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Abstract—Low-Density Parity Check (LDPC) error correction
decoders have become popular in communications systems, as
a benefit of their strong error correction performance and
their suitability to parallel hardware implementation. A great
deal of research effort has been invested into LDPC decoder
designs that exploit the flexibility, the high processing speed
and the parallelism of Field-Programmable Gate Array (FPGA)
devices. FPGAs are ideal for design prototyping and for the
manufacturing of small-production-run devices, where their in-
system programmability makes them far more cost-effective
than Application-Specific Integrated Circuits (ASICs). However,
the FPGA-based LDPC decoder designs published in the open
literature vary greatly in terms of design choices and performance
criteria, making them a challenge to compare. This paper
explores the key factors involved in FPGA-based LDPC decoder
design and presents an extensive review of the current literature.
In-depth comparisons are drawn amongst 140 published designs
(both academic and industrial) and the associated performance
trade-offs are characterised, discussed and illustrated. Seven key
performance characteristics are described, namely their process-
ing throughput, processing latency, hardware resource require-
ments, error correction capability, processing energy efficiency,
bandwidth efficiency and flexibility. We offer recommendations
that will facilitate fairer comparisons of future designs, as well
as opportunities for improving the design of FPGA-based LDPC
decoders.

Index Terms—Digital communication, error correction codes,
low-density parity check (LDPC) codes, field programmable gate
array, iterative decoding

I. INTRODUCTION

LOW-Density Parity Check (LDPC) codes may be em-
ployed for correcting transmission errors in communica-

tion systems. They represent a class of Forward Error Correc-
tion (FEC) codes that are currently the focus of much research
within the communications community. They were first pro-
posed by Gallager in 1962 [1], but they were considered to
be too complex for practical simulation and implementation at
the time of their conception, hence they were left largely un-
touched for decades. Apart from their excellent performance,
perhaps partially motivated by the fact that the turbo codes
patented during the early 1990s attracted a license-fee, in 1996
LDPC codes were rediscovered by Mackay and Neal [2], and
ever since have enjoyed a renaissance. Given the increased
computing power available today they have become a key
component of many commercialised communication systems,
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including WiFi [3], WiMAX [4], DVB-S2 [5], CCSDS [6] and
ITU G.hn [7].

LDPC codes benefit from a number of appealing features
that make them very attractive for implementation. The LDPC
decoding algorithm can be implemented using low-complexity
calculations, resulting in a relatively low design and im-
plementation cost for the processing hardware. Like turbo
codes, LDPC codes are decoded iteratively, achieving an error
correction performance that is close to the theoretical limit
when decoding messages that have large block lengths [8].
However, in contrast to turbo codes, there is a wide variety
of possible algorithms and levels of parallelisation that may
be considered for the design of LDPC decoders, presenting
designers with a range of options that may be relied upon to
achieve the desired characteristics.

However, while the design of the individual processing com-
ponents is relatively simple, the design of a complete LDPC
decoder is subject to a complex interplay between a number
of system characteristics, namely the processing throughput,
processing latency, hardware resource requirements, error cor-
rection capability, processing energy efficiency, bandwidth
efficiency and flexibility. These characteristics depend on a
number of system parameters, namely the architecture, the
LDPC code employed, the algorithm used and the number of
decoding iterations. This relationship is shown in Fig. 1. Note
that the bandwidth efficiency also depends on the modulation
scheme chosen, as does the transmission energy efficiency,
which furthermore depends on the coding gain and the error
correction capability of the chosen LDPC code. To elaborate
a little further in the context of Fig. 1, we can improve the
error correction capability in many different ways, for example
by using a stronger LDPC code or more decoding iterations.
Naturally, increasing the number of iterations increases the
complexity and hence reduces the processing energy effi-
ciency, but increases the transmit energy efficiency. Hence the
total energy dissipation should be considered holistically, when
designing an LDPC decoder. Further similar trade-offs will
emerge throughout our forthcoming discussions.

In order to fully characterise an LDPC decoder design, it
is necessary to physically implement it. Perhaps the simplest
way of doing so is to use a Field-Programmable Gate Array
(FPGA) device, which facilitates rapid prototyping and fast
parallel logic processing. This approach is especially useful
for measuring the Bit Error Rate (BER) performance, since
simulations that would take days on a computer can be
completed in only hours when using a custom FPGA imple-
mentation [9]. These advantages are evident from the sheer
number of published FPGA-based LDPC decoder designs
that exist in the open literature, which will be compared
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Fig. 1. FPGA-based LDPC decoder system parameters and characteristics

later in this paper. Furthermore, the decoding techniques and
implementation-oriented research presented alongside these
designs has been of significant benefit to the wider com-
munications research community [10]–[15]. In particular, the
implementational characteristics of these FPGA-based LDPC
decoders are increasingly informing the holistic design of
communication systems.

In addition to their suitability for prototyping, FPGAs con-
stitute a viable alternative to Application-Specific Integrated
Circuits (ASICs) for the LDPC decoders of small-production-
run communication devices, while their programmability has
made them attractive for software-defined radios. This pa-
per focuses exclusively on FPGA implementations of LDPC
decoders, since they cannot be fairly compared to ASIC
implementations, which are designed at a significantly higher
development cost to have particularly high performance for
high-production-run applications. Indeed, ASIC implementa-
tions are even difficult to compare with each other, because
some papers provide post-synthesis results, while others offer
post-layout results. Meanwhile, some papers consider only
the ASIC core, while others include both the memory and
Input/Output (I/O) resources.

This paper has been conceived for achieving the following
aims:
• Provide a tutorial on LDPC decoding, discussing both the

parameters and characteristics that affect the performance
of FPGA implementations.

• Accurately compare all implementations of FPGA-based
LDPC decoders that we are aware of.

• Characterise the observed trade-offs and relationships
between the system parameters and characteristics.

• Recommend good practice to aid future designs of FPGA-
based LDPC decoders, and to make published designs
more comparable with each other.

• Identify opportunities for the further enhancement of
FPGA-based LDPC decoders.

The structure of the paper is as follows. Section II presents

a brief tutorial on the LDPC code structure and encoding,
as well as describing variations on the decoding algorithms,
decoder architectures and FPGA devices. Section III provides
our comparison of all FPGA-based LDPC decoders that we are
aware of, whilst discussing the parameters and characteristics
of an LDPC decoder in more detail. Section IV illustrates and
characterises the observed trade-offs and relationships between
the various parameters and characteristics of FPGA-based
LDPC decoders. Recommendations for readers interested in
developing their own FPGA-based LDPC decoders are offered
in Section V, along with suggestions for further work in the
area. Finally, we offer our conclusions in Section VI. This
structure is depicted in Fig. 2.
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Fig. 2. Structure of this paper

II. BACKGROUND

This section presents a tutorial on FPGA-based LDPC
decoders. Section II-A commences by discussing FEC, before
LDPC codes are introduced in Section II-B. This is followed
by a discussion of how LDPC codes are decoded and designed
in Sections II-C and II-D, respectively. The practicalities of
LDPC decoder implementations are then discussed in Sec-
tion II-E, which is followed by a brief introduction to FPGAs
in Section II-F.

A. Forward error correction

Fig. 3 shows a schematic of a simplified communications
system, where the information message word m = {mi}Ki=1

is a vector of K bits, which is FEC encoded in order to obtain
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the codeword c = {cj}Nj=1, which is a vector of N > K bits.
The FEC encoder converts the K-bit message word m into
the N -bit codeword c by adding M = N −K parity bits to
the message. The ratio of the message length K to the total
codeword length N is referred to as the coding rate R,

R =
K

N
=
N −M
N

. (1)

The M additional parity bits are derived from the K message
bits and hence they do not carry any information of their own.
However, they are used during the FEC decoding process to
allow transmission errors to be detected and even corrected,
depending on the specific scheme used and on the severity of
the corruption, as will be discussed below.

encoder modulatormessage
channel

c
x

m

y

de-
modulator

ĉ
decoder

m̂
decoded
message

Fig. 3. A communications system

Various modulation schemes can be used for modulating
the codeword c onto the channel. As we shall show in
Section IV-B4, Binary Phase-Shift Keying (BPSK) modulation
is assumed for nearly all FPGA-based LDPC decoder research.
For this reason, we also assume the employment of BPSK
modulation throughout this tutorial discussion. It is important
to note however, that BPSK is a very simple modulation
scheme, which is rarely employed alone in practical commu-
nication schemes. Therefore, considering BPSK modulation
exclusively during the design phase could result in an LDPC
decoder which does not necessarily work satisfactorily in
practical systems, where higher-order modulation schemes are
employed. Note that our analysis in Section IV will take the
specific modulation scheme that was used into consideration,
when comparing the error correction performance of various
FPGA-based LDPC decoders.

BPSK generates the modulated symbol vector x = {xj}Nj=1

according to xj = +
√
Es when cj = 0 and xj = −

√
Es when

cj = 1, where Es is the transmission energy per symbol. Simi-
larly, there are several different ways of modelling the random
corruption that is imposed by the channel upon the signal x
as it is transformed into the received signal y = {yj}Nj=1. In
common with most FPGA-based LDPC research, we assume
the Additive White Gaussian Noise (AWGN) channel model,
in which a random noise signal is added to the transmitted
signal,

yj = xj + CN (0, N0), (2)

where CN (·) is the complex normal distribution and N0 is
the noise power spectral density. The Signal to Noise Ratio
(SNR) is given by Es/N0, and may also be expressed as the

SNR per bit according to

Eb

N0
=

1

R
× Es

N0
. (3)

The corruption imposed by the channel causes y to differ
from x in an unpredictable manner, potentially resulting in the
demodulation of a perturbed received codeword ĉ, potentially
including some transmission errors. The decoder of Figure 3
is employed to recover the message word m̂, and without this
there would be no way of correcting (or even detecting the
presence of) these errors.

The error correction capability of a FEC decoder is affected
by the form of the information provided by the demodulator.
Rather than using hard decisions to convert received symbols
into demodulated bits, superior error correction capability can
be obtained if the demodulator provides soft decisions, which
are commonly expressed using the Logarithmic-Likelihood
Ratio (LLR) [16]. The sign of an LLR (positive or negative)
expresses what the most likely value for the corresponding bit
is (0 or 1, respectively). Meanwhile, the magnitude of an LLR
expresses how likely this value is, where 0 represents complete
uncertainty and ∞ represents absolute certainty. The value of
an LLR is calculated as

c̃i = log
P (ci = 0 | yi)
P (ci = 1 | yi)

, (4)

where c̃i is the output LLR, ci is the transmitted bit and yi is
the received symbol.

Here, the logarithm is used because it reduces the dynamic
range of the likelihood ratio, tending to produce values in
the range of −10 to +10, rather than 0.0001 to 10, 000.
This also allows probability intersections to be calculated
using additions, rather than hardware-intensive multiplication
operations. LLRs are extensively used throughout the LDPC
decoding process, as will be detailed below.

When using BPSK modulation over an AWGN channel,
the demodulator can convert the received signals into LLRs
according to

c̃i = 4×R× Eb

N0
× Re(yi). (5)

B. LDPC codes

This section provides an introduction to LDPC codes,
commencing with their structure and the encoding process
in Section II-B1. Following this, the decoder’s Parity-Check
Matrix (PCM) is introduced in Section II-B2 together with its
graphical representation using factor graphs in Section II-B3.

1) Encoding: Decoding an LDPC codeword is associated
with a significantly higher complexity than the encoding
process, because the decoder must consider every possible
message word simultaneously, while operating on the basis
of soft decision LLRs rather than hard decision bits. For this
reason, we focus our attention on LDPC decoders in this paper,
but the encoding process is explained briefly here for the sake
of completeness.

