reverse engineering RIL Daemon OemCommands com-
mands does preclude large scale studies on diverse
mobile hardware. RILAnalizer also puts a noticeable
load on the CPU (∼ 10%), memory (< 42%), and stor-
age (with packet logs), which may limit the willingness
of volunteers to run the tool on their phones.

4.2 Libraries for Mobile Network Measurement

Libraries for mobile network measurement may be em-
bedded in other applications to add network measure-
ment functionality. This approach is potentially easier to
adopt by Developers than extending open-source code
of a standalone measurement tool. As in the case of Mo-
bilizer, a library may also form a basis of a measurement
tool, i.e. the current version of MobiPerf.

4.2.1 MobiPerf

The MobiPerf mobile application was developed as a
collaboration of University of Michigan, Northeastern
University, University of Washington, and Google’s M-
Lab to measure network performance and diagnose
problems with application content delivery on mobile
devices [38]. To allow the community to understand
the impact of collected data across geographic locations,
network carriers, and devices, MobiPerf allows a com-
parative study of past network measurements made by
different users, but prevents users from running similar
measurements to limit contention for testbed resources.
New measurements are executed only if a query for
previously collected data comes back empty. The latest
version of MobiPerf, released in August 2014, is based on
Mobilizer – an open-source Android library for network
measurement announced at AIMS 2014 [41].

Functionality: MobiPerf supports several types of net-
work performance measurement, which can execute seri-
ally or in parallel [17]. Mobilyzer provides measurement

isolation (only one experiment is active at a time), which
avoids bandwidth contention and radio power state
transitions across experiments. To measure throughput,
Mobiperf transmits random data to and from a nearby
M-Lab server for 16 seconds and computes uplink and
downlink throughput from packet traces.

MobiPerf supports latency measurements on both
IPv4 and IPv6 network paths, using ICMP ping when
available, with fallback to a Java ping implementation
and latency estimates from three-way TCP handshakes
in HTTP transfers. Mobiperf measures the delay of DNS
lookups using the default DNS server configured for the
device, which limits the ability to measure performance
of third-party open DNS infrastructure.

MobiPerf also supports measurement of uplink and
downlink UDP packet loss, out-of-order delivery, and
variation of one-way latency. To obtain these metrics on
the uplink, a client device sends a group of UDP packets
to a nearby M-Lab server, where the server calculates
network metrics from packet arrival time and order.
The same transmission repeats from server to client to
calculate downlink metrics.

MobiPerf performs more complex measurements to
discover fine-grained network policies and their effect
on data plane performance. For example, MobiPerf mea-
sures radio resource control (RRC) state information of
cellular networks to estimate the impact on packet la-
tency [113]. Finally, MobiPerf measurements can execute
in the background to support long-term monitoring of
network performance.

Data Collection: Similar to other measurement tools, the
MobiPerf application collects performance data such as
TCP uplink and download throughput, HTTP download
latency and throughput, traceroutes, path latency, and
DNS lookup delay. Researchers and vendors may want
to know how variation in mobile hardware affects appli-
cation performance, so MobiPerf collects device-related
data such as manufacturer, model, operating system
version, Android API level, carrier, salted hash of device
IMEI, coarse-grained cell ID location information, cell
tower ID and signal strength, Location Area Code (LAC),
local IP address, IP address seen by the remote server,
GPS coordinates, ports blocked by cellular provider and
network connection type (HSPA/LTE) [114], [115].

Resource Incentives and Protection: MobiPerf relies on
user curiosity to support measurement, and users can
limit the resources they contribute. Specifically, measure-
ments do not execute when the device battery consump-
tion, or MobiPerf application monthly data usage, exceed
user-set thresholds.

Privacy Protection: MobiPerf currently records the users’
e-mail address, if they choose to provide one, to access
their historical measurement results. This information is
secured by Google’s account authentication mechanisms
and is not made publicly available. To minimize any

13

risk of exposing this potentially personally identifiable
information, future versions of MobiPerf will store a
salted hash of users’ e-mail addresses instead.

Limitations: MobiPerf allows users to choose from only
predefined measurements, which limits the tool flexibil-
ity. For example, MobiPerf does not support transfers
of custom content on arbitrary ports to detect network
traffic shaping.

4.2.2 ALICE
A Lightweight Interface for Controlled Exper-
iments (ALICE) is a programmable network
measurement library for Android devices developed by
John Rula et al. at Northwestern University [50]. ALICE
extends Dasu, a rule-based network testbed built as an
add-on to the Vuze BitTorrent client [46], by enabling
experiment definition in Javascript [116].

Functionality: The ALICE measurement library sup-
ports active and passive experiments on mobile devices.
ALICE provides a programmable interface for the con-
figuration of active network measurements, such as DNS
resolution, ping, and iPerf. Tests can execute sequentially
or in parallel. Although the sequence of tests and value
passing between them is organized through a Javascript
experiment definition, ALICE does not support custom
traffic generation, and so is primarily a network mea-
surement library. For serially scheduled experiments,
ALICE allows one experiment on a device at a time; for
parallel execution, ALICE allows a limited number of
experiments to run at the same time – new experiments
scheduled for a given device enter a queue until the
device becomes available. ALICE chooses its test devices
based on user-specified time of day, network provider,
and network type (Wi-Fi/Cellular).

Data Collection: ALICE collects device location, radio
signal strength (WiFi and cellular), WiFi access point
name, device hardware address, IP address on each net-
work interface, and number of bytes sent and received
by other applications on the device. ALICE also collects
performance metrics, including HTTP GET request time,
DNS lookup time, ping times, available bandwidth. AL-
ICE records network diagnostic information provided by
traceroute and NDT (Section 3.3.1).

Resource Incentives and Protection: As of September
2014, ALICE has been included in three different ap-
plications developed at Northwestern University and
available through the Google Play store: Namehelp Mo-
bile1, Application Time (AppT)2, and NU Signals v23.
The Northwestern team’s deployment model of growing

1. Namehelp Mobile measures the DNS performance of Cellular ISPs
and public DNS resolvers, including of CDN replicas [117]

2. Application Time allows users to track their application usage on
their mobile device [118].

3. NU Signlas allows users to diagnose Wi-Fi problems [119].

the tool through application deployments allows ALICE
to benefit from popularity spikes of new applications. To
protect device resources, developers can set quotas for
bandwidth usage of individual measurements.

Privacy Protection: ALICE records hardware addresses of
available network interfaces, which are unique to each
device. In combination with the ability to record sent
and received traffic payload of other applications, for
example location reporting, ALICE creates a potential for
privacy exposure, if user location, or other private data,
is correlated to unique device ID.

Remaining Challenges: Currently ALICE does not sup-
port repeatable experiments on the same device, or set
of devices, through device selection criteria. ALICE also
does not support peer-to-peer experiments, or custom
traffic transmissions, which limits the tool’s support for
application prototyping.

5 MEASUREMENT SERVICES

In addition to testbeds and tools there are many closed-
source, proprietary measurement services for mobile
networks. We divide these network monitoring and net-
work discovery and diagnosis. The main goal of these is
to collect data and provide insight to users based on their
own device, but not necessarily make the data broadly
available. Still, these services offer valuable insight to
developers, researchers, regulators, and network opera-
tors able to access the data. Because the details of how
these services are implemented and how they perform
measurements is not widely available, we restrict our
discussion, with few exceptions, to the commonalities
and differences of what data these services collect.

5.1 Network Monitoring

Google Play Store and Apple App Store offer tens of
applications for monitoring of network performance.
Because of their relative similarity, we restrict our dis-
cussion to several popular and representative services.

5.1.1 Ookla SpeedTest Mobile
Ookla’s SpeedTest application for mobile devices, re-
leased in January 2009, measures the device’s network
performance over Wi-Fi and cellular links [55]. As
of March 2015, the application support measurements
against 3479 geographically distributed Ookla servers
in about 80% of world’s ISP networks, has over 10
million installations, and has successfully completed
over 7 billion user initiated measurements on the Ookla
infrastructure [120], [121]. Ookla also allows users to
host an Ookla server To expand the capacity of their
measurement infrastructure, Ookla also allows users to
host an Ookla server [122]. The application is available
for Android, iOS, Windows phone, and Amazon FireOS
based smartphones [55].

14

Functionality: The application captures the device geo-
graphic location and uses it to identify a set of five
nearby servers. If the device location is not available
from the GPS, the application uses device’s IP ad-
dress and estimates the device’s location using Max-
Mind’s (approximate) IP-to-location database [123]–
[125]. After identifying a pool of five nearby servers, the
application sends a hello message to all five servers
and selects the measurement server from the first re-
ceived reply [126]. Users may also select a specific server
based on criteria such as hosting ISP, distance from user,
and city name.

This SpeedTest uses HTTP fetches of small files to
measure round-trip time and compute uplink and down-
link throughput [127]. To measure the ping latency, the
application sends several HTTP requests and records the
time when app receives responses from the server [127].
Ookla SpeedTest uses the computed connection through-
put to estimate how much data it can download from
the server within 10 seconds, and then uses up to
four HTTP threads on a single persistent connection to
download the estimated amount of data. To eliminate
any influence on the throughput results from protocol
overhead, buffering time on the device, CPU usage,
the application first discards the fastest and slowest
10% of throughput values as outliers before computing
the average throughput. The application then discards
the slowest 20% of throughput values to prevent re-
sults from being influenced by TCP slow-start. Finally,
the application calculates the downlink throughput for
the experiment based on the average of the remaining
throughput values. The uplink throughput test is similar
to downlink throughput test.

