
1

Optimizing Bloom Filter: Challenges, Solutions,
and Comparisons

Lailong Luo, Deke Guo, Richard T.B. Ma, Ori Rottenstreich, and Xueshan Luo

Abstract—Bloom filter (BF) has been widely used to support
membership query, i.e., to judge whether a given element x is a
member of a given set S or not. Recent years have seen a flourish
design explosion of BF due to its characteristic of space-efficiency
and the functionality of constant-time membership query. The
existing reviews or surveys mainly focus on the applications of
BF, but fall short in covering the current trends, thereby lacking
intrinsic understanding of their design philosophy. To this end,
this survey provides an overview of BF and its variants, with an
emphasis on the optimization techniques. Basically, we survey
the existing variants from two dimensions, i.e., performance
and generalization. To improve the performance, dozens of
variants devote themselves to reducing the false positives and
implementation costs. Besides, tens of variants generalize the
BF framework in more scenarios by diversifying the input
sets and enriching the output functionalities. To summarize the
existing efforts, we conduct an in-depth study of the existing
literature on BF optimization, covering more than 60 variants.
We unearth the design philosophy of these variants and elaborate
how the employed optimization techniques improve BF. Further-
more, comprehensive analysis and qualitative comparison are
conducted from the perspectives of BF components. Lastly, we
highlight the future trends of designing BFs. This is, to the best
of our knowledge, the first survey that accomplishes such goals.

Index Terms—Bloom filter, Performance, Generalization, False
positive, False negative.

I. INTRODUCTION

BLOOM filter [1] is a space-efficient probabilistic data
structure for representing a set of elements with support-

ing membership queries with an acceptable false positive rate.
Hitherto, the applications of BF and its variants are manyfold.
In the field of networking, BF has been employed to enable
routing and forwarding [2] [3] [4] [5] [6] [7] [8], web caching
[9] [10], network monitoring [11], security enhancement [12]
[13], content delivering [14], etc. In the area of databases,
BF is a proper option to support query and search [15] [16],
privacy preservation [17], key-value store [18] [19], content
synchronization [20] [21] [22] [23] [24], duplicate detection
[25] and so on. Beyond the general fields of networking and

This work is partially supported by National Natural Science Foundation
of China under Grant No.61772544, and the Hunan Provincial Natural
Science Fund for Distinguished Young Scholars under Grant No.2016JJ1002.
Corresponding author: Deke Guo.

Lailong Luo, Deke Guo, and Xueshan Luo are with the Science and
Technology Laboratory on Information Systems Engineering, National Uni-
versity of Defense Technology, Changsha, Hunan, 410073, China. E-mail:
{luolailong09, dekeguo, xsluo}@nudt.edu.cn.

Deke Guo is also with the College of Intelligence and Computing, Tianjin
University, Tianjin, 300350, P. R. China.

Richard T. B. Ma is with the School of Computing, National University of
Singapore, Singapore. E-mail: tbma@comp.nus.edu.sg.

Ori Rottenstreich is with the Technion and ORBS Research, Israel. E-mail:
or@cs.technion.ac.il.

TABLE I
COMPARISON WITH EXISTING SURVEYS.

First author # variants Scenarios Optimizations
Broder [30] ≤ 5 Networks Not mentioned

Geravand [31] ≤ 15 Network security Not mentioned
Tarkoma [29] ≤ 25 Distributed system Not mentioned
This survey ≥ 60 General Detailed

databases, BFs have been recently used to resolve biometric
issues [26] [27], and even navigation tasks in the mobile
computing scenarios [28]. Other detailed applications can be
found in several surveys [29] [30] [31].

The major motivation for conducting this survey is two-
fold. First of all, tens of BF variants have been proposed in
recent years. Existing surveys, however, are somehow out-
of-date and do not cover these new proposals. The latest
survey [29], which covers about 25 variants, was published
five years ago. Secondly, the existing surveys [29] [30] [31]
mainly focus on the applications of BF, but lack essential
understandings of the optimization techniques of the proposed
variants. Therefore, they do not provide operational advice to
the users in reality. As shown in Table I, compared with the
existing surveys, our survey covers more BF variants (more
than 60) and introduces general applications rather than focus
on a single scenario. In particular, our survey concentrates on
the optimization techniques employed in these variants.

To this end, we go back to the design philosophy of BF
and thoroughly analyze the existing optimization techniques to
improve BF. In this manner, we expect to provide a guidance
to potential users whenever BFs are within their considera-
tions. Specifically, we survey the existing variants from two
dimensions, i.e., performance and generalization. To improve
the performance, dozens of variants devote themselves to
reducing the false positives and easing the implementation.
Besides, tens of variants generalize the BF framework in
more scenarios by diversifying the input sets and enriching
the output functionalities. In our survey, more than 60 up-to-
date designs are reviewed and qualitatively yet systematically
analyzed. As far as we know, this is the first survey which
systematically summarizes the optimization techniques of BFs.

Despite its space-efficiency, BF still faces some challenges
related to false positives, implementation, elasticity, and func-
tionality to some extent. To ease the potential challenges
and further improve the performance of BF, many interesting
techniques have been proposed and diverse variants have been
designed. In this survey, we present the prior arts of improving
BF from four angles, i.e., techniques to reduce the false
positives, optimizations in a real implementation, dedicated
designs for diverse datasets, and proposals to enable more

ar
X

iv
:1

80
4.

04
77

7v
2

 [
cs

.D
S]

 7
 J

an
 2

01
9

2

Bloom Filters

Reduction of FPs

Implementation

optimization

Functionality

enrichment
Set diversity

Input Output

Cost

Result

Fig. 1. The top view of the optimization angles for Bloom filter.

functionalities. The intrinsic logic of the four angles is shown
in Fig. 1. Basically, from the perspective of performance,
the BF can be improved by reducing the false positives and
optimizing the implementation. Besides, the BF framework
can also be generalized from both the input and output
aspects by representing more types of sets and enabling more
functionalities beyond set membership queries.

Following the above directions, we organize the rest of this
survey as follows. Section II details the design philosophy
of BF and analyzes the challenging issues while Section III
briefly introduces the applications of BFs. Thereafter, we
detail the variants designed for reducing false positives (FPs)
in Section IV, implementation optimizations in Section V,
generalizing the set diversity in Section VI, and functional-
ity enrichment in Section VII. Following that, Section VIII
analyzes and compares all mentioned variants from a quality
perspective. We summarize this survey and enumerate several
open issues about the BF framework in Section IX and then
conclude this survey in Section X.

II. BLOOM FILTERS

In this section, we detail the basic theory of Bloom filter in
terms of its framework, characteristics, and challenges.

A. Framework of Bloom filter

Bloom filter (BF) is a space-efficient probabilistic data
structure that enables constant-time membership queries [1].
Let S={x1, x2, ..., xn} be a set of n elements such that S⊆U,
where U is a universal set. BF represents such n elements using
a bit vector of length m. All of the m bits in the vector are
initialized to 0. Specifically, to insert an element x, a group of
k independent hash functions, {h1, h2, ..., hk}, are employed
to randomly map x into k positions {h1(x), h2(x), ..., hk(x)}
(where hi(x)∈[0,m−1]) in the bit vector. Then the bits in these
k vector positions are all set to 1. To query whether an arbitrary
element is a member of set S, BF maps the element into its bit
vector with the k hash functions and thereafter checks whether
all the k bits are 1s. If any bit at the k hashed positions of
the element is 0, the BF concludes that this element does not
belong to the set; otherwise, the BF indicates that the queried
element belongs to the set S.

Fig. 2 presents an example of BF with m=12 bits and k=3
hash functions to represent the set S={x1, x2, x3}. To insert
these elements, the 3 corresponding bits for each element are
set to 1. When querying, the BF checks the 3 corresponding
bits for the queried element. For x1, the bits at position 0, 3

0 0 0 0 0 0 0 0 0 00 0

Initial state: all bits are set as 0.

1 0 0 1 0 1 1 0 1 11 0

Insertion: inset each element xi into BF by setting BF[hj(xi)]=1.

1 0 0 1 0 1 1 0 1 11 0

Query: if all BF[hj(xi)]=1, return Positive; else return Negative.

0 1 2 3 4 5 6 7 8 9 10 11

x1 x2 x3

x1 x5x4

Return Positive Return Negative Return Positive (false positive)

Fig. 2. An illustrative example of BF with m=12 and k=3 to represent set
S={x1, x2, x3 }. Note that the query of x5 results in a false positive error.

and 6 are all 1, thus BF returns “Positive” for the query. The
membership query of x4 returns “Negative” since the bit at
position 4 is 0. Note that, due to the unavoidable hash conflicts
(generating same hash value for diverse input elements), the
membership query based on BF may incur false positive
errors, i.e., wrongly indicating that a non-member element is a
member of S. In Fig. 2, the query of x5 returns positive because
the bits at position 6, 8, and 11 are all 1, though x5 < S.
Although BF incurs false positives, for many applications
the space savings and constant locating time outweigh this
drawback when the probability of false positive is small.

To realize acceptable false positive rate fr , the parameters
of BF, i.e., the BF length m, the number of employed hash
functions k, and the number of elements in the set n, call for
careful design. Theoretically, the value of false positive rate
can be calculated as:

fr =

[
1 −

(
1 − 1

m

)nk]k
≈

(
1 − e−

kn
m

)k
, (1)

where (1−1/m)nk is approximated by e−kn/m. Consequently, to
realize the minimum value of fr , e−kn/m should be minimized.
With this insight, the optimal value of k is derived as:

kopt =
m
n

ln 2 ≈ 9m
13n

. (2)

Followed by kopt , the resulted false positive rate equals 0.5k ≈
0.6185m/n. That is, with the given k, to maintain a fixed false
positive rate, the value of m should be increased linearly with
the value of n.

However, as reported in [32] and [33], the false positive rate
in real deployments is higher than the value given by Equ. 1.
Theoretically, it has been proven in [34] that Equ. 1 offered
a lower bound of the false positive rate. After formulating
the BF framework as a typical problem of balls and urns, the
authors in [34] present a more accurate false positive rate of
BF as:

fr =
1

mk(n+1)

m∑
i=1

iki!
(
m
i

) {
kn
i

}
, (3)

3

where
{

kn
i

}
= 1

i!
∑i

j=0(−1)j
(i
j

)
jkn is called a Stirling num-

ber of the second kind [35].
Naturally, in the framework of BF, deleting an element is

not permitted. The reason is that resetting the corresponding
1s to 0s directly may lead to false negative results for other
elements. Therefore, Counting BF (CBF) [36] extends the BF
by replacing each bit as a counter with multiple bits. When
inserting an element, the corresponding k bits will be increased
by 1. In contrast, the deletion of an element will be supported
via decreasing the corresponding counters by 1. In this way,
the deletion of an element will not affect the existence of
other elements. It has been proved that 4 bits for a counter
are enough to achieve eligible overflow probability (less than
1.37×10−15×m, where m is the number of counters in CBF).
CBF also supports constant-time membership query. To an-
swer a membership query, the CBF checks the k corresponding
counters. If all of them are non-zero, CBF judges that the
queried element is a member; otherwise, negative.

B. Intrinsic characteristics of Bloom filter

As a probabilistic data structure, BF supports fast mem-
bership query with potential false positive errors. For better
understanding, we highlight the intrinsic characteristics of BF
as follows.

Space-efficient. BF programmes each element in a given set
with a m-bit vector, irrespective of the number of bits in a bit
representation of an element. With each element as input, the
k independent hash functions will select k bits in the bit vector
and set the chosen bits as 1s. The caused space overhead, i.e.,
the value of m, is only proportional to the number of elements
n, and will not be affected by the length of the elements. For
example, given the bpe (bits per element) as 5, i.e., m/n=5,
the optimized k can be derived out as 3 or 4 according to
Equ. 2. Then the bit vector represents the n elements, without
concerning the size of each element.

Constant-time query. By employing BF, querying the
membership of elements in U can be simplified as binary
checking of the corresponding k bits. If all the k bits are 1s,
BF believes the queried element belongs to the set S, otherwise
not. Thus the time-complexity of querying an element is
O(k), which is much faster than trees (O(log n)) and table or
list (O(n)). Note that, when the Bloom filter is implemented
and k will be a constant. Then both the insertion and query
complexity will be O(1).

One-sided error. Intrinsically, BF suffers from unavoidable
false positive errors during a query, but no false negative
errors. Specifically, if BF infers that an element x is not in
the set S, users can exactly trust the judgment. By contrast, if
BF concludes that x belongs to S, users cannot rule out the
probability that x < S.

C. Challenging issues of Bloom filter

BF is proven to be easy-deployable and practical for situa-
tions where space is limited and membership query is required
with allowable errors. However, BF incurs intrinsic challenges.
We uncover the challenges as follows.

False positives. Although the false positive rate can be
controlled by careful setting of the parameters, the misjudged
elements may lead to serious impact on the upper-level ap-
plications. For instance, when routing with BF, the leaked
flows caused by misjudgements may burden or even block
bandwidth-scarce networks (e.g., Wireless Sensor Network,
Internet of Vehicles). To reduce the false positive rate, more
space or more complicated operations are needed. Note that
decreasing the false positive rate by extending the length of
BF incurs marginal effect. That is, with the same increment of
m, the decrement of false positive rate will be more and more
indistinctive. Another strategy is to remedy the misreported
elements (e.g., using whitelist). However, picking up the false
positives from the query results can be challenging for a large-
scale dataset.

Implementation. Despite the feature of easy-deployable,
when BF or its variants are employed, some implementation
ingredients (e.g., memory access, space utilization, computa-
tion overhead) may be the bottleneck of the applications. To
query an element, the accessed bits can be arbitrarily located
in the bit vector, which results in O(k) memory access. For a
standard BF design, roughly only half of the bits are set to 1.
Besides, high-performance hash functions (e.g., RSA, SHA-1,
MD-5) calls for complex computation process which may be
not possible for low-end or light-weight hardware. The above
measurements get even worse when the dataset contains a large
number of elements.

Elasticity. Note that, the parameters (including m, n and
k) are predefined, and the employed hash functions cannot
be changed once selected. The bits are not permitted to be
changed once they have been set as 1s. Consequently, the
BF can only successfully represent a static set. Once been
implemented, the number of bits can be neither extended nor
shrunk adaptively. Besides, the internal logical relationship
(e.g., distance, similarity, precedence, etc) between elements
will be annihilated. For example, when representing a mul-
ticast tree, the BF only programmes the nodes into the bit
vector. Therefore, the generated BF cannot tell the children or
father of any node in the multicast tree directly.

Functionality. The original BF was designed to support fast
membership query and only offer two operations to the users,
i.e., insertion and query. More complicated operations (e.g.,
deletion and decoding) or other types of queries (e.g., multi-
plicity) are not enabled. When an element x is removed from
S, the bits BF[h1(x)], · · · , BF[hk(x)] cannot be reversed as 0s.
The k 1s may also represent the membership of other elements,
thus changing them from 1s to 0s may lead to false negatives
of other elements. Moreover, BF fails to tell the multiplicity of
an element in a multiset (a set in which elements are permitted
to have multiple replicas), and cannot report which set or sets
an element belongs to, when representing multiple sets with
a shared bit vector simultaneously. To realize more operations
and enable more types of queries, the BF framework calls for
additional design.

III. APPLICATIONS OF BLOOM FILTERS

Before detailing the optimizations and generalizations, we
first summarize the applications of BFs in the area of com-

4

munication and networking. Usually, BFs are employed to
represent a given set of elements and support membership
queries. We focus on the extensive applications of BFs in
recent years since previous applications have been covered
by existing surveys.

A. Content caching

BFs are naturally helpful for caches and storages via rep-
resenting the contents to cache and supporting constant-time
membership queries.

Consider a generic system composed of a user, a main
memory containing all the data, and a cache with a subset of
the data. Usually, BFs are employed to represent the content
stored in the cache. The access of a specific element x is first
directed to the BFs. If the BFs indicate that x is an element in
the cache, the access tries to read the element from the cache.
Due to the potential false positive errors, x may be not found in
the cache, then the access will be routed to the main memory.
If BFs judges that x is not stored by the cache, the request
will fetch x from the main memory directly without accessing
the cache. In this manner, BFs eliminate unnecessary cache
reads [9].

In reality, Akamai establishes BFs in its servers for efficient
cache accesses [14]. Extensively, Akamai records the accessed
elements with BFs to select the elements which should be
pushed into the cache. As a consequence, the cache hit-
rate is guaranteed [14]. Moreover, in a computing system
with multiple cores, BFs are utilized to reduce the cache
coherence cost [37]. Both local caches and the shared bus
system have their BFs. With the BFs in the cache and the
system interconnections, the filter mechanism screens out
the unnecessary snooping messages that would be otherwise
handled by each core. The BF for the bus system further
reduces system-wide data broadcasts. As for web caching, BF
is redesigned to represent cache content of each Internet proxy
in a compact form [10]. Thereafter, the BFs are shared with
other proxies in the web caching system. To further decrease
the inter-proxy overhead, a BF only records the portion of a
proxy’s cache content that will be of interest to other proxies.

In the field of wireless communications, BFs are employed
to speed up the cache lookups [38] and update the cache
mechanism [39]. On-demand routing protocols for wireless ad
hoc networks cache the discovered paths locally for subsequent
routing operations. In this case, BF provides summaries of
the cache content for testing cache membership and thereby
averting negative lookups and easing the computational burden
[38]. In large wireless networks, each node caches the public
key of some nodes in the network. The cache space in each
node is limited and is capable of storing a few public keys
only. By representing these public keys as BF vectors, more
keys can be stored and queried within constant time [39].

B. Packet routing and forwarding

BFs are space-efficient so that they can be embedded in the
header of a packet or implemented on chip to improve both
wired and wireless networks.

1) BFs in wired networking: In traditional wired networks,
BFs are widely used to speed-up IP lookups, enable multicast,
support named data forwarding, etc.

High-speed IP address lookup is essential to achieve wire-
speed packet forwarding in Internet routers [40]. High-
performance hardware such as ternary content addressable
memory (TCAM) has been adopted to solve the IP lookups.
However, this hardware requires vast investment and incurs
non-trivial power consumption. Alternatively, on-chip BFs are
utilized to record the IP lengths thereby enabling fast longest
IP prefix matching with ordinary memories [40]. Recently,
the on-chip BF is further improved. The primary idea is to
explore the discrepancy in length distribution between the
set of patterns and the set of prefixes of input text that are
examined against the patterns [41]. Specifically, the stored
prefixes are grouped according to their lengths and mapped
into the BF vectors with variable numbers of hash functions.

The in-packet BF naturally enables multicast routing by
recording the nodes in the pre-calculated multicast tree [42].
For any node in the multicast tree, it checks the membership
of its neighbours against the BF in the incoming packet.
Then the node forwards the packet to the neighbours which
pass the membership test. Most-recently, endeavours have
been made to improve the BF-enabled multicast routing in
terms of scalability [5] [3] [43], loop mitigation [4], and flow
leakage [3] [43]. Due to the limited bits in the header and
the large number of nodes in the multicast tree, the in-packet
BF incurs scalability to some extent. A possible solution is
to split the multicast tree into multiple parts and represent
them separately. Nikolavskiy et al. propose to represent the
multicast tree as multiple trees with their splitting algorithms
[5]. By contrast, as stated in [43], the multicast tree can
also be divided hierarchically so that nodes in each stage are
represented by a BF. In the destination-oriented multicast, the
in-packet BFs records the destination IP addresses instead of
the multicast tree. The multicast routing is accomplished with
the collaboration of the in-packet BFs and the local routers.
In this framework, the forwarding loop can be hopefully
eliminated if specific conditions are satisfied. More details can
be found in [4].