As described previously, LDPC codes permit the correction
of transmission errors by supplementing each K-bit message
word with M parity bits in order to produce an N -bit
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codeword, where N = K +M [17]. Codes which include the
K bits of the message word within the N bits of the codeword
are referred to as systematic, while non-systematic codes have
codewords which do not directly contain the original message
bits. There are 2K possible permutations of the K-bit message
word, each of which is mapped by the LDPC encoder to a
corresponding one of 2K legitimate codeword permutations.
The error correction capability of the LDPC code depends on
the minimum Hamming distance between any pair of these 2K

legitimate codeword permutations. Naturally high minimum
distances are preferred, since these make it unlikely for a
legitimate codeword to be transformed into another by the
distortion introduced during transmission.

For example, a code with a message word length of K = 6
and a codeword length of N = 10 employs M = N −K = 4
parity bits and has a coding rate of R = K/N = 3/5. In the
case where the code is systematic, each codeword c may be
of the form

c = [c1, c2, c3, c4, c5, c6, c7, c8, c9, c10], (6)

where c1 . . . c6 are the K = 6 bits of the message word m
and c7 . . . c10 are the M = 4 parity bits. Each of the parity
bits represents a parity check covering a specific subset of the
message bits. As an example, the parity check bits may be
obtained according to the following modulo-2 summations of
message bits:

c7 = c4 ⊕ c6 (7a)
c8 = c1 ⊕ c3 ⊕ c5 ⊕ c6 (7b)
c9 = c2 ⊕ c5 (7c)
c10 = c1 ⊕ c2 ⊕ c6. (7d)

The design of an LDPC code’s parity check equations is
subject to many complex factors, as will be briefly described
in Section II-D. Using these equations, a (K × N)-element
generator matrix G can be constructed to efficiently describe
the encoding process. In a systematic code, G may adopt the
form

G =
[
IK A

]
, (8)

where IK is the (K × K)-element identity matrix and the
columns of A represent each of the parity checks. The
generator matrix of the systematic code described above would
therefore be

G =


1 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 1 1 0 1

 . (9)

Codewords can be calculated using this matrix by finding
the modulo-2 matrix product of the message m and the gener-
ator matrix G, according to c = m×G. For example, it may
be readily verified that the message m = [0 1 1 1 0 1] has the
corresponding codeword c = m×G = [0 1 1 1 0 1 0 0 1 0].

2) Parity-check matrix: In the decoder, the parity checks
are used to detect the presence of transmission errors in the

received codeword ĉ. Since all of the codeword bits involved
in a parity check (including the parity bit itself) should have
a modulo-2 summation of 0, Equations (7a)–(7d) can be re-
written as follows:

c4 ⊕ c6 ⊕ c7 = 0 (10a)
c1 ⊕ c3 ⊕ c4 ⊕ c6 ⊕ c8 = 0 (10b)

c2 ⊕ c5 ⊕ c9 = 0 (10c)
c1 ⊕ c2 ⊕ c6 ⊕ c10 = 0. (10d)

These equations are more commonly viewed as a PCM
H, which has N columns corresponding to the bits of the
codeword and M rows corresponding to the parity checks. A
non-zero entry in any position Hji indicates that the i-th bit
ci takes part in the j-th parity check. In the case of systematic
codes H is related to G according to

H =
[
AT IM

]
. (11)

Continuing our example from above, we have

H =


0 0 0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 1 0 0
0 1 0 0 1 0 0 0 1 0
1 1 0 0 0 1 0 0 0 1

 . (12)

Upon obtaining a received codeword ĉ, the syndrome s can
be calculated according to s = ĉ×HT . In the case where ĉ is
a legitimate codeword permutation, the syndrome will equate
to a vector of zeros. This may be demonstrated by re-using the
codeword calculated in the previous subsection, which equates
to a (1×M)-element vector of 0s when multiplied by HT .

Note however that an LDPC H matrix of the form shown
in (12) is very unusual in practice. As it will be explained in
Section II-C1, the decoder’s error correction ability is dictated
by the number of non-zero entries in each row or column,
which is referred to as its weight. More specifically, columns
with a weight of 1 can result in the decoder being unable
to correct some transmission errors. This can be avoided
by modifying the PCM H using elementary row operations
(modulo-2 additions and swaps). In the case of the above
example, this may lead to:

H =


1 0 0 1 1 0 1 0 1 1
0 1 1 0 1 0 0 1 0 1
1 1 1 0 0 1 0 1 1 0
0 1 0 1 1 1 1 0 1 0

 . (13)

This modified H avoids any weight-1 columns, while still
checking the same distribution of parity bits that was added
to codewords by the generator matrix G of (9). Note however
that this toy-example PCM is still unusual for a realistic LDPC
code. Specifically, the PCM used in LDPC decoding should be
sparse, containing far fewer non-zero entries than 0s. Clearly,
the H of (13) does not satisfy this constraint, owing to its
codeword length of N = 10, which is very short compared
to practical LDPC codewords, which tend to be hundreds or
even thousands of bits long.

Owing to its significance in the decoding process, the PCM
H is commonly used to define a particular LDPC code design.
As discussed later in Section II-D, creating a H matrix that
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achieves a strong error correction capability is a complex task,
so this is usually the first aspect of the code to be designed.
Following this, the generator matrix G can be derived from
H, by following the reverse of the process described above.

3) Factor graphs: The PCM H can also be visualised
graphically using a factor graph, which is also known as a
Tanner graph [18]. This is exemplified in Fig. 4 for the PCM
of (13). A factor graph is comprised of two sets of connected
nodes, namely N Variable Nodes (VNs) for representing the
columns of H and M Check Nodes (CNs) for representing
the rows.
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q̃4−1 r̃4−9

Fig. 4. A factor graph for an example LDPC code

The connections P̃i above each VN in Fig. 4 pertain to
LLRs associated with the N codeword bits of ĉ. An edge
connects the i-th VN vi to the j-th CN cj if there is a non-
zero element in the i-th column and j-th row of H, Hji = 1.
To illustrate this, all of the edges that are connected to the 1st

CN c1 in Fig. 4 are shown with thicker lines. These edges are
connected to the 1st, 4th, 5th, 9th and 10th VNs, in accordance
to the position of the 1s in the top row of H in (13).

The degree of a node is defined as the number of other nodes
that it is connected to and is equal to the corresponding row or
column weight in H. The degree of the CNs Dc and the degree
of the VNs Dv are important parameters in an LDPC code. If
all CNs have the same degree Dc and all VNs have the same
degree Dv , the LDPC code is said to be regular. If either value
varies from node to node, the code is said to be irregular and
Dc and Dv can be expressed as the average degree over all
nodes. For example, the factor graph of Fig. 4 is irregular with
Dc = 5.75 and Dv = 2.3. In any case, the number of 1s in
the PCM H must be the same regardless, whether it is viewed
row-by-row or column-by-column, giving Dc×M = Dv×N ,
with Dv = Dc × (1−R).

C. LDPC decoding

LDPC codes are typically decoded using a belief propa-
gation (BP) algorithm in which messages – typically in the
form of LLRs – are iteratively passed in both directions along
the edges between connected nodes [19]. For example, Fig. 4
illustrates a message q̃4−1 sent from the 4th VN v4 to the 1st

CN c1, while the message r̃4−9 is sent from the 4th CN c4
to the 9th VN v9. The messages provided as inputs to a node
are processed by activating that node, causing it to create new

output messages that are sent back to the nodes it is connected
to. Thus the processing of the LDPC decoder is delegated to
the many individual calculations performed by the individual
nodes, rather than being a single monolithic global equation.
An important facet of the belief propagation algorithm is that
any message sent to a particular node does not depend on
the message received from that node. For example, CN c2
is connected to VNs v2, v3, v5, v8 and v10; however, the
message r̃2−5 it sends to v5 will be calculated based only
on the messages it has received from v2, v3, v8 and v10.

Nodes are activated in an order determined by the LDPC de-
coder’s schedule. This has a significant effect upon the LDPC
decoder’s error correction capability, as well as on its other
characteristics. Many different schedules exist and the most
common options will be outlined in Section II-C1. Following
this, variations of the specific calculations performed within
CNs and VNs will be presented in Sections II-C2 and II-C3
respectively.

1) Scheduling: The schedule of the LDPC decoding pro-
cess determines the order in which VNs and CNs are pro-
cessed, as well as whether multiple nodes are processed in
parallel. Many scheduling variations exist, but the three most
common schedules are described here, namely flooding [20],
Layered Belief Propagation (LBP) [21] and Informed Dynamic
Scheduling (IDS) [22].

Flooding is perhaps the most conceptually simple LDPC
decoding schedule. Here, the factor graph is processed in an
iterative manner, where each iteration comprises the simul-
taneous activation of all CNs, followed by the simultaneous
activation of all VNs [19]. An example of this schedule is
depicted in Fig. 5. It can be seen that at first the CNs c1–c4
shown in dark grey calculate their messages, which are then
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Fig. 5. An example of the flooding schedule
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sent along every edge (in bold) to every receiving VN, shown
in light grey. In the second half-iteration, the VNs are shown
in dark grey to indicate that they are performing calculations,
while the CNs are only receiving messages, so they are shown
in light grey.

While Layered Belief Propagation also operates in an
iterative manner, it processes the nodes more sequentially
within each iteration, activating only one or a specific subset
of nodes at a time [21]. LBP is commonly operated in a CN-
centric manner, processing each CN in turn. Once a CN has
been activated, all of its connected VNs are activated before
moving on to the next CN. Once every CN has been processed,
the iteration is complete. Using Fig. 6 as an example, LBP
may commence each decoding iteration by activating CN c1
first, sending messages to each of its connected VNs: v1, v4,
v5, v7, v9 and v10. Each of these VNs may then be activated,
sending new messages to each of their connected CNs, except
c1. Following this, c2 may be activated, allowing it to make
use of the new information received from v5 and v10 alongside
the information previously received from its other connected
VNs. This process continues until every CN has been activated,
which then marks the end of one decoding iteration.

LBP has the advantage that the information obtained during
an iteration is available to aid the remainder of the iteration.
Owing to this however, it does not have the same high level
of parallelism as the flooding schedule, possibly resulting in a
lower processing throughput and a higher processing latency.
It can also be seen that M CN activations and Dc ×M VN
activations occur per iteration, resulting in a higher computa-
tional complexity per iteration, when compared to the flooding
schedule. However, it will also be shown in Section II-C2
that CN activations can be significantly more computationally
expensive than the VN activations, hence the increased cost
is manageable. Additionally, LBP tends to converge to the
correct codeword using fewer iterations and therefore with
lower computational complexity than flooding [17], resulting
in lower complexity overall.

Informed Dynamic Scheduling inspects the messages that
are passed between the various nodes, selecting to activate
whichever node is expected to offer the greatest improvement
in belief [22]. This requires IDS to perform additional calcula-
tions in order to determine which node to activate at each stage
of the decoding process. However, IDS facilitates convergence
using fewer node activations than in either flooding or LBP,
which may lead to a lower complexity overall.

During IDS, the difference between the previous message
sent over an edge and the message that is obtained using
recently-updated information [23] is calculated. This differ-
ence is termed the residual, and represents the improvement
in belief that is achieved by the new message. Like the LBP
schedule, IDS is commonly centred on the CNs. At the start
of the iterative decoding process, the residual for each output
of each CN is calculated as the magnitude of the message to
be sent over that edge. The message with the greatest residual
is identified, and the receiving VN is then activated, sending
updated messages to each of its connected CNs. These CNs
then calculate new residuals for each of their edges as the
difference between its new message and its previous message.
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Fig. 6. An example of the layered belief propagation schedule

All of the residuals in the graph are then compared for the
sake of identifying the new maximum, before the process is
repeated.