Data Collection: Ookla’s SpeedTest mobile application
collects device location (GPS and network-based), radio
signal strength, device ID, device phone number, call sta-
tus and remote phone number of an active call, names of
devices on connected Wi-Fi network, local and public IP
addresses, time at which the experiment was conducted,
round-trip time, upload and download throughput, and
connected network type (Wi-Fi or cellular). Ookla sup-
ports another application, PingTest, that collects network
jitter and packet loss, to understand the suitability of the
user’s network for services such as VoIP audio, video
streaming, and online gaming [128].

Resource Incentives and Protection: The application lim-
its the number of HTTP threads to two when the ob-
served throughput is less than 4 Mbps, otherwise the it
uses four threads for throughput experiments.

Privacy Protection: The SpeedTest mobile application
collects personally identifiable information (phone num-
ber, device ID, and device location), which may expose
private information, such as a user’s location when a
measurement occurred. Users may delete previously col-

lected data, or leave it on Ookla servers to compare with
new data collected at a later time to discover changes in
network performance over time.

Limitations: As of March 2015, the SpeedTest mobile
application lacks a programming interface to allow users
to automate and schedule experiments. Although, Ookla
allows users to host SpeedTest experiments on their Web
servers for in-house testing, via SpeedTest Mini, how-
ever, as of March 2015, the ability to run measurement
against such servers is not supported on Speedtest’s
mobile application and is only supported with the Web
version of Ookla SpeedTest [129]. The algorithm used
by the application to measure the round-trip time relies
on the time it takes to receive an HTTP response, which
may include the time request spent in transport queue
and application processing at the server. Finally, the
application does not support detection of traffic shaping.

5.1.2 RadioOpt Traffic Monitor
The RadioOpt Traffic Monitor mobile application, re-
leased in April 2012 by RadioOpt GmbH, allows users to
understand the performance, reliability, and utilization
of their wireless and cellular networks [53]. Based on
the information collected about the network, the ap-
plication allows users to compare the performance of
their wireless networks with other users in the same
geographic region. The application is available for An-
droid, iOS (iOS 7.0 or later), Blackberry, and Windows-
based smartphones [130], [131]. As of March 2015, the
application was installed over a million times.

Functionality: The RadioOpt Traffic Monitor mobile ap-
plication uses CacheFly’s CDN infrastructure. To identify
a nearby server, the application sends a DNS query to
the device’s default DNS server for a CacheFly CDN
domain name (cdn2.speedtestsdk.com). CacheFly
uses TCP-anycast to direct users to the nearest CDN
replicas [132]. Next, the application sequentially initiates
downlink and uplink throughput tests to the selected
server. To measure throughput, the application estimates
the appropriate size of the data to exchange between the
device and the server, similar to Ookla SpeedTest.

To measure latency, the application sends 15 ICMP
ping requests to the server and records the time of each
request/response pair. To measure the time to load a
webpage on user’s network, the application sends three
HTTP GET requests and records the time to download
the complete webpage, and other web objects such as
CSS, image, JavaScript files embedded into the page.

Data Collection: The application computes parameters
from measurement data such as the minimum, av-
erage, maximum ping latency to a nearby CacheFly
server along with the standard deviation in latency
and throughput, the amount of data uploaded and
downloaded for the throughput tests, download time

cdn2.speedtestsdk.com

15

of a hosted web page and the web page size. The
application also collects device-related information such
as its location (including accuracy and device travel
speed), web bookmarks and browsing history, names
of devices connected to the same Wi-Fi network, signal
strengths at different locations, number of SMSes sent
and received, and incoming and outgoing voice minutes,
device model and manufacturer, OS or firmware version,
current time on the device, the time when the device was
last rebooted, cellular access technology (2G/3G/4G),
and network country code.

The application also collects information specific to
applications on the device such as their names, duration
of usage, cellular and Wi-Fi data consumption (only
on Android based smartphones), memory consumption,
traffic (per application) sent and received on the device
over cellular and Wi-Fi networks, application type (OS
service or background), and software packages used by
the application.

The application also collects device battery-specific
information such as the battery state and charge re-
maining, voltage, temperature, technology, and charg-
ing state. Finally, the application collects Wi-Fi network
related information such as the signal strength (latest,
minimum, and maximum), network SSID and BSSIDs,
the MAC address of the client, IP address of the client,
and client-to-router link bandwidth.

Resource Incentives and Protection: RadioOpt relies on
user curiosity to understand the performance of their
own wireless and cellular networks. The app allows
users to configure a monthly/weekly/daily cellular data
cap, monitor their monthly data traffic, SMSes received
and sent, and voice minutes, and configure alerts when
data, SMS, or voice minutes reach a threshold.

Privacy Protection: The application may discover user
behavior since it collects information such as the user’s
Web browsing history, bookmarks, applications installed
and their duration of usage, among others. However,
any personally identifiable data collected by RadioOpt
mobile application is not shared with RadioOpt servers
without the user’s consent.

Limitations: RadioOpt does not allow its users to under-
stand whether their cellular ISPs are discriminating one
traffic over the other. Further, the application does not
support measurement experiments to be run against an
arbitrary server.

5.1.3 OpenSignal
The OpenSignal mobile application, released in March
2013 by OpenSignal, Inc., allows users to compare the
quality and coverage of their cellular networks (on a
Google Map’s developer widget [133]) in different geo-
graphic areas and with other cellular networks available
in the area [51]. The application rates for how well Web,
Video, and VoIP based applications are likely to perform

on the current cellular network. The application assist
users to also find publicly available free and paid Wi-Fi
hot-spots, and the walking directions for higher signal
strength. The application has over 10 million installations
and is available for Android and iOS based smart-
phones [134], [135]. As of March 2015, the application has
garnered over 900,000 users and has performed several
network measurements to collect information for over
800,000 cellular towers, 825 cellular networks, over 5B
cellular signal readings, and over 1B Wi-Fi access points
available in different countries [51].

Functionality: The OpenSignal mobile application sup-
ports several active and passive measurements to mea-
sure ping latency, download and upload through-
put. The application performs periodic passive mea-
surements, and publishes them to an OpenSignal
server [136]. Before starting any measurement test,
the application sends the device ID, OS, Android
API version, and BSSIDs of nearby wireless networks
to an OpenSignal server. Next, to measure latency,
the application sends 3 HTTP HEAD requests to
www.google.com [137], [138]. The application then
records the time to receive the time to get the response
for each request, followed by calculating the average of
the three latency values.

To measure the download throughput, the application
sends eight concurrent HTTP GET requests to down-
load files of size 108 Mb each, from a CloudFront’s
CDN replica [136]. The download throughput test is
performed for a fixed amount of time after which the
application computes the average throughput. To mea-
sure the upload throughput, the application sends sev-
eral concurrent HTTPS POST requests to upload several
small image files of size 15 Mb in total, to an Amazon
AWS server.

As a part of making the collected data available pub-
licly and to encourage developers, researchers, regula-
tors, and network operators to investigate and address
network problems, OpenSignal provides two APIs [139].
The first API, known as NetworkStatus, allows develop-
ers to get signal strength, upload and download through-
put, round trip latency, and network name, network ID,
network type (2G/3G/4G), and network reliability for
every measurement within certain distance of a specified
geographic coordinate [140]. The second API, known as
Tower Info, allows developers to get the cell ID, location
area code, phone type (GSM/CDMA), and estimated
latitude and longitude of a cellular tower [141]. To pre-
vent misuse of their publicly available API, OpenSignal
allows a maximum of five API calls every minute and
2000 API calls every month.

Data Collection: The OpenSignal mobile application col-
lects device-related information such as SMS transmis-
sion and receipt timestamps, device location, ID, model
name, OS, Android API level, IP address, behavior at
different battery temperatures (hot, crashed, slow, fast),

16

duration of OpenSignal sessions on the device, and
whether the phone is engaged in a phone call during
the measurement.

The application collects network-related information
such as the active Wi-Fi SSID, names of devices con-
nected to the Wi-Fi, SSIDs of other avaiable Wi-Fi,
connection type (collected every 15 minutes), signal
strength, upload and download throughput, and round
trip latency to a Google server. For devices connected
to GSM networks, the application associates cell towers
by their cell id and location area code; for CDMA
networks, by their Network ID, Base sub-station ID
and system ID [134]. To understand the relationship
between signal quality and battery consumption, the
OpenSignal application collects the battery level, voltage
and temperature [142].

Resource Incentives and Protection: OpenSignal does
not provide any incentives for user participation to run
measurement experiments on mobile devices.