In the above multicast routing strategies, the false positive
errors of BFs lead to flow leakage in the network. Tapolcai et
al. reduce the false positive errors by dividing the multicast tree
as multiple layers and adjusting the BF length according to the
number of nodes in each layer [43]. For in-switch BF based
multicast routing, Li et al. alter the number of hash functions
for each multicast group according to the probability that the
switch is a node in that multicast tree [3]. These techniques
are detailed in Section IV.

Moreover, in named data networking (NDN), packets for-
warding decisions are driven by content names instead of IP
addresses [2] [44] [45]. BFs are natively helpful for the longest
prefix matching of content names in NDN. The NameFilter
[44] leverages a two-stage BF-based scheme for NDN name
lookups. The first stage determines the length of a name prefix,
and the second stage searches the prefix in a narrowed group of
BFs based on the results from the first stage. Instead of using
the two-stage BFs, Quan et al. propose to split the name prefix

5

into B-prefix followed by T-suffix [45]. B-prefix is matched by
BFs whereas T-suffix is processed by the small-scale trie. The
length of B-prefixes (and T-suffixes) is dynamically throttled
based on their popularity in order to accelerate the lookup.
Thus, they achieve a lower false positive rate than NameFilter.

2) BFs in wireless networking: In wireless networking, BFs
are mainly utilized to represent the routing table and support
fast lookups in each node.

In mobile ad hoc networks (MANETs), the nodes are free
to move independently in any direction, and will therefore
change their links to other devices. The self-organizing and
infrastructure-less features disable the traditional protocols in
MANETs. HRAN protocol [46] [47] proposes to store and
spread topology information with BFs among the nodes to
downsize the routing messages in the network. HRAN merges
BFs to discover and maintain routes, rather than broadcast
topology information when the network state changes. In
the scenario of vehicular ad hoc networks (VANETs), BFs
are applied to maintain and disseminate 2-hop neighborship
information among the nodes. The using of BFs reduces the
length of the beacon messages, thereby keeping channel load
and packet collision probability considerably low [48]. Such
a design enables various applications on top of neighborship
information, including broadcast, routing, clustering, etc.

In wireless sensor networks (WSNs), each node keeps a
precise list of events that may be found through each neighbor
[49]. Event flooding-based routing protocols are enabled by
querying these events. Here, BFs are used to represent these
events and support fast queries [49]. Hebden and Pearce
propose to partition the sensors into a set of clusters where
each node in a cluster can only exchange data with its cluster
head [50]. Cluster heads process member data and/or reports
from other cluster heads, make routing decisions and forward
the result to another cluster head or the sink node. A hierarchy
of BFs were used by the sink, cluster head ports, and each
cluster head itself to filter out unpromising transmissions
[50]. Particularly, in tree-structured data collection WSNs,
packets are routed towards a sink node [51]. Each node in the
collection tree stores the addresses of its direct and indirect
child nodes in its local BF. With such setting, the node’s local
BF identifies routes from the sink node to any other nodes.

Especially, in wireless NDN, BFs are applied to improve
the gossip algorithm [2]. Gossip protocols guarantee robust
data dissemination at the cost of a more aggressive bandwidth
usage. To reduce the communication overhead, Angius et al.
propose to record the pre-calculated path with an in-packet
BF [2]. As a result, unnecessary transmissions are avoided.
We note that BFs are extensively utilized to navigate vehicles
and mobile robots in the environment of wireless sensors
[28]. The wireless sensors provide necessary information for
the navigation. Thereafter, the derived global routing table is
represented with a BF in each sensor. By querying the routing
table, a vehicle can be navigated to any destination.

C. Privacy preservation
BFs naturally anonymize the elements with the support of

membership queries. Therefore, they are employed to preserve
data privacy in various scenarios.

Nowadays, location-based services (LBSs) bring us un-
precedented convenience, as well as potential challenge to
location privacy. Calderoni et al. divide the geographical areas
into different classes and represent them with BFs [17]. In
this way, they hide the actual locations of users with the
support of a fast location query. In cognitive radio networks,
geo-location database-driven methods are proposed to identify
vacant frequency bands for the secondary users without harm
the primary users [52] [53]. In these methods, the secondary
users are equipped with GPS devices to query the geo-location
database. Then the database returns the available channels
to the secondary users. To preserve the location privacy of
secondary users, Grissa et al. propose to represent the locations
with probabilistic data structures [52] [53].

Additionally, biometric data (iris, face, handshape, finger-
print, etc) is widely adopted in authentication mechanisms.
However, any privacy leakage of these data may lead to severe
security crises. Consequently, researchers suggest representing
these biometric data with BFs and enable the authentica-
tion mechanisms based on membership queries. Specifically,
Barrero et al. code the facial biometric templates with BFs
[27]. Rathgeb et al. represent iris biometric template with
BFs [54]. Hermans et al. further employ non-linear and non-
invertible hash functions to map the biometric data to ensure
the unlinkability of BF based representations [26].

In the context of record linkage analysis, items are searched
and matched to identify records that refer to the same entity
across different data sources. When data to be matched is
deemed to be sensitive or private, the privacy preservation
problem arises [55]. Karapiperis and Verykio anonymize the
records in the database by programming them as BFs and
thereby enabling approximate matching [55].

Mobile social networks (MSNs) allow users to discover
and interact with existing and potential friends to exchange
information on a subject of common interest [56]. The MSNs
are helpful for chatting, file-sharing, and web page pre-
fetching applications. However, security and privacy issues in
these applications remain severe. Oriero et al. employ BFs
to represent users’ interested topics and thereafter share these
BFs among trusted friends [56]. The using of BFs leads to
less communication and storage overhead. Most importantly,
the actual interested topics are anonymized for privacy.

In particular, call detail records (CDRs) that are generated
by users of mobile devices and collected by telecom operators
could potentially be used for the socio-economic development
and well-being of populations [57]. Therefore, it is necessary
to mine CDRs while preserving the privacy of the individuals
contained in this data. To this end, Alaggan et al. sanitize
CDRs data with BFs and thus preserve users’ privacy [57]. The
idea is to anonymize the users detected by cellular antennas
with BFs. These BFs will be exchanged for further analysis.

Note that, several recent surveys and tutorials, which target
at the privacy issues in diverse scenarios, also mention the us-
age of BFs explicitly [58] [59] [60] [61] [62]. In information-
centric networking, BFs enable the DoS-resistant self-routing
mechanisms, name obfuscation, and access control [58]. The
recent tutorial [59] systematically reveals the shortcomings of
anonymization with hash functions, yet fairly highlights that

6

TABLE II
THE PURPOSES AND GAINS OF USING BFS IN DIVERSE SCENARIOS.

Scenarios Purposes Gains Scenarios Purposes Gains
Caching [9] Content summarization CQ, AR Akamai [14] Content summarization CQ, AR

Wireless ad hoc [38] Content summarization CQ, AR Wireless net. [39] Content summarization CQ, AR
IP lookup [40][41] Representing routing table CQ, SS Multicast [42] Representing multicast tree CQ, SS
MANETs [46] [47] Representing topology info. CQ, SS NDN [44] [45] Representing content names CQ, SS
Wireless NDN [2] Data dissemination CQ, SS WSNs [49] Routing packets CQ, SS

Cog. rad. net. [52] [53] Location anonymization CQ, CA LBSs [17] Location anonymization CQ, CA
Biometrics [27] [26] Biometrics info. anonymization CQ, CA MSNs [56] Interested topics anonymization CQ, CA
Record linkage [55] Entry anonymization CQ, CA CDRs [57] Record anonymization CQ, CA

Smart grid [63] Representing CRL list CQ, SS

BF is a popular choice in designing privacy-friendly solutions.
In the survey which aims at the security and privacy of U.S.
National Science Foundation’s future internet architectures, M.
Ambrosin et. al emphasize the BF-based method to defeat DoS
attacks [60]. Especially, in cryptocurrency such as Bitcoin,
BFs are used to secure the wallet by letting the simplified
payment verification clients only request matching transactions
and merkle blocks from full nodes [61] [62].

D. Network security
The survey [31] published in 2013 has systematically sum-

marised the application of BFs and their variants to address
security problems in different types of networks. Specifically,
in wireless networks, BFs are employed for authentication,
anonymity, firewalling, tracebacking, misbehavior detection,
replay attack detection, and node replication detection. In
wired networks, various uses of BFs are found in the design of
different security mechanisms, including string matching, IP
tracebacking, spam filtering and e-mail protection, DoS and
DDoS attacks detection, and anomaly detection. Herein, we
briefly introduce a recent BF usage in the smart grid.

In smart grid advanced metering infrastructure (AMI) net-
works, to revoke a certificate, the certificate revocation lists
(CRLs) are maintained for each smart meters [63]. However,
both maintenance and access of these CRLs are challenging
due to the large geographic deployment and scalability of the
AMI networks. Therefore, Rabieh et al. propose BF based
revocation schemes for AMI networks that can enable the
meters to identify and nullify the false positives [63]. Basically,
one BF records the serial numbers of the revoked certificates
in the AMI network and an additional BF represents the valid
certificates. To fix the potential false positives of BFs, Merkle
tree is established to verify the query results from BFs.

We find more extensive and novel applications in data
dissemination in WSN [64], application discovery in classifi-
cation [65], device-to-device communications [66], etc. From
the length concern, we omit the details here. As Mitzenmacher
explains that: whenever you have a set or list, and space is an
issue, a BF may be a useful alternative [30]. Next, we detail
the existing optimization techniques of BFs with the following
four sections by analyzing each related variant. The readers
can also continue to Section VIII directly for comprehensive
analysis and comparison for all the covered BF variants.

E. Gains of using BFs
From a general perspective, we highlight the potential gains

of using BFs in these applications as follows.

Constant-time query (CQ). As stated in Section II-B,
the time-complexity of membership query of BF is constant,
which is much faster than trees (O(log n)) and table or list
(O(n)). This feature leads to higher query throughput.

Space saving (SS). BF represents the information of each
element with the bits in its vector, instead of storing the content
of the element like other data structures. The required space
cost is determined by the target false positive rate and the
number of elements to represent while being independent to
the size of each element. BFs introduce space efficiency and
space constant features into their applications. Therefore, BFs
are both storage-friendly and communication-friendly, so that
on-chip and in-packet implementations are often possible.

Access refinement (AR). BFs summarize elements as a bit
(or cell) vector and filter unnecessary accesses of the elements.
Intuitively, the access requests are directed to the BFs first. If
BFs indicate the requested elements are stored by the memory,
the requests will further check the memory and fetch the
requested elements. Otherwise, the requested elements are
beyond this set and the access will be denied accordingly. This
refinement is extremely helpful in the scenarios of caching and
storage systems.

Content anonymization (CA). The actual content of each
element is programmed as 1s in the vectors by BFs. Therefore,
BFs naturally anonymize the elements with the support of
membership queries. The applications are able to hide the real
content while releasing the BFs for membership queries. This
ability is meaningful to privacy preservation and data security.

Especially, Table. II summarizes the major purposes and
gains of using BFs in the aforementioned scenarios. All these
systems represent elements with BF and benefit from constant-
time membership query for sure. Additionally, for diverse
design purpose, the gains of using BFs may be different.
For content caching, BF works as content summarization and
refines unnecessary access of the cache memory. For packet
routing and forwarding, BFs enable the routing strategies and
provide space efficiency so that they can be embedded into
packet headers. For privacy preservation, BFs anonymize data
and support fast queries simultaneously. Lastly, in our example
of using BFs for network security, BFs save space for the
representation of CRLs.

IV. REDUCTION OF FALSE POSITIVES

Before detailing the related variants, we formulate the false
positive proportion (FPP) and false positive rate (FPR) as
follows. FPP is an empirical concept that calculates the ratio
between the occurrence of false positive errors and the total

7

U

T
S

(a) False positive rate.

U

T QS

(b) False positive proportion.

Fig. 3. The false positive rate and false positive proportion in Bloom filters,
shown by the filled areas.

query times. In contrast, FPR is a theoretical term used to
quantify the probability of any query result incurs a false
positive error. Usually, FPP can be employed as the point
estimation of FPR. FPR is a fixed value and determined by
the BF framework itself, while FPP is variable and fluctuates
around the value of FPR. As shown in Fig. 3, let U be
the universal set, S denote the set represented by a BF, Q
denote the elements to be queried and T record the elements
which return positive for the membership query, respectively.
Then the elements which lead to false positive errors can be
derived as F=T−S. With the above notations, the false positive
rate for all the query of elements in U can be calculated as
fr=|F |/|U |=|T−S |/|U |. Pair-wisely, the false positive propor-
tion for the query of elements in Q is fp=|(T∩Q)−(S∩Q)|/|Q |.

Therefore, to reduce the number of false positives in an
instance of BF, we have methods to lower FPR and techniques
to control FPP. Reducing FPR means to decrease T and thus F
directly. A brute-force solution to reduce FPR is to increase the
number of bits or cells in the vector, with the penalty of more
space overhead. But this method doesn’t work in space-scarce
situations. Reducing FPR is more general to be extended to
diverse scenarios, while decreasing FPP is more specific and
case-dependent. For example, for specific instance of BF with
given Q, it is possible to select hash functions which lead to
lower FPP. Both the two design philosophies are reasonable.

The intrinsic reason of false positive is that BF arbitrates
the membership of an element based on the presence or non-
presence of the corresponding 1s, without concerning which
element (or elements) fills these hash bits. The bits in the
vector, however, may suffer from hash collisions, which may
finally cause false positive query results. One may reduce false
positives from the following aspects. First, prior knowledge
can be helpful when setting the parameters of BF to reduce
FPs. Second, the one-sided error property can also identify
FPs. Given a main BF and multiple attached BFs, the negative
query results in the attached BFs can prone some false positive
results of the main BF. Third, if the non-zero bits are reset as
0s, the potential false positive errors will not happen. But this
will introduce the possibility of false negative errors instead.
Fourth, the hash functions are optional and one may select the
hash functions which lead to the least false positives. At last,
if the elements are inserted differentially, the hash collisions
will not impose false positives to the query result. The details
are shown in the following five subsections, respectively.

A. Reducing FP with prior knowledge

Note that, some prior knowledge is helpful to identify some
false positives of BF queries and accordingly decrease the
resulted FPs. For example, if the elements to be queried (Q)
are known as prior knowledge, it is possible for the BF users
to select the hash functions which yield the least FPs. A
typical scenario where Q is known is multicast routing based
on BF. Actually, BF enables both in-switch routing and in-
packet routing schemes for multicast. For in-switch routing,
each interface in the switch uses a BF to maintain the multicast
groups it joins. By contrast, in-packet routing embeds a BF
in the header of each packet to encode the multicast tree
information. The false positives will result in traffic leakage via
leading flows to additional nodes which are not in the multicast
tree. Multi-class BF [3] and False-positive-free multistage BF
[43] are proposed to reduce the FPs of in-switch and in-packet
BFs, respectively. Additionally, in the case of web caching,
Rottenstreich et al. uncover the Bloom paradox and suggest
to insert and query elements selectively based on their priori
membership probability. Moreover, the Optihash [67] scheme
selects the hash functions which generate the lowest FPP
in the context of PSIRP (Publish/Subscribe Internet Routing
Parading) systems.

Multi-class BF. For in-switch multicast routing, Li et al.
point out that, the presence probability of a multicast group
on a certain switch interface can be evaluated via joint
consideration of the multicast group size and the data center
topology [3]. With this insight, they propose Multi-class BF, a
variant of BF to minimize the traffic leakage [3]. They observe
that an element with a higher presence probability indicates a
lower impact of its false probability on the expected number of
falsely matched elements. Therefore, Multi-class BF proposes
to employ different number of hash functions for each element
to minimize the expected number of falsely matched elements.
Specifically, in a switch interface, the groups with higher
presence probability are encoded with fewer hash functions,
while the groups with lower presence probability should
be programmed with more hash functions. In this way, the
multicast groups with lower presence probability must check
more bits when querying their memberships. In other words,
Multi-class BF removes some elements which may lead to
false positives with high probability from set T , by setting
stricter conditions to pass the queries.

False-positive-free multistage BF (FPF-MBF). As for in-
packet multicast routing, Tapolcai et al. devote to solving the
scalable forwarding problem, especially the scalability of the
multicast trees [43]. To this end, the multistage BFs [68] [69]
are employed to record the links in each stage of the multicast
tree. A multicast tree of v hops is represented by v BFs, and
the vth BF contains only the links residing at v hop-distance
from the source node. When leaving the source, the multicast
in-packet BF header consists of v stage filters, which then
shrinks as the packet travels along the tree. To this end, each
stage BF consists of two parts, i.e., the first γ bits to indicate
its stage, and the later b bits to record the memberships of
links in this stage.

Literature [43] proposes to build FPF-MBF, based on the

8

prior knowledge of the number of elements to be included
(ρ) and the number of elements to be excluded from the filter
(ζ). In effect, FPF-MBF reduces the generated false positive
proportion from two aspects. On one hand, unlike the tradi-
tional in-packet BFs which record all links in a multicast tree,
each stage filter only encodes the links in the corresponding
stage. On the other hand, given the value of ρ and ζ , the
length of each stage filter is adjusted to further decrease the
false positive proportion. Essentially, the design philosophy of
FPF-MBF is to reach the goal that (T−S)∩(Q−S)=∅, where
Q is the known set of elements to be queried. As a result, all
queried elements will not be matched false-positively, and it
performs like with a false positive proportion of 0.

Bloom paradox. We consider a generic system composed
of a user, a main memory containing all the data, and a cache
with a subset of the data. A BF is employed to record the
data in the cache. When the user reads a piece of data, he
checks the BF first. If the query result is negative, the user
will access the main memory directly; otherwise, it goes to
the cache instead. However, the positive results can be true
or false. For the false positives, the user still needs to access
the main memory. Let M , C and T be the elements in the
main memory, the elements in the cache, and the elements in
main memory that lead to positive result when querying the
BF, respectively. We have |T |=|C |+ fp∗(|M |−|C |), where fp is
the false positive proportion of the BF. The probability that a
positive query result is false positive can be evaluated as:

|T |−|C |
|T | =

fp∗(|M |−|C |)
|C |+ fp∗(|M |−|C |)

. (4)

Given |M |=1010, |C |=104 and fp=10−3, the probability that a
positive query result is false positive is almost 1−10−3. That is,
among the positive results of the BF for the various elements,
most of them are false positives. This phenomena is called
Bloom paradox [9].