Using Fig. 7 as before, suppose that at the start of the
iterative decoding process, the message r̃3−8 from CN c3 is
identified as having the highest magnitude of all the check-to-
variable messages in the graph. Owing to this, r̃3−8 is passed
to the VN v8, which is then activated, in order to obtain
the message q̃8−2 which is then passed to c2. The CN c2
can then be activated to calculate new residuals for its other
four edges, as the difference between their previous messages
and their new messages that have been obtained using the
updated information from v8. These new residuals are then
compared with the others from the previous step, allowing a
new global maximum to be identified, to inform the next step
of the decoding process. Note that the next highest residual
within the factor graph does not necessarily have to originate
from the most recently updated CN c2. In the example seen in
Fig. 7, it can be seen that c2 is activated to calculate residuals
but it is r̃1−4 from CN c1 to VN v4 that is sent. This implies
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Fig. 7. An example of informed dynamic scheduling

that there is no single straightforward concept of iterations in
IDS, since it is possible for a particular CN to be updated
several times before another is updated once.

2) Check node calculations: The calculations performed
within the CNs vary between different LDPC decoding al-
gorithms. Of the many that exist, the two most common
LDPC decoding algorithms are the Sum-Product Algorithm
(SPA) [24] and the Min-Sum Algorithm (MSA) [25].

When the j-th CN is activated, the LLR r̃j−i that it passes
to VN vi is a function of the inputs gleaned from all other
connected VNs, except for vi [26]. In CN cj , this message
will represent the probabilities that the bit at vi should be 0 or
1, which is determined by whether parity check j has already
been fulfilled by the bits of the other connected VNs. This is
achieved by calculating the probability that cj is receiving an
even number of 1s from its other edges. For two LLR operands
ã and b̃ this equates to

r̃j−i = log
P (a = 0)P (b = 0) + P (a = 1)P (b = 1)

P (a = 0)P (b = 1) + P (a = 1)P (b = 0)
, (14)

for which we use the notation ã� b̃, referred to as the boxplus
operator [27]. Inverting (4) and substituting into (14) yields:

ã� b̃ = 2 tanh−1

(
tanh

ã

2
× tanh

b̃

2

)
(15)

= sign
(
ã
)
× sign

(
b̃
)
×min

(
|ã|, |b̃|

)
+ log

(
1 + e−|ã+b̃|

)
− log

(
1 + e−|ã−b̃|

)
. (16)

The SPA uses the full version of (15) given above, which
leads to strong error correction performance but a high compu-
tational complexity. The MSA, on the other hand, is a reduced-
complexity approximation of the SPA [28], using (16) without
the correction factor terms, according to

ã� b̃ = sign
(
ã
)
× sign

(
b̃
)
×min

(
|ã|, |b̃|

)
. (17)

Note however that the complexity reduction offered by the
MSA is attained at the cost of a degraded LDPC error correc-
tion capability. This degradation may be mitigated by adding
a low-complexity approximation to the correction factor terms
to (17) or by multiplying (17) by a scaling factor, which may
be optimised during the design of the LDPC decoder.

3) Variable node calculations: The calculations performed
in the VNs do not generally vary between algorithms. As in
the operation of the CNs, the message q̃i−j passed from VN
vi to CN cj is obtained as the sum of the LLRs received
from all other edges, including the LLR P̃i provided on the
edge from the demodulator [26]. When using a schedule that
requires the simultaneous update of the outputs provided to
all of the VN’s edges (such as the flooding schedule), the
forward-backward algorithm [24] may be used to minimise the
number of additions required by the VN. In other schedules,
small internal memories may be used to store the results of
some intermediate additions [21].

The VNs are also used for deciding the values of the
reconstructed codeword bits. Each corresponding codeword
LLR L̃i is calculated as the sum of the LLRs received on the
edges from all connected CNs, as well as on the edge from the
demodulator. The polarity of the resultant LLR is then used
to make a hard decision for the value of the corresponding bit
of the reconstructed codeword ĉ. More specifically, if L̃i < 0
then ĉi is set to 1, whereas if L̃i ≥ 0 then ĉi is set to 0.
If the reconstructed codeword has a zero-valued syndrome
s = ĉ × HT , then the iterative decoding process may be
considered to have been a success and the process may be
terminated. If not, then the iterative decoding process may be
continued until a zero-valued syndrome is obtained or until
an affordable complexity limit is reached. Practical LDPC
decoder designs may also include other stopping criteria, as
discussed later in Section II-E3.

D. LDPC code construction

In addition to the size of the factor graph and the degrees
of its nodes, the position of the edges within the factor graph
also has a significant impact on the associated error correction
performance, as well as upon the decoding complexity. Some
of the main objectives when designing the PCM H is to avoid
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creating stopping sets [29] and short cycles [30] in the cor-
responding factor graph, which are associated with an eroded
error correction performance. A number of techniques have
been proposed for placing edges within the factor graph have
been proposed, as summarised in the following subsections.

1) Random codes: Unstructured randomly-designed codes
potentially achieve the best LDPC error correction perfor-
mance, owing to the maximised degree of freedom that is
afforded, when placing edges in this manner [31]. However,
this is achieved at the cost of having to implement complex
unstructured routing or memory lookup tables, in order to ex-
change LLRs between the variable and CNs. A straightforward
recursive algorithm for creating unstructured PCMs of this
form involves placing a 1 at a random unfilled location in H,
then checking to see whether doing so has violated any design
constraints, such as the maximum node degrees, stopping sets
or cycle lengths. If the placement is valid, the algorithm will
continue and repeat the process for the next randomly placed
1. This is repeated until the desired number of edges have
been positioned. If a randomly placed 1 is not valid, then it
will be rejected and a new location will be tried instead. This
algorithm is conceptually very simple, but whether the process
can successfully complete and how quickly is unpredictable.

2) Pseudorandom codes: The original LDPC code con-
struction method proposed by Gallager [1] involves stack-
ing Dc number of submatrices on top of each other. Each
submatrix has the dimensions M/Dc × N , with each column
having a weight of 1 and each row having a weight of Dv .
The top matrix is pseudo-randomly generated, and random
column permutations are applied to it in order to obtain all
other submatrices.

Similarly to this, Mackay [2] proposed a code construction
method, which involves constructing the PCM H on a column-
by-column basis, where the columns are generated pseudo-
randomly with appropriate weight, before being concatenated
horizontally. Again, this process must be performed in a
recursive manner, so that the row weights can be checked after
each column is added. If Dc has been exceeded for any row,
then the current column is regenerated.

3) Quasi-cyclic codes: An LDPC code wherein the cyclic
shift of any legitimate codeword permutation by s places to the
left or right yields another legitimate codeword permutation is
termed Quasi-Cyclic (QC), while the code is termed cyclic
in the special case of s = 1. The PCMs of QC codes
are semi-structured, based on an upper matrix of elements
which each represent an equally-sized square submatrix [32].
If a particular element in the upper matrix has a value
of -1, then the corresponding submatrix is a null matrix.
Otherwise, the submatrix is an identity matrix, which has
been cyclically shifted a number of times according to the
corresponding value in the upper matrix [33]. Adopting this
structure facilitates low complexity memory addressing and
routing for the hardware implementation, since the location of
every edge in each submatrix can be determined using only
knowledge of the relatively small upper matrix. This advantage
can be achieved without incurring a significant sacrifice in
error correction performance. Owing to this benefit, QC-
LDPC codes are employed by a number of communications

standards, including DVB-S2 [5], IEEE 802.11 (WiFi) [3] and
IEEE 802.16 (Mobile WiMAX) [4].

4) Repeat-accumulate codes: Repeat-accumulate (RA)
codes constitute another type of semi-structured codes. Like
QC codes, RA codes benefit from simpler encoding/decoding
than random codes, without imposing an unacceptable loss
in error correction performance. The PCMs of RA codes are
composed of two horizontally-concatenated submatrices H1

and H2, where H2 is an (M × M)-element dual-diagonal
matrix. This structure allows each parity bit to be calculated
using only the previous parity bit and a subset of the message
bits, leading to the accumulation alluded to in the code’s name.

5) Progressive edge growth algorithm: Whilst not a code
structure itself, the Progressive Edge Growth (PEG) algo-
rithm [34] is an important technique of constructing codes
having an excellent error correction performance. The oper-
ation of the PEG algorithm is VN-centric, focusing on each
VN in turn in order to place edges. The algorithm repeatedly
constructs a set of CNs as candidates for the VN to connect to.
From this set, the subset of nodes having the lowest degree is
extracted and one of these is randomly selected. This approach
results in LDPC codes that have approximately regular degree
distributions.

The PEG algorithm constructs a tree structure, alternating
between the connection of VNs to CNs and vice versa. At
each stage only nodes that are not already in the tree are
considered for inclusion. This process continues until there
are no remaining options meeting this constraint. The PEG
algorithm then places an edge in the location that is identified
as maximising the length of the resultant cycle within the
graph, before continuing the algorithm with the selection of a
different VN. In this way, a factor graph having no short cycles
can be created, yielding a strong error correction performance.

E. LDPC decoding architectures
The implementation of a practical LDPC decoder is subject

to numerous design decisions, such as the degree of paral-
lelism, the representation of the LLRs and the stopping criteria.
These three factors are discussed in the following subsections.

1) Parallelism: The inherent parallelism of the belief prop-
agation algorithm facilitates the design of fully-parallel LDPC
decoder architectures, in which every VN and CN in the factor
graph is implemented separately in hardware [35]. Fully-
parallel decoders can achieve very high processing throughputs
by performing all of the VN updates and all of the CN
updates simultaneously, using the flooding schedule of Fig. 5.
However, this is achieved at the cost of excessive hardware
resource consumption. For long codes comprising thousands
of bits, the inter-node routing may require a greater area
than the nodes themselves [36], rendering this architecture
impractical for many decoder designs. Additionally, significant
further hardware resources are required for implementing
flexible routing, using a Beneš network [37], for example.
Otherwise, fully-parallel decoders are completely inflexible,
only supporting the single code that they are designed for.

By contrast, decoders associated with a fully-serial archi-
tecture implement just a single one of each node type in hard-
ware. This hardware is time-multiplexed between the various
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nodes of the LDPC decoder, using memories to store interim
results [35]. Fully-serial decoders require few hardware re-
sources but suffer from a very low processing throughput,
since each decoding iteration could require thousands of clock
cycles. However, since all of the factor graph edges are
represented by memory addresses, fully-serial decoders can
be readily adapted at run-time to implement a different LDPC
factor graph, by rearranging the memory accesses.

In order to strike a compromise between the high processing
throughput of fully-parallel architectures and the more mod-
est hardware requirement of fully-serial architectures, many
LDPC decoders implement a number of time-multiplexed
nodes in a so-called partially-parallel fashion. This parametriz-
able degree of parallelism facilitates control over the trade-
off between processing throughput and hardware resource re-
quirements. Furthermore, this approach is of particular benefit
when any structure within the PCM H can be exploited in the
configuration of the nodes implemented in hardware. For this
reason, QC codes are particularly suited to partially-parallel
implementations.

2) Representation of LLRs: Another architectural consider-
ation is the digital representation of the LLRs passed between
nodes. The algorithms described earlier can be modified to
replace the LLRs with single-bit hard decisions, but this causes
them to suffer from a significant error correction performance
loss. In general, increasing the resolution and range of the
two’s complement fixed point LLR representation by using a
greater bit width has a positive effect on the error correction
performance [38], at the cost of increasing the hardware
resources required.

It is therefore desirable for a designer to quantify the effect
of the fixed-point bit width on the performance of a chosen
decoding algorithm, in order to determine the smallest number
of bits that are required in order to achieve a satisfactory error
correction performance. This may be achieved using Extrinsic
Information Transfer (EXIT) charts [39], which have been
conceived by ten Brink for characterising the operation of
iterative decoding algorithms. More specifically, EXIT charts
visualize the quality of the LLRs output by the VNs and
CNs as functions of the quality of the LLRs provided to the
corresponding inputs. By plotting these EXIT functions for
LDPC decoders employing a range of fixed-point bit widths,
a designer can quantify at a glance, how each representation
improves or degrades the quality of the LLRs and hence
the resultant error correction performance of the LDPC de-
coder [40]. This eliminates the requirement to run multiple
time-consuming BER simulations.