Privacy Protection: Although the application collects in-
formation about phone calls and SMS messages, the
application never reads them [143]. This is because
the application only counts the total number of text
messages received and sent from the device. Further,
any personally identifiable information collected by the
OpenSignal mobile application is never shared by any
third party services [143]. However, OpenSignal does
not take any responisbility of any data shared by the
user on online social networking websites through the
OpenSignal application. Finally, the application does not
put any obligation on the user to share the data collected
with OpenSignal.

Limitations: The application does not detect the presence
of traffic shaping in ISP networks. Further, to perform
throughput measurement tests, the application requires
an exchange of several hundred of megabytes between
the mobile device and the server, which may not be
suitable for users with low data plans [136].

5.1.4 Vodafone NetPerform

The Vodafone NetPerform mobile application, released
in June 2014 by Vodafone Sales and Services Limited,
allows users to understand the performance of their
cellular network in their region and compare with it with
the performance that other users in the same region are
experiencing [144]. The application also allows Vodafone
to understand the amount of data that their customers
use and as well as the trend in data usage by tracking
the data usage from different applications installed on
their customers’ smartphones. Such knowledge of data
usage allows Vodafone to resolve connectivity issues
in their network, as well as, install higher capacity
links to accommodate any customer demands to support
interactive applications that require higher bandwidth.

The data used by the Vodafone NetPerform mobile ap-
plication is free for only Vodafone customers in Ghana,
Ireland, and United Kingdom. However, users in other
countries or non Vodafone customers may be charged for
any data used by the Vodafone NetPerform application.
The application is available for Android and iOS based
smartphones [145], [146].

Functionality: Every hour, the application establishes
a TCP connection with a Vodafone server to verify
whether the device has Internet connectivity. Conducting
such a test every hour allows Vodafone to understand
the network stability and any variation in end-to-end
latency on their network over time. The application per-
forms another hourly network measurement test to de-
termine the uplink and downlink throughput against a
nearby Vodafone server. The throughput tests execute for
only 10 seconds, within which the application exchanges
data with a Vodafone server [145]. The throughput is
then calculated as the average of different throughput
values sampled in 10 seconds.

Data Collection: The data collected by the Vodafone
NetPerform mobile application is stored on Vodafone
servers for only 14 months, which allows Vodafone
to understand the changes in the seasonal use of the
network usage by their customers. To understand and
diagnose the network problems related to phone call
connectivity, the application collects cellular tower ID
to which the device is connected, signal strength, de-
vice location when the network is either limited or
not available, the quality of 2G/3G coverage, device
speed (if available through GPS), and time duration
when the device uses cellular network, how the phone
call ends (dropped or disconnected by the user) [147].

To understand and diagnose issues related to data
services the application additionally captures whether
the device can establish a connection with a Vodafone
server, time taken to establish a connection with a Voda-
fone server, the MAC addresses of all available Wi-Fi
access points along with their link bandwidth, hourly
data usage of the device, data usage when the device
is in standby mode, and the upload and download
throughput [147].

To understand the types of Internet services that users
are interested in and to allocate high capacity bandwidth
for services that require high bandwidth, the application
captures the names of all applications installed on the
device, the names of applications that the user uses
everyday, the duration of application use, the amount of
data is received and sent from each installed application.

Finally, to diagnose and resolve device related net-
work issues, the application collects the device model
and company, device IMEI (encrypted to maintain
anonymity), the OS running on the device, firmware
version, the OS language, battery status, memory in use,
the time when the phone last rebooted [147].

17

Resource Incentives and Protection: Users do not get
any incentives for running measurement tests on their
devices. Instead, Vodafone relies on users’ curiosity to
understand the network performance and gathers data
collected on users’ devices to improve the quality of
their voice and data services. With respect to protecting
device resources, the application does not allow users
to configure a monthly cap on the amount of cellular
and Wi-Fi data that the application can use to run
measurement tests. Further, since the application run
throughput and latency tests every hour, the application
prevents the device to turn off its radio, which drains
the device’s battery quickly [145].

Privacy Protection: The application does not collect any
personally identifiable information such as the device
phone number, the phone numbers of incoming and
outgoing phone calls, incoming and outgoing SMS mes-
sages, and the names of available Wi-Fi hotspots. How-
ever, by collecting the names of application installed
and when different applications are used, the Vodafone
NetPerform application has a potential to discover user
behavior, which might be unsuitable for some users.

Limitations: The Vodafone NetPerform mobile applica-
tion does not allow users to discover whether their cel-
lular ISPs are performaing traffic discrimination. Further,
the availability of the application only for users in a few
countries in Europe restricts the network operators in
other countries to gain insight of their network issues
and performance.

5.1.5 Emerging Applications
Many other network measurement services have been
developed by independent developers to assist users
to measure performance of wireless and cellular net-
works. Such applications include SpeedSpot [148], Sen-
sorly [149], RootMetrics [150], NetworkCoverage [151],
Internet Speed Test [152], Netradar [153], Cisco Data
Meter [154], 4Gmark [155], and nPerf [156]. Because
the details of how these services are implemented and
how they perform measurements is not widely available,
we restrict our discussion to the commonalities and
differences of what data these tools collect and how. We
also illustrate the similarities and differences between
these emerging measurement services in Table 2.

Specifically, SpeedSpot, Sensorly, RootMetrics, and
NetworkCoverage are similar to the OpenSignal mobile
application in their capability for users to compare the
performance of their wireless and cellular networks
on a map and find nearby Wi-Fi networks. Internet
Speed Test is similar to Ookla SpeedTest; it allows
users to measure the latency and throughput to appli-
cation’s servers on user’s network. Similar to RadioOpt,
NetRadar and Cisco Data Meter applications run latency
and throughput experiments against servers deployed
on the cloud/CDN servers and allows users to monitor
traffic sent and received by applications installed on their

devices. 4Gmark and nPerf are similar to each other, in
that, these applications not only allow users to measure
the performance of network in terms of throughput and
latency, but also measures the suitability and reliability
of the network for streaming and Web applications.

5.2 Network Discovery and Diagnosis

While most of the previous projects focus on measur-
ing end-to-end performance of mobile application com-
munications, the following tools allow developers and
researchers to learn more about the state of network
infrastructure and configurations that affect transmission
of application traffic. Pertinent features include the pres-
ence of proxy servers and other middleboxes, or complex
multi-level DNS resolutions.

5.2.1 NDT (Mobile Client)

The Network Diagnostic Test (NDT) system, developed
by Internet2, evaluates the performance of mobile con-
nections to diagnose problems that limit network band-
width [42], [157]. NDT also detects problems associated
with device misconfiguration and network infrastruc-
ture. NDT (Mobile) is currently hosted on Google’s
M-Lab and allows access to its backend through an
Android mobile application.

Functionality: NDT measurements are performed from a
mobile Web browser that issues requests to NDT servers,
hosted by M-Lab. The server-specific tests diagnose ob-
served network problems. After the measurement ex-
periment completes, the server analyzes the results and
returns them to the client device.

Data Collection: The NDT mobile application collects
traffic performance information such as upload and
download speed, round trip network latency (minimum,
average, and maximum), jitter, TCP receive window size
(current and maximum), packet loss, TCP retransmission
timer, and number of selective acknowledgements re-
ceived. The application also detects router cable faults,
incorrectly set TCP buffers in the device, duplex mis-
match conditions on Ethernet links, presence of NAT,
and capacity limits.

Resource Incentives and Protection: The incentive model
for the NDT mobile client is based on providing network
diagnostic information in exchange for users running
tests on their mobile devices. One issue for users who
volunteer their device resources is that NDT requires
permission to prevent the phone from going into power
save mode, which may drain the battery quickly.

Privacy Protection: By default NDT records experimental
data separately for each user, which allows users to
privately diagnose their network problems. Data isola-
tion also prevents malicious users from learning of open
ports and interfaces in others’ networks.

18

S
p

e
e
d

S
p

o
t

S
e
n

so
rl

y

R
o

o
tM

e
tr

ic
s

N
e
tw

o
rk

C
o

v
e
ra

g
e

In
te

rn
e
t

S
p

e
e
d

T
e
st

N
e
tR

a
d

a
r

C
is

co
D

a
ta

M
e
te

r

4
G

M
a
rk

n
P

e
rf

Support measurement tests
Uplink throughput X X X X X X X X

Downlink throughput X X X X X X X X X

Latency X X X X X X X X

Signal coverage maps X X X X

Uplink throughput tests
Total uplink transfer 6 MB 10 MB 7 MB 8 MB Random 900 KB 50 MB 20 MB
Probe method P P P P TCP P P P
No. of probes 1 2 1 12 Random 1 1 20
Duration 6 s U 8 s 15 s 10 s U 10 s U
Downlink throughput tests
Total downlink transfer 20 MB 400 MB 2400 MB 10 MB 400 MB 1 MB 2 MB 250 MB 10 GB
Probe method G G G G G TCP G G G
No. of Probes 2 4 4 1 4 16 2 1 10
Duration U 10 s 25 s U 15 s 10 s U 10 s 10 s
Latency tests
Probe Method G G T P G T G G
No. of probes 10 6 Random Random 2 30 3 10
Measure Application performance
Webpage load time X X

Throughput
of video streams

X X

Application deployment
Experiments run against
servers hosted by

MaxCDN,
Edge-
Cast
CDNs

OVH,
Digital
Ocean
CDNs

Amazon
AWS

Think
Broad-
band,
Emanics
Lab

v-speed Amazon AWS,
CacheFly CDN

Akamai
CDN

4Gmark nperf

Supported mobile OS plat-
form

Android,
iOS

Android,
iOS

Android,
iOS

Android Android Android, iOS,
Windows,
MeeGo,
Symbian,
NokiaX, Jolla,
and Blackberry

Android,
iOS

Android,
iOS

Android,
iOS

Misc.
Developed by Speed

Spot
Sensorly Root

Metrics
Technische
Universitt
Darmstadt

V-
Speed

Aalto
University

Cisco
Sys-
tems

Trois
Petits
Points

nPerf

Released in May
2013

Aug.
2012

Aug.
2011

Mar. 2015 Oct.
2014

Feb. 2013 May
2013

May
2013

Oct.
2014

Number of app installs > 100 K > 50 K > 100 K > 100 > 1 M > 10 K > 50K > 500 K > 50 K

Legend:
U – Until transfer completes.
G – HTTP GET.
P – HTTP POST.
T – TCP Connection Setup.