With the prior knowledge, i.e., the value of |M |, |C | and
the parameter setting of BF, one may calculate the condition
of Bloom paradox. Rottenstreich et al. suggest selective BF
insertion, as well as selective BF query [9]. When inserting
(querying) an element, if the element satisfies the Bloom
paradox condition, it will not be inserted (queried). Namely, in
the scenario of Bloom paradox, the users should not trust the
BF such that they will survive the impact of false positives.

Optihash. Optihash [67] is designed to extend the BF
in the context of PSIRP (Publish/Subscribe Internet Routing
Parading) which is a new redesign of the whole Internet
architecture as far as the physical layer [70]. The in-packet
BFs are employed as encoding to identify routes and links
between nodes. The optihash is a bit array w which consists
of three parts: a bit array v and two integer parameters α
and β. Only one hash function h is initialized to map each
element into the bit array v. As depicted in Fig. 4, S is a set
of elements (S may be a multiset) encoded in the optihash,
the hash function h maps the elements in S to a generally
smaller set R. The inverse h−1 maps the set of hashes R to a
set of elements which is bigger than S. Let Q denote the set of
elements to be queried, then the set of false-positive elements
F can be derived as F=(h−1(R) ∩Q)−S.

Q

h-1(R)

S

R

FF

Fig. 4. The theory of Optihash [67]. Its basic insight is to choose a set of
transformed hash values which leads to the smallest volume of F .

Optihash proposes to generate a family of hash values
according to the value of α, β and the employed hash function
h. Generally, there will be 2mα2mβ new sets of hash values,
where mα and mβ are the number of bits to store α and β,
respectively. Consider that all elements in the set Q are known,
the user can employ the set of hash values which lead to
the smallest volume of F. In this particular manner, optihash
decreases the number of elements which cause false positives,
at the cost of complicated computation.

B. Reducing FP with the one-sided error

As stated in the subsection II-B, BF suffers from unavoid-
able false positive errors during query, but no false negative
errors. Namely, the conclusion drawn by BF that an element
x is not a member of S is 100% correct. This one-sided
error characteristic, indeed, is helpful to identify some false
positives from the query results [40] [71] [72] [73].

For example, it has been recently studied that the search
performance of trie-based algorithms can be significantly
improved by adding a BF [40] to record the nodes in the trie.
In such algorithms, the number of trie accesses can be greatly
reduced because BF can determine whether a node exists in
a trie without actually accessing the trie. However, the false
positives of BF bring unnecessary trie accesses. Fortunately,
Mun et al. notice that arbitrary node (except the source node)
in a trie can only exist if its ancestors are also in the trie [71].
Therefore, they propose to use more BF queries to reduce the
false positive proportion of a BF in trie-based algorithms.

When the BF returns positive upon querying an element
y, to check it is a false positive or not, the ancestor node of
y, i.e., node z will also be queried. If the BF indicates that
z is not a node of the trie, obviously y is a false positive
node. By contrast, if the query result of z is also positive, y
is a trie node with higher probability. But z may also be a
false positive node. To further test the trueness of the positive
result for z, one may query the ancestor of z additionally. For
any set whose elements share a strong internal dependency, the
same strategy can be introduced to recognize unnecessary false
positives. As for more general sets, the following three variants
of BF are proposed base on the one-sided error characteristic.

Cross-checking BF. Lim et al. propose a new architecture
to reduce the false positive proportion of BF [72]. The ar-
chitecture consists of a main BF which is programmed for

9

A B

T(S)-(T(A) T(B))

T(A)-T(S) T(B)-T(S)

T(A) T(B)

T(S)

U

(T(A)-A) ꓵ T(S) (T(B)-B) ꓵ T(S)

S

∩

Fig. 5. Set diagram with T (A), T (B) and T (S) for cross-checking BFs and
the main BF, with the assumption that T (A) ∩T (B) = ∅ [72].

all the elements in the set S, and multiple cross-checking BFs
which are responsible to record the elements in several disjoint
subsets of S. As depicted in Fig. 5, consider the set S as
the union of two disjoint subsets A and B, i.e., S=A∪B and
A∩B=∅. In this case, the BF for the entire set S is the main
BF, while the BFs for the set A and B are cross-checking BFs
to check the false positives of the main BF. A positive result of
the main BF for element x will be recognized as false positive,
if both of the cross-checking BFs return negative query results
for x. The underlying basis is that the negative query results of
BF are 100% correct, due to the one-sided error characteristic.

Theoretically, as shown in Fig. 5, the main BF and the
two cross-checking BFs all suffer from false positives. Let
T(S), T(A), and T(B) denote the set of elements which return
a positive result when querying upon the main BF and the
two cross-checking BFs, respectively. By querying the cross-
checking BFs, the elements in T(S)−(T(A)∪T(B)) will be
identified as false positives. Therefore, with the help of cross-
checking BFs, the global false positive rate will be decreased
from |T (S)−S |

|U | to:

|((T(A)−A) ∩ T(S)) ∪ ((T(B)−B) ∩ T(S))|
|U | . (5)

The specific value of the false positive rate is further given
in [72]. Undoubtedly, the cross-checking BFs requires more
queries and more space overhead.

Complement BF. When BF is associated with an off-chip
hash table, the hash table can verify the positive results of the
BF for S. To reduce the access frequency of the hash table,
complement BF [73] is introduced. Unlike the cross-checking
BFs which split the set S as multiple disjoint subsets, Lim et al.
propose to divide the union set U as two independent subsets,
i.e., S and its complement set SC [73]. Typically, a main BF
is programmed according to the elements in S, and another
BF (complement BF) is initialized to record the elements in
the set SC . The complement BF helps to identify some false
positive errors since the elements not in SC must belong to S.

With this insight, Table III presents the truth table of a
query with joint consideration of the main BF and complement
BF. Note that, the two BFs will never return negative query
result simultaneously, since U=S∪SC and any element not
in S must belong to SC . Only if both the main BF and the
complement BF return positive when querying an element x,
the membership of x will be further checked by the off-chip

TABLE III
TRUTH TABLE OF QUERY WITH BOTH MAIN BF AND COMPLEMENT BF.

Main BF for S 1 0 1 0
Complement BF 0 1 1 0
Conclusion x ∈ S x < S Hash table Not exist

hash table. Consequently, the frequency of hash table access
can be significantly decreased from T(S) to T(S)∩T(SC). It
has been proven that the probability of both BFs producing
positives converges the summation of the false positive rate of
each BF [73]. However, in the case of large-scale complement
set SC , the complement BF may cost vast on-chip memory.

Yes-no BF. Unlike the previous proposals which remove
the elements from the set T directly, yes-no BF keeps track
not only the elements belonging to the set S, but also the
elements which generate false positives [74]. The yes-no BF
is composed of two parts, i.e., the yes-filter which encodes
the set elements, and the no-filter which stores the elements
which generate false-positives. The m bits in yes-no BF are
consequently split into two parts, p bits for the yes-filter, and
r×q bits for the r no-filters each of q bits. The yes-filter
performs just like a normal BF and record the membership
of elements in S. In contrast, the no-filter for the set S tracks
the elements which cause false-positives in the yes-filter. Note
that, an element can only be stored in one of the r no-filters.
When querying, the yes-no BF will conclude that an element
x belongs to S, if and only if the corresponding bits in the
yes-filter are all 1s and none of the r no-filters indicates x is
a false positive. In Yes-no BF, the positive results given by
the yes-filter are further tested by the no-filters. Consequently,
the number of elements in T can be decreased, but at the
risk of false negatives. To reduce the potential false negatives,
additional queries must be conducted.

C. Reducing FP via bit resetting

Intrinsically, the false positives appear because BF checks
the k 1s without distinguishing the elements which are hashed
into these positions. As a result, an element can be false-
positively matched because its corresponding bits are set to
1s by other elements. Thus, several proposals try to reduce
the false positive errors by modulating the bit vector directly.
Note that the retouched BF [75] and generalized BF [76] are
designed for standard BF, while multi-partitioned counting BF
[77] are proposed to reduce the false positive rate of CBF [36].

Retouched BF. Retouched BF is proposed as an extension
to make the BF more flexible by permitting the removal of
selected false positives at the expense of generating random
false negatives [75]. To do so, the selected bits are cleared by
resetting from 1 to 0. The authors present two strategies for the
clearing. The randomized bit clearing resets a certain number
of bits from the bit vector randomly. Theoretical analysis
demonstrates that, after executing the randomised bit clearing
process, the increment of false negatives and the decrement of
false positives are very close [75].

By contrast, another strategy called selective clearing is
designed to reset the bits which trigger false positives. This
can be realized since the system can learn a portion of
false positives through previous queries. Four algorithms are

10

x

1 0 1 0 1 0 0 0

0 1 2 3 4 5 6 7

Level 1

Level 2 0 0 0

8 9 10

Remainder

x

1 0 1 0 1 0 0 1

0 1 2 3 4 5 6 7

Level 1

Level 2 0 1 1

8 9 10

Remainder

y

0

11

0 0

12 13

Level 3

Fig. 6. Hierarchical structure in a 16-bit word of MPCBF [77]. Initially,
the number of hash functions k=3, and level 1 has 8 bits which have been
initialized as 0.

proposed to trade-off the false positives and false negatives.
When removing an element, there are k candidate bits to
reset. Thereafter, Retouched BF have: 1) the random selection
algorithm randomly selects a bit amongst the k candidates;
2) the minimum FN selection resets the bit which generates
the least increment of false negatives; 3) the maximum FP
selection chooses the bit which enables the maximum false
positive decrement; and 4) the ratio selection prefers resetting
the bit which minimizes the generated false negatives while
maximizing the false positives removed. With the above strate-
gies, Retouched BF reduces FPR at the cost of false negatives.

Generalized BF. Generalized BF [76] employs two groups
of hash functions, i.e., {g1, · · · gk0 } and {h1, · · · hk1 }. When
inserting an element into the bit vector, the k0 bits mapped
by the hash functions {g1, · · · gk0 } are reset as 0, while the
k1 bits derived by the hash functions {h1, · · · hk1 } are set to 1
(break the tie by keeping reset). When querying an element
x, generalized BF checks whether the bits corresponding
to the positions {g1(x), · · · gk0 (x)} are all 0 and the bits
{h1(x), · · · hk1 (x)} are all 1. If at least one bit is inverted,
generalized BF returns a negative query result; otherwise, it
returns a positive result.

False positive will happen if the {g1(x), · · · gk0 (x)} are all
0, and if the bits {h1(x), · · · hk1 (x)} are all 1, due to the
insertion of other elements in the set S. Moreover, it is possible
that an element x∈S may not be reported as a member of
S, resulting in a false negative. False negative will occur
if at least one of the {g1(x), · · · gk0 (x)} bits is set as 1 by
the k1 hash functions for another element y, or one of the
{h1(x), · · · hk1 (x)} bits are reset as 0 by the k0 hash functions.
Certainly, generalized BF offers rigid constraints to pass the
membership query, thus reducing the false positive rate. But
it calls for reconsideration when put generalized BF into real
use, due to the non-negligible false negatives.

Multi-partitioned Counting BF (MPCBF). CBF [36]
extends BF by allowing insertions and deletions to support
dynamic datasets. To reduce the number of memory accesses,
MPCBF divides the m cells into l words so that each word
can be fetched in a single memory access [77]. To insert an
element x, an extra hash function he is employed to map
x into one of the l words. Thereafter, the k hash functions
{h1(x), · · · , hk(x)} map x into k cells in the selected word.
This strategy, however, leads to more false positive errors. To
reduce the false positives, MPCBF suggests to reconstruct each
word as a hierarchical structure.

As depicted in Fig. 6, MPCBF allocates the bits in each
word as multiple levels. The basic principle for constructing

the hierarchical structure is as follows. Whenever an element
is inserted into the word, k bits must be set from 0 to 1. And
whenever a bit is set from 0 to 1, an empty bit should be
added into the next level and initialized as 0. This is realized
by using a function popcount(i) which computes the number
of ones before position i at the hierarchy level that bit i belongs
to. Note that, only level 1 is utilized for membership query.
Therefore, the membership in this word can be recorded with
8 bits, instead of 4 cells (suppose that each cell in CBF has
4 bits). As a result, the false positive rate can be significantly
decreased at the cost of a little more computation overhead.

D. Reducing FP with selected hash functions

False positive errors are not avoidable for BF and its
variants, due to the potential hash collisions. Typically, the
false positive rate of BF is proportional to the number of 1s
in the bit vector. Based on this observation, endeavours have
been made to select proper hash functions for the elements. A
typical work is to introduce “the power of two choices” into
the design of BF [78]. The basic idea is to employ two (or
more) groups of hash functions, and the insertion will utilize
the group of hash functions which increase the least 1s in the
bit vector. During membership query, if the element passes
the checking of any group of hash functions, the query result
will be positive; otherwise, negative. The cost is more hash
computation and lookups.

Moreover, a partitioned hashing scheme [79] is then pro-
posed to further optimize the hash function selection, based
on the balls and bins theory. Before insertion, the elements in
set S is divided into g independent groups by hashing their
keys. Given H hash functions, each group of the elements
will be mapped into the bit vector t times for test, where
k≤t≤

(k
H

)
. In each test, every element will be hashed k times.

Thereafter, the set of hash functions which increase the least
1s in the bit vector will be selected. Then, the group of
elements will be mapped into the vector with the selected
k hash functions. Note that, the hash functions intra a group
are independent, but can be dependent inter groups. That is, a
hash function is allowed to be shared among multiple groups
of hash functions. A greedy algorithm is designed to speed
up the selection process. The conducted experiments indicate
that the partitioned hashing scheme results in as much as a
ten-fold increase in accuracy over standard BF.

Selecting the hash functions is a computation-intensive task,
especially when the number of candidate hash functions is
large, there are in total

(k
H

)
possible combinations. Besides,

for dynamic datasets, this kind of methods call for re-selection
of the hash functions when the dataset changes. Therefore,
selecting k hash functions from many candidates suits for the
situations where the query accuracy must be guaranteed, while
the computation is not an issue and the dataset is static.

Most recently, Kiss et al. propose EGH filter to replace
the k hash functions {h1, · · · , hk} with the k simple functions
{ĥ1, · · · , ĥk} generated based on k prime numbers. Intuitively,
EGH filter supports the Bloom filter operations and addi-
tionally guarantees false positive free operations for a finite
universe when a restricted number of elements stored in the

11

filter [80]. In other words, given a finite universe set U with
|U | elements, an EGH filter vector with m bits will not suffer
from any false positive errors if at most nt elements are stored.
The essence of the solution is to use the Chinese Remainder
Theorem [81] and solve a combination group testing (CGT)
problem [82] by finding a solution to a system of linear
congruences. Note that there are strong constraints between
the parameters m, |U |, nt and k. Basically, n |U |t should be less
than the product result of the first k prime numbers. Then
the value of m will be set as the summation result of the
first k prime numbers. With the above parameter setting, EGH
filter performs the insertion and query just like the standard
BF. Furthermore, the EGH filter can be extended to support
deletion and listing of the recorded elements.

Definitely, the used functions in EGH filter are determin-
istic, fast and simple to calculate, enabling a superior lookup
performance compared to BFs. However, the generated false
positive free zone is relatively small. For example, an EGH
filter with m=2, 127 and k=34 only guarantees a false positive
free zone which covers 20 elements from a set with 562
elements. Still, when the number of record elements is larger
than the threshold nt , EGH filter may incurs false positive
errors. Besides, to maintain the false positive free zone, the
bpe in EGH filter is higher than Bloom filter. In the above
example, the bpe of EGH filter is m

nt
= 2,127

20 =106.35 which
is much higher than standard BF. Therefore, EGH filter is
advisable when false positives should be completely avoided,
the universe set is finite and the set is small while the available
space is relatively large.

E. Reducing FP by differentiated representation

CBF [36] also suffers from false positives, since the counters
fail to differentiate the elements mapped into it effectively.
Unlike the MPCBF which optimizes the utilization of bits in
the counter, variable-increment counting BF [83] and finger-
print counting BF [84] seek the ways to reduce FPR with
differentiated representations of elements.

Variable-increment counting BF (VI-CBF). Unlike CBFs,
when inserting an element, the counters of VI-CBF are in-
cremented by a hashed variable increment instead of a unit
increment [83]. Then, to query an element, the exact value of
a counter is considered, not just its positiveness. The specific
insertion operation is shown in Fig. 7. VI-CBF consists of two
counter vectors: the first counter vectors to record the number
of elements hashed into this position (C1), and the second
counter vectors to provide a weight sum of these elements
with diverse increments (C2). A family of hash functions
G={g1, · · · , gk} are employed to select the k increments from
the set D. Note that D={v1, v2, · · · , vu} is a set of integers
such that all the sums vi1+vi2+ · · ·+vil with 1≤i1≤ · · · ≤il≤u
are distinct. Thereafter, k hash functions {h1, · · · , hk} map
the element into k cells of VI-CBF. The k counters in C1 are
increased by 1, while the counters in C2 are updated with the
k selected increments, respectively.

To query an element x, VI-CBF first checks the k counters
C1[h1(x)], · · · ,C1[hk(x)]. If any counter is 0, obviously x<S.
If C1(i) is small, VI-CBF considers the exact values in both

5 2 3 3C1 4

34 26 21 6 26
C2

x y

1 2 3 4 5 6 7 8 9

0

1

3

4

2

3

3

4

0

8

25

29

17

30

9

13

8 4 13 4

Fig. 7. An illustrative example of VICBF insertion with k=2 and the base
set D={1, 4, 8, 13} [83].

counter vectors. In this case, no more than u elements were
hashed into these cells. Thereafter, VI-CBF can deduce the
employed increments in the value of C2(i). If vgi (x) is con-
tained in C2[gi(x)] (i∈[1, k]), then x∈S with high probability;
otherwise, x<S. Lastly, if C1(i) is large, VI-CBF holds that
this cell is not useful and examines other cells for possibly
eliminating the membership of x. By updating the counters
with diverse increments, VI-CBF effectively distinguishes the
elements mapped into a cell. It was shown that the VI-CBF has
an improved false positive rate than the CBF for fixed number
of bits per element (bpe) although it requires more bits per
counter allowing having a smaller number of counters.

Fingerprint counting BF (FP-CBF). Different from the
VI-CBF, FP-CBF labels the elements with unique fingerprints
[84]. To be specific, each cell in FP-CBF consists of two fields,
i.e., the fingerprint field and the counter field. The fingerprint
has a bits to store the fingerprints mapped into this cell. Note
that the fingerprint of an element is generated by employing a
hash function h f p(x) to map element x into the range [0, 2a].
The counter field counts the number of elements with c bits. To
insert an element x, the k hash functions map x into the cells
in positions h1(x), · · · , hk(x). Thereafter, in these cells, the
fingerprint field is updated by executing the XOR operations
between the existing fingerprint and h f p(x). By contrast, the
counters are increased by 1. To delete an element y from the
FP-CBF, the corresponding k counters are decreased by 1,
while the fingerprint fields are updated by XORing the existing
fingerprints in each counter with h f p(y).