Further to this, some designs have demonstrated that the
hardware requirement can be reduced by using non-uniform
quantisation schemes [41], by sending the bits of the LLR in
a serial fashion rather than in parallel [42], or by utilising
stochastic [36] or non-binary [43] number representations.
However, these methods can also have adverse effects on the
node complexity and the decoding throughput, requiring yet
further investigation.

3) Stopping criteria: The design of an LDPC decoder
also has to consider how to terminate the decoding process.
Commonly, checks are carried out following each decoding

iteration to determine whether the current state of the recov-
ered codeword is a legitimate permutation or not, signalling
whether or not decoding has been successful. These checks
are performed based on the output of the VNs, as mentioned
previously in Section II-C3.

Occasionally however, a received frame is corrupted in such
a way that it can never be corrected. In this case, the iterative
decoding process would loop infinitely, unless other criteria
for stopping it were implemented. Owing to this, a maximum
iteration or complexity limit may be imposed. When this limit
is reached, the iterative decoding process is terminated and
decoding is deemed to have failed. In implementations where
a low hardware resource requirement is a greater priority than
high processing throughput, the iteration limit may be the only
stopping criterion imposed. Here, every received message is
decoded using the same number of iterations, without early
stopping. In this case, the parity checks are only used at the
end of the iterative decoding process, in order to determine
whether the recovered codeword is valid or not. Early stopping
can also be used to detect that no error correction progress is
being made with successive decoding iterations, allowing the
decoding process to fail and terminate before the iteration limit
is reached.

F. FPGAs

FPGAs are digital logic devices that can be flexibly pro-
grammed to perform a variety of digital functions, using
a Hardware Description Language (HDL). Their main ad-
vantages are their in-field-programmability, as well as their
high-speed very-parallel logic processing. Owing to these
benefits, FPGAs are desirable for a multitude of applications,
including software-defined radio, ASIC prototyping, digital
signal processing, cryptography and computer hardware emu-
lation. This section presents a simplified view of their internal
structure, followed by a discussion of the main differences and
similarities between different makes and models of FPGAs,
and how they may be compared to each other.

1) Structure: The internal structure of an FPGA typically
comprises a variable number of three main programmable ele-
ments, namely logic blocks, RAM blocks and I/O blocks [44].
The inputs and outputs of these blocks are linked by pro-
grammable routing, as shown in the sample schematic of
Fig. 8.

The most fundamental design of a logic block comprises
a Lookup Table (LUT) and a Flip-Flop (FF), as shown in
Fig. 8. A LUT is a digital structure that can be programmed
to perform any combinatorial function of its inputs, thus
mimicking any possible combination of logic gates. Typically,
FPGA LUTs have 4–6 inputs, which are used to select a value
for a single output bit. Increasing the number of LUT inputs
typically allows the same HDL design to be implemented
using fewer LUTs, therefore reducing the amount of FPGA
routing required. However, the hardware resources required by
a LUT increase exponentially with its number of input bits,
hence very large LUTs are impractical [44]. The output of
each LUT can optionally be connected to a corresponding FF,
for facilitating synchronous operation. Alternatively, the LUT
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Fig. 8. FPGA structure

output can be connected directly to the inter-block routing
channels. These channels can be programmed to connect any
set of logic block outputs to any set of logic block inputs,
subject to the FPGA size constraints.

Instead of logic blocks, some locations within an FPGA
structure may contain a RAM block for storing intermediate
calculation results. The size of these RAM blocks depends
on the particular FPGA being used, as does their access
control. More specifically, some FPGAs provide dual-port
RAMs, which allow reading and writing to two different
locations simultaneously. Some FPGAs may also include
additional heterogeneous blocks, such as hardware multipliers
and embedded processor cores, alongside non-volatile memory
for storing the FPGA configuration when it is turned off [44].

2) FPGA vendor conventions: The two main vendors of
FPGAs are Xilinx and Altera. Their respective FPGAs share
a number of similarities, but also exhibit some differences.
Some Altera FPGAs, such as the first four generations of the
Cyclone family, follow the structure outlined above, operating
on the basis of so-called “Logic Elements” (LEs), each of
which comprises one 4-input Lookup Table (4LUT) and one
FF. However, more recent Altera FPGAs are structured around
“Adaptive Logic Modules” (ALMs), each of which comprises
two FFs and multiple small LUTs. These ALMs also contain
extra logic that optionally allows the LUTs to be combined in
a variety of ways, offering the functionality of larger LUTs.

By contrast, the logic resources of Xilinx FPGAs are quanti-
fied in terms of “slices”, each of which contains several LUTs
and FFs. The nature and quantity of the hardware resources
available within each slice varies depending on the model and

generation of the FPGA. Earlier models of Xilinx FPGAs, such
as the Virtex 2, employ a simple slice structure which is based
on 4LUTs, while more recent models utilise 6-input Lookup
Tables (6LUTs) and a more complex slice structure that allows
them to be used in a larger number of configurations.

3) Comparing FPGAs: Due to the differences outlined
above, comparing the hardware resources employed by the var-
ious designs implemented on different FPGAs is not straight-
forward. To this end, we propose an approximate metric based
on the fundamental building blocks of FPGAs, namely the
4LUT and the FF [45]. We refer to this metric as equivalent
logic blocks (ELBs), since it attempts to approximate the
number of simple logic blocks comprising one 4LUT and
one FF that would be required to implement each design.
When calculating the number of ELBs, the LUT resources
within each Altera ALM are considered to be equal to two
4LUTs, since this is one of the operating modes they offer.
Similarly, to compensate for the increased size of 6LUTs
compared to 4LUTs, and the additional logic that accompanies
6LUTs within Xilinx slices, each Xilinx 6LUT is considered
to be approximately equal to two 4LUTs. Once this has been
taken into consideration, we assume that the number of ELBs
required by a design is given by the maximum of the number
4LUTs and the number of FFs that it requires.

Table I presents an overview of the main generations and
models of FPGAs available from Altera and Xilinx, along with
the year of their release and the maximum number of ELBs
available within the largest FPGA from each family.

TABLE I: Comparison of FPGAs available from Altera and Xilinx

Manufacturer Model Year Technology
scale (nm)

Max.
ELBs

Xilinx Virtex 1998 220 24,576
Xilinx Virtex E 1999 180 64,896
Xilinx Virtex 2 2000 150 93,184
Altera Cyclone 2002 130 20,060
Altera Stratix 2002 130 79,040
Xilinx Spartan 3 2003 90 66,560
Altera Cyclone 2 2004 90 68,416
Altera Stratix 2 2004 90 143,520
Xilinx Virtex 4 2004 90 178,176
Altera Stratix 3 2006 65 270,000
Xilinx Virtex 5 2006 65 414,720
Altera Arria 2007 90 72,172
Altera Cyclone 3 2007 65 198,464
Altera Stratix 4 2008 40 650,440
Altera Cyclone 4 2009 60 149,760
Altera Arria 2 2009 40 278,800
Xilinx Spartan 6 2009 45 184,304
Xilinx Virtex 6 2009 40 948,480
Altera Stratix 5 2010 28 718,400
Altera Cyclone 5 2011 28 227,120
Altera Arria 5 2011 28 380,480
Xilinx Artix 7 2011 28 269,200
Xilinx Kintex 7 2011 28 597,200
Xilinx Virtex 7 2011 28 1,424,000

Note that the proposed ELB metric is by no means per-
fect, since it does not consider the overhead associated with
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routing between logic elements or the use of additional FPGA
blocks, such as memory or embedded multipliers. However,
it does serve as a functional approximation of the hardware
requirements associated with each design considered, if they
were all implemented on the same FPGA. Measuring the usage
only in terms of these fundamental building blocks permits a
comparison between modern FPGA models and much older
designs, which would not otherwise be possible.

III. COMPARISON OF DECODERS

A comprehensive review of published FPGA-based LDPC
decoder designs is presented in this section. The analysis
of Table II considers both the parameters that are chosen
by the designers, as well as the characteristics that may be
measured based on the design. Each of these is discussed and
characterised in Sections III-A and III-B, together with expla-
nations and discussions of the symbols used in Table II where
applicable. The entries in Table II have been sourced from
both academic publications and commercially-available soft IP
cores. Unfortunately, the licensers of these commercial designs
were often unwilling to divulge many of the parameters and
characteristics required for this analysis, resulting in several
incomplete sets of results. Furthermore, none of the licensers
were willing to provide pricing information for the purposes
of this survey, preventing the comparison of this interesting
but non-technical characteristic of their IP.

Note that Table II presents a condensed version of our
findings, showing only the most significant parameters and
characteristics. In the case of references that present multiple
FPGA-based LDPC decoder designs, only a representative
subset has been reproduced here. A full version of our survey
results may be downloaded from [46].

A. Parameters

In this section, we consider the parameters of FPGA-based
LDPC decoders, which include all factors of the design that are
specified by the designer. These include which LDPC PCMs
to support, the decoding algorithm to employ and the number
of decoding iterations used. These parameters are discussed in
Sections III-A1, III-A3 and III-A4 respectively. Section III-A2
describes the architectural parameters, namely the degree of
parallelism, LLR representation, clock frequency, flexibility
and choice of FPGA.

1) LDPC PCMs: One of the most fundamental features
of an LDPC decoder is the selection of the PCMs that it is
designed to support. Decoders may support just one PCM, be
tailored to a family of related PCMs or may be designed to be
completely flexible. As discussed in Section II-B, each PCM
H has a number of parameters, namely N , M , Dc and Dv .
However, the total number of edges in the corresponding factor
graph can be considered to encompass all of these factors,
representing the overall size and complexity of the code, as
listed in Table II.

2) Architecture: Architectural decisions influence the phys-
ical implementation and hardware used by the decoder. As
described in Section II-E, the primary architectural parameter

is the degree of parallelism, which may be classified as fully-
parallel, partially-parallel or fully-serial. This parameter may
be quantified by the total number of Processing Units (PUs)
instantiated by the decoder, as listed in Table II. Frequently
these processors perform the function of individual VNs and
CNs, although some designs use a different approach.

The operand width of the LLR representation, as listed in
Table II, is also a measurable parameter, which affects the
LDPC decoder’s error correction performance. Designs using
a higher number of bits may be expected to have superior
error correction performance than their counterparts employing
fewer bits. However, this is typically achieved at the cost of
a larger hardware resource requirement or a lower processing
throughput.

The quantisation scheme used in the LLR representation
may be either uniform or non-uniform, as denoted by a ‘U’
or an ‘N’ in Table II, respectively. In uniform quantisation
schemes, the entire range of representable LLR values has
a constant resolution, allowing the VN and CN functions to
be implemented using straightforward binary arithmetic. By
contrast, non-uniform quantisation schemes typically adopt
a finer resolution for lower LLR magnitudes and a lower
resolution for larger magnitudes. This facilitates a more ben-
eficial trade-off between range and resolution, but makes
the associated processing significantly more complex. Many
authors (e.g. [42], [47], [48]) mention the number of bits used
in their FPGA-based LDPC decoders, but do not detail the
quantisation scheme employed. Since non-uniform schemes
require significantly more details than uniform representations,
these cases are assumed to employ uniform quantisation and
are marked with an asterisk in Table II.

The maximum achievable clock frequency of an FPGA-
based LDPC decoder depends largely on the capabilities of
the FPGA employed, but also on some design decisions such
as the critical path length. For example, designs that process
entire VNs or CNs in a single clock cycle typically have long
critical paths, while designs that only perform one arithmetic
or logical operation per clock cycle typically have much
shorter critical paths. Based on this observation, the clock
frequency is included as a parameter in this analysis. The
majority of authors have explicitly stated the clock frequency
at which their decoder operates. However, in some cases
(eg. [76]) we have derived the clock frequency from other
data, as indicated by an asterisk in Table II.