TABLE 2
Experimentation flexibility matrix of emerging end-to-end measurement services.

Limitations: The NDT mobile client executes experiments
that evaluate network traffic only between a mobile
device and its closest M-Lab server and not any arbitrary
server.

5.2.2 Netalyzr

The Netalyzr mobile application, developed as a collab-
oration of ICSI Berkeley, UC Berkeley, HIIT, and Aalto
University, is a diagnostic tool that characterizes con-

nectivity, performance anomalies, and network security
issues [43], [158]. The tools measures network latency
and bandwidth to reveal insight into not only perfor-
mance to cloud servers, but also how middleboxes in
the path affect the performance of traffic. As of March
2014, Netalyzr has run over 15000 times to diagnose 290
operators in 90 countries. Netalyzr is accessible via an
Android mobile application available on the Google Play
Store.

19

Functionality: Netalyzr identifies the presence of Net-
work Address Translations (NATs), proxy servers along
a route, IP fragmentation, size of bottleneck buffers,
reachability of services, and presence of HTTP proxies.
When the Netalyzr application starts, it contacts the
Netalyzr’s Web server, which issues a DNS lookup re-
quest to redirect the user’s request randomly to one of
the twenty Netalyzr’s back-end servers hosted on the
Amazon cloud. Each back-end server supports twelve
concurrent measurement sessions.

Netalyzr detects the presence of a NAT based on a dif-
ference between a user’s local and public IP addresses.
For clients behind a NAT, Netalyzr identifies how the
network renumbers addresses and ports, i.e., whether
the NAT uses fixed associations of local IP addresses to
different public IP addresses, or if the NAT uses load-
balancing.

To detect support for IP fragmentation, Netalyzr sends
a 2 KB UDP packet (larger than 1500 B Ethernet maxi-
mum transmission unit (MTU)) to the server – a response
from the server indicates the network supports frag-
mentation. If there is no response Netalyzr uses binary
search to find the maximum packet size it can deliver
without the packet being fragmented at the IP layer. The
same test repeats from server to client to detect network
support for fragmentation on the reverse path.

The sizing of bottleneck buffers affects user-perceived
latency, and is measured based on the difference in
latency during inactivity and during path throughput
tests. Finally, queue drain time indicates the size of the
buffer. To perform service reachability related experi-
ments, the application attempts to connect to 25 different
well known ports on a back-end server.

Netalyzr infers the presence of HTTP proxies if the
public IP address in the request received by the back-end
server is not the same as the client’s public IP address.
To detect the presence of in-path HTTP proxy, the client
first sends an HTTP request to the server, the server then
returns the request headers it received in the request
back to the client. The client then compares the headers it
sent and the headers the server sent to the client for any
added, deleted or modified fields. To detect the presence
of caching policies, the application relies on the HTTP
304 Not Modified response from the server.

To detect the presence of a DNS-proxy server or fire-
wall, the application sends a DNS request to Netalyzr’s
back-end server. If the client detects any change in the
response (different transaction ID, or public IP address),
then Netalyzr assumes an in-path DNS proxy exists.
Netalyzr then makes invalid DNS requests to the back-
end server. If the client receives an invalid response
from the server, nothing is detected, but if the request is
blocked, Netalyzer assumes a DNS-aware middlebox is
blocking invalid DNS requests from leaving the network.

Data Collection: The Netalyzr mobile app records
the presence of network interfaces, gateways, NAT
detection, port renumbering, path MTU, packet

fragmentation, DNS resolver, extension mechanisms
for DNS (EDNS) support, port randomization, IPv6
support, hidden proxies, in-path caches, header
manipulation, image transcoding, compression, HTTP
type filtering, port filtering, traffic differentiation, IP
fragmentation, signal-to-noise ratio, Wi-Fi/cellular
configuration, network topology through traceroute,
TLS handshake, UPnP vulnerabilities on Wi-Fi APs,
clock drift, and TLS default certificates [158].

Resource Incentives and Protection: Netalyzr provides
network diagnostic and troubleshooting information to
users. Netalyzr requests user permission to modify sys-
tem settings and to terminate other running applications
in order to increase measurement accuracy. The Netalyzr
mobile application asks users for permission to execute
IP traceroutes, since ICMP packet transmission on a
mobile device requires access to raw sockets.

Privacy Protection: Netalyzr asks users to opt in to the
data collection process before installing the application.
Therefore, if users are uncomfortable with sharing the
measurement results with Netalyzr, they may not install
the application. However, when the user grants per-
missions to the application, Netalyzr could use GPS to
get device location, read phone status and identity, and
modify or delete the contents of USB storage to store or
delete measurement related data on the device.

Limitations: Although Netalyzr provides a robust di-
agnostic set of end-to-end network measurements and
helps users troubleshoot networks, unlike MITATE, or
WindRider, Netalyzr does not detect traffic shaping in
mobile ISPs.

5.2.3 PortoLan

PortoLan is a network experiment testbed based on
volunteered mobile devices that executes experiments
submitted to back-end servers [159]. PortoLan is de-
signed by Enrico Gregori et al. at Istituto di Informatica
e Telematica, to discover Internet topology and build
wide scale mobile network signal quality maps. The
Android application for PortoLan is available on Google
Play and allows users to run measurement tests like
ping, traceroutes, maximum throughput, and detection
of traffic shaping of BitTorrent traffic [160]. The PortoLan
team intends to add capability to support active network
experiments and access to mobile sensor data such as
network signal strength, device location, network name,
cell type, and roaming status. PortoLan relies on user
altruism to build testbed capacity and support measure-
ment. The PortoLan mobile application limits the device
cellular bandwidth usage to 2 MB/day and postpones
experimentation when battery drops below 40%. Finally,
the application does not collect personally identifiable
information from the device and anonymously stores
measurement data on backend servers.

20

6 CONCLUSIONS

This survey provides a comprehensive overview of the
existing and emerging end-to-end mobile network mea-
surement testbeds, tools, and services. In spite of the rel-
ative maturity of existing platforms, several functionality
gaps remain with respect to the needs of developers,
researchers, network operators, and regulators in assess-
ing mobile network performance. First, existing tools
do not adequately support detection of traffic shaping.
As depicted in Table 1, testbeds such as MITATE, Seat-
tle, PhoneLab, PortoLan, and WindRider can detect the
presence of traffic shaping mechanisms in mobile ISPs,
whereas, other testbeds do not. Second, device churn
inherent in platforms based on ad-hoc user participation
means that existing tools are not well-suited for long-
term network performance monitoring. In fact, the pop-
ularity of tools such as PhoneLab and FCC has declined
over time. Third, several testbeds enable developers to
prototype the performance of their applications ahead
of deployment. However there is significant disparity
in how testbeds provide that functionality in terms of
execution models and APIs. Finally, exchange of P2P
traffic, network diagnostics, ICMP traceroutes, device
selection criteria, and NAT traversal are not only selec-
tively supported by different platforms. One significant
axis of comparison between network measurement plat-
forms not discussed in this survey is their accuracy. The
variety of measurement methods used to obtain even the
relatively standard network metrics, such as throughput,
makes it difficult to compare the relative accuracy of the
different platforms.

Based on the surveyed work, we believe the mobile
network measurement community needs a more con-
certed effort among developers, researchers, network op-
erators, and regulators to produce network measurement
tools that meet the needs of all four communities. A
more concerted effort would lead to greater adoption of
(perhaps fewer) tools, as well as large-scale and long-
term network monitoring. At the same time, funding
agencies should support development of new measure-
ment approaches and capabilities, especially when such
improvements are aimed at enhancement of existing
testbeds.

ACKNOWLEDGMENTS

The authors would like to thank Justin Cappos, Geoffrey
Challen, David Choffness, Nick Feamster, Walter John-
ston, Valerio Luconi, Jim Martin, Konstantina Papagian-
naki, John Rula, Mario Sanchez, Qing Yang, and Hongyi
Yao for suggested improvements to an early version of
this manuscript.