To query an element x, if any counter in the corresponding
k cells is 0, x<S. For all counters that have a value of
1, FP-CBF checks whether the fingerprint field is different
from h f p(x). If so, x<S. Otherwise, if the above two checks
are passed, FP-CBF believes x∈S with high probability. That
is, FP-CBF recognizes the false-positively matched elements
which have at least one counter value of 1. This is realized
by checking the fingerprint in the cell with the fingerprint of
the queried element. In effect, the similar design philosophy
is also achieved in the literature [20] by Luo et al in order
to synchronize two given multisets. The dedicated encoding,
subtracting and decoding operations are designed to identify
the different elements between the multisets. So that only the
different elements are transmitted to save bandwidth. However,
imposing fingerprint field to the cells requires more memory.

F. Summary and lessons learned
As a simple summary of this section, numerous variants

are proposed to reduce the false positive errors of BFs with

12

novel intuitions. They remove or recognize the potential false
positives by using prior knowledge [3] [43] [67] [9], selecting
optimal hash functions [78] [79], generating multiple BFs [74]
[72] [73] and queries [71], resetting the bits [75] [76] [77], or
differentially representing the elements [83] [84]. Among these
variants, FPF-MBF [43], Optihash [67], strategies to lessen
Bloom paradox [9], and Selected hash [78] [79] control the
FPP by carefully choosing the hash functions. Other variants,
on the contrary, try to decrease the FPR directly. Both of
these two design philosophies are reasonable and functional.
However, all the above strategies impose either additional
memory cost or complicated computation process. In reality,
the users may trade-off the impact of false positives and the
introduced cost of reducing FPs.

V. OPTIMIZATIONS OF IMPLEMENTATION MEASUREMENTS

BF is a lightweight and easy-deployable data structure. But
its performance can be further improved. To this end, the ex-
isting desgins consider four practical measurements, including
computation complexity, memory access, space efficiency, and
energy consumption.

A. Computation optimization

The major computation overhead of BF stems from two
folds, i.e., the computation of hash functions and the judg-
ment process for a query. BF requires multiple indepen-
dent hash functions, while well-designed hash functions are
computation-intensive, e.g., MD5, SHA-1. Other hash func-
tions, e.g., perfect hash, locality-sensitive hash, are even more
complicated to calculate. To lessen the computation overhead
due to hash functions, state-of-the-art techniques try to gen-
erate multiple independent hash values with only one or two
hash functions [85] [86].

Less hashing, same performance. Kirsch and Mitzen-
macher [85] use two pseudorandom hash functions h1(x)
and h2(x) to generate additional hash functions. Specif-
ically, the k hash functions will be calculated as:
gi(x)=h1(x)+i×h2(x) mod m, where 0≤i≤k−1 and m is the
number of bits in BF. It has been soundly proved that using
the generated hash functions imposes no any increase in the
asymptotic false positive rate, based on the balls-and-bins
analysis [85] [87]. Since then, this kind of method has been
widely utilized in practice to accelerate BF and its variants.

One Hash BF (OHBF). Unlike the above strategy which
needs two hash functions as seeds, OHBF [86] is more
ambitious and generates k hash values with only one hash
function. OHBF points out that the hash mapping consists of
two stages, i.e., the hash stage which maps the input element
into a machine word (e.g., 32 bits, 64 bits), and the modulo
stage which maps the generated word into a given range via
modulo. Consequently, OHBF divides the m-bit vector as k
parts unevenly, such that m=m1+· · ·+mk , where mi is the
length of the ith part. Thereafter, the generated word will
modulo with m1, · · ·,mk respectively to derive the location of
the element x in each part. Similar with the variants which
partition the bit vector into multiple segments, OHBF also
slightly damages the randomness of the hash function. The

reason is that the result of a hash function is limited in
a dedicated range, rather than the overall bit vector. As a
consequence, more hash collisions will be triggered thereby
leading to a higher false positive rate. Fortunately, when m
increases, the gap of false positive rate between the standard
BF and the partitioned variants will degrade gradually.

On the other hand, another thinking is to speed up the
hash computation, sequent programmes and check operations.
A general strategy is to parallelize the computations. In
scenarios where the bit (or cell) vector is divided into multiple
segments, these segments can be accessed simultaneously
thereby the thereafter computations can be parallelized. This
kind of variants include Space-code BF [88], Dynamic BF
[89], Dynamic BF array [90], Par-BF [91], BloomStore [18],
Cross-checking BF [72], One hash BF [86], Bloom-1 [92],
OMASS [93], Parallel BF [94], etc. The parallelism strategy
can efficiently reduce the response time to 1/ξ, where ξ is
the number of parallelized instances. Note that, some variants
with multiple segments, on the contrary, cannot be parallelized,
since they are designed for sequent checking, e.g., Yes-no
BF [74], Bloomier filter [95], Complement BF [73], and
Multi-partitioned counting BF [77]. Specifically, the Yes-no
BF [74] consists of both yes-filter and no-filter. Only the
elements which pass the check of yes-filter will be further
checked by the no-filter. Similarly, the Complement BF for the
complement set SC only need to be checked if the element x
has passed the check of the main BF for set S. By contrast,
the Bloomier filter [95] and Multi-partitioned counting BF
[77] cannot be parallelized because the bit vectors in them
are constructed recursively.

In the following, we present two other variants which also
enable the parallelism methodology with multiple divisions
[96] [97], as well as one recent proposal which tries to
parallelize the hash computation by employing acceleration
technique named Single Instruction Multiple Data (SIMD)
instructions [98].

Distributed Load Balanced BF (DLB-BF). DLB-BF [96]
is designed for IP lookup (longest prefix matching). Usually,
the IP prefixes have different lengths. Based on their lengths,
the prefixes are categorized as diverse prefix groups, w.l.o.g.,
g groups. DLB-BF employs k equal-length BFs, as well as
k groups of hash functions, to represent these prefix groups.
Note that, each group of hash function has g independent hash
functions in it. Each hash function in a group is responsible to
a specific group of IP prefixes. Specifically, the hash function
Hi, j (1≤i≤g, 1≤ j≤k) is responsible to map the ith group
of IP prefixes into the j th BF. Under this framework, to
encode a prefix with length i, the k corresponding functions,
i.e., Hi,1,Hi,2, · · · ,Hi,k , map the prefix into the k BFs and
programme the bits to 1s. Thus the membership information
of the inserted IP prefix is dispersedly recorded in the k BFs.
To query an IP prefix x with length i, DLB-BF checks the bits
generated by the k hash functions (Hi,1,Hi,2, · · · ,Hi,k) in the
k BFs. If all these bits are non-zero, the queried IP prefix is
in the routing table and the associated forwarding port can be
identified reasonably.

To speed up the query and computation, DLB-BF divides
a single BF vector into multiple BFs and thus enables paral-

13

block[1] block[2] block[r-1] block[r]

word[2]word[1] word[k]

bit array

block

Fig. 8. The framework of Ultra-Fast BF [98].

lelism, i.e., the k BFs can be accessed simultaneously and then
the bitwise AND operation towards the k bits will generate the
query result. The problem is that the number of involved hash
functions is g×k. The calculations of these hash functions can
be challenging.

Combinatorial BF. Combinatorial BF [97] considers the
membership query of S which has multiple groups. The query
result should point out which group(s) the queried element
belongs to, without the priori knowledge of the number of
elements in each group. For simplicity, Combinatorial BF
supposes that an element only belongs to one of the γ groups.
For arbitrary element x, its group g(x) has a Ψ-bit binary code
C(g(x)). For each bit in the code, there is a corresponding
group of k hash functions. Therefore, k×Ψ hash functions
are required. To insert the element x, Combinatorial BF maps
x into the bit vector with the hash groups where the bits
in C(g(x)) are 1s. For example, given Ψ=3 and k=3, if the
element x belongs to group 5, whose id code is 101, then
the two groups of hash functions associated with the first and
third bit of the code will be employed to map x. After that,
to query the element y, Combinatorial BF checks all the Ψ
groups of hash functions. If all the k bits in the bit vector
associated with a group of hash functions are non-zero, the
corresponding bit in the group code will be 1; otherwise, 0.
In this manner, the group code can be determined reasonably.

Besides of a large number of hash functions and memory
access, the probability of misclassification in Combinatorial
BF is high, since any false positive error for each bit will
result in incorrect group code. An augment is to use fixed-
weight group code, i.e., every group has the same number
of 1s. Therefore, parts of the false positive errors can be
recognized accordingly. The misclassification probability of
Combinatorial BF is much larger than its false positive rate.
Combinatorial BF also proposes a parallelism memory access
strategy to speed up the query process. The idea is to partition
the bit vector into k chunks. The first hash function of each
hash group will access the first chunks, and the second hash
function of each hash group will map elements into the second
chunk, so on and so forth. Therefore, the element can be
inserted with θ memory accesses, where θ is the number of
1s in the group code C(g(x)).

Ultra-Fast BF (UFBF). Ultra-Fast BF [98] tries to paral-
lelize both the calculation of hash functions and check process
directly. The UFBF vector is composed of r blocks each
of which has b bits. Further, each block has k consecutive
words, thus b=k×w, where w is the length of a word. The
overall number of bits can be calculated as m=r×k×w. To
insert an element x, a hash function h0 selects one of the
r blocks randomly. Thereafter, x will be mapped into the k
words with k hash functions, respectively. Similar operations

are executed to query an element. Based on this framework, the
Single Instruction Multiple Data (SIMD) scheme is introduced
to parallelize the calculation of the k hash functions. The
basic idea is to generate multiple hash values with one hash
function using. Moreover, the membership query process can
be naturally parallelized since the presence information is
saved in k separated words of one block. Consequently, the
queries can be significantly accelerated.

On the contrary, the SIMD requires supports of competent
computing units, while lightweight devices (e.g., sensors,
detectors) unable to run the instructions. Therefore, the SIMD
instruction lacks of generality nowadays. Besides, the UFBF
is proved to suffer from higher false positive rate, compared
with the standard BF.

B. Memory access

To accomplish the membership query, one has to read
the k bits, which may results in numerous memory accesses
thereby hurting the performance of space-shared applications.
Consequently, endeavours are made to reduce memory access
times, such as Bloom-1 [92] and OMASS [93].

Bloom-1. Bloom-1 [92] consists of l words, each of which
can be fetched from the memory to the processor in one
memory access. Before inserting an element x, a string of hash
bits is generated by a hash function. Thereafter, log2 l hash bits
are employed to select a word to record x, and k× log2 w hash
bits map x into the word by setting the corresponding bits from
0s to 1s. Therefore, log2 l+ k× log2 w hash bits are required in
total. To query an element, only one memory access is needed.
If all the k bits are non-zero, Bloom-1 concludes that element
belongs to the set; otherwise, Bloom-1 infers that element is
not a member of the set. Moreover, Bloom-1 can be further
generalized as Bloom-g by recording an element in g words,
rather than only 1 word. As a consequence, a lower false
positive rate will be achieved, at the expense of g memory
accesses per query.

OMASS. OMASS [93] focuses on the problem of set
separation, i.e., identifying which sets an element x belongs
to. The existing approaches employing BFs in parallel. These
schemes, however, incur multiple memory accesses which
may be a bottleneck for certain applications. A solution is
to divide each BF vector into multiple blocks, each of which
is exactly a memory word size e.g., 32 bits or 64 bits. A
global hash function is introduced to select a block when
inserting an element. To resolve the set separation problem,
this solution also calls for s memory accesses, where s is
the number of queried sets. To further improve the strategy,
one may overlay these BFs and share the same memory. This
insight, however, leads to high false positive rate. Therefore,
OMASS proposes to further equally divide each block as k
sub-blocks, where k is the number of employed hash functions
to map elements. The j th sub-block is responsible to the j th

hash function. Moreover, to eliminate the interferences due
to memory sharing, OMASS isolates the values generated
from hash functions in a sub-block for diverse sets by letting
hi j(x)=(h1j(x)+(i−1)) mod b, where 1 ≤ i ≤ s and b is the
length of each sub-block. In this manner, the insertion of x in

14

one set will not affect the false positive rate when checking
x against the other s−1 sets. Therefore, only one memory
access is needed to tackle the set separation problem, without
increasing of false positive rate.

Both Bloom-1 [92] and OMASS [93] record elements with
given length of words, so that only one memory access is
required for membership query. OMASS further eliminates the
interference of elements which belongs to different sets but
recorded in a shared word. A common shortcoming of them
is that, when the number of elements in a dataset changes, they
must be rebuilt. The lack of scalability makes them incapable
of representing dynamic sets.

C. Space efficiency
Space efficiency is always a problem whenever storing

the BF locally or disseminating the BFs among hosts in a
distributed system. Typically, to realize the minimum false
positive rate, the bit utilization in a standard BF is only 50%.
Therefore, multiple works have been conducted to tackle this
issue [99] [100] [101] [102] [103].

Compressed BF. Compressed BF [99] optimizes the trans-
mission overhead when the filters are exchanged in networks.
Generally, the Compressed BF will be decompressed for real
use after the transmission. The probability of each bit to be set
as 1 under the optimal setting of BF is 1/2, which offers no
compression gain at all. By contrast, under the constraint of
number of bits to be sent after compression z, the number
of bits m of the array in the uncompressed form can be
larger. With this insight, Compressed BF employs fewer hash
functions k yet larger number of bits m to guarantee smaller
false positive rate with less bits to transmit than standard
BF. Alternatively, with the same number of bits to transmit,
Compressed BF realizes lower false positive rate than standard
BF. Specifically, the false positive rate is reduced as 0.5z/n,
where z is the length of bit vector after compression. However,
both the compression and decompression algorithms consume
more processing time and require additional computing and
memory resources. Lightweight devices may lack the capabil-
ity to execute these complicated algorithms.

Compacted BF. Similar with Compressed BF, Compacted
BF [100] reduces the length of bit vector before transmission
to save bandwidth. In contrast, Compacted BF abandons the
time-consuming compression algorithms but proposes a new
pattern to condense the bit vector. Specifically, Compacted BF
splits the original bit vector into k0 blocks, each of which has
b bits. Thereafter, the original bit vector is translated as an
array of n indices and each index contains m0 bits. Index i,
denoted by CmBFV[i], corresponds to the value of the ith bit
positions in block1, block2, · · · , blockn in the original BF. For
the ith index, the principles of deriving the index are follows:
1) if there is no 1 in the ith bits of all blocks, CmBFV[i] is set
as 0; 2) if only one 1 exist and this 1 appear in the ith bit of
blockr , then CmBFV[i] is set as r; 3) if all the bits or more
than half of the bits are 1s, CmBFV[i] will be set as 2m0−1;
4) in the case that less than half bits but more than one bit are
1, the Compacted BF randomly selects a block blocks which
contains 1, and set CmBFV[i] as s. Thus, the b × k0 original
bit vector will be compressed as a n × m0 Compacted BF.

After transmission, the Compacted BF will be interpreted as
a normal bit vector for later query. However, interpretion leads
to both false positive and false negative errors. When the 1 in
the original bit vector is interpret as ’0’, a false negative error
happens. The false positive rate and false negative rate can be
controlled by adjusting the parameters. But in some situations,
the false negative is not allowed. Moreover, Compacted BF
may not be robust due to the randomness in rule 4.

d-left counting BF (dlCBF). For a static set S, one can
employ a perfect hash function to map each element in S into
a hash table without any collision. But for a dynamic set, this
scheme is not advisable, since each insertion or deletion of
element leads to the reconstruction of the hash table. The CBF,
although supports insertion and deletion smoothly, suffers
from high false positive rate and space overhead. To this end,
dlCBF [101] proposes to replace the general hash functions in
CBF with a d-left hash function which is reported as “almost
perfect hash function” [104] [105]. dlCBF splits the cell vector
into d subtables, each with n/d buckets, where n is the total
number of buckets. Each bucket resides c cells, and each cell
has a fingerprint field and a counter field. The fingerprint for an
element x consists of two parts, i.e., the first part corresponds
to the index of the bucket which x is placed in, and the second
part is a remainder of x.

Specifically, to insert an element x, a hash function maps
x as a bit string. The generated bit string is divided into d+1
segments. The first d segments offer candidate positions to
record the fingerprint of x. The last segment is treated as
the remainder of x. Thereafter, the remainder of x will be
stored in the cell with least load among the d candidates
(breaking ties to the left). To query x, all the d cells will
be checked. If the remainder of x is found, dlCBF affirms the
presence of x; otherwise not. Deletion is enabled by clearing
the cell or decreasing the count field in the corresponding
cell. Additionally, the augmented fingerprint creation scheme
and the random permutations are introduced to handle the
fingerprint collisions, so that mis-deletions will not happen.
Compared with CBF, dlCBF achieves nearly 50% space saving
with the same false positive guarantee, and two magnitude
reduction of false positive rate with the same space scale.

Memory-optimized BF. Ahmadi et al. argue that the regular
Bloom filter stores items from a set k times k memory
locations that are determined by the k addresses stored in the
bit-array structure. The elements are stored quite redundantly.
Based on this insight, an additional hash function is introduced
to selected a cell among the k candidate cells to store x [102].
Therefore, the element will be stored only for once, and other
k−1 duplicates will not be necessary anymore. Consequently,
the space usage will be highly improved. The experimental
results indicate that this scheme results in much fewer hash
collisions than the standard BF. However, the decrease of hash
collisions never implies the reduction of false positive rate. It
doesn’t change the fact that there is still an optimal number
of hash functions to realize minimum false positive rate.

Matrix BF. A Matrix BF is a bit matrix in which each
bit can be set or reset to detect copy-paste contents in a
literature library [103]. The matrix BF consists of N rows
each of which records the contents in one document. Every

15

Blk4Blk2Blk1 RAM

Blk4Blk2Blk1

Blk8Blk7Blk6Blk5 Blk16Blk15Blk14Blk13

Flash

…….

…

In-RAM stage

Fig. 9. An example of Forest-structured BF [106] with λ=b=4.

row has m bits and acts as a BF to support insertion and
query, with k shared hash functions. Before mapping, each
document is divided into sub-strings by the Chunking Unit,
and then feed the hash functions to set the k corresponding
bits to 1s. To detect the degree of copy-paste between any
pair of documents, matrix BF just executes the bitwise AND
operations between the two rows. Thereby, the similarity is
measured by counting the number of 1s in the resultant bit
array, rather than calculating the cosine or Jaccard similarity. If
the number of 1s is larger than a predefined threshold, matrix
BF believes the two documents are similar. Document-level
scalability and deletion are enabled by simply inserting and
deleting a row in the matrix, respectively. Matrix BF jointly
supports a trade-off among accuracy, speed, space and privacy
protection of the system.

Forest-structured BF (FBF). Usually, BF is saved in RAM
whose space is a scarce resource. But once the BF exceeds the
RAM size, secondary memory e.g. flash-based SSD, will be an
alternative. Forest-structured BF [106] consists of a collection
of sub-BFs, each of size that exactly equals flash page size.
δ sub-BFs are packed as a block. The blocks, thereafter, are
organised as a forest structure. The highest layer contains λ
blocks. Each block (except for the ones at the lowest layer) has
ς children (ς ≥ 2). By default, if the RAM is enough to save
the blocks, FBF will only use the RAM; otherwise, the FBF
will be moved into SSD and the RAM will be utilized as a
buffer space when inserting elements. As depicted in Fig. 9, to
query an element x, two hash functions are employed to select
a block (blk_id) and a sub-BF (page_id) respectively. If the
sub-BF fails to identify the existence of x, FBF will check the
corresponding child of the block. The query algorithm will
be terminated when x is found or the lowest level of child
has been checked. For instance, given λ=ς=4, blk_id=2, and
page_id=10, FBF checks the sub-BF 10 of Block 2 in the
first level. If x is not found, the query algorithm will check
the sub-BF 10 in Block 10 (Block 10 is the second child of
Block 2) in the second level, so on and so forth. Therefore, at
most l sub-BFs will be checked, where l the number of levels
in FBF. Besides, each sub-BF only requires one flash read.