Many decoder architectures are highly optimised to the
specific characteristics of the single LDPC PCM that they
are designed to support (eg. [43], [62], [74]). By contrast,
some other designs instead adopt a more general architecture
(eg. [57], [60], [66]), sacrificing performance for the flexibility
to switch between several supported PCMs at run-time. A
decoder’s flexibility may be considered to be both a figure
of merit and an architectural decision that is made by the
designer, allowing it to be regarded as a characteristic or as a
parameter. However, we show in Section IV-A that adding
flexibility to a design can only be achieved as a trade-off
against some other desirable characteristics. For this reason,
we treat flexibility as a characteristic in this paper.

The selection of an FPGA for the implementation of an
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TABLE II: Comparison of FPGA LDPC decoders
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6 193 Xilinx
Virtex 2

Sum-product
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M*

38.3
* 3.78 0.

88 None

[49] 4608 x
9216 27.6 54 U*

5 56 Xilinx
Virtex E - 18 27

M*
54
M

15.9
* 1.85 0.

50 None

[42] 125 x
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954
M*

31.6
* 3.41 0.

70 None

[51] 4044 x
8088 - 24 U

6 44 Xilinx
Virtex 2 Log-BP 25 40

M
80
M*

72.6
* - 0.

50 None

[52] 1022 x
8176 32.7 18 - 200 Altera

Cyclone 2 BP-based 18 70
M

80
M*

8.0
* 3.8 0.

88 None

[52] 1022 x
8176 32.7 18 - 200 Altera

Stratix 2 BP-based 18 560
M

640
M*

38.0
* 3.8 0.

88 None

[53] 648 x
1296 3.89 36 U*

4 128 Xilinx
Virtex 2 Min-sum 8.4

**
86.6
M**

173
M*

10.8
* 2.74 0.

50
3 codes in

802.11 WiFi

[54] 1728 x
3200 - 32 U*

5 180 Xilinx
Virtex 4

Turbo decoding
algorithm 10 103

M*
223
M

10.7
* 2.33 0.

46 None

[55] 6144 x
12288 36.9 288 U

6 96 Altera
Stratix 2 Min-sum 15 149

M*
298
M

92.0
** 1.48 0.

50 None

[56] 576 x
1152 3.46 32 U

2 64 Xilinx
Virtex 2

Min-sum
(modified)

8.5
**

38
M**

76.1
M*

5.2
* 3.27 0.

50
3 codes in

802.16 WiMAX

[45] 512 x
1024 3.07 1536 NA 212 Xilinx

Virtex 4 Stochastic NA 353
M*

706
M

54.5
** 2.43 0.

50 None

[28]
T

1022 x
8176 3.46 1728 U

2 138 Xilinx
Virtex 5

Min-sum
(modified) 6.8 11.7

G
23.4
G*

78.0
* - 0.

50 None

[28]
E

1022 x
8176 3.46 1728 U

2 138 Xilinx
Virtex 5

Min-sum
(modified)

8.5
**

9.35
G**

18.7
G*

78.0
* 3.43 0.

50 None

[57] - - 8 U*
6 160 Xilinx

Virtex 5 - 20 21.6
M

25.9
M*

38.0
* - 0.

83
Complete

802.16 WiMAX

[58] 188 x
2209 8.84 235 U*

6 50 Altera
Stratix

Min-sum
(modified) 20 108

M*
118
M

23.5
*

5.12
**

0.
92 None

[59] 1552 x
3104 - 48 N

6 98 Altera
Cyclone 2

Belief
propagation 30 26

M*
52
M 33.0 1.48 0.

50 None

[60] 731 x
4161 16.6 2 U

9 - Xilinx
Virtex 2P

Min-sum
with correction

10
*

1.45
M

1.2
**

3.52
**

0.
82 Any code

[61] 4158 x
9036 27 54 U

6 100 Xilinx
Virtex 2

Min-sum
with correction

60
*

15
M

30
M*

53.3
*

1.17
*

0.
50

3 custom
codes

[17] 768 x
1536 4.61 144 U

5 211 Xilinx
Virtex 4

Min-sum
with scaling - 397

M
794
M*

18.2
* - 0.

50 None

[17] 432 x
1296 4.75 81 U

8 160 Xilinx
Virtex 4

Min-sum
with correction

15
*

95
M

143
M*

19.3
*

2.49
*

0.
67

Complete
802.11 WiFi

[62] 2304 x
1152 - 12 U*

7 155 Altera
Stratix 2 Min-sum 8 233

M
465
M*

17.3
* 1.94 0.

50 None

[62] 2304 x
1152 - 12 U*

7 128 Altera
Stratix 2 Min-sum 8 768

M
1.54
G*

69.1
* 1.94 0.

50 None

[63] 3048 x
6096 - 72 - 64 Xilinx

Virtex E - 24 32
M*

64
M

12.3
* - 0.

50 None

[64] 3600 x
16200 45 45 - 70.8 Xilinx

Virtex 2P
Min-sum

with scaling
15
*

36.3
M*

46.7
M

22.0
* - 0.

78
Complete
DVB-S2

[64] 3600 x
16200 45 180 - 73.2 Xilinx

Virtex 2P
Min-sum

with scaling
15
*

149
M*

191
M

70.6
* - 0.

78
Complete
DVB-S2

[47] 519 x
1038 3.11 9 U*

4 26.3 Xilinx
Virtex E - 18 36

M*
72
M

19.4
* - 0.

50 None

[65] 4095 x
4095 262 130 U

1 191 Xilinx
Virtex E

Soft majority
logic 5 1.56

G*
1.9
G

21.3
** 4.36 0.

82 None

[66] - - 32 U
8 74 Xilinx

Virtex 4
Normalized
BP-based 15 5

M**
10
M*

30.6
** - 0.

50 Any code
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TABLE II: Comparison of FPGA LDPC decoders (continued...)
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[67]
T

324 x
648 1.94 972 U

1 188 Xilinx
Virtex 5

Simplified
MP 3.8 16.2

G
32.4
G*

28.5
* - 0.

50 None

[67]
E

324 x
648 1.94 972 U

1 188 Xilinx
Virtex 5

Simplified
MP 10 6.16

G**
12.3
G*

28.5
* 5.41 0.

50 None

[68] 600 x
1200 3.6 1800 U

2 123 Xilinx
Virtex 4

Min-sum
(modified)

8.9
**

8.3
G**

16.6
G*

58.1
* 3.38 0.

50 None

[68] 324 x
648 1.94 972 U

2 113 Xilinx
Virtex 5

Min-sum
(modified)

8.4
**

4.33
G**

8.67
G*

44.0
* 3.64 0.

50 None

[69]
T

640 x
1920 6.4 40 U

8 150 Xilinx
Virtex 4

Joint
row-column 8 1.33

G*
2
G - - 0.

66 None

[69]
E

640 x
1920 6.4 40 U

8 150 Xilinx
Virtex 4

Joint
row-column 50 211

M*
320
M** - 2.29 0.

66 None

[69]
T

640 x
1920 6.4 1 U

8 300 Xilinx
Virtex 4

Joint
row-column 8 74.6

M*
112
M - - 0.

66 None

[69]
E

640 x
1920 6.4 1 U

8 300 Xilinx
Virtex 4

Joint
row-column 50 11.8

M*
17.9
M** - 2.29 0.

66 None

[43] 486 x
972 2.43 18 - 131 Xilinx

Virtex 4
Min-sum

(nonbinary) 20 50
M

87.8
* 2.49 0.

50 None

[70] - - 27 U
8 100 Altera

Cyclone 2
Min-sum

(modified) - 175
M*

350
M

13.5
* - 0.

50
Within code

families

[36] 528 x
1056 3.34 1584 NA 222 Xilinx

Virtex 4 Stochastic NA 348
M*

697
M**

68.2
* 2.45 0.

50 None

[71] 1022 x
8176 4.75 12 U

11 228 Xilinx
Virtex 5

Sum-product
(modified) - 522

M
29.7
** 2.61 0.

66 None

[72] 384 x
2048 12.3 33 U

6 100 Xilinx
Virtex 2P

Message
passing 10 19.5

M*
24

M**
13.7

*
4.07
***

0.
81 None

[73] 768 x
1536 4.61 9 U

8 162 Xilinx
Virtex 2 Min-sum 3 114

M*
229
M

2.4
* - 0.

50 None

[73] 756 x
3969 16.8 - U

6 200 Xilinx
Virtex 4

Normalized
min-sum 15 82.4

M*
102
M

10.0
* - 0.

81 None

[73] 1022 x
8176 32.7 144 U

6 212 Xilinx
Virtex 4

Normalized
min-sum 15 625

M*
714
M

27.2
* 3.76 0.

88 None

[74] 600 x
1200 3.6 1800 U

3 100 Xilinx
Virtex 4 Min-sum 10 6

G
12
G*

69.0
* 3.76 0.

50 None

[75] 768 x
1536 4.61 9 U

8 149 Xilinx
Virtex 2 Min-sum 3 49.6

M*
99.1
M

2.9
* - 0.

50 None

[48] 768 x
1536 4.61 9 U*

8 100 Xilinx
Virtex 2 Min-sum 7 5.88

M*
11.8
M**

1.8
*

3.36
***

0.
50 None

[76] 768 x
1536 4.61 9 U

8
84
*

Xilinx
Virtex 2

Sum-product
(modified) 20 4.3

M*
8.59
M**

3.9
* 2.37 0.

50 None

[76] 768 x
1536 4.61 9 U

8
79.1

*
Xilinx

Virtex 2
Sum-product

(modified) 20 4.04
M*

8.08
M**

3.4
* 2.37 0.

50 None

[76] 768 x
1536 4.61 9 N

8
80.5

*
Xilinx

Virtex 2
Sum-product

(modified) 20 4.21
M*

8.42
M**

4.9
* 2.96 0.

50 None

[77] 336 x
672 2.18 96 U

5 100 Xilinx
Virtex 5

Min-sum
with correction 10 475

M*
950
M

71.4
* 3.02 0.

50
Within code

families

[78] - - - U*
4 27 Xilinx

Virtex E - - 15
M

1.7
* - - None

[79] 768 x
1536 4.61 144 U

5 121 Xilinx
Virtex 2

Min-sum
(modified) 20 63.5

M*
127
M

20.4
* 2.79 0.

50 None

[80] 298 x
980 2.83 2 U

6 136 Altera
Cyclone

Improved
BP - 7

M 1.0 4.4
**

0.
70 None

[81] - - - - 140 Xilinx
Virtex 5 Min-sum - 96

M
210

* - 0.
67

Complete
DVB-S2

[81] - - - - 140 Xilinx
Virtex 5 Min-sum - 206

M
388

* - 0.
25

Complete
DVB-S2

[82] - - - U*
9 180 Xilinx

Virtex 5
Min-sum

with correction 5 600
M - 64.6

** 3.84 - Complete
CCSDS-C2
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TABLE II: Comparison of FPGA LDPC decoders (continued...)
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[82] - - - U*
9 150 Altera

Stratix 2
Min-sum

with correction 12 30
M - 8.8

** 3.71 - Complete
CCSDS-C2

[83] 1152 x
2304 7.30 - U*

8 160 Xilinx
Virtex 4

Min-sum
with correction 15 71

M
142
M*

36.4
** 1.84 0.

50
Complete

802.16 WiMAX

[83] 1920 x
2304 7.68 - U*

8 160 Xilinx
Virtex 4

Min-sum
with correction 15 169

M
204
M*

36.4
** 3.66 0.

83
Complete

802.16 WiMAX

[84] - - - - 240 - Min-sum
with correction - 866

M - - - Complete
802.11 WiFi

[85] - - - - - - - - 1
G - - - - Complete

ITU G.hn

[86] - - - - - - - 10 - 2.1
G - - - Complete

802.11ad WiGig

[87] 2048 x
32640 - - U*

1 126 Altera
Cyclone 4 Hard decision 12 8

G
8.54
G* 40.0 - 0.