REFERENCES

[1] “USTREAM,” http://www.ustream.tv/, Jul. 2014.
[2] J. Codorniou, “Whats next for social mobile games?”

http://techcrunch.com/2012/12/22/whats-next-for-social-mobile-games/,
Dec. 2012.

[3] K. Rogers, “What’s next after WhatsApp:
a guide to the future of messaging apps,”
http://www.theguardian.com/technology/2014/feb/21/whatsapp-facebook-messaging-
Feb. 2014.

[4] P. Marupaka, “The future looks bright for augmented reality,”
http://www.siggraph.org/discover/news/future-looks-bright-augmented-reality
May 2014.

[5] K. Shubber, “Microsoft kinect used to
live-translate sign language into text,”
http://www.wired.co.uk/news/archive/2013-07/18/sign-language-translation-
Jul. 2013.

[6] I. Rimington, “Leave your wallet at
home and pay with your profile picture,”
https://www.paypal.co.uk/Blog/Leave-your-wallet-at-home-and-pay-with-your
Aug. 2013.

[7] I. Grigorik, High Performance Browser Networking. O’Reilly, 2013.
[8] C. Zhang, C. Huang, P. A. Chou, J. Li, S. Mehrotra, K. W.

Ross, H. Chen, F. Livni, and J. Thaler, “Pangolin: speeding up
concurrent messaging for cloud-based social gaming,” in ACM
CoNEXT, December 2011.

[9] S. Agarwal and J. R. Lorch, “Matchmaking for online games
and other latency-sensitive P2P systems,” in ACM SIGCOMM,
August 2009.

[10] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan,
“Towards a SPDY’Ier Mobile Web?” in ACM CoNEXT, Dec. 2013.

[11] J. Butler, W. Lee, B. McQuade, and K. Mixter, “A
Proposal for Shared Dictionary Compression over HTTP,”
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared
Sep. 2008.

[12] Akamai, “Free Mobile Web Performance Measurement Tool,”
http://mobitest.akamai.com/m/index.cgi, 2012.

[13] “Perfecto Mobile,” http://www.perfectomobile.com/, 2014.
[14] W. Johnston, “Measuring Broadband America,”

http://www.caida.org/workshops/aims/1403/slides/aims1403 wjohnston.pdf
Mar. 2013.

[15] Readwrite, “Net Neutrality: What Happens
Now That Verizon Has Vanquished The FCC,”
http://readwrite.com/2014/01/15/net-neutrality-fcc-verizon-open-internet-or
Jan 2014.

[16] B. Zevenbergen, I. Brown, J. Wright, and D. Erdos, “Ethical
Privacy Guidelines for Mobile Connectivity Measurements,”
http://www.oii.ox.ac.uk/research/projects/?id=107, 2013.

[17] J. Huang, C. Chen, Y. Pei, Z. Wang, Z. Qian, F. Qian, B. Tiwana,
Q. Xu, Z. M. Mao, M. Zhang, and P. Bahlc, “MobiPerf: Mobile
Network Measurement System (Technical report),” University of
Michigan and Microsoft Research, Tech. Rep., 2011.

[18] k. claffy, D. D. Clark, and M. P. Wittie, “The 6th Workshop on
Active Internet Measurements (AIMS-6) Report,” Sigcomm CCR,
October 2014.

[19] “What is Measurement Lab?” http://www.measurementlab.net/about,
2014.

[20] U. Goel, A. Miyyapuram, M. P. Wittie, and Q. Yang, “MITATE:
Mobile Internet Testbed for Application Traffic Experimenta-
tion,” in Mobile and Ubiquitous Systems: Computing, Networking
and Services (Mobiquitous), Dec. 2013.

[21] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic
forecasts achieve high throughput and low delay over cellular
networks,” in USENIX NSDI, Apr. 2013.

[22] S. Higginbotham, “Traffic Shaping Com-
ing to a Mobile Network Near You,”
https://gigaom.com/2011/04/05/traffic-shaping-coming-to-a-mobile-network-
Apr 2011.

[23] M. Marcon, M. Dischinger, K. P. Gummadi, and A. Vahdat, “The
Local and Global Effects of Traffic Shaping in the Internet,” in
Communication Systems and Networks (COMSNETS), Jan 2011.

[24] E. Howard, C. Cooper, M. P. Wittie, S. Swinford, and Q. Yang,
“Cascading impact of lag on user experience in multiplayer
games,” in ACM NetGames, December 2014.

[25] YUI Team, “Combo Handler Service Available for Yahoo-hosted
JS,” http://yuiblog.com/blog/2008/07/16/combohandler/, Jul.
2008.

[26] Jeff Barr, “Multi-Region Latency Based
Routing now Available for AWS,”
https://aws.amazon.com/blogs/aws/latency-based-multi-region-routing-now-
Mar. 2012.

http://www.ustream.tv/
http://techcrunch.com/2012/12/22/whats-next-for-social-mobile-games/
http://www.theguardian.com/technology/2014/feb/21/whatsapp-facebook-messaging-apps-viber-kik
http://www.siggraph.org/discover/news/future-looks-bright-augmented-reality
http://www.wired.co.uk/news/archive/2013-07/18/sign-language-translation-kinect
https://www.paypal.co.uk/Blog/Leave-your-wallet-at-home-and-pay-with-your-profile-picture/
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://mobitest.akamai.com/m/index.cgi
http://www.perfectomobile.com/
http://www.caida.org/workshops/aims/1403/slides/aims1403_wjohnston.pdf
http://readwrite.com/2014/01/15/net-neutrality-fcc-verizon-open-internet-order
http://www.oii.ox.ac.uk/research/projects/?id=107
http://www.measurementlab.net/about
https://gigaom.com/2011/04/05/traffic-shaping-coming-to-a-mobile-network-near-you/
http://yuiblog.com/blog/2008/07/16/combohandler/
https://aws.amazon.com/blogs/aws/latency-based-multi-region-routing-now-available-for-aws/

21

[27] Matthew Prince, “Mirage 2.0: Solving
the Mobile Browsing Speed Challenge,”
https://blog.cloudflare.com/mirage2-solving-mobile-speed/,
Jun. 2013.

[28] Opera Software ASA, “Opera Turbo,”
http://www.opera.com/turbo, Mar. 2015.

[29] “Apptimize,” http://apptimize.com/, May 2015.
[30] “Splitforce,” http://splitforce.com/, May 2015.
[31] “Optimizely,” http://www.optimizely.com/, May 2015.
[32] “Google Analytics,” http://www.google.com/analytics/, Sep.

2014.
[33] Y. Zhuang, A. Rafetseder, and J. Cappos, “Experience with

Seattle: A Community Platform for Research and Education,”
in GENI Research and Educational Workshop (GREE), Mar. 2013.

[34] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar,
C. Qiao, S. Y. Ko, and G. Challen, “PhoneLab: A Large Pro-
grammable Smartphone Testbed,” in Workshop on Sensing and
Big Data Mining, Nov. 2013.

[35] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio,
“Network sensing through smartphone-based crowdsourcing,”
in Embedded Networked Sensor Systems (SenSys), Nov. 2013.

[36] A. Striegel, S. Liu, L. Meng, C. Poellabauer, D. Hachen, and
O. Lizardo, “Lessons learned from the netsense smartphone
study,” in ACM Workshop on HotPlanet, ser. HotPlanet ’13, Aug.
2013.

[37] R. K. Balan, A. Misra, and Y. Lee, “Livelabs: Building an in-situ
real-time mobile experimentation testbed,” in Workshop on Mobile
Computing Systems and Applications (HotMobile), Feb. 2014.

[38] MobiPerf, “Welcome to MobiPerf,” http://www.mobiperf.com/,
2014.

[39] I. Trestian, R. Potharaju, and A. Kuzmanovic,
“Closing the Loop: Feedback at Your Fingertips,”
http://www.cs.northwestern.edu/∼ict992/docs/draft.pdf,
2009.

[40] K. Claffy, “The 5th Workshop on Active Internet Measurements
(AIMS-5) Report,” in ACM SIGCOMM Computer Communication
Review, Volume 43, Number 3, July 2013.

[41] H. Yao, A. Nikravesh, Y. Jia, D. R. Choffnes, and Z. M. Mao,
“Mobilyzer: A Network Measurement Library for Android Plat-
form,” in Workshop on Active Internet Measurements (AIMS), Mar
2014.

[42] MLAB, “NDT (Mobile Client),”
http://www.measurementlab.net/tools/ndt-mobile, 2013.

[43] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr:
Illuminating the edge network,” in ACM SIGCOMM Conference
on Internet Measurement, Nov. 2010.

[44] “SciWiNet,” http://sciwinet.org/, 2014.
[45] K. V. d. Merwe, “PhantomNet: An

end-to-end mobile network testbed,”
http://www.caida.org/workshops/aims/1403/slides/aims1403 jvandermerwe.pdf,
Mar. 2014.

[46] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E.
Bustamante, B. Krishnamurthy, and W. Willinger, “Dasu: Push-
ing experiments to the Internet’s edge,” in USENIX NSDI, Apr.
2013.

[47] MLAB, “WindRider,” http://www.measurementlab.net/tools/windrider,
2009.

[48] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating
latency between arbitrary Internet end hosts,” in SIGCOMM
Workshop on Internet Measurement, Nov. 2002.