However, the overall false positive rate can be enlarged due
to the cascaded structure of FBF. Given the false positive rate
of each sub-BF as fr , the overall false positive rate can be
calculated as 1−(1− fr)l , where l the number of levels in FBF.
With the growth of levels, the overall false positive rate will

be increased quickly.

D. Energy saving

To query the membership of any element, all the k cor-
responding bits in the BF vector must be checked. But the
fact is that, for the elements which lead to negative query
results, the zero bits will be located by a subset of the k
bits. This observation indicates the potentiality to lessen the
calculation and energy consumption for negative query results.
Therefore, several literature propose to check only part of
the k bits to save energy [107] [108] [109] [110]. Besides,
different implementation environments also lead to diverse
energy consumption [111].

Pipelined BFs. Pipelined BF [107] [108] divides the k
hash functions into two stages, i.e., stage 1 and stage 2. The
k1 hash functions in stage 1 are always activated, while the
k2=k−k1 stage 2 hash functions will be employed only when
the queried element passes the checks of the stage 1 hash
functions. For arbitrary query, the probability to employ stage
2 hash functions is approximately (1−e

−kn
m)k1 . In the worst

case (the element is either a member of S or a false positive
error), Pipelined BF will check all the k bits, just like the BF
does. The false positive rate of Pipelined BF is the same as
BF. The average power saving ratio (compared with standard
BF) can be calculated as:

k2 + (k1 − k)(1 − e
−kn
m)k1

k
. (6)

The two-stage Pipelined BF is further generalized as a fully
Pipelined BF by regarding each hash function as a stage [109].
A queried element is progressed to the next stage only when
the previous hash function produces a match. By doing so, the
power saving ratio is further increased as:

1 − 1
k
×

k∑
i=1

ρi−1, (7)

where ρ is the ratio of 1s in the bit vector. Pipelined BFs,
however, introduce much higher latency to each query, since
the multi-stage check scheme slows down the query process.

Energy efficient BF (EABF). EABF [110] augments the
two-stage query scheme by adjusting the state of stage 2
hash functions adaptively. Specifically, k1 hash functions are
maintained as stage 1 for a tolerable false positive rate; the
remained k2=k−k1 hash functions are allowed to move out to
stage 2 for lower power consumption or moved back to stage
1 for faster response, according to the incoming workload. A
FIFO buffer is introduced to cache the elements to be queried
by stage 2 hash functions in the next time clock. As depicted
in Fig. 10, the hash function can adaptively and automatically
adjust its state according to the value of the control bit C[i] and
the content in FIFO buffer. The flexibility of state migration
makes sure that EABF acts as the two-stage scheme in [107]
[108] for energy saving, as well as a regular BF in busy-
hour for fast query speed. The adaption control policy, as
well as the multi-stage design of EABF, is proposed for better
performance. In real implementations, EABF needs a complex

16

Active 1

Active 2 Sleep

! FIFO_EMPTY

FIFO_EMPTY

STAGE 1

C[i] = 1

STAGE 2

C[i] = 0

Fig. 10. Hash function states in EABF [110].

control circuit for each hash function. The complexity will be
further amplified in the multi-stage sense.

L-CBF. Safi et al. rely on the following simple observations
on CBF: (1) the actual count sequence used in a CBF is not
important, and (2) externally, the users only care whether a
counter is “zero” or “non-zero” [111]. With the above insight,
they proposed L-CBF [111], a hardware implementation of
CBF, which implements an array of up/down counters while
avoiding the overheads associated with using arithmetic coun-
ters. Specifically, L-CBF [111] uses up/down linear feedback
shift registers (LFSRs) which offer a better latency, power
and complexity trade-off than other non-arithmetic counters.
Additionally, L-CBF introduces an extra bit per counter to
label the state of counters, i.e., the bit will be updated only
when the count changes from or to zero [111]. This strategy
significantly speeds up the query process, because the mem-
bership query only cares whether the corresponding counters
are all non-zero or not, but never concerns the exact values
in these counters. Experimental results indicate that L-CBF
significantly outperforms the SRAM based implementation in
terms of both query speed and energy-saving. The penalty is
3.2 × space occupation.

E. Summary and lessons learned

According to the above statement, the optimization space
of computation is two-dimensional: reduce the amount of
computation or speed up the computation. To reduce the
amount of computation, it is advisable to employ computation-
friendly hash functions or generate k independent hash values
with fewer hash functions [85][86]. On the other hand, to
speed up the computation process, parallelization can be a
choice, e.g., DLB-BF [96] and Combinatorial BF [97]. As for
memory access, the bit vector can be divided into multiple
disjoint segments, thereby each query only needs to access
one segment, such as Bloom-1 [92] and OMASS [93]. This
will significantly reduce the memory access frequency. The
space efficiency is not only about the utilization of bits in a
BF (e.g., Compressed BF [99], Compacted BF [100], dlCBF
[101], Memory-optimized BF [102], and Matrix BF [103]), but
also the global space utilization in a system where both fast
RAM and secondary memory (e.g., SSD) are jointly employed
[106]. Lastly, for negative query results, when the query
algorithm encounters the first zero bit, the algorithm should
be terminated and return a negative result. This observation
enables the possibility to reduce the energy consumption of

membership queries against BFs. This kind of designs include
Pipelined BF [107] [108], EABF [110], and L-CBF [111].

In a real implementation, the performance of BFs can be fur-
ther strengthened by optimizing the computation cost, reducing
memory access, improving space efficiency, and decreasing
the energy consumption. In scenarios where these metrics are
sensitive, the above BF variants are possible candidates.

VI. REPRESENTATION OF DIVERSE SETS

As depicted in Fig. 1, in the framework of BF, the input
sets can be diverse and have their own features. Therefore,
customized variants and techniques are proposed to record
the elements under diverse scenarios. For example, if the
dataset is a multiset, alterations are needed to record the
multiplicity of each element; if the dataset is dynamic, the
BF capacity should be expanded or shrunk on demand; if
the elements have different weight, BF should ensure the
high-weight elements incurs lower FPR. Besides, the elements
may be not independent but maintain a logical, temporal or
spatial relationship. How to represent these special datasets
with BF effectively is also challenging. Consequently, in this
section, for eligibility, we categorize the associated proposals
as multiset, dynamic dataset, dataset with weighted elements,
key-value system, sequence data and spatial data.

A. Multisets

We note that several literature mixes the definition of multi-
set and multiset. In this survey, we regard the term multiset as
a mathematical term and represents a dataset which permits
the coexistence of multiple replicas of any element. Several
parameters can be employed to characterize the features of a
multiset. Let x be an element of a multiset A. The multiplicity
of x is denoted by mA(x), which denotes the number of
instances of x in A. Note that a multiset is a generalization
of a set. A simple set is a special case of a multiset where all
elements only appear at most once. For example, in networks,
a data flow consists of multiple packets with same source and
destination IP addresses. Thus a flow can be regarded as a
multiset element and the associated multiplicity is the number
of packets in the flow. The major challenge of representing a
multiset is that not only the existence of elements, but also
the associated multiplicities should be recorded correctly. To
this end, Space-Code BF [88], Spectral BF [112], Loglog BF
[113], and Invertible Counting BF [20] record the multiplicities
with the counters in each cell, at the cost of more space
overhead. By contrast, Adaptive BF [114] and Shifting BF
[115] set additional bits to 1s to indicate the multiplicity of
each element. Especially, Space-code BF [88] and Loglog
BF [113] employs the maximum likelihood estimation and
probabilistic counting strategy to estimate the multiplicity of
each element, respectively.

Space-Code BF (SCBF). Space-code BF [88] novelly
employs g groups of hash functions to map an element
into a shared bit vector. Thereafter, the multiplicity of a
queried element x will be estimated by the number of hash
groups which indicate the existence of x. The estimation of
multiplicity is conducted by running a maximum likelihood

17

estimation (MLE) procedure. For convenience, a MLE table
is pre-calculated so that only a simple query against the table is
needed during estimation. When the multiplicity of an element
is very high, the accurate multiplicity estimation will not be
possible since all the g groups of hash functions will be
employed. To this end, the Multi-Resolution SCBF is designed
by enabling r SCBF simultaneously. When inserting, the
element x will be inserted into the ith SCBF with probability
pi , where p1>p2> · · · >pr . By doing so, the elements with
low multiplicities will be estimated by filter(s) of higher
resolutions, while elements with high multiplicities will be
estimated by filters of lower resolutions. As for the query, a
joint MLE procedure will derive the estimation of multiplicity.
Also, the overall MLE estimation can be pre-calculated as
a MLE table. The user can tune the parameters for better
estimation accuracy.

Although sharing a bit vector among multiple groups of
independent hash functions will save space, both the MLE
procedures for each SCBF and the overall estimation are
computation-intensive. In other words, the saving of space
is achieved by the sacrifice of more computation resource.
Therefore, SCBF may suit devices with scarce space but ample
computation capacity. Besides, the MLE may overestimate as
well as underestimate the real multiplicity of an element.

Spectral BF. Spectral BF [112] is proposed to support
approximate multiplicity queries of multiset elements. To this
end, Spectral BF extends the bit vector of BF as a vector
of m counters. When inserting an element, the corresponding
k counters are increased by 1. By decreasing the dedicated
counters, Spectral BF also enables element deletions. This is
similar to CBF. However, when querying, Spectral BF employs
the minimum value among the k counters as the estimator
of the multiplicity of x. Consequently, Spectral BF further
optimizes the data structure with the “minimum increase” and
“recurring minimum” schemes. The minimum increase scheme
prefers conservative insertion, i.e., only increase the smallest
counter(s). This strategy increases the accuracy of multiplicity
queries significantly. As for the recurring minimum scheme, it
further initialize a secondary Spectral BF to store the elements
with a single minimum. Therefore, the error rate of multiplicity
query can be further decreased.

The resulted space overhead of Spectral BF can be a slightly
higher than that of the standard BF. Employing the minimum
counter as the estimator of multiplicity is helpful to realize
high query accuracy. However, this strategy can also be a
barrier of accurate querying when a hash collision occurs. For
instance, consider that the multiplicities of elements x and y

are 3 and 2 respectively. If x and y share a common counter,
then the deletion of y will lead to incorrect multiplicity query
of x. The reason is that the deletion of y will decrease the
minimum counter of x from 3 to 1. Thus, the multiplicity
of x will be wrongly reported as 1 instead of 3. Therefore,
the Spectral BF may report an overestimate or underestimated
multiplicity for an element.

Invertible Counting BF (ICBF). Unlike Spectral BF, ICBF
[20] is designed to achieve fast and effective synchronization
between two given multisets. To this end, ICBF extends the
BF into a vector of cells, each of which consists of two fields,

i.e., id and count. Specifically, the id field is responsible to
record the identifiers of elements which have been hashed
into the cell, while count field memorizes how many elements
have been encoded into that cell. Thereafter, the corresponding
encoding, subtracting and decoding operations are proposed to
search out the difference between two given multisets. Given
a pair of multisets, A and B, when encoding them as ICBFA

and ICBFB, each of the elements is mapped into k cells via
the k independent hash functions. The task of subtracting is
to subtract the different elements from ICBFA and ICBFB.
This is completed by executing XOR operations between the
id fields and minus arithmetic subtractions towards the count
fields. Then a novel algorithm is proposed to decode the
elements from the subtracting result in a recursive manner.
Moreover, together with the local id table, the ICBF can
inevitably decode the different elements from the ICBFs with
high probability. For synchronization, the involved hosts only
need to transmit the difference caused by diverse elements and
the gap of multiplicities can be fixed with replicas.

By recognising the different elements, ICBF achieves the
minimum transmission cost to achieve approximate multiset
synchronization. However, ICBF suffers from both false posi-
tive and false negative errors when synchronizing the multisets
due to hash collisions. Moreover, exchanging the ICBFs be-
tween hosts also occupies a part of the link bandwidth.

Loglog BF. Loglog BF [113] introduces the probabilistic
counting strategy [116] to estimate the frequency of each
memorized multiset element. The probabilistic counting strat-
egy [116] hashes all elements in a set into a given range
of binary strings and then estimates the cardinality of each
element with the locations of the first 1s in the binary strings.
In the framework level, Loglog BF extends BF from two folds:
1) the bits in BF is extended as fixed-length counters; 2) an
extra parameter d (the duplication factor) is introduced so
that Loglog BF inserts an item into the counter vector with
different prefixes. To insert an element x, a prefix range from
0 to d−1 is attached, before x is mapped into the counter
vector with k hash functions. That is, the information of x
is memorized in k×d cells. For each of the selected cells, a
random integer of x (geometric distribution) will be generated
to replace the existing value in the cell if the existing value
is less than the random integer. To answer the multiplicity of
x, the probabilistic counting strategy is applied to calculate
the estimated value based on the counters in the k×d cells
with high precision. Further functions like join and compress
towards Loglog BFs are also enabled.

Besides of the explicit false positive rate of membership
query, Loglog BF also introduces additional calculation cost
to the BF paradigm by introducing the probabilistic counting
strategy. Both generating the random integer during inserting
and deriving the estimation value of multiplicity will occupy
the computing resources. Moreover, the probabilistic counting
strategy calls for comprehensive calibration of the related
parameters (the number of bits for each counter, the value
of d) to reach its best performance.

Adaptive BF. Adaptive BF [114] also tells the multiplicity
of an element with the number of hash functions. Different
with SCBF, Adaptive BF doesn’t need multiple groups of

18

1 1 1 1 1 1

x

….. ….. ….. ….. ….. ….. …..

h
2
(x
)%

m

o(x) o(x) o(x)

Fig. 11. The construction of Shifting BF [115].

hash functions, but k+N+1 hash functions, where N is the
maximum multiplicity for elements in the set S. When an
element x is inserted for the first time, the k corresponding
bits in the bit vector will be set as 1s, and an extra bit is set
as 1 to indicate its current multiplicity is 1. Thereafter, the
latter inserted replicas of x will be recorded by employing an
additional hash function to set a bit as 1. In this manner, the
membership information of an element is represented by the k
bits, and the multiplicity of the element is kept by the number
of latter programmed 1s. Similar to BF, Adaptive BF tackles
the membership query via checking the k corresponding bits
in the bit vector. For multiplicity query, Adaptive BF counts
how many 1s are set by the latter hash functions.

However, Adaptive BF cannot support deletion, since reset-
ting 1s to 0s may lead to false negative membership query
errors and incorrect multiplicity query results. Besides, Adap-
tive BF treats the 1s which represent membership information
and the 1s that indicate multiplicity without any differentiation.
As a result, the 1s in the bit vector to represent multiplicity
information can increase the false positive rate of membership
queries. By contrast, the 1s in the bit vector to represent
membership information may lead to inaccurate multiplicity
query results. Users may implement the Adaptive BF with two
separated bit vectors. One bit vector records the membership
information with k hash functions, and the second bit vector
stores the multiplicity with the N+1 hash functions. This
isolation significantly eliminates the interference between the
membership information and the multiplicity information.

Shifting BF. Shifting BF [115] is an array of m bits which
are all initialized as 0s. It acts the same as BF to set k bits
to 1s with the k independent hash functions, to store the
existence information of an element x. Additionally, Shifting
BF employs the other k bits to store the auxiliary information,
e.g., multiplicity or affiliation. As depicted in Fig. 11, the bits
for auxiliary information are derived by an offset function
o(x). Based on the above framework, Shifting BF can support
membership query for sure, but also customize other types of
queries by adjusting the offset function. Taking the multiplicity
query as an example, the offset function can be set as the multi-
plicity of the element. In the query phase, given the maximum
multiplicity C in the multiset, Shifting BF will check C×k bits.
The multiplicity of element x will be the value of i (1≤i≤C),
if the k bits in the locations {h1(x)%m+i, · · · , hk(x)%m+i}
are all non-zero. If deletion is required, a counting version
of Shifting BF can be generated by replacing each bit with
a counter. Note that, under the framework of Shifting BF,
the existence information and auxiliary information in the bit
vector may interfere each other.

As a summary of this subsection, the multiplicities of mul-

tiset elements can be represented by the counters in each cell
vector (e.g., Space-Code BF [88], Spectral BF [112], Invertible
Counting BF [20], Loglog BF [113]) or setting additional bits
to 1s in the bit vector (e.g., Adaptive BF [114], Shifting BF
[115]). Note that there are always trade-offs in these variants.
Recoding the multiplicity with counters generates additional
space overhead, while setting the additional bits to 1s affects
the accuracy of membership query.

B. Dynamic sets

BF is designed for representation and membership querying
for static datasets. However, in fact, distributed applications
and online systems must deal with the dynamic datasets where
the elements can join or leave dynamically. Although CBF
[36] enables the deletion of elements reasonably, its capacity
cannot be extended on demand. To overcome the obstacles of
using BF in dynamic datasets, several compact variants are
proposed. Variable length signatures [117] refers only part of
the k corresponding bits when inserting, querying, and deleting
an element. Dynamic BF[89], Scalable BF [118], Dynamic BF
Array [90], and Par-BF [91] maintains multiple BF vectors
(either homogenous or heterogeneous) in the memory and
activate or merge these BFs on demand.

Variable length signatures. Especially, Lu et. al [117]
focus on the flow deletion in the networking scenario. Obvi-
ously, flows in computer networks can be regarded as a time-
varying set. Based on this insight, the variable length signature
[117] scheme is put forward to enable straightforward deletion,
query, aging and recovering of any flow. Different with the
BF, variable length signature only sets t≤k bits to 1s when
inserting, and concludes that x∈S if at least q≤t≤k bits are
non-zero. To delete a flow x, at least k−d of its signatures
are set to 0s, where d<q so that x will not be declared as a
member of flow set S. Moreover, the missing bits of a positive
flow may be recovered by setting them to 1; thus, recovery
strengthens or lengthens signatures. In practice, some flows
stored by the bit vector may be out-of-date. Consequently, the
aging mechanism is designed to set a part of 1s in the bit
vector to 0s, in an either round-robin or random manner.

Note that, in reality, variable length signature enabled
BF naturally incurs false positive errors. Additionally, false
negative errors may also occur due to the aging operations.
Fortunately, the value of t, as well as q can be learned
according to the flow distribution, so that the generated false
positive and false negative errors can be significantly reduced.