94 None

[88] - - - - - Xilinx
Spartan 6 - - 200

M
101

* - - 320 custom
codes

[88] - - - - - Xilinx
Spartan 6 - - 25

M
22.4

* - - 320 custom
codes

[89] 972 x
1944 - - - - - Min-sum

with correction 15 - - - 1.66 0.
50

Complete
802.11 WiFi

LDPC decoder may have a significant impact upon its per-
formance. The selected FPGA dictates the number of logic
elements, memory blocks and I/O pins that are available for all
processing and routing. Additionally, some FPGAs facilitate
higher clock frequencies than others when implementing the
same design, depending on the process technology employed.
Unfortunately it is impossible to fairly compare the capabilities
of all FPGAs numerically. For this reason, Table II simply
states which FPGA has been employed for each LDPC decoder
considered.

3) Algorithm: As discussed in Section II-C, several varia-
tions of the LDPC decoding algorithm exist. Some algorithms
vary from each other only slightly, while others may employ
vastly different mathematical concepts. Furthermore, different
authors may use different terms to describe the same algo-
rithm, making this parameter difficult to compare. Table II
therefore only includes the terms used by the authors to
describe their algorithms and no direct comparison between
them is inferred.

4) Iterations: The limit placed on the maximum number of
decoding iterations has a significant effect upon the process-
ing throughput and error correction performance of decoders
operating without early stopping functionality, as well as in
cases where the received frame is too corrupted to be decoded
successfully. Decreasing the maximum number of iterations
will increase the LDPC decoder’s processing throughput in
terms of the maximum achievable bitrate, but runs the risk
of allowing errors to remain in the recovered codeword that
could have otherwise been corrected. Generally, it can be
assumed that the number of iterations used in each considered
design was selected by the author to offer the most desirable
trade-off between error correction performance and processing

throughput, subject to the influence of the other parameters
outlined above. It is also worth noting that the maximum
number of iterations is perhaps the easiest parameter to change
at runtime. Owing to this, some designs (eg. [28], [67], [69])
are presented with two sets of results, namely one employing a
low number of iterations for maximum processing throughput
(marked with a ‘T’ in Table II), and one with a high number
for maximum error correction (marked with an ‘E’ in Table II).

Table II presents the fixed number of iterations that are
employed in designs without early stopping functionality,
while the average number of iterations is presented for designs
employing early stopping. However, some papers proposing
early stopping designs (eg. [60], [61], [64]) do not present an
average number of iterations, only providing the maximum
limit imposed, as indicated with an asterisk in Table II.
Likewise, some papers (eg. [50], [53]) do not state the number
of iterations employed, but this parameter can be inferred as a
function of other parameters and characteristics. These cases
are marked with a double-asterisk (**) in Table II.

B. Characteristics

In this section, we consider all those characteristics of
FPGA-based LDPC decoders, which we plan to quantify.
Seven main characteristics are identified, namely processing
throughput, processing latency, hardware resource require-
ments, transmission energy efficiency, processing energy ef-
ficiency, bandwidth efficiency and flexibility, as seen Fig. 1.
Each of these is described in turn in the following sections.

1) Processing throughput: Perhaps the most frequently-
stated characteristic of an FPGA-based LDPC decoder is its
processing throughput, which is the number of bits that it can
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process per second. A high processing throughput is required
for high-speed data transfers and video streaming applications,
amongst other uses. A base station serving many users requires
the sum of the individual throughputs to be high, so that each
user receives a satisfactory service.

In an LDPC decoder it is important to note the difference
between encoded and decoded processing throughput. We refer
to the number of codeword bits processed per second as
the encoded processing throughput, while we use decoded
processing throughput to quantify the number of message
word bits per second. For example, half of the codeword bits
generated by a 1/2-rate LDPC code are parity bits, which carry
no information of their own. Therefore if the encoded pro-
cessing throughput is 2 Gbps then the corresponding decoded
processing throughput would be 1 Gbps. Ultimately, it is the
decoded processing throughput that matters most to the user of
the decoder, so we have deemed this to be the more important
characteristic in comparisons. For designs where the author
has only presented encoded processing throughput, we have
inferred the decoded processing throughput by multiplying
by the coding rate, as denoted by an asterisk in Table II.
In some cases it is unclear whether the stated processing
throughput is encoded or decoded. This is reflected in the
Table II by allowing the stated processing throughput to span
both columns. A double asterisk is used in Table II to identify
designs in which the processing throughput was not explicitly
stated, but has been inferred from other stated parameters and
characteristics.

2) Processing latency: The processing latency of an FPGA-
based LDPC decoder is the amount of time it requires to
process a complete LDPC codeword. Low processing latency
is therefore important for interactive cloud computing and
safety-critical operations, where an immediate response is
crucial. It may be observed that processing latency is strongly
linked to processing throughput, since the processing latency
can often be calculated as the message word length K divided
by the decoded processing throughput. However, some decoder
designs achieve a high processing throughput by decoding
more than one codeword simultaneously. In these cases, the
associated processing latency would be much higher than that
of a decoder which achieves the same processing throughput
while decoding only a single codeword at a time. For example,
a decoder that decodes a single 1000-bit message word with
a processing throughput of 2 Gbps would have a processing
latency of 0.5 µs, while two 1 Gbps decoders operating in
parallel would achieve the same processing throughput, but
would have a processing latency of 1 µs. Processing latency
is a key characteristic of an FPGA-based LDPC decoder,
however most authors do not explicitly state it in their results,
and it is therefore not included in Table II.

3) Hardware requirements: When implemented on an
FPGA, the size and complexity of an LDPC decoder’s design
is represented by how much of the FPGA’s hardware resources
it utilises. Larger designs require more resources and therefore
a bigger, more expensive FPGA, making smaller designs
preferable.

The ELB metric described in Section II-F can be used
to compare the hardware resource requirements of designs

implemented on different FPGAs. However, the resource
requirements stated by the various authors of LDPC-based
FPGA decoder designs often do not directly translate to ELBs,
hence requiring further analysis to be performed as follows:

• The conversion from 6LUTs to 4LUTs described in Sec-
tion II-F is first employed to ensure that all measurements
of LUTs consider an approximately equivalent quantity
of hardware.

• Subsequently, if the hardware requirement of a design is
quantified only in terms of either 4LUTs or FFs, then we
assume a numerically equal number of ELBs.

• If the hardware requirement of a design is quantified
in terms of both 4LUTs and FFs, then we assume that
ELBs = max(4LUTs, FFs). These cases are identified
using a single asterisk in Table II.

• For designs based on Xilinx FPGAs having complex
multi-element slices, we have derived a “utilisation”
figure of merit, which quantifies how many LUTs/FFs are
commonly used per slice. We obtained this by calculating
the average utilisation of designs for which both the num-
ber of slices and the number of LUTs/FFs used is stated.
These utilisation figures were found to be approximately
0.83 for LUTs and 0.36 for FFs, demonstrating that the
majority of slices are used for their LUTs. For designs
where the hardware utilisation is presented only in terms
of slices, we assume ELBs = slices × 4LUTs per slice
× 0.83. These cases are indicated in Table II using a
double asterisk.

4) Transmission energy efficiency: Another fundamental
figure of merit for an LDPC decoder is its error correction
capability, as a function of the channel’s signal to noise
power ratio per bit Eb/N0, which is typically expressed in
decibels. If a codeword is transmitted using a high energy
per bit Eb, then the energy of the noise corrupting each bit
becomes relatively smaller, causing the BER at the receiver to
decrease. However, energy-efficient transmitters are desirable,
because they are cheaper to run and can operate for longer
without requiring new batteries, particularly since transmission
energy consumption is dominant in transmitter hardware. It
is therefore desirable for an LDPC decoder to be capable of
correcting errors and achieving a satisfactorily low BER, even
at low Eb/N0 values.

The error correction performance of a decoder is typically
characterised in the form of a BER curve, showing how the
BER is reduced as the channel Eb/N0 increases. In order to
convert these plots into a comparable metric, we specified a
desirable target BER of 10−4. For each considered design,
the Eb/N0 required by the decoder in order to achieve this
BER was noted. In some publications however (eg. [17], [61]),
the error correction performance is quantified using the Frame
Error Rate (FER) rather than BER. In these cases, we assumed
that a BER of 10−4 equates to a FER of 10−2 [61], based on
the observation that the considered designs typically have a
message word length K of the order of 1000 bits, as well
as a minimum Hamming distance of the order of 10 bits.
These cases are indicated using a single asterisk in the Eb/N0

column of Table II.



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 16

Quantifying the BER versus Eb/N0 facilitates a fair com-
parison of transmission energy for LDPC codes having differ-
ent coding rates R, since it considers the transmission energy
per message word bit. However, some publications present
the BER as a function of the SNR Es/N0, which does not
allow a fair comparison of codes having different coding rates,
since it considers the transmission energy per codeword bit,
Es = Eb × R. The corresponding Eb/N0 can therefore be
obtained by dividing by the SNR Es/N0 by the coding rate
R, which is achieved in logarithmic terms according to

Eb/N0 [dB] = SNR [dB] − 10 log10 (R). (18)

Entries calculated in this way are denoted in Table II using a
double asterisk. Unfortunately some authors have erroneously
labelled the x-axis of BER plots as SNR, when Eb/N0 would
be more appropriate. Some of these cases were clarified via
private correspondence with the authors. However, in some
cases there is other evidence that the presented results are in
terms of Eb/N0 rather than SNR, such as comparisons with
benchmarkers or capacity bounds. In these cases, Eb/N0 is
assumed and identified using a triple asterisk (***) in Table II.

5) Processing energy efficiency: As for any electronic
system, low processing energy consumption is desirable in
the design of FPGA-based LDPC decoders. However, only
a few publications ([28], [56], [73]) have included energy
consumption measurements, hence this characteristic cannot
be considered in our comparisons.

6) Bandwidth efficiency: The bandwidth efficiency of a
communication system is given by the ratio of the information
throughput that it can convey to the corresponding bandwidth
required. For example, a scheme that conveys 500 bits per
second over a channel having a bandwidth of 1 kHz has a
bandwidth efficiency of 0.5 (bits/s)/Hz. For BPSK-modulated
codewords using ideal Nyquist pulse shaping filters, bandwidth
efficiency is numerically equal to the LDPC coding rate R.
In this regard, LDPC codes with higher coding rates are more
desirable, since they make more efficient use of their channel’s
bandwidth.

7) Flexibility: Flexibility is a desirable characteristic, be-
cause it allows an FPGA-based LDPC decoder to support
different parity check matrices, having different coding rates,
block lengths and node degrees. Some designs may support a
selection of related PCMs from within a particular code family,
such as the 21 PCMs included in the DVB-S2 standard [5].
Meanwhile, other designs may be completely flexible, sup-
porting any PCM.

Decoders may exhibit flexibility either during their design
or during their operation. True run-time flexibility allows a
specific codeword to be decoded using a particular PCM,
immediately before decoding a different codeword using a
different PCM. This allows the communication system to
dynamically adapt to time-varying channel conditions, such as
by decreasing the coding rate R in high-noise environments
in order to improve the BER performance. However this
advantage may only be achieved at the cost of requiring a
more sophisticated design, typically having higher hardware
resource requirements or lower processing throughput. By
contrast, decoders that are only flexible at design-time may

only be adapted to use a different PCM by reprogramming
the FPGA, preventing a high degree of rapid reconfigurability.
The degree of design-time flexibility can also be difficult to
accurately quantify, since any design that is synthesised from
a HDL can be modified and re-synthesised fairly rapidly.
Design-time flexibility has therefore not been considered in
this survey.

IV. DISCUSSIONS

The data presented in Section III inspires a great deal
of discussions and visualisation of the relationships amongst
the various parameters and characteristics of FPGA-based
LDPC decoders. This section commences by characterising
the fundamental trade-off between desirable characteristics in
Section IV-A, before identifying the parameters that affect
each characteristic in Section IV-B.

A. Trade-offs

As seen in Fig. 1 and discussed in Section III-B, the main
measurable characteristics of an FPGA-based LDPC decoder
are processing throughput, processing latency, hardware re-
source utilisation, transmission energy efficiency, processing
energy efficiency, bandwidth efficiency and flexibility. Of
these, it is the processing throughput, hardware resource util-
isation, flexibility and transmission energy efficiency, which
provide the clearest and most fundamental trade-off, since the
other characteristics are all in some way dependent on these.
The relationship amongst these four characteristics is plotted
in Fig. 9.