[49] “M-Lab Tests,” http://www.measurementlab.net/tests, 2014.
[50] J. Rula, “ALICE - Mobile Experiment Engine,”

http://aqualab.cs.northwestern.edu/projects/alice, Aug. 2014.
[51] OpenSignal, Inc., “OpenSignal,” http://opensignal.com/, 2014.
[52] FCC, “Measuring Broadband America,”

http://www.fcc.gov/measuring-broadband-america/mobile,
Nov 2013.

[53] RadioOpt GmbH, “RadioOpt,” https://www.radioopt.com/,
Mar. 2015.

[54] WindRider, “WindRider A Mobile Net-
work Neutrality Monitoring System,”
http://www.cs.northwestern.edu/∼ict992/mobile.htm, Oct
2009.

[55] Ookla, “Ookla SpeedTest Mobile Apps,”
http://www.speedtest.net/mobile/, 2014.

[56] “CRAWDAD: A Community Resource for Archiving Wireless
Data At Dartmouth,” http://crawdad.org/, Jan. 2015.

[57] “M-Lab,” http://www.measurementlab.net/, Mar. 2015.
[58] “UMass Trace Repository,” http://traces.cs.umass.edu/, Dec.

2009.
[59] J. Brodkin, “FCC votes for net neutrality,

a ban on paid fast lanes, and Title II,”
http://arstechnica.com/business/2015/02/fcc-votes-for-net-neutrality-a-ban-on-
Feb. 2015.

[60] J. Vijayan, “ATT, Sprint confirm use
of Carrier IQ software on handsets,”
http://www.computerworld.com/article/2499667/application-security/at-t--sprint-
Dec. 2011.

[61] Carrier IQ, “Vodafone Portugal Pioneers Innova-
tive Mobile Broadband Experience Management
Architecture Using Carrier IQ Technology ,”
http://carrieriq.com/wp-content/uploads/2014/08/PR.CarrierIQandVodafonePortugal.2009073
2009 Jul.

[62] M. Peckham, “Carrier IQ Wiretap De-
bacle: Much Ado About Something?”
http://techland.time.com/2011/12/01/carrieriq-wiretap-debacle-much-ado-about-
Dec. 2011.

[63] “The ’secret’ app installed on millions of
mobile phones that records your keystrokes,
your browsing and reads your messages,”
http://www.dailymail.co.uk/sciencetech/article-2068225/Secret-app-installed-
Dec. 2011.

[64] Lookout Labs, “CarrierIQ Scanner & Protection,”
https://play.google.com/store/apps/details?id=com.lookout.carrieriqdetector&hl=en
May 2013.

[65] sn707, “ATT LG G3 Carrier IQ Removal Guide,”
http://forum.xda-developers.com/att-lg-g3/general/att-lg-g3-carrier-iq-removal-
Jul. 2014.

[66] V. Gopalakrishnan, L. E. Li, G. Ricart, J. Breen, J. Mar-
tin, Y. Xin, C. Elliott, A. Banerjee, J. Cho, M. Munakami,
A. Chowdhary, N. Alsrehin, I. Alsmadi, D. Grunwald, E. Eide,
R. Ricci, and M. Wittie, “SDN and NFV Report-Out,”
https://phantomnet.org/workshop/sdnnfv.pdf, Feb. 2015.

[67] C. Osborne, “The state of LTE 4G networks worldwide
in 2014 and the poor performance of the US,”
http://www.zdnet.com/the-state-of-lte-4g-networks-worldwide-in-2014-and-
Feb. 2014.

[68] J.D. Power, “Overall wireless network problem
rates differ considerably based on type of service,”
http://www.jdpower.com/press-releases/2013-us-wireless-network-quality-performance-
Aug. 2013.

[69] T. Karr, “Verizon’s Plan to Break the Internet,”
http://www.savetheinternet.com/blog/2013/09/18/verizons-plan-break-internet
Sept 2013.

[70] C. Aaron, “Net Neutrality Is Dead. Here’s How to Get It Back,”
http://www.savetheinternet.com/blog/2014/01/14/net-neutrality-dead-heres-
Jan 2014.

[71] M. Fahey, “Why Gamers Should Care About Net Neutrality,”
http://kotaku.com/5512448/why-gamers-should-care-about-net-neutrality,
Apr 2010.

[72] S. Buckley, “Cogent and Orange France
fight over interconnection issues,”
http://www.fiercetelecom.com/story/cogent-and-orange-france-fight-over-inter
Aug 2011.

[73] ——, “France Telecom and Google entangled in peering fight,”
http://www.fiercetelecom.com/story/france-telecom-and-google-entangled-peering-
Jan 2013.

[74] A. Lynn, “Cable Companies’ Big Internet Swindle,”
http://www.freepress.net/blog/2009/11/24, Nov 2009.

[75] N. Anderson, “Huge ISPs want per-
GB payments from Netflix, YouTube,”
http://arstechnica.com/tech-policy/2011/01/huge-isps-want-per-gb-payments-
Jan 2011.

[76] R. Singel, “Mobile Carriers Dream of Charging per Page,”
http://www.wired.com/business/2010/12/carriers-net-neutrality-tiers/2/,
Dec 2010.

[77] B. Cohen, “Incentives build robustness in BitTorrent,” in Work-
shop on Peer-to-Peer Systems (IPTPS), Feb. 2003.

[78] IBM, “CPLEX optimizer,” www.ibm.com/software/commerce/optimization/cplex-
2013.

[79] MITATE, “MITATE : Mobile Internet Testbed for
Application Traffic Experimentation (User Manual),”
http://mitate.cs.montana.edu/sample/MITATE Documentation v1.0.pdf,
Nov 2013.

https://blog.cloudflare.com/mirage2-solving-mobile-speed/
http://www.opera.com/turbo
http://apptimize.com/
http://splitforce.com/
http://www.optimizely.com/
http://www.google.com/analytics/
http://www.mobiperf.com/
http://www.cs.northwestern.edu/~ict992/docs/draft.pdf
http://www.measurementlab.net/tools/ndt-mobile
http://sciwinet.org/
http://www.caida.org/workshops/aims/1403/slides/aims1403_jvandermerwe.pdf
http://www.measurementlab.net/tools/windrider
http://www.measurementlab.net/tests
http://aqualab.cs.northwestern.edu/projects/alice
http://opensignal.com/
http://www.fcc.gov/measuring-broadband-america/mobile
https://www.radioopt.com/
http://www.cs.northwestern.edu/~ict992/mobile.htm
http://www.speedtest.net/mobile/
http://crawdad.org/
http://www.measurementlab.net/
http://traces.cs.umass.edu/
http://arstechnica.com/business/2015/02/fcc-votes-for-net-neutrality-a-ban-on-paid-fast-lanes-and-title-ii/
http://www.computerworld.com/article/2499667/application-security/at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html
http://carrieriq.com/wp-content/uploads/2014/08/PR.CarrierIQandVodafonePortugal.20090730.pdf
http://techland.time.com/2011/12/01/carrieriq-wiretap-debacle-much-ado-about-something/
http://www.dailymail.co.uk/sciencetech/article-2068225/Secret-app-installed-millions-Android-phones-reads-messages.html
https://play.google.com/store/apps/details?id=com.lookout.carrieriqdetector&hl=en
http://forum.xda-developers.com/att-lg-g3/general/att-lg-g3-carrier-iq-removal-guide-t2819295
https://phantomnet.org/workshop/sdnnfv.pdf
http://www.zdnet.com/the-state-of-lte-4g-networks-worldwide-in-2014-and-the-poor-performance-of-the-us-7000026594/
http://www.jdpower.com/press-releases/2013-us-wireless-network-quality-performance-study-volume-2
http://www.savetheinternet.com/blog/2013/09/18/verizons-plan-break-internet
http://www.savetheinternet.com/blog/2014/01/14/net-neutrality-dead-heres-how-get-it-back
http://kotaku.com/5512448/why-gamers-should-care-about-net-neutrality
http://www.fiercetelecom.com/story/cogent-and-orange-france-fight-over-interconnection-issues/2011-08-31
http://www.fiercetelecom.com/story/france-telecom-and-google-entangled-peering-fight/2013-01-07
http://www.freepress.net/blog/2009/11/24
http://arstechnica.com/tech-policy/2011/01/huge-isps-want-per-gb-payments-from-netflix-youtube/
http://www.wired.com/business/2010/12/carriers-net-neutrality-tiers/2/
www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://mitate.cs.montana.edu/sample/MITATE_Documentation_v1.0.pdf

22

[80] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson,
“Seattle: a platform for educational cloud computing,” in ACM
SIGCSE Bulletin, Mar 2009.

[81] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzo-
niak, and M. Bowman, “PlanetLab: an overlay testbed for broad-
coverage services,” SIGCOMM CCR, vol. 33, no. 3, pp. 3–12, Jul.
2003.

[82] C. Siaterlis, A. Garcia, and B. Genge, “On the use of emulab
testbeds for scientifically rigorous experiments,” IEEE Communi-
cations Surveys Tutorials, vol. 15, no. 2, pp. 929–942, Feb. 2013.