Dynamic BF (DBF). The basic insight of DBF [89] is to
reserve space for s homogeneous BFs. Initially, only one BF
is active and once the current BF is full, another untapped BF
will be activated. According to the predefined upper-bound
of false matching probability, the parameters of BFs, as well
as the upper bound of recored elements in each BF, can be
reasonably determined. The BF is full if the number of inserted
elements reaches the upper bound. To insert an element, DBF
first discovers an active BF and then set the corresponding k
bits as 1s. By doing so repeatedly, all elements in a dataset
can be recorded. To answer the membership query of arbitrary
element x, the DBF checks the BFs one by one. If in any BF,

19

the corresponding k bits are all non-zero, DBF believes x∈S.
If all the BFs report negative results, then DBF concludes x<S.

By contrast, deleting an existing element x from DBF can
be a little more complicated. First of all, DBF identifies the
BFs in which all the k bits for x are non-zero. If only one such
BF exists, DBF resets these bits as 0s. Otherwise, DBF quits
the deletion operation. The reason is that, if there are multiple
BFs indicate the existence of x, DBF cannot decide which is
the right one. Therefore deleting x from these BFs will lead
to false negative judgments when querying other elements.
Beyond deletion, DBF also enables the functionality to merge
two active BFs via union operations.

An obvious weakness of DBF is its high false positive rate.
On one hand, the multiple BF mechanism increases the risk
of false positive matching. Suppose the designed false positive
rate of each BF in DBF is fr , then the false positive rate of
DBF will be calculated as 1−(1− fr)s which is definitely higher
than fr . On the other hand, the failures of deletion lead to false
positive query results of the elements that should be deleted.

Scalable BF. Unlike DBF, Scalable BF [118] consists of
a series of heterogeneous BFs. That is, the parameters of
each sub-BF may be differentiated. Specifically, to maintain
a given false positive rate, the designed false positive rate of
the successive sub-BFs are increased geometrically. To this
end, the length and bit utilization of the sub-BFs are varied
and well-designed. However, as a consequence, the sub-BFs
cannot share the hash functions, which leads to more hash
calculations. Besides, the sub-BFs with diverse lengths cannot
be joined as one to save space. In the worst case, some sub-
BFs may only record one element after the deletion of other
elements, which is definitely not space-efficient.

Dynamic BF Array (DBA). DBA [90] dedicates to realize
a scalable and space-efficient approximate data structure for
storage systems. DBA consists of groups of BFs on demand.
Within each group, there are g homogeneous BFs. In this
manner, DBA naturally support parallel queries, since the
access of one group of BFs will not affect others. Therefore,
the memory-access complexity for querying an element is
O(k×r/(2g)) for a positive result and O(k×r/g) for a negative
result, where r is the total number of BFs. As for deletion, the
authors point out that large-scale storage systems always delete
the out-of-date elements in off-peak time. Therefore, DBA sets
a predefined threshold for the number of stale elements in each
BF and deletes these stale elements in a batched fashion.

DBA also suggests loading the entire DBA into the RAM so
that the query can be quickly responded. To eliminate potential
false positive errors, the positive responses of DBA will be
further checked with the index of the dataset in the RAM.
Basically, DBA is quite similar with DBF. The false positive
rate of DBA is also 1−(1− fr)r , where fr is the false positive
rate of each BF, and r is the total number of BFs. The false
positive rate can be controlled, but at the cost of more space
overhead by prolonging the length of each BF or decreasing
the number of BFs. What’s worse, the batched deletion scheme
is not feasible for the online application which requires to add
or delete elements frequently and timely.

Par-BF. Par-BF [91] argues that both Dynamic BF and
Scalable BF are not compact enough, in terms of system

performance and memory overhead. Dynamic BF cannot con-
trol the overall false positive, while Scalable BF suffers from
higher memory cost and vast hash calculations. Like DBA,
Par-BF is made up of sub-BF lists, each of which consists of
multiple homogeneous sub-BFs. The parameters of each sub-
BF are carefully designed to achieve the overall false positive
rate guarantee. Par-BF supports parallelism of membership
queries. To insert an element, the Par-BF locates the active
sub-BF and set the corresponding bits to 1s. Deletion will
be accomplished by resetting the corresponding bits to 0s in
the sub-BF. Besides, the garbage collection scheme is also
proposed to unite the unfilled sub-BFs for space recycling.

Actually, DBF [89], Scalable BF [118], DBA [90], and Par-
BF [91] all share the insight that, with the coming elements,
the additional BFs can be activated dynamically. However,
this strategy intrinsically calls for space reservation since the
number of elements in the dynamic dataset is unknown in
advance. Besides, the aggregated false positive rates of these
data structures increase with the number of initialized BFs.
Furthermore, the time-complexities of query and deletion of
an arbitrary element are no longer O(k) since they must travel
all the sub-BFs to make a confident decision.

C. Weighted sets

BF is designed for general representation of a dataset,
with elegant support of membership query. In practice, the
sets and queries in distributed systems can be highly skewed
[119][120]. That is, some elements may be queried frequently,
while some may not. With the query distribution and mem-
bership likelihood distribution as prior knowledge, the original
BF framework can be further improved [119] and [120].

Weighted BF. Weighted BF [119] proposes to adjust the
number of employed hash functions for different elements,
based on the query frequency and likelihood of being a
member of set S. Intuitively, an element is assigned more hash
functions if its query frequency is high and its chance of being
a member is low. In particular, the number of hash functions
for an element x is jointly determined by the normalized query
frequency of x and the probability of x to be a member of
set S. Weighted BF is a generalization of BF since when the
frequency distribution and membership likelihood of every
element is the same, the generated Weighted BF will be a
regular BF. However, the problem is that, before querying
an element x∈U, the value of kx has to be calculated. If
x is queried frequently, kx will be recalculated repeatedly,
which is definitely not efficient. Besides, the value of kx is
not convergent. If an element only occurs in query but never
appears to be a member of S, then kx=∞; while kx=−∞ when
x is a member of S but has never been queried.

Popularity Conscious BF. Unlike Weighted BF, Popularity
Conscious BF [120] predefines kmax for the number of hash
functions and thereafter profiles the problem of allocating hash
functions to each element as a nonlinear integer programming
problem. The target is to achieve the smallest overall false
positive rate, with respect to the predefined parameters of BF.
To this end, two approximate algorithms are proposed based
on the concept of per-object importance score. Specifically,

20

per-object importance score is calculated as q′(i)
p(i) , where q′(i)

is the probability that element xi occurs in a mis-matched
query (false positive error), and p(i)= Pr(xi ∈S)

n denotes the
membership popularity distribution. Based on the insight that
the optimal solution for the number of per-object hashes must
follow the order of importance scores, a polynomial-time 2-
approximation algorithm is designed. Further, to speed up the
calculation, a (2+ε)-approximation algorithm is proposed.

We argue that both Weighted BF and Popularity Conscious
BF might not be scalable from the time dimension. For
online applications, both the query frequency and membership
likelihood may vary from time to time. As a result, the value
of kx calculated when inserting maybe not optimal in other
time slots. Additional efforts are still needed to totally settle
this problem so that this kind of variant is pratical.

D. Key-values

Key-value (KV) store systems (e.g., Dynamo [121], Mem-
cached [122], Cassandra [123], Redis [124], BigTable [125],
etc.) handle numerous keys and corresponding values, with
the supporting of key lookup and KV pair insertion. Usually,
index structures (e.g., B-Tree[126], B+ Tree [127], Hash
Table[128]) are built for fast and deterministic access of the
values. However, due to the space limitation, saving the entire
index structure in RAM can be challenging when store large
number of KV pairs. The BF is indeed space-efficient, but not
designed for KV stores. The major obstacles to employ BF to
memorize KV pairs come from two folds. First, the number
of KV pairs are dynamic, hence the parameters of BF cannot
be decided previously. Second, KV stores call for smooth
deletion of KV pairs, but BF fails to support this functionality.
To overcome this dilemma, BloomStore [18], kBF [19], and
Invertible Bloom lookup table [21] are proposed reasonably.

BloomStore. BloomStore [18] establishes multiple Bloom-
Store instances in the KV store system. The space of keys is
divided into multiple disjoint ranges, each of which is mapping
into a dedicated BloomStore instance. Every BloomStore
instance consists of four components, i.e., KV pair write
buffer, BF buffer, BF chain, and a number of data pages. KV
pair write buffer and BF buffer are saved in RAM for fast
access, while BF chain and the data pages are stored in the
secondary memory (i.e., SSD, flash). The KV pair write buffer
memories the incoming KV pair insertions temporarily. Once
the write buffer is filled up, the content will be written into
the secondary memory. In this manner, the number of write
operations will be lowered. Correspondingly, the BF buffer
represents the membership of the keys stored in the KV pair
write buffer. Other KV pairs are represented by the Bloom
chain (a series of BFs) in secondary memory. Note that each
BF is responsible to memory the KV pairs in one flash page.

Based on the above framework, a parallel BF checking
scheme is employed to speed up the query process. Notice that,
the parallelization is possible because all the BFs in the chain
are homogeneous and thus share the hash outputs. Apparently,
BloomStore is naturally scalable and supports deletion by
insert a null value to the key in the corresponding BF bits.
Sure, the aggregated false positive possibility is relatively high.

kBF. Instead of saving the KV pairs directly, kBF [19]
converts the values into fixed-length string bits with respect
to given constraints. kBF consists of cells, each of which
has two components, i.e., the counter to track the number of
encodings into the cell, and the encoding field records either
an original encoding, or the XOR results of the encodings
that are mapped to this cell. To insert a KV pair, the value
part is first converted to be a string bits and denoted as
encoding. Thereafter, the keys and corresponding encodings
are inserted into the kBF for later query, update, deletion,
join and compress operations. Moreover, the original KV pairs
can be inversely decoded from the generated kBF cells. In
fact, for a KV pair, if any counter in the corresponding cells
is 1, the encoding field will be exactly the encoding string
of the value. Otherwise, complicated decoding algorithm is
employed. The basic insight is to construct a BF which records
all the encodings, and then execute the XOR operation of the
encodings literately to check whether the XOR results contains
the encoding to be decoded. A distributed version of kBF is
also suggested for cloud computing scenarios.

Intrinsically, the conversion from values to encodings for-
malizes the disordered values as fixed-length bit strings, so
that the later update, deletion, join and compress operations
can be enabled reasonably. However, the cost is also very high.
First, the time-complexity of the proposed decoding algorithm
is O(N2), which is unacceptable for delay-sensitive online
applications. The decoding algorithm also suffers from non-
decodable cells and may fail to derive the original values from
the intersection encodings. Second, the conversion scheme
lacks of scalability, since the upper bound of the encodings
must be predefined according to the number of KV pairs.
Third, kBF calls for additional secondary BFs to speed up
the searching of encodings or decode the encodings inversely.
Fourth, kBF may suffer from false negatives, if all the k
corresponding cells for a KV pair fail to tell the encoding
of its value.

Invertible Bloom lookup table (IBLT). IBLT [21] supports
not only insertion, deletion, and lookup of key-value pairs, but
also allows a complete listing of the pairs it contains with high
probability, as long as the number of contained key-value pairs
is below a designed threshold. Conceptually, IBLT consists of
m cells, each of which contains the following three fields: 1)
count field which counts the number of KV pairs that mapped
into this cell; 2) keySum which records the sum of all keys
that mapped into this cell; and 3) valueSum which is the
the sum of all values that mapped into this cell. Note that
IBLT treats both keys and values as integers for simplicity. To
insert a KV pair (x, y), k hash functions are employed to map
this pair into k disjoint cells. In each of the corresponding
cell, the count field will be increased by 1; keySum will be
updated as keySum+x; and valueSum will be calculated as
valueSum+y. The deletion will be accomplished by executing
inverse calculations of insertion. To query a key x, the IBLT
will return the associated value y or “null” or “not found”. In
the k corresponding cells of x, if a cell which only records
the key x is found, IBLT will return the value. If any cell
is empty or the count=1 but the keySum,x, the answer will
be “null”; otherwise, IBLT will return “not found”. The result

21

“not found” means all the k cells store multiple KV pairs and
IBLT cannot tell (x, y) is among them or not.

Additionally, IBLT is capable of listing all the KV pairs
successfully with high probability. The algorithm searches out
an anchor cell which only records one KV pair, and then
returns the associated key and value. Thereafter, the selected
pair will be deleted from the cell vector to expose more anchor
cells. Recursively, all the KV pairs may be decoded. Definitely,
IBLT can only list part of the KV pairs, when no such anchor
cells can be found.

E. Sequence sets and spatial sets

Except for the above types of datasets, there are also other
specific datasets with special characteristics. Recently, k-mers
(substrings with equal length derived from the full sequence)
are employed to support high-level algorithms [129][130]
towards the sequence data, e.g., DNA or RNA sequence.
However, a single sequence may generate a massive number of
k-mers, and thereby causing storage challenges. Consequently,
BF is introduced to record the k-mers and support fast mem-
bership query. Due to the characteristics of sequence data,
the application of BF can be further improved [131] [132].
Moreover, in the context of location based applications, spatial
data should be represented efficiently for query. Spatial BF
[17] tries to represent the geographical areas with priorities.

k-mer BF. Pellow et al. [131] point out that the internal
dependency between the mapped subsequences can be utilized
to reduce the false positive rate of membership query. Specif-
ically, two adjacent k-mers share k−1 common characters.
Therefore, the presence information of neighbours can be em-
ployed to further judge the membership of the query substring.
In this manner, some false positive errors will be identified via
additional queries of the neighbours. For instance, consider a
sequence TAAGCCA and it is stored as 4-mers, i.e., TAAG,
AAGC, AGCC, and GCCA. When querying AGCC, if the
BF returns positive for AGCC, while reports negative for
GCCA, then the BF experiences a false positive error with
high probability. Note that BF never suffers from false negative
errors, and it is 100% true that an element x<S if the query
result is negative. k-mer BF offers two optional schemes, i.e.,
one-sided k-mer BF and two-sided k-mer BF. The one-sided
k-mer BF only checks the presence of a single overlapping
neighbour. By contrast, the two-sided k-mer BF which checks
the neighbours from both directions. Surely, checking more
neighbours will further lower the FPR.

k-mer BF seems compact enough to represent sequence
sets. However, the functionality of k-mer BF is one-fold only,
i.e., membership query. Many complicated algorithms call for
comprehensive operations upon these k-mers, e.g., traverse,
deletion, permutation, inversion, etc. k-mer BF fails to enable
these operations, which in turn narrows its usefulness.

Spatial BF. Spatial BF [17] considers the location informa-
tion with the concern of privacy protection. To this end, the
locations of the users are divided into different interest areas.
According to the Manhattan distance, the areas are categorized
as diverse classes. Before inserting any element, each cell of
the Spatial BF is initialized as 0. Then k hash functions map

the element x (which belongs to class L) into the cells, and
set the values as L. By sorting the locations with increasing
order, the locations with greater class labels will be inserted
later. Consequently, the locations with greater class labels
will be correctly memorized, even if a hash collision occurs.
Thereafter, the constructed Spatial BF will be implemented
in location-aware applications based on the designed private
positioning protocols.

Spatial BF is a variant of BF to represent spatial data which
consists of many geographical areas. However, abstracting
the spatial data as simple interest areas is oversimplified
and thereby failing to support high-level applications such
as navigation. Besides, the location of a user is highly time-
dependent due to his or her motions. Spatial BF fails to track
the motions if a user always moves in one class of areas.

F. Summary and lessons learned

According to different abstraction of the dataset, diverse
variants are proposed to match the characteristics and func-
tionality requirements of the elements. Thanks to these novel
proposals, the BF paradigm can be extended to represent
and support multiform operations towards multisets [112] [20]
[113], dynamic sets [117] [89] [118] [90] [91], skewed datasets
[119] [120], KV pairs [18] [19], sequence sets [131] [132],
spatial data [17], etc. These variants may lack of generality,
but function well in their own domains. In practice, the users of
BFs can customize their BF variants to represent their datasets
with diverse features. This malleability further extends the
usage of BFs in various contexts.

VII. FUNCTIONALITY ENRICHMENTS

Standard BF only supports membership query, since the
bit vector only indicates the membership information of each
element. Therefore, from the framework of BF, with the
input set, the output functionalities can be enriched in diverse
scenarios.

A. Element deletion

In real systems, an element may be deleted from the dataset
and other elements may be added. A general drawback of
standard BF is that it fails to delete elements from the bit
vector, since resetting the bits from 1 to 0 may cause false
negative errors to other elements. Besides of the CBF [36],
Deletable BF [133] and Ternary BF [134] are proposed to
enable the deletion of arbitrary element.

Deletable BF (DlBF). In the bit vector of BF, hash col-
lisions may happen, so that the deletion of an element may
lead to false negative errors to other elements. Based on this
insight, Deletable BF [133] tracks the positions where hash
collisions happen when inserting elements. Then only the bits
in collision-free areas will be reset from 1 to 0 when deleting
an element. DlBF divides the m bits in the bit vector into
r regions, each of which has m′/r bits, such that m′=m−r .
Before the r regions, the first r bits in the bit vector are
employed to identify the corresponding region is collision-
free or not. Note that, the first r bits are all initialized as 0s.

22

If a hash collision happens in the ith region, the ith bit in
the first r bits will be set to 1. Both insertion and query will
be accomplished just like the standard BF. When deleting, the
element x will be mapped into k bits. Then the algorithm only
reset the 1s located in collision-free regions. The element x
will be successfully deleted if at least one of the k corre-
sponding bits is reset to 0. However, if all the k bits locate
in conflicted areas, the element is declared as non-deletable.
Let p0 = (1 − 1/m′)kn and p1 = kn/m′(1 − 1/m′)kn−1 denote
the probability that a given cell is set to 0 and 1 only once
after inserting n elements. An arbitrary element can be deleted
successfully with approximate probability (1 − (1 − pc)m

′/r)k ,
where pc=1−p0−p1 is the probability that a given cell has at
least one hash collision.

Ternary BF (TBF). Ternary BF [134] allocates the mini-
mum number of bits to each counter and thereby implies more
counters. Each counter in the proposed TBF has three different
values: 0, 1, and X. If 2 or more elements are mapped into a
counter, the value is programmed as X and the counters with
value X are not referenced in queries. Compared with the 4-
bit CBF, a TBF vector has larger number of counters using
the same amount of memory, since each counter of the TBF
occupies less bits.

Note that the counters with X are not increased when
inserting an element, nor decreased when deleting an element.
They are also not referenced when querying an element.
Consequently, TBF derives the indeterminable elements for
membership query and undeletable elements for deletion. To
be specific, when querying an element x, if the corresponding
k counters of x are all X, then x is identified as indeterminable.
In contrast, when deleting element y, if the corresponding k
counters of y are all X, then y is considered as undeletable.
By labelling the counters where hash collisions occur, and
defining the indeterminable and undeletable elements, TBF
significantly reduces both the false positives for query and
false negatives due to misdeletions. Namely, TBF is a conser-
vative design. It prefers correct answers or operations, while
leaving the controversial counters (the counters with value X)
alone. Moreover, to lessen the number of indeterminable or
undeletable elements, the value of a counter can be adjusted
as: 0, 1, 2 and X, such that more elements can be queried or
deleted. Surely, doing so may increase the false positive rate.