Note that all scatter plots presented in this paper are
organised so that a decoder with desirable values for all
characteristics would correspond to a data point in the top-right
corner. In Fig. 9, the x-axis is plotted with the values reversed,
so that decoders with smaller hardware resource requirements
(preferred) are further to the right than larger ones. Meanwhile
the y-axis is plotted as normal, so that decoders with the
highest processing throughput are at the top. In this way, points
above the trend line are superior to the average case, whilst
points below it are inferior, notwithstanding the values of their
other characteristics.

It can be seen in Fig. 9 that most designs can only excel
in at most three of the four characteristics presented. The
trend line presents the average processing throughput vs size
trade-off, and decoders that perform above this line generally
tend to suffer from poor transmission energy efficiency, whilst
decoders with a high energy efficiency tend to either have
larger hardware resource requirements or lower processing
throughput than the average case. Any decoders that perform
well in all three of these characteristics tend to be totally
inflexible to any PCM changes at run-time.

The five points in Fig. 9 having the highest processing
throughput are from [28], [74], [68] and [67], all of which
employ fully-parallel architectures. The design of [67] has
the smallest hardware resource requirement of the four, owing
to its use of only one bit per LLR. By contrast, the designs
of [28], [68] and [74] use two or three bits per LLR, which
is reflected in their relative hardware resource requirements.
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Fig. 9. Processing throughput vs. hardware requirements vs. transmission energy efficiency vs. flexibility

None of these high-throughput decoders have any run-time
flexibility, as is typical of fully-parallel architectures. The
next highest processing throughput is achieved by the design
of [65], which adopts a partially-parallel rather than fully-
parallel architecture, but also uses only one bit per LLR.
The effect of using these small numbers of bits can be seen
in these decoders’ poor transmission energy efficiency, since
reducing the resolution of the LLRs impedes the associated
error correction capability.

In addition to employing single-bit LLRs, the design of [65]
achieves a high processing throughput by decoding two frames
at once. The designs presented in [77] use a similar technique,
processing three, four or even six frames in parallel using
multiple decoder copies in the same FPGA. Owing to this,
these designs have a larger processing throughput than the
average case, while also being flexible and having reasonable
error correction performance. However, as discussed in Sec-
tion III-B2, the processing latency of these decoders is much
higher than their processing throughput would imply, making
them less suitable for time-critical applications.

The decoders presented in [36] and [45] both achieve good
transmission energy efficiency, while also having higher pro-
cessing throughputs (or lower hardware requirements) than the
average case. Both of these designs use stochastic bitstreams
to represent the LLRs, facilitating a fully-parallel architecture
having single-wire serial transmission between nodes, greatly
simplifying the hardware design.

The points in the bottom-right of Fig. 9 correspond to the
designs presented in [60], which employ a fully-serial archi-
tecture and so have very low hardware resource requirements,
but also low processing throughput. However, these designs
also have the benefit of being truly run-time flexible for any

LDPC code. By contrast, the other flexible designs shown in
Fig. 9, such as [17] and [61], are only flexible for a set of
related PCMs.

In addition to the trade-offs described above, Fig. 9 also
demonstrates that it is difficult to consider all of the character-
istics of an FPGA-based LDPC decoder at once. For example,
Fig. 9 does not consider the capabilities of the FPGA that
each decoder is implemented using. In particular, more recent
FPGAs may be able to operate identical designs at higher
clock speeds than older FPGAs. This could be crudely factored
into the results by dividing the processing throughput by the
clock frequency, but doing so would then negate the impact of
other parameters such as the critical path length. Furthermore,
no consideration is given in Fig. 9 to the processing latency
of each considered design. Note, however, that by plotting
the decoded processing throughput rather than the encoded
processing throughput, the coding rate and the bandwidth
efficiency of the LDPC code has been taken into at least partial
consideration.

B. Relationships between parameters and each characteristic

Having established the fundamental trade-off that exists
between the main characteristics of FPGA-based LDPC de-
coders, namely processing throughput, processing latency,
hardware requirements and transmission energy efficiency, the
following subsections present discussions of the parameters
that affect each one. A discussion of bandwidth efficiency
is combined with transmission energy efficiency in Sec-
tion IV-B4, but a quantitative discussion of flexibility and
processing energy efficiency could not be made, owing to the
lack of the required information in the publications considered.
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Fig. 10. Factors affecting the processing throughput

1) Processing throughput: Fig. 10 characterises the strong
relationship between an FPGA-based LDPC decoder’s de-
gree of parallelism and its decoded processing throughput,
confirming the expectation that designs having more parallel
processors can decode a higher number of bits per second.
Note that in Fig. 10 the number of parallel processing units
has been divided by the number of edges in the PCM H, to
remove the dependence on the LDPC code size. The shading
and shapes of the markers in Fig. 10 also indicate the influence
that the number of bits per LLR and the number of decoding
iterations have on the processing throughput, respectively.
Points above the trend line typically employ a small number of
bits per LLR or iterations, evidenced by their dark shading or
circular point shape. By contrast, slower-than-average designs
typically employ a larger number of bits per LLR or iterations,
and therefore have lighter shading or a square shape.

Perhaps the most prominent points in Fig. 10 are the light
grey circles belonging to [69], which achieve a much higher
processing throughput than the trend line, despite using 8
bits per LLR. This may be explained by this design’s use
of layered belief propagation with the aid of a novel joint
row-column processor, which decreases the processing time
of each iteration and helps to avoid memory conflicts, thereby
increasing the processing throughput.

The light triangles in the bottom-right represent the fully-
serial decoders presented in [60], which achieve a low pro-
cessing throughput owing to their low number of processors.
Conversely, the dark points in the top-left represent the fully
parallel decoders of [67] and [68], which achieve a very high
processing throughput by using few bits, few iterations, a
large degree of parallelism and operate on the basis of the
MSA [25]. The fact that the MSA can facilitate a higher

processing throughput than more complicated alternatives such
as the SPA [24] is also demonstrated by comparing the results
of [75] and [76], which present two very similar designs that
vary in algorithm. The design in [76] suffers from a 4-5 Mbps
processing throughput drop compared to [75], caused by its
employment of the SPA instead of the MSA, as well as by
using a non-uniform quantisation scheme for the LLRs.

The point furthest above the trend line corresponds to the
design of [65], which achieves a high processing throughput
by using only a single bit per LLR, five iterations per frame
and by decoding two frames simultaneously. This design
also exploits the properties of quasi-cyclic LDPC codes to
implement an efficient partially-parallel architecture, reducing
the number of processing units required to achieve its high
processing throughput.

2) Processing latency: As discussed above, processing la-
tency is not treated as a quantifiable characteristic in our anal-
ysis, because the majority of publications do not quantify this
characteristic of their design. However, the processing latency
is dependent on the processing throughput, the message word
length K, the scheduling and the number of frames that are
decoded in parallel.

Some of the decoders considered, such as that of [65]
and [77], process multiple frames in parallel by instantiating
several independent copies of the decoder on the same FPGA.
In these cases the total processing throughput and resource
requirement could be divided by the number of decoders,
in order to produce results that correspond to the processing
latency of an equivalent design that only considers one frame
at a time. However, other designs, such as [42], process
multiple frames by making use of spare time within the
decoding schedule, with the result that the hardware cost does
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Fig. 11. Factors affecting the hardware requirements

not increase linearly with the processing throughput. Owing
to this, it is not possible to normalise the data to only consider
the processing throughput and hardware resources required for
decoding one frame at a time, so the processing latency cannot
be fairly inferred.

3) Hardware requirements: Unsurprisingly, the major con-
tributing factor to the hardware resource requirement of an
FPGA-based LDPC decoder design is its degree of paralleli-
sation, as shown in Fig. 11. Additionally, Fig. 11 shows that
the number of bits employed per LLR and the number of edges
employed in the parity check matrix also have some influence
on the hardware resource requirement, though the effects of
these parameters are quite varied. This may be attributed to
the difficulty of accurately comparing the hardware resource
requirements of different designs, as well as suggesting that
other factors are involved. It is however noticeable that there is
a general reduction in the number of bits per LLR employed in
designs with increased parallelism. This may be explained by
the explosion in routing complexity upon increasing the num-
ber of PUs, which would be exacerbated by the requirement
for data buses having large operand widths.

The dark grey circles corresponding to the designs of [77]
towards the bottom of Fig. 11 seemingly have a much larger
hardware resource requirement than would be expected, con-
sidering the number of processing units, the number of PCM
edges and the number of bits employed per LLR. However,
these designs are each run-time flexible for a different family
of codes, having HDL code that is automatically generated.
This additional flexibility results in decoders that are not as
fully optimised as one that was designed specifically for a
single PCM, explaining the associated hardware overhead.
This is confirmed by the observation that the run-time flexible

designs of [61] also correspond to a set of points positioned
very far below the trend line.

The results of [75], [48] and [76] all sit above the trend
line, despite employing a large number of bits per LLR, as
well as a moderate PCM size. This may be partially attributed
to their implementation of quasi-cyclic LDPC codes, using
partially-parallel architectures, leading to a very efficient use
of hardware resources. Additionally, the smallest hardware
resource requirement of these designs is achieved by one
that uses the MSA rather than the SPA, illustrating that this
algorithm requires fewer hardware resources.

The design of [47] requires more FPGA resources than the
trend line would suggest, which is remarkable considering its
small PCM and number of bits per LLR. At first glance this
may be attributed to its use of the uncommon array-based
LDPC code. However, the design of [58] also uses an array-
based code but sits above the trend line, despite employing
a large number of bits per LLR and a large PCM. On closer
inspection, it can be observed that the design of [47] employs
a simple FPGA from an old generation, suggesting that its
comparably large hardware resource requirement stems from
inefficient FPGA synthesis.

4) Transmission energy efficiency and bandwidth efficiency:
The minimum SNR per bit Eb/N0 at which it becomes theo-
retically possible to reliably send information over a channel
depends on the target bandwidth efficiency and therefore on
the coding rate of the FEC code employed. A code having a
lower coding rate may achieve a lower minimum transmission
energy, owing to the increased number of parity bits that it
employs for error correction. For this reason, we consider the
transmission energy efficiency and the bandwidth efficiency
jointly in this subsection.



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 20

For each FPGA-based LDPC decoder considered, the theo-
retical Discrete-input Continuous-output Memoryless Channel
(DCMC) capacity [90] was calculated, with consideration of
the coding rate, modulation type and channel model employed.
This was then subtracted from the value recorded in Table II
for the specific Eb/N0 at which a low BER is achieved, in
order to quantify the performance loss imposed by implemen-
tation factors. Here, a low performance loss is achieved by a
decoder that can function very close to the theoretical limit,
demonstrating that it is very good at correcting errors and very
efficient in terms of transmission power and bandwidth.

Almost all of the publications considered characterised
the error correction performance of their FPGA-based LDPC
decoder designs using BPSK modulation for transmission over
an AWGN channel. This allows the BER performance of
these designs to be presented together graphically, as shown in
Fig. 12. Here, the plotted line represents the DCMC capacity,
while each plotted point corresponds to a different considered
decoder design. The performance loss associated with each
point may be obtained as its horizontal distance from the
DCMC capacity curve. It can hence be seen that despite
requiring drastically different Eb/N0 levels to achieve the
same BER, the designs of [41], [52], [60], [61] can all be con-
sidered to offer a strong error correction performance, when
their bandwidth efficiency is also taken into consideration.
Fig. 12 also illustrates that the designs of [42], [56], [67],
[68], [74], [80] are comparatively poor at correcting errors,
and therefore have a low transmission energy efficiency. This
is at least partly due to the fact that these designs trade
off their error correction performance against other desirable
characteristics, as will be explained below. Note that this
analysis can be readily extended to LDPC decoders designed
for other modulation schemes or channel models. This may
be achieved by plotting the corresponding DCMC capacity
curve and characterising the error correction performance with
respect to this bound.