[83] “Geni,” http://www.geni.net/, Oct. 2012.
[84] yanyan, “Using Sensors In Seattle,”

https://seattle.poly.edu/wiki/UsingSensors, Apr 2012.
[85] “Sensibility testbed,” http://sensibilitytestbed.com, Jul. 2014.
[86] PhoneLab, “PhoneLab Experimenter Agreement,”

http://experiment.phone-lab.org/terms/, 2013.
[87] PhoneLab, “PhoneLab A Programmable Smartphone Testbed,”

http://www.phone-lab.org/, 2013.
[88] ——, “Overview,” http://participate.phone-lab.org/info/, 2013.
[89] “Devices Supported by SciWiNet,”

http://sciwinet.org/SciWiNet-Devices.html, 2014.
[90] LiveLabs, “Participation,” http://livelabs.smu.edu.sg/participant/,

Mar. 2013.
[91] “LiveLabs Registration,” http://athena.smu.edu.sg/livelabs register/,

Oct 2014.
[92] FCCAPPs, “FCC Speed Test App,”

https://play.google.com/store/apps/details?id=com.samknows.fcc&hl=en,
Dec 2013.

[93] J. Clover, “FCC Launches ’FCC Speed Test’ iPhone
App to Measure Mobile Broadband Performance,”
http://www.macrumors.com/2014/02/25/fcc-speed-test/,
Feb 2014.

[94] FCC, “Measuring Mobile Broadband
Methodology - Technical Summary,”
http://www.fcc.gov/measuring-broadband-america/mobile/technical-summary,
Nov. 2013.

[95] J. Kastrenakes, “FCC releases Android speed test
app to gather data on cell carrier performance,”
http://www.theverge.com/2013/11/14/5105090/fcc-launches-android-mobile-speed-test-app,
Nov 2011.

[96] S. Silbert, “FCC launches speed test app for Android,
looks to collect mobile broadband performance data,”
http://www.engadget.com/2013/11/14/fcc-launches-speed-test-app-android/,
Nov 2011.

[97] Z. Honig, “FCC Speed Test app for iOS lets the
government track your iPhone’s network performance,”
http://www.engadget.com/2014/02/25/fcc-speed-test-app-ios/,
Feb 2014.

[98] K. Bell, “FCC Launches iOS ’Speed Test’ App,”
http://mashable.com/2014/02/25/fcc-speed-test-app-ios/,
Feb 2014.

[99] FCC, “FCC Speed Test App Tip Sheet,”
https://www.fcc.gov/guides/mobile-speed-test-tip-sheet,
2014.

[100] S. Muckaden, “MySpeedTest: active and passive measurements
of cellular data networks,” Ph.D. dissertation, Georgia Institute
of Technology, 2013.

[101] N. Feamster, “My Speed Test Mobile Per-
formance Measurement Tool Released,”
http://noise-lab.net/2012/06/02/my-speed-test-mobile-performance-measurement-tool-released/,
Jun. 2012.

[102] S. Muckaden, “MySpeedTest: Active and Passive
Measurements of Cellular Data Network Performance,”
http://www.caida.org/workshops/isma/1302/slides/aims1302 smuckaden.pdf,
Feb. 2013.

[103] Webpagetest, “Test a website’s performance,”
http://www.webpagetest.org/, 2008.

[104] Guy Podjarny, “Open-Sourcing Mobitest,”
https://blogs.akamai.com/2012/03/open-sourcing-mobitest.html,
Mar 2012.

[105] A. Dyke, “What is a HAR File and what do I use it for?”
http://www.speedawarenessmonth.com/what-is-a-har-file-and-what-do-i-use-it-for/,
Aug 2012.

[106] Akamai, “Test Your Website Performance On A Mobile Device,”
http://www.akamai.com/html/awe/login.html?campaign id=F-MC-16282&curl=/html/awe auth/mobitest.html,
2012.

[107] M. Piatek, “Measurement @ Google,”
http://www.caida.org/workshops/aims/1403/slides/aims1403 mpiatek.pdf,
Mar. 2014.

[108] “Akamai Mobitest: Mobile Web Per-
formance Measurement Agents,”
https://code.google.com/p/mobitest-agent/source/browse/trunk/mobitest-agent/Andr
Mar 2012.

[109] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger,
K. Papagiannaki, and J. Crowcroft, “RILAnalyzer: A Compre-
hensive 3G Monitor on Your Phone,” in ACM IMC, ser. IMC ’13.
New York, NY, USA: ACM, Oct. 2013, pp. 257–264.

[110] A. Aucinas, N. Vallina-Rodriguez, Y. Grunenberger, V. Erramilli,
K. Papagiannaki, J. Crowcroft, and D. Wetherall, “Staying online
while mobile: The hidden costs,” in ACM CoNEXT, ser. CoNEXT
’13. New York, NY, USA: ACM, Dec. 2013, pp. 315–320.

[111] N. S. N. S. Labs, “Understanding
smartphone behavior in the network,”
http://www.nokiasiemensnetworks.com/sites/default/files/document/Smart
2011.

[112] “NetNetwork,” https://github.com/pragma-/networklog,
2011.

[113] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake,
and K. La, “Discovering Fine-grained RRC State Dynamics and
Performance Impacts in Cellular Networks,” in ACM Mobicom,
Sep. 2014.

[114] MobiPerf, “Data Collection and Privacy Policy,”
http://www.mobiperf.com/privacy, 2014.

[115] Y. Zhou, “Mobiperf,” http://www.caida.org/workshops/isma/1302/slides/aims1302
Feb 2013.

[116] J. Rula, “ALICE - Technical Description,”
http://aqualab.cs.northwestern.edu/262-details-alice, Aug.
2014.

[117] Aqualab, “Namehelp,” https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.namehelp&hl=en
Apr 2014.

[118] ——, “Application Time (AppT),”
https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.behavior
Apr 2014.

[119] NUStudents, “NU Signals v2,”
https://play.google.com/store/apps/details?id=edu.northwestern.nux,
May 2014.

[120] “Ookla,” http://www.ookla.com/, 2015.
[121] Ookla, “Speedtest.net,” https://play.google.com/store/apps/details?id=org.zwanoo.andr

Mar. 2015.
[122] ——, “Host a Speedtest Server,” http://www.ookla.com/host,

2015.
[123] Ookla SpeedTest, “Mobile Test Server Selection,”

https://support.speedtest.net/hc/en-us/articles/203845480-Mobile-Test-Server
Oct. 2012.

[124] ——, “How do I correct my location?”
https://support.speedtest.net/hc/en-us/articles/203845660-How-do-I-correct-
Oct. 2012.

[125] MaxMind, “GeoIP2: Industry Leading IP Intelligence,”
https://www.maxmind.com/en/geoip2-services-and-databases,
2012.

[126] Ookla SpeedTest, “How does the Be-
gin Test button select a server?”
https://support.speedtest.net/hc/en-us/articles/203845410-How-does-the-Begin-
Jan. 2012.

[127] ——, “How does the test itself
work? How is the result calculated?”
https://support.speedtest.net/hc/en-us/articles/203845400-How-does-the-test-
Jan. 2012.

[128] PingTest.net, “Measuring Network Quality,”
http://www.pingtest.net/learn.php, 2014.

[129] Ookla SpeedTest, “Ookla SpeedTest Mini,”
http://www.speedtest.net/mini.php, 2014.

[130] RadioOpt GmbH, “Traffic Monitor & 3G/4G Speed,”
http://www.trafficmonitor.mobi/en/download/, 2014.

[131] ——, “Download Traffic Monitor,”
http://www.trafficmonitor.mobi/en/download/, 2014.

[132] CacheFly, “Technology and Infrastructure,”
http://www.cachefly.com/cachefly-cdn/technology/, Mar.
2015.

[133] Google Developers, “Google Maps Developer Documen-
tation,” https://developers.google.com/maps/documentation/,
Mar. 2015.