Besides of CBF [36], Deletable BF [133] and Ternary BF
[134], other variants which have a counter filed in the cells
(e.g., SCBF [88], Spectral BF [112], ICBF [20], IBLT [21],
etc) also enable the deletion operation successfully. Consider
that deletion is not the prime functionality or goal of these
variants, we present them in other sections.

B. Element decay

For online services and applications, new data will come and
stale elements will banish. Therefore, to represent a dataset
more efficiently, the BF should also support decay operation,
such that those stale information can be eliminated to leave
space for the coming elements. The difference between dele-
tion and decay is that, decay is a proactive operation and
will be executed by the BFs periodically or aperiodically,

while deletion is an inactive function that is called by the
users. Consequently, during deletion, the BFs know exactly
which element should be removed. In contrast, when decaying,
the BFs don’t acknowledge which and how many elements
will be removed from the vector. Stable BF [135], Temporal
Counting BF [136], Double buffering [137], A2 buffering
[138], and Forgetful BF [139] are designed to enable decay
of the recorded elements.

Stable BF. Stable BF [135] is proposed for duplicate
elimination of streaming data flows which arrive continually.
Stable BF is defined as an array of cells with integer range
from 0 to Max. The number of bits for each cell is b such
that Max≤2b−1. To check whether a recently arrived element
x is a duplicate or not, x is mapped into k cells in Stable
BF. If all of the k cells are non-zero, x is considered as a
duplication; otherwise not. To insert an element into Stable
BF, P randomly selected cells are decreased by 1. Thereafter,
the corresponding k cells for the element is set as Max. In this
way, the whole cell vector will be stable, i.e., after numerical
iterations, the fraction of zeros in the Stable BF will become
fixed, irrespective of the initial state. In the framework of
Stable BF, the number of cells which are 0s after N iterations
is a constant when N is large enough. Note that, Stable BF
provides both false positive and false negative errors. Evicting
the stale information in a random fashion certainly results in
false negative errors. However, the duplicate detection will
be handled with constant time, so that Stable BF suits the
scenarios of streaming data or other series datasets well.

Temporal Counting BF (TCBF). TCBF [136] is an exten-
sion of CBF. Upon inserting an element, the k corresponding
counters will be set as a given value called initial counter value
(ICV), rather than increased by 1. If a hash collision occurs,
TCBF will remain the existing value of the counter. The decay
mechanism is to constantly decrease all the counters’ values
with a rate given by the decay factor (DF). By tuning the
values of ICV and DF, TCBF enables differentiated decay
granularity for different elements. Additionally, TCBF offers
two kinds of merging schemes for two TCBF vectors, i.e.,
additive merging and maximum merging. Additive merging
generates a new TCBF vector whose counters are the sum of
the counters in the original vectors. By contrast, the maximum
merging set the counters as the maximum value of the counters
in the original vectors. The membership query will check the
k corresponding cells, and the caused false positive rate is the
same as standard CBF.

Note that, TCBF predefines the “time-to-live” of each
element in the vector by assigning the ICV value. However,
false negatives will occur when one of the k counters remains
of a smaller value than its ICV. For example, x is mapped
into cells 1, 5 and 9 in the TCBF vector, and the ICV and DF
are 7 and 1 respectively. But cell 5 has already been set as
2 by a former element. In this case, the counters in cells 1,
5 and 9 will be 7, 2 and 7, respectively. Therefore, after two
evictions, the membership query of x will be negative since
cell 5 has been degraded as 0. A possible repairment is to
keep the maximum value among the existing value and the
inserted ICV, if hash collisions occur. This scheme, despite
eliminating false negatives, imposes more false positive errors

23

for the membership query.
Double Buffering. Double buffering [137] offers an ac-

tive/standby scheme to evict the stale elements in a first-in-
first-out manner. The memory is physically divided into two
independent parts to maintain an active BF and a warm-up BF,
respectively. For a coming element x, if x is already recorded
by the active BF, and the active BF is more than 1/2 full, then
x will be inserted into the warm-up BF. On the contrast, if
x hasn’t been recorded by the active BF, x will be inserted
into the active BF. After that, if the active BF is more than 1/2
full, x will be additionally inserted into the warm-up BF. Once
the active BF is filled up, double buffering switches the active
BF and warm-up BF, and flushes the generated warm-up BF.
With such a design, the active BF stores all the recent data
and the warm-up BF always records a subset of the active BF.
An essential drawback of this scheme is that it doubles the
memory space to store the same number of elements, as well
as the memory access of inserting a new element.

A2 Buffering. A2 buffering [138] divides the memory
equally as two buffers which implement two BFs denoted as
active1 and active2, respectively. Novelly, active1 stores the
recently inserted elements, while active2 records previously
inserted elements. When active1 becomes full, active2 is
flushed and the two BFs switch their roles. Basically, a queried
element x will generate a positive answer if it passes the
membership check in either active1 or active2. Specifically,
x is first queried against active1. Only when active1 returns
a negative answer, active2 will be accessed and queried. If
active2 returns a positive result, the element x will be inserted
into active1. Suppose the false positive rate of each BF is
fr , the global false positive rate is f=1−(1− fr)2. With this
scheme, the users can update BFs with recently used data. A2

buffering stores twice as many elements as double buffering
in the best-case scenarios, and as many elements as double
buffering in the worst-case scenarios.

Forgetful BF. The most-recently proposed Forgetful BF
[139] maintains several active BFs simultaneously, including
one future BF, one present BF and one or multiple past BF(s).
A new-arrival unrecorded element will be inserted into both
the future BF and the present BF. Forgetful BF periodically
refreshes the BFs to evict the stale elements. Specifically, 1)
the oldest past BF is dropped for eviction; 2) the current
present BF is turned into the newest past BF; 3) the current
future BF is degraded as present BF, and lastly 4) a new,
empty future BF is added. The membership query proceeds by
checking for membership in the most recent window of time
(the future BF) until the oldest window of time (the oldest
past BF) is reached. If the membership check passes in any
window of time (two consecutive BFs return positive), the
Forgetful BF terminates the query process and return positive.
Inherently, since each element is inserted twice, the elements
that only pass one membership query are identified as false
positives. Moreover, to control the false positive rate, Forgetful
BF proposes to adjust its number of past BFs and the refresh
frequency. However, Forgetful BF also has problems with a
large number of memory accesses inherited from the structure
of multiple active BFs.

Generally speaking, the decay can be enabled by changing

a

b

q p1

p2

(a) False positives from multidimen-
sional inconsistency.

a

b
q

p1

(b) False negatives from multidimen-
sional checking.

Fig. 12. An example of false positive and false negative errors in LSBF [144].

the values of bits in a single BF vector (e.g., Stable BF [135],
Temporal Counting BF [136]) or flushing the oldest BF among
multiple BF vectors (e.g., Double buffering [137], A2 buffering
[138], and Forgetful BF [139]). Decay results in false negative
errors thereby triggering the reinsertions of some elements.

C. Approximate membership query

As an opposite of accurate membership query, approximate
membership query is to answer the query “Is x close to
an element in S?” when the closeness is measured by a
dedicated metric. This kind of query can find its applications in
databases, networking, image processing, social networks, and
biological scenarios. The existing proposals usually employ
the locality-sensitive hash family [140] [141] [142] to map
the elements so that the close elements will be stored in
neighbouring or same cells with high probability.

Distance-sensitive BF. Distance-sensitive BF [143] em-
ploys local-sensitive hash functions based on the distance to
map elements into the vector. Distance-sensitive BF is an array
(denoted as DSBF) of k disjoint arrays, each of which has m′

bits, such that the total number of bits is m=k×m′. Each hash
function is responsible to one dedicated array. Let H : U→V
be a (pL, pH)-distance sensitive hash function family, and
H ′: V→[m′] be a weakly pairwise independent hash family.
Before programming the arrays, a group of hash functions
{h1, · · · , hk}∈H , as well as another group of hash func-
tions {h′1, · · · , h

′
k
}∈H ′, are selected independently. If V=[m′],

gi=hi; otherwise, gi=hi◦h′i ; Thereafter, for x∈S, DSBFi[gi(x)]
(i∈[1, k]) will be set as 1. As for query, Distance-sensitive
BF refers to the bit locations of an element x in the vector,
to test whether x is close to some elements in S or not.
Let B(x)=∑

i∈[1,k] DSBFi[gi(x)]. If B(x) is larger than a
predefined threshold t, x is far away from all elements in S;
otherwise, x is close to some elements in S.

Practically, the Distance-sensitive BF is complex to be
implemented. Firstly, the local sensitive hash functions are
hard to define for distance metrics. Secondly, the configuration
needs more computation cost since two families of hash func-
tions are involved. Thirdly, this paradigm lacks of scalability.
The parameters for the current dataset are customised and
cannot be generalized to other datasets. Besides, Distance-
sensitive BF is constructed based on the assumption that S
is static, which further restricts its scalability. Therefore, a
lightweight and more scalable solution may still be required.

24

Locality-sensitive BF (LSBF). LSBF [144] also replaces
the independent uniform hash functions in BF with locality-
sensitive hash functions, thus support the approximate mem-
bership query. Unlike Distance-sensitive BF, LSBF concludes
that x is close to an element in S only when all the corre-
sponding bits are non-zero. This design further restricts the
condition to pass the check. Intrinsically, the FPs are partially
inherited from the BF framework. Another inexplicit reason of
FPs is the lack of multidimensional attributes of elements. As
depicted in Fig. 12 (a), the queried point q is projected on two
dimensions, i.e., vectors a and b. LSBF fails to tell whether the
approximate membership of q in each dimension comes from
an existing item or from multiple items. As a consequence,
q will be concluded as an approximate member, although q
is far away from both the points p1 and p2. By contrast, the
reason for false negative errors is that, the locality-sensitive
hash functions can map close elements into neighbouring cells
with high probability but not 100%. Therefore, in Fig. 12 (b),
the queried q is close to point p1, but the distance in dimension
b is too far so that one bit for q in the bit vector will be far
away from that of p1 and maybe a 0. In this case, LSBF will
return a negative query result.

LSBF proposes a verification scheme based on an additional
BF to recognize part of the false positive errors, as well
as an overflowed scheme to decrease false negative errors.
Besides the introduced computation and space overhead, the
configuration of LSBF is also time-consuming, since the
verification BF can only be established after all the elements
have been inserted into the LSBF vector. The reason is that
the neighbours of any bit may change from 0 to 1 due to later
insertions. This limitation also indicates weak scalability of
LSBF, since each coming element will cause the reconstruction
of the verification BF.

Multi-granularity locality-sensitive BF (MLBF). The
using of locality-sensitive hash functions has been further
improved in MLBF [142], by enabling multiple distance gran-
ularities. MLBF contains a basic multi-granularity locality-
sensitive BF (BMLBF) and a multi-granularity verification
BF (MVBF). Specifically, the BMLBF is a vector of m bits
and constraints s−1 virtual LSH BFs (VLBFs) which are not
physically constructed but derived from the BMLBF (VLBF
0). One bit in VLBF θ (1≤θ≤s−1) covers 2i bits in VLBF θ−i
for any 0≤i≤θ. If one of the locations in the VLBF 0 is set to
1, its covered virtual location in each of the VLBFs is regarded
as 1 too. L AND-constructions (to improve the locality-
sensitiveness together with later OR-constructions), each of
which has k hash functions, are employed to map an element
into BMLBF. Therefore, L×k hash functions are needed. For
each group of hash functions, the k generated locations are
concatenated together and then stored in the MVBF. Although
the MVBF only stores the concatenations from the BMLBF, it
can still support multi-granularity verification by constructing
virtual verification BFs (VVBFs). The reason is that the
address of a location at the coarser level is a prefix of the
two addresses of its contained locations at the next finer level.

To query an element x in the θ level, MLBF checks the
VLBF θ first, and then the MVBF. If there is a group of hash
functions such that both its BMLBF and MVBF return positive

results, MLBF judges x is close to some element in the set
S. Despite the introduced AND-constructions and verification
scheme, MLBF still suffers from both false positive and
false negative errors. Moreover, MLBF is overcomplicated to
construct and query. L×k hash functions are required for the
BMLBF and k ′ hash functions are needed for the MVBF.

Generally, the locality sensitive hash functions are employed
to map the elements into the bit vector. Distance-sensitive BF
[143] infers an element x is close to some element in S if the
number of 1s in the bit vector exceeds a predefined threshold.
LSBF [144] and MLBF [142], however, concludes x passes the
approximate membership query only if all the k corresponding
bits are non-zero. Besides, LSBF and MLBF also implement
the verification schemes to further identify the false-positively
matched elements. Especially, MLBF further enables the query
and verification in different granularities.

D. Enrichment of BF semantics

An inborn drawback of BF is that it only saves the member-
ship information while lacking other features of the elements.
Therefore, the enrichment of BF semantics is needed to sup-
port more types of queries. From the perspective of elements,
the information saved in the bit (or cell) vector can be extended
in either a scale-up or a scale-out manner. A scale-up scheme
programmes not only the membership information, but also
other features associated with the element. By contrast, scale-
out proposals care about the internal relationship between
elements. As shown below, Invertible BF [145], Bloomier filter
[95], and Parallel BF [94] try to store more information.

Invertible BF (IBF). With the assumption that each element
has a unique binary identifier, an IBF [145] vector for a
dataset contains m cells and each cell has three fields. The
idSum records the XOR results of the identifiers of elements
that mapped into this cell. The count counts the number
of elements that mapped into this cell. IBF cell addition-
ally employs a hash function g(x) to map the identifiers of
the corresponding elements into a fixed-length binary string.
Thereafter, the XOR result of hash values g(x) is saved
as hashSum field. The encoding, subtracting and decoding
algorithms are designed to settle the set-reconciliation (or
set difference) problem. Encoding algorithm represents the
two sets as two IBF vectors, and then subtracting algorithm
operates the two IBFs to generate a new IBF vector which only
contains different elements. Lastly, the decoding algorithm
tells which elements are unique for set A and B. Note that,
the identifier, the idSum and hashSum fields are all binary
bit strings. Consequently, the simple XOR bit operations are
implemented for both aggregating and removing elements.

IBF [145] and IBLT [21] are similar and try to decode the
elements from the cell vector inversely. Both of them select a
cell which only records one element as an anchor and thereby
return the elements one by one. The difference is that IBLT is
designed for KV store while IBF suits general datasets well by
turning the valueSum field in IBLT as hashSum field. More-
over, the hashSum helps to filter the cells in which the count=
1 or -1 but saves more than one element. These cells will not be
chosen as an anchor. This is done by simply checking whether

25

g(idSum)=hashSum or not. If g(idSum)=hashSum, only the
element whose identifier is exact idSum is remained into this
cell; otherwise, multiple elements are still stored in this cell
and the count = 1 or -1 is caused due to the subtracting
operation. Especially, the length of IBF m is decided as αd,
where α is a constant coefficient and d is the number of
different elements between A and B. Although literature [145]
presents a strata estimator which tries the decoding iteratively
until it successes, the estimation is still time-consuming and
needs multiple rounds of communication. Furthermore, the
both IBLT and IBF may fail to decode all the elements from
the cell vector.

Bloomier filter. The BF can be viewed as a boolean
characteristic function of the represented set. With this insight,
Bloomier filter [95] generalizes the boolean characteristic
function to arbitrary functions. In other words, Bloomier filter
expands the theory of BF by enabling the storage of not
only membership information, but also the function values
with the elements in S as input. Consequently, Bloomier filter
also supports constant-time query of the function values that
associated with the elements. Specifically, for the elements in
S, Bloomier filter will return the function value; by contrast,
for the elements that are not members of S, the query result
will be ⊥ which means an undefined value. A near-optimal
design for Bloomier filtering is proposed based on a cascading
pipeline of BFs. The trick is to build the ith pair of BFs to
represent the false positive elements in the (i−1)th pair. For
instance, BF(A0) and BF(B0) record the subset of elements
(i.e., A0 and B0) whose function values will be 1 and 2
respectively. Then BF(A1) will be generated by recording the
elements in A0 but also pass the check of BF(B0). Similarly,
BF(B1) will be generated by recording the elements in B0 but
also pass the check of BF(A0). Therefore, the elements which
cause false positive errors will be reasonably recorded in the
latter cascading BFs. The time-complexities for construction
of Bloomier filter and query of a given element are O(n log n)
and O(1) respectively. Later researchers try to speed up the
construction of Bloomier filter to linear time, or lessen space
overhead at the cost of higher construction complexity.

Parallel BF. BF and its variants only support representation
and query of single-attribute elements. Therefore, Parallel BF
[94] denotes itself to represent multi-attribute elements. A
typical scenario is that, in a database, a query always jointly
consider multiple attributes of the entries. A naive solution
to represent multi-attribute elements is to employ multiple
BFs, each of which is responsible to one dedicated attribute.
This method, however, leads to high false positive rate, since
these BFs fail to store internal dependency of the attributes.
Parallel BF is a matrix of CBFs, which consists of P sub-
matrices to represent P attributes independently. For each sub-
matrix, there are k arrays of counters and k hash functions
are responsible to map an input into an array respectively. To
insert an element with P attributes, each attribute is mapped
by P groups of hash functions into P sub-matrices. The
corresponding P×k counters are increased by 1. Additionally,
a hash table is established to record the internal dependency
of the attributes. In this way, the false positive errors from
the sub-matrices can be significantly recognised. Typically, a

function F is employed to calculate the verification value of
an element based on the P×k positions in the matrix. In other
words, the function F aggregates the attributes of an element
together. With the generated verification value as input, the
additional hash table offers a verification mechanism to the
positive query results from the Parallel BF matrix. Compared
to a single CBF, the Parallel BF matrix enlarges the false
positive rate. But the majority of these false positive errors can
be identified by the thereafter hash table. The representation of
multi-attribute elements is realized at the costs of more hash
computing, space occupation, and memory access.

IBF [145], Bloomier filter [95], and Parallel BF [94] are all
the kind of scale-up extension in terms of semantic enrichment.
IBF records the identifier of the elements and thereby enables
inversely decoding. Bloomier filter injects the function values
of the elements into the vector thus supports fast query of the
function value. Parallel BF represents the multi-attribute of
each element via multiple parallelized CBFs and an additional
hash table. Some variants, on the other side, scale-out single
elements and focus on the internal relationship. The traditional
BF supposes by default that the elements in a dataset are
independent. But the fact is that elements in a dataset can be
intensively correlated. For instance, the nodes in a multicast
tree have a strict father-children relationship. The former men-
tioned Distance-sensitive BF [143], LSBF [144] and MLBF
[142] in Section VII-C can be viewed as the scale-out type
semantic enrichment, since they try to maintain the distance
between the elements with locality-sensitive hash functions.
We believe other elegant designs are still needed in terms of
other kinds of internal relationships.