It is well-known that LDPC codes having longer message
word lengths K are capable of performing closer to the DCMC
capacity [8]. Furthermore, a higher performance loss occurs
for more sparse PCMs, since these have fewer edges over
which to transfer information during the decoding process.
Motivated by this, Fig. 13 plots the performance loss of each
design versus the number of edges in its PCM H, combining
the message word length K with the complexity of the factor
graph. As shown in Fig. 13, the number of edges in the PCM
H is the largest contributing factor to the error correction
performance loss. As may be expected, the performance loss is
also influenced by the number of iterations performed and the
number of bits used per LLR, as shown in Fig. 13. It may be
observed that designs like those of [67], [65] and [74] perform
poorly compared to the trend line, owing to their employment
of a small number of bits per LLR or iterations. By contrast,
a good performance may be observed for designs employing
a large number of both, such as [69].

The specific code construction principles used can explain
some of the unexpected results seen in Fig. 13. The design
of [50] performs closer to the DCMC capacity than would be
expected from a general decoder using the same small number
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Fig. 12. Decoder performance loss from capacity

of iterations and bits per LLR. However, the PEG algorithm
explained in Section II-D5 was used to construct the LDPC
code it uses, increasing its error correction capability at the
cost of producing an unstructured factor graph, which is not
optimised for hardware implementation. A “cycle elimination
algorithm” was used in [61] to similar effect, while the designs
of [60] achieve high performance due to the completely
unstructured H matrix used.

The lowest error correction performance loss is achieved
by the design of [41], which uses a structured quasi-cyclic
code. In addition, this design also uses a sophisticated non-
uniform quantisation scheme for the representation of LLRs,
it employs a moderate number of bits per LLR and iterations,
as well as implementing the full SPA. By contrast, the designs
of [76] and [48] operate further away from capacity than may
be expected, which is due to their use of the MSA.

V. RECOMMENDATIONS AND FURTHER WORK

This section presents an overview of the future development
effort required of designers of FPGA-based LDPC decoders.
Firstly, Section V-A provides a guide to the stages involved
in designing an FPGA-based LDPC decoder. Following this,
Section V-B then provides a set of recommendations for
future publications which will facilitate more comprehensive
comparisons amongst FPGA-based LDPC decoders in the
future. Finally, Section V-C presents a list of future research
opportunities that we expect to be of significant benefit to the
field.

A. Recommended design methodology

As discussed above, the complex relationships between the
parameters and characteristics of FPGA-based LDPC decoders
imply that it is not possible to identify a single design which
is superior to all others in every way. Having said this, the
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Choose which LDPC
PCM(s) to decode

• Block length and coding rate

• Run-time vs. design-time PCM switching

• Regular/irregular codes and node degrees

• Other code features (e.g. quasi-cyclic)

Choose a level of
parallelism

• Fully parallel, partially-parallel or serial

• Hardware requirements vs. throughput

• Routing complexity increases with parallelism

Choose an LLR
representation

• Optimal fixed-point bit width

• Uniform or non-uniform quantisation

• Other representations (e.g. stochastic)

Design data path and
memory access

• Choice of decoding schedule

• Number/size of memory elements

• Maximum memory I/O bandwidth

Design VN and CN
architectures

• Choice of decoding algorithm

• Reduce critical path using pipeline registers

• Irregular codes require variable no. inputs

Design decoder
control unit

• Start/stop control signals

• Early stopping detection

• Run-time code selection control signals

Design data
input/output

• Input data from channel and buffering

• Output decoding status/results

• Limited by FPGA I/O resources

Fig. 14. Stages to consider when designing an FPGA-based LDPC decoder

flowchart presented in Fig. 14 outlines a recommended series
of stages for a prospective designer to complete, as a means of
assisting their design process. The bullet points accompanying
each stage list some of the key issues to be considered whilst

completing each design element. More details about these
issues can be found throughout Sections II-C — II-E.

B. Recommendations

In the process of collecting the data presented in this
paper, it has become apparent that fairer comparisons amongst
FPGA-based LDPC decoders could be facilitated in the future,
by setting conventions for the type and format of data to
present when proposing a new design. The following list
represents our attempt at this. Our recommendation for future
publications of FPGA-based LDPC decoders is to:

• provide values for every parameter and characteristic
presented in Table II;

• ensure that all presented characteristics correspond to the
same set of parameters, and if more than one parameter
set is employed for demonstrating the flexibility of the
design, include an equal number of full characteristic sets;

• state both the encoded and the decoded processing
throughput, as well as the formula used for calculating
them;

• state the processing latency of the decoder, or signify that
it can be derived simply from the processing throughput
and message word length K;

• provide BER simulation curves obtained using the physi-
cal hardware, plotting the results against Eb/N0 [dB] and
explicitly stating the channel model and modulation type
used, preferably BPSK modulation for transmission over
an AWGN channel;

• if possible, provide multiple BER plots for different
maximum numbers of iterations;



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 22

• provide mathematical detail about the algorithm used and
endeavour to use established terminology if the same
formulae have been used before;

• provide power/energy consumption measurements ob-
tained during BER simulation;

• when mentioning flexibility, explicitly state whether the
changes can be made at run-time or whether they require
a new synthesis run;

• endeavour to make it possible to compare new designs to
old ones by selecting a benchmarker, and implementing
a new design using exactly the same set of parameters
on the same FPGA.

In addition to adhering to the above list of guidelines to fa-
cilitate fairer comparisons between different designs, it would
be of significant benefit if authors of FPGA-based LDPC de-
coder designs were at liberty to make their source code freely
available online. Open-source code can be readily found for
many of the signal processing blocks used in communications
systems, but unfortunately there are very few freely-available
FPGA-based LDPC decoder designs. This inevitably hinders
innovation within the field, since every prospective designer
is required to commence by implementing a basic structure,
rather than improving an existing design. Additionally, if a
reader of a published design had access to the source code,
it would significantly aid their comprehension of the novel
techniques that are being described. Finally, making source
code freely available facilitates the employment of current
FPGA-based LDPC decoder designs as benchmarkers for
future designs.

C. Further work
Performing the analysis described above has enabled us to

identify several opportunities for further research and develop-
ment in the field of FPGA-based LDPC decoders, as discussed
in the following subsections.

1) Flexible decoders: Perhaps the biggest gap illustrated
by the trade-offs described in Section IV-A is for high-
speed decoders having run-time flexibility and low hardware
resource cost. Run-time flexibility has huge advantages for
commercial applications, since it allows a decoder to dynam-
ically support the variety of different LDPC codes within
a particular communications standard, without incurring the
overhead of the time and technical intervention that is required
to reprogram an FPGA. Further to this, flexible decoders
can adapt automatically depending on the channel conditions
without any user input, increasing the efficiency of FPGA-
based LDPC decoders in consumer applications. Run-time
flexibility can also be useful for research purposes, reducing
the number of times an FPGA has to be re-synthesised when
testing multiple different codes.

As seen in Section IV-A, decoders having a fully-serial
architecture can be flexible with little or no extra hardware
resource cost, but suffer in terms of their low processing
throughput. Meanwhile, the extra hardware required to make
a fully-parallel decoder flexible renders this approach im-
practical, regardless of their capacity for high processing
throughputs. Initial research therefore suggests that partially-
parallel decoder architectures utilising semi-structured (e.g.

quasi-cyclic) LDPC codes such as those in [77] have the great-
est potential for flexibility and high processing throughputs.
Recent research into hierarchical quasi-cyclic codes as in [56]
and [53] could be of particular interest.

2) Schedules: Unfortunately, different publications have
used different terminology to describe the decoding schedules
adopted in their decoder designs, so a direct comparison could
not be easily drawn between them in this paper. However,
there is an opportunity to investigate the effects of using
different schedules in two otherwise equal FPGA-based LDPC
decoders, assessing their effects not only on BER performance
and complexity as in previous research on scheduling, but
also on processing throughput, hardware resources, processing
energy and flexibility. In particular, none of the reviewed
decoders operate on the basis of calculating residuals as in
IDS, implying that this schedule is largely under-represented
within the field despite claims of its superiority to others [22].
Further research is required to determine whether these claims
are valid in practical implementations, and to investigate the
architectural constraints that employing IDS would impose on
an FPGA-based LDPC decoder design.

3) Stochastic decoders: The two stochastic decoders pre-
sented in this report, [36] and [45], performed well in terms
of processing throughput, BER performance and hardware
requirements. Stochastic designs are associated with their own
set of advantages and challenges, offering another opportunity
for further research. The serial transmission of messages be-
tween processing nodes facilitates a higher grade of feasibility
for fully-parallel designs, and allows the error correction per-
formance to be dynamically traded for processing throughput
by simply increasing the number of bits used for each message.

4) Low processing energy consumption: It is unfortunate
that the majority of the designs reviewed in this report
did not present any information about the decoder’s energy
consumption. As with all electronic devices, low energy con-
sumption is a key figure of merit in communication systems,
since it dictates how long mobile devices can function for
between battery recharges, as well as dictating the cost and
environmental impact of operating base station equipment.
This provides a motivation to investigate the factors behind
energy consumption in FPGA-based LDPC decoders, possibly
by implementing some of the published designs and measuring
their energy consumption directly. Drawing upon these results,
FPGA-based LDPC decoders having low energy consumption
could then be designed.

5) Low processing latency: Similarly to processing en-
ergy consumption, processing latency is a crucial character-
istic of communications hardware that was curiously under-
represented in the works reviewed here. While the processing
latency may be approximated for many designs as a function
of the processing throughput and message word length, the
fact that it was rarely quantified implies that it was rarely
a design focus. Some applications of FPGA-based LDPC
decoders may require ultra-low processing latency above all
other characteristics, suggesting that this is a gap in the market
that is currently unfilled. Further research could be conducted
to determine whether this is indeed the case, before devising
new designs having ultra-low processing latency. Such designs
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would require large processing throughputs without processing
multiple frames in parallel, so would be likely to employ very
parallel architectures and low-complexity algorithms. In this
case, the cost of the high processing latency would be a higher
hardware resource consumption and a lower transmission
energy efficiency.

VI. CONCLUSIONS

In this paper, we have assessed the practicalities and limi-
tations of FPGA-based LDPC decoders. Section II presented
a tutorial on LDPC codes, covering their structure, encoding
process, decoding process and construction techniques. A
number of practical decoder implementation decisions were
then highlighted, before providing background information on
the structure of FPGAs and the differences between those
produced by the main two FPGA vendors. In Section III, the
results from an extensive survey were presented in a condensed
form, featuring only a subset of the rows and columns available
in the online version. The remainder of Section III was then
devoted to describing the parameters and characteristics used
in the evaluation, discussing the significance of each and how
it was measured. Section IV then illustrated, characterised
and discussed the complex interplay between all of these
parameters and characteristics, using plots of the results to
show how each one was affected by the others. Subsequently,
using the experience gained from compiling the survey results,
Section V presented a list of recommendations for future
publications of FPGA-based LDPC decoder designs, in order
to facilitate fairer, more comprehensive comparisons in future.
Finally, we have identified a number of opportunities for future
FPGA-based LDPC decoder designs.

Perhaps the most significant conclusion that can be drawn
from the research described in this paper is that it is extremely
difficult to predict how two different FPGA-based LDPC
decoder designs might compare, when they are implemented
using different codes, architectures, algorithms, schedules and
hardware. This in itself lends further weight to the advantage
of using FPGAs for prototyping designs, utilising their re-
programmability in an efficient design-implement-test devel-
opment cycle. To do so requires accurate comparisons amongst
competing designs to be made, which can only be achieved
using the list of recommendations provided in Section V-B.
However, even having completed this process, it may still be
difficult to say which design is superior, as there is such a
complex interplay of characteristics that each will inevitably
have its own advantages and disadvantages.
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