http://www.geni.net/
https://seattle.poly.edu/wiki/UsingSensors
http://sensibilitytestbed.com
http://experiment.phone-lab.org/terms/
http://www.phone-lab.org/
http://participate.phone-lab.org/info/
http://sciwinet.org/SciWiNet-Devices.html
http://livelabs.smu.edu.sg/participant/
http://athena.smu.edu.sg/livelabs_register/
https://play.google.com/store/apps/details?id=com.samknows.fcc&hl=en
http://www.macrumors.com/2014/02/25/fcc-speed-test/
http://www.fcc.gov/measuring-broadband-america/mobile/technical-summary
http://www.theverge.com/2013/11/14/5105090/fcc-launches-android-mobile-speed-test-app
http://www.engadget.com/2013/11/14/fcc-launches-speed-test-app-android/
http://www.engadget.com/2014/02/25/fcc-speed-test-app-ios/
http://mashable.com/2014/02/25/fcc-speed-test-app-ios/
https://www.fcc.gov/guides/mobile-speed-test-tip-sheet
http://noise-lab.net/2012/06/02/my-speed-test-mobile-performance-measurement-tool-released/
http://www.caida.org/workshops/isma/1302/slides/aims1302_smuckaden.pdf
http://www.webpagetest.org/
https://blogs.akamai.com/2012/03/open-sourcing-mobitest.html
http://www.speedawarenessmonth.com/what-is-a-har-file-and-what-do-i-use-it-for/
http://www.akamai.com/html/awe/login.html?campaign_id=F-MC-16282&curl=/html/awe_auth/mobitest.html
http://www.caida.org/workshops/aims/1403/slides/aims1403_mpiatek.pdf
https://code.google.com/p/mobitest-agent/source/browse/trunk/mobitest-agent/Android/BZAgent/README?r=2
http://www.nokiasiemensnetworks.com/sites/default/files/document/Smart_Lab_WhitePaper_27012011_low-res.pdf
https://github.com/pragma-/networklog
http://www.mobiperf.com/privacy
http://www.caida.org/workshops/isma/1302/slides/aims1302_yyzhou.pdf
http://aqualab.cs.northwestern.edu/262-details-alice
https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.namehelp&hl=en
https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.behavior.research
https://play.google.com/store/apps/details?id=edu.northwestern.nux
http://www.ookla.com/
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
http://www.ookla.com/host
https://support.speedtest.net/hc/en-us/articles/203845480-Mobile-Test-Server-Selection
https://support.speedtest.net/hc/en-us/articles/203845660-How-do-I-correct-my-location-
https://www.maxmind.com/en/geoip2-services-and-databases
https://support.speedtest.net/hc/en-us/articles/203845410-How-does-the-Begin-Test-button-select-a-server-
https://support.speedtest.net/hc/en-us/articles/203845400-How-does-the-test-itself-work-How-is-the-result-calculated-
http://www.pingtest.net/learn.php
http://www.speedtest.net/mini.php
http://www.trafficmonitor.mobi/en/download/
http://www.trafficmonitor.mobi/en/download/
http://www.cachefly.com/cachefly-cdn/technology/
https://developers.google.com/maps/documentation/

23

[134] OpenSignal.com, “OpenSignal WiFi map, speedtest,”
https://play.google.com/store/apps/details?id=com.staircase3.opensignal&hl=en,
Mar. 2015.

[135] OpenSignal, Inc., “OpenSignal - Signal
Finder and 3G/4G/Wifi Coverage Maps,”
https://itunes.apple.com/app/opensignal/id598298030, Mar.
2013.

[136] J. Cainey, B. Gill, S. Johnston, J. Robinson, and S. Westwood,
“Modelling download throughput of LTE networks,” in Local
Computer Networks Workshops (LCN Workshops), 2014 IEEE Con-
ference on, Oct. 2014.

[137] OpenSignal, Inc., “The State of LTE,”
http://opensignal.com/reports/state-of-lte/, Feb. 2013.

[138] FierceWireless, “3G/4G wireless network latency: Comparing
Verizon, AT&T, Sprint and T-Mobile in February 2014,”
http://www.fiercewireless.com/special-reports/3g4g-wireless-network-latency-comparing-verizon-att-sprint-and-t-mobile-feb,
Mar. 2014.

[139] Johanna, “OpenSignal Blog,” http://opensignal.com/blog/2015/01/09/our-academic-partners/,
Jan. 2015.

[140] OpenSignal Developers, “NetworkStats API,”
http://developer.opensignal.com/networkrank/, 2014.

[141] ——, “Tower Info API,” http://developer.opensignal.com/towerinfo/,
2014.

[142] OpenSignal, Inc., “How phone batteries measure the weather,”
http://opensignal.com/reports/battery-temperature-weather/,
Aug. 2013.

[143] ——, “OpenSignal Blog,” http://opensignal.com/blog/2012/11/29/new-permissions-in-version-1-99-and-how-to-check-whether-an-app-is-malicious/
Nov. 2012.

[144] Vodafone, “Take control of your data
and Wi-Fi usage – Vodafone NetPerform,”
http://www.vodafone.co.uk/discover-vodafone/apps-and-downloads/vodafone netperform/,
Mar. 2015.

[145] ——, “Vodafone Net Perform,”
https://play.google.com/store/apps/details?id=com.vodafone.netperform.full,
Jun. 2014.

[146] ——, “Vodafone Net Perform,”

https://itunes.apple.com/ie/app/vodafone-net-perform/id946160163?mt=8,
Jun. 2014.

[147] ——, “Vodafone Net Perform – Terms and Conditions,”
https://www.vodafone.co.nz/legal/terms-conditions/netperform/,
Mar. 2015.

[148] SpeedSpot, “SpeedSpot: Pioneering Hotel WiFi Speed Test,”
http://speedspot.org/, Mar. 2015.

[149] Sensorly, “Unbiased Wireless Network Information. From peo-
ple just like you.” http://sensorly.com/, 2013.

[150] RootMetrics, “The RootMetrics testing methodology,”
http://www.rootmetrics.com/us/methodology, Mar. 2015.

[151] F. Kaup, F. Jomrich, and D. Hausheer, “Demonstration of Net-
workCoverage – A Mobile Network Performance Measurement
App,” IEEE NetSys, March 2015.

[152] V-Speed, “Cloud Managed Speed Test,”
http://www.v-speed.eu/, Mar. 2015.

[153] NetRadar, “What’s my mobile operator’s coverage?”
http://www.netradar.org/en, Mar. 2015.

[154] Cisco Systems, Inc., “Cisco Data Meter,”
http://ciscovni.com/data-meter/index.html, May 2013.

[155] Veloxity, Inc., “4Gmark Mobile performance test,”
http://www.4gmark.com/, Nov. 2014.

[156] nPerf.com, “Whats nPerf? How does it work?”
http://www.nperf.com/en/, Nov. 2014.

[157] Internet2, “Network Diagnostic Tool (NDT),”
http://software.internet2.edu/ndt/, 2013.

[158] N. Vallina-Rodriguez, N. Weaver, C. Kreibich, and V. Paxson,
“Netalyzr for Android: Challenges and opportunities,” in Work-
shop on Active Internet Measurements (AIMS), Mar 2014.

[159] E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio, “Sensing the In-
ternet through crowdsourcing,” in Proceedings of the Second IEEE
PerCom Workshop on the Impact of Human Mobility in Pervasive
Systems and Applications (PerMoby), May 2013.

[160] “Portolan network tools,” https://play.google.com/store/apps/details?id=it.unipi.iet.portolan.tracer
May 2014.

https://play.google.com/store/apps/details?id=com.staircase3.opensignal&hl=en
https://itunes.apple.com/app/opensignal/id598298030
http://opensignal.com/reports/state-of-lte/
http://www.fiercewireless.com/special-reports/3g4g-wireless-network-latency-comparing-verizon-att-sprint-and-t-mobile-feb
http://opensignal.com/blog/2015/01/09/our-academic-partners/
http://developer.opensignal.com/networkrank/
http://developer.opensignal.com/towerinfo/
http://opensignal.com/reports/battery-temperature-weather/
http://opensignal.com/blog/2012/11/29/new-permissions-in-version-1-99-and-how-to-check-whether-an-app-is-malicious/
http://www.vodafone.co.uk/discover-vodafone/apps-and-downloads/vodafone_netperform/
https://play.google.com/store/apps/details?id=com.vodafone.netperform.full
https://itunes.apple.com/ie/app/vodafone-net-perform/id946160163?mt=8
https://www.vodafone.co.nz/legal/terms-conditions/netperform/
http://speedspot.org/
http://sensorly.com/
http://www.rootmetrics.com/us/methodology
http://www.v-speed.eu/
http://www.netradar.org/en
http://ciscovni.com/data-meter/index.html
http://www.4gmark.com/
http://www.nperf.com/en/
http://software.internet2.edu/ndt/
https://play.google.com/store/apps/details?id=it.unipi.iet.portolan.traceroute&hl=en

	1 Introduction
	2 Goals of end-to-end mobile network measurement
	2.1 Developers' View of Network Performance
	2.2 Researchers' View of Network Performance
	2.3 Network Operators' View of Network Performance
	2.4 Regulators' View of Network Performance
	2.5 Shared Challenges

	3 Network Testbeds
	3.1 Uncurated Network Testbeds
	3.1.1 MITATE
	3.1.2 Seattle
	3.1.3 Emerging Systems

	3.2 Curated Network Testbeds
	3.2.1 PhoneLab
	3.2.2 SciWiNet
	3.2.3 LiveLabs

	4 Measurement Tools
	4.1 Standalone Measurement Tools
	4.1.1 FCC Speed Test
	4.1.2 WindRider
	4.1.3 MySpeedTest
	4.1.4 Akamai Mobitest
	4.1.5 RILAnalyzer

	4.2 Libraries for Mobile Network Measurement
	4.2.1 MobiPerf
	4.2.2 ALICE

	5 Measurement Services
	5.1 Network Monitoring
	5.1.1 Ookla SpeedTest Mobile
	5.1.2 RadioOpt Traffic Monitor
	5.1.3 OpenSignal
	5.1.4 Vodafone NetPerform
	5.1.5 Emerging Applications

	5.2 Network Discovery and Diagnosis
	5.2.1 NDT (Mobile Client)
	5.2.2 Netalyzr
	5.2.3 PortoLan

	6 Conclusions
	References