E. Summary and lessons learned

Besides of element insertion and query, real applications
have a strong need for additional functionalities. For a dynamic
set, deletion is needed. Therefore, CBF [36], Deletable BF
[133] and Ternary BF [134] are proposed. For an online
system, decay (or eviction) should be enabled to release the
space for coming elements. This functionality can be enabled
by changing the values of bits in a single BF vector (e.g.,
Stable BF [135], Temporal Counting BF [136]) or flushing the
oldest BF among multiple BF vectors (e.g., Double buffering
[137], A2 buffering [138], and Forgetful BF [139]). Moreover,
when the closeness is measured by a dedicated metric, the
approximate membership query will be conducted to answer
“Is x close to an element in S?”. In this case, the locality-
sensitive hash functions are employed to map elements into the
BFs [143] [144] [142]. Additionally, BF only saves the mem-
bership information but lacks other features of the elements.
This disadvantage limits the functionality of BF. Therefore,
the enrichment of BF semantics is required to support more
complicated functionalities [145] [95] [94]. When the users
have additional requirements for other functionalities, they can
alter the BF framework accordingly.

VIII. CLASSIFICATION AND COMPARISON

In this section, we systematically analyze the optimization
techniques introduced by the above BF variants. As shown

26

Set DiversityFalse Positive Reduction Functionality EnrichmentImplementation Optimization

Elements

Hash

Functions

Bit Vector

Multi-class

BF [3]

Optihash [67]

FPF-MBF

[43]

Retouched

BF [75]

MPCBF [77]

T
ern

a
ry

 B
F

[1
3
4
]

Generalized

BF [76]

Cross-checking

BF [72]

Complement

BF [73]

Yes-no BF

[74]

VI-CBF [83]

F
P

-C
B

F
 [8

4
]

Selected Hash

[78][79]

S
p
a
c
e-c

o
d
e

B
F

 [8
8
]

Adaptive

BF [114]

Spectral

BF [112]

Loglog BF

[113]

Dynamic

BF [89]

Variable length

signatures [117]

Scalable

BF [118]

DBA [90]

Par-BF [91]

Weighted BF

[119]

Popularity

conscious BF [120]

B
lo

o
m

S
to

re

[1
7
]

kBF [19]

IBLT [21]

k-mer BF

[131]

Spatial BF

[17]

CBF [36]

Deletable

BF [133]

Distance-sensitive

BF [143]

Locality-sensitive

BF [144]

L
ess h

a
sh

[8
5
]

D
L

B
-B

F
 [9

6
]

Combinatorial

BF [97]

Bloom-1 [92]

OMASS [93]

Compressed

BF [99]

Compacted

BF [100]

Forest-structured

BF [106]

Stable BF

[135]

Temporal

CBF [136]

d-left CBF

[101]

Memo. Opti.

BF [102]

Matrix BF

[103]

Pipelined BF

[107] [108]

E
A

B
F

[1
1
0
]

L-CBF [111]

MLBF [142]

Shifting

BF [115]
IC

B
F

 [2
0
]

Bloomier

filter [95]

Parallel BF

[94]

IB
F

 [1
4

5
]

One hash

BF [86]

Ultra-fast BF

[98]

Double

Buffering [137]

A2 Buffering

[138]

Forgetful BF

[139]

Performance Generalization

EGH filter

[80]

L
o
g
lo

g
 B

F

[1
1
3

]
k
B

F
 [1

9
]

Fig. 13. The taxonomy of the existing BF variants. The BF variants are classified in two main dimensions from the optimization perspective, i.e., performance
and generalization. To improve the performance, dozens of variants devote themselves to reducing the false positives and easing the implementation. Besides,
tens of variants generalize the BF framework in more scenarios by diversifying the input sets and enriching the output functionalities. We further analyze
the optimization techniques towards the three components of BF, i.e., elements, hash functions, and bit vector, respectively. Obviously, many variants jointly
optimize these components.

in Fig. 13, the variants augment BF by operating its three
components, i.e., elements, hash functions and bit vector,
either separately or jointly. Consequently, we characterise the
optimization techniques from three perspectives that refer to
these three BF components.

Elements. The set S in the framework of BF is a highly
abstract term. In practice, a specific dataset may have its
special feature. To better suit the real dataset, the users can
augment the BF adaptively. For instance, recording the multi-
plicity of an element in a multiset calls for a redesign of the
bit vector. Besides, before hashing, preprocessing operations
(e.g., duplication, aggregation, extraction, outlier processing,
dimension-reduction, etc) can be introduced to refine the
entries. In the case of recording a set of text files, instead of
hashing a complete text file, users may extract the keywords
as the identification of a text file.

Hash techniques. Hashing the input elements into a given
range contributes the major computation overhead of BF. To
further speed up the BF or extend the usage of BF in devices
with low computation capability, lightweight hash techniques
can be considered. Moreover, BF assumes by default that the
hash functions are independent. However, the randomness of
hash functions is still an open theoretical problem. Therefore,
designing or employing high-performance hash functions is
critical to improve BF.

Bit vector. The bit vector is the direct product of BF, and
is responsible to record the membership of elements in a set.
The bit vector can be queried, stored, transmitted, reproduced
and updated in practice. From the angle of saving space
overhead or communication overhead, one may compress,
extend, shrink, segment or layer the bit vector. Moreover, in
order to enable more functionalities or support complicated
queries, each bit can be upgraded as a cell with multiple bits.

A. Techniques towards elements
BF represents the membership of elements by the bits in

the vector without differentiating them. As a consequence,

BF cannot tell the 1s are caused by a dedicated element
or not, thereby may result in false positive query results. A
natural way to resolve this dilemma is to impose a unique
fingerprint to each element. Alternatively, the elements may
share common features which may help to improve the query
accuracy by categorizing and then representing the elements
in groups. Fig. 13 indicates that the strategies which operate
elements directly are usually aggregated with other techniques
which augment the hash functions or (and) bit vectors.

1) Imposing fingerprints to elements: Generally, the fin-
gerprint of an element is generated by mapping the element
as a binary string with a hash function. Thereafter, the fin-
gerprint can be stored directly in the vector. This kind of
variants include kBF [19], FP-CBF [84], ICBF [20], and
IBF [145]. Among them, kBF, FP-CBF, ICBF, and IBF store
the fingerprint of element directly in the cells. To break the
tie of collision where multiple elements are mapped into a
shared cell, the XOR operations are introduced to aggregate
the fingerprints together. In this case, deleting a fingerprint
can be simply enabled by an additional XOR operation. kBF,
FP-CBF, ICBF and IBF all associate the fingerprint with a
counter in a cell, such that when the counter is 1, the stored
fingerprint is exactly the fingerprint of the inserted element.
Based on this insight, part of false positive matches can be
identified via checking the fingerprint field.

2) Dividing elements into independent groups: DLB-BF
[96] and Partitioned hashing [79] divide the elements in the
set into multiple groups, thereafter each group of elements is
represented by a corresponding BF. This will effectively isolate
the elements so that they will not affect each other upon query.
To be specific, DLB-BF maps the IP prefixes with the same
length into a dedicated BF. To query a prefix with a given
length, DLB-BF only checks the corresponding BF. Similarly,
the Partitioned hashing categorizes the elements into multiple
groups with an additional hash function. Then each group of
elements are stored in a BF. Before checking the k bits in
a BF, the queried element is first hashed by a hash function

27

to decide which BF it should refer to. The advantages of the
grouping strategy include false positive isolation and friendly
memory access. On one hand, the elements in different groups
will not interfere each other since they are physically isolated.
On the other hand, the multiple BFs can be naturally accessed
in parallel, and each query only requires the access of one BF.
Therefore the query throughput will be increased reasonably.
We also notice a special case, i.e., k-mer BF [131], which
partitions the sequence data into k-mers without the above
fingerprint nor grouping technique. The neighbouring mers can
be utilized to identify incorrect matches of a given mer, during
the querying process.

An exception, which doesn’t label elements with finger-
prints nor group the elements, is Loglog BF [113]. Loglog
BF imposes a prefix to each element before each insertion.
This is required by the probabilisitic counting strategy.

B. Techniques towards hash functions

Hash functions are crucial ingredients of BF, and there are
lots of proposals to augment this part. As depicted in Fig. 13,
a dozen of the variants alter the hash functions directly. There
are still tens of variants adjusting the hash functions together
with other ingredients. We summarize these techniques from
three aspects, i.e., leveraging the number of hash functions,
optimizing the implementation of the hash functions, and using
advanced hash functions.

1) Leveraging the number of hash functions: For a static
set, with the given number of elements n and the bit vector
length m, the optimal number of hash functions is k=m

n ln 2.
But in reality, the number of employed hash functions can
be more than k or adjusted dynamically to achieve diverse
targets. We roughly summarize the existing proposals which
adjust the number of hash functions as three categories: 1)
adding one extra hash function; 2) employing multiple groups
of hash functions; 3) using hash functions on demand. We
detail each of the categories as follows.

One additional hash function. Usually, an extra hash func-
tion is employed to randomly select an object from multiple
available candidates. Typically, ICBF [20] and FP-CBF [84]
generates a fingerprint for each element with an extra hash
function from a given range. Memory-optimized BF [102]
chooses an accommodation cell for a file from all possible
locations. OMASS [93] locates the block which stores an
element via an extra hash function. Similarly, Forest-structured
BF [106] also derives the location of an element with extra
hash functions. But Forest-structured BF calls for two extra
hash functions, to locate the block and page respectively.
Besides, IBF [145] needs an extra hash function to calculate
the hashSum in each cell to identify its purity.

Multiple groups of hash functions. A dozen of BF
variants require multiple groups of hash functions. Among
them, Complement BF [73], Cross-checking BF [72], Yes-
no BF [74], DLB-BF [96], BloomStore [18], Bloomier filter
[95], Parallel BF [94], Combinatorial BF [97] and FPF-MBF
[43] establish multiple separated secondary BFs, thereby they
need multiple groups of independent hash functions when
sharing the hash values are not allowed. If these secondary

BFs have different length, sharing hash values is definitely not
possible. Besides, to enable parallelized queries for different
elements, each secondary BF must have its own hash group.
But in scenarios where secondary BFs are of equal length
and parallelism is not required, the k hash functions can be
shared, e.g., Dynamic BF [89] and Dynamic BF Array [90].
The main cost of employing multiple groups of hash functions
is the computation overhead.

On the contrary, Space-code BF [88] and Generalized BF
[76] utilize multiple groups of hash functions to set or reset a
shared bit vector. The Space-code BF estimates the multiplicity
of an element by counting the number of hash groups which
result in non-zero bits. A passive impact of inserting an
element into the bit vector for multiple times is that, the
membership query may suffer from much higher false positive
rate. Generalized BF employs two groups of hash functions,
one for setting of bits and the other one for resetting of bits.
As a consequence, the false positive rate can be decreased,
with the penalty of false negative errors.

A more special case is VI-CBF [83], which introduces
another group of hash functions to select the k increments
for an inserted element. The differentiated increments for
elements, rather than a common 1, helps VI-CBF avoiding
part of the false positive errors.

Hash functions on demand. The number of employed
hash functions directly inference the performance of BF.
Therefore, researchers integrate wisdom into this part and
change the number of hash functions flexibly. Adaptive BF
[114] records the multiplicity of an element with the number
of hash functions (except for the k hash functions for existence
information). Weighted BF [119], Popularity conscious BF
[120] and Multi-class BF [3] propose to adjust the number of
employed hash functions for different elements. Typically, the
elements which are more frequently queried or have a lower
probability to be a member of S should be associated with
more hash functions. More hash functions implies stronger
constraints to pass the check. The reason to do so is that the
false positive errors happen to these elements impose larger
increment of false positive proportion.

EABF [107] [110] and its same kind [108] [109] adjust
the number of activated hash functions dynamically for the
purpose of energy saving. For the negative query results,
they need not check all the k hash functions, thus saving
computation and energy. In other words, with these strategies,
a negative result may be given instantly, but there will be
a considerable delay for a positive result. If saving energy
dominates the delay of a positive result, they are advisable
choices. Note that the false positive rate of them will be the
same as the standard BF.

The variant Variable length signatures [117], novelly sets
t≤k bits of h(x) to 1s when inserting, and concludes that x∈S
if at least q<k bits of the h(x) are 1s. The gaps between t, q
and k enable the flexible insertion, deletion, and even decay of
the recorded elements. Nevertheless, Variable length signature
incurs both false positive and false negative errors.

2) Optimization of hash implementation: Due to the impor-
tance of hash functions in BF, tens of variants optimize hash
functions from the perspective of implementation. To this end,

28

Bloom-1 [92], Less hash [85], and One hash [86] generate
k independent hash values with one or two hash functions.
Specifically, Bloom-1 [92] divides a hash bits into k parts,
and each part is regarded as a hash value. By contrast, One
hash [86] modulos the machine word generated from the hash
stage with k diverse modulus to derive k hash values for each
segment of the bit vector. Less hash [85] reports a conservative
method to generate as many hash values as the users want by
using 2 independent hash functions, without any damage of
the randomness. All of the these proposals can reduce the
computation overhead of hash functions significantly.

For a given set, different hash functions lead to diverse false
positive proportion. Therefore, Optihash [67] and Selected
hash [78] [79] try to pick an optimal group of hash functions
which result in the lowest false positive proportion. Both
Optihash [67] and Partition hashing [79] are computation-
intensive since they need multiple rounds of tests or queries. A
moderate method is to test two groups of hash functions and
then select a better one for each element [78]. This scheme
achieves a significant reduction of FPP with an acceptable
increase of computation.

Especially, Ultra-fast BF [98] speeds up the calculation of
hash functions via employing the SIMD technique. SIMD
instructions parallelize the computation and thus only need
1/k time to generate k hash values. SIMD, however, needs
dedicated hardware and software environments, making this
strategy lose of generality.

3) Application of advanced hash techniques: Researchers
introduce advanced hash techniques to improve BFs. d-left
CBF [101] employs d-left hash functions to store the index
of an element in a least-loaded cell (selecting the left-most
one to break the tie of multiple equally loaded cells). The
using of d-left hashing achieves nearly 50% space saving
with the same false positive guarantee, and two magnitude
reduction of false positive rate with same space scale. Besides,
the locality-sensitive hashing is also employed to replace the
traditional hash functions. Locality-sensitive hashing maps
two neighbouring elements into same or close locations in
the vector with high probability. This characteristic enables
Distance-sensitive BF [143], Locality-sensitive BF [144] and
MLBF [142] to answer the query “ Is an element x close to
any element of S or not?”. This kind of query, however, incurs
both false positive and false negative errors, irrespective of
the remedial designs, e.g., further verification and checking.
The computation complexity of these locality-sensitive hash
functions is also a barrier of real implementation. Note that,
the EGH filter [80], on the contrary, replaces the hash functions
with some simple functions derived by prime numbers. By
designing the parameters carefully, EGH filter guarantees a
false positive free zone for a subset of elements.

We simply summarize this subsection here. Hash function is
an essential ingredient of BF. The number of hash functions
can be adjusted both proactively and passively. When there
are multiple secondary BFs or one must select an object
from multiple candidates, the number of hash functions has
to be passively increased. By contrast, adjusting the number
of employed hash functions proactively can achieve diverse
design goals, i.e., energy-saving, false positive control, query

acceleration. Moreover, the k hash values can be generated by
one or two hash functions with the guarantee of randomness.
Meanwhile, given a set of elements, the performance of BF
is hash-dependent. A proper group of hash functions can be
selected by multiple rounds of tests and queries. Lastly, ad-
vanced hash techniques are available to enrich the functionality
or improve the performance of BF directly.

C. Techniques towards the bit vector
The bit vector stores the existence information of elements

by setting the bits from initial 0s to 1s. Numerical variants
extend the bit vector to enrich its semantics or impose ad-
ditional operations on the bit vector for extra functionalities.
There are two typical methodologies for semantic enrichment,
i.e., a scale-up scheme which replaces each bit with a cell
to store more information, and a scale-out scheme which
implements more BF vectors for higher capacity. Also, two
kinds of representative operations are popular to be executed
upon the bit (or cell) vector, i.e., partition the vector into
segments and changing the values of bits. Consequently, we
organize the existing techniques towards the bit vector as the
following four aspects.

1) Scale-up: beyond one single bit: CBF [36] is the first
variant which extends the bits of BF as fixed-length counters
to seamlessly support element deletion. Thereafter, Spectral
BF [112] enables multiplicity query with the minimum value
among the k counters. Two variants of CBF, i.e., FP-CBF [84]
and VI-CBF [83] leverage the fingerprint and differentiated
increments for each inserted element to reduce the false
positive rate, respectively. L-CBF [111] speeds up the query of
CBF from the implementation perspective. EGH filter [80] also
extends the bits as counters to enable the deletion functionality.

IBLT [21], IBF [145] and ICBF [20] further extend a
bit as a multi-field cell to store the necessary information
for invertible decoding. The fundamental insights of their
recursive decoding algorithms are similar. They first identify
a pure cell which only stores one element. After recording the
element, it will be deleted from the cell vector to hopefully
expose more pure cells. The algorithm will be terminated until
no pure cells can be searched out. In each cell, the three
variants all have a counter to record the number of elements
mapped into it. Especially, each IBLT [21] has keySum and
valueSum field to aggregate the KV pairs mapped into the
cell. Likewise, every IBF [145] cell has two other fields,
i.e., idSum and hashSum to record the information of stored
elements. ICBF [20], by contrast, has only one extra field,
i.e., id. The differences between these three proposals stem
from their functionalities. IBLT is designed for KV pairs,
while IBF is targeted at general elements. ICBF, however,
is proposed for multiset synchronization between two hosts,
and an off-line id table is maintained to record the mapping
between ids and elements. A common technique for them is
the XOR, which can aggregate information together, delete
elements with simple bitwise operations, and reveal the value
or fingerprint of an element when only one single element
stored in the cell.

There are also other proposals to extend the bits, e.g.,
Bloomier filter [95], Spatial BF [17]. They are actually coupled

29

with other features, so we analyze them in other chapters. As
an opposite of extension, Compressed BF [99] and Compacted
BF [100] compress the bit vector for bandwidth-friendly
transmission. Compressed BF employs fewer hash functions
so that the probability of each bit to be set as 1 is less than
1/2. Thereafter, the bit vector is compressed for transmission.
Compacted BF proposes a series of principles to encode the bit
vector and recover it for later queries after transmission. The
penalty of Compacted BF is additional false negative errors
due to its encoding principles.

2) Scale-out: more BF vectors: When one BF vector is
not enough, or the users have multiple sets to represent, a
natural way is to establish multiple BFs. Dynamic BF[89],
Scalable BF [118], Par-BF [91] and DBA [90] are proposed
for scalability and elasticity. The secondary BFs, either homo-
geneous or heterogeneous, can be added or merged on demand.
Another concern for capacity extension is to partially migrate
BF from fast but scarce RAM storage to slower yet massive
flash memory. Forest-structured BF [106] and BloomStore [18]
propose joint design with both RAM and flash. Specifically,
Forest-structured BF [106] first implement an in-RAM block
which contains several BFs. Once all the in-RAM BFs are
saturated, blocks will be added into the flash memory on
demand and constructed as a forest architecture. Then the
RAM will be employed as a cache for the most-recent arriving
elements. On the contrary, BloomStore [18] leverages the
RAM as a buffer which only stores the most-recent elements
for each BloomStore instance. Once the buffer is filled up,
both the elements and the associated BF will be pushed into
the flash.

Complement BF [73], Cross-checking BF [72] and Yes-no
BF [74] configure additional BFs to help identify some false
positive errors from the main BF query results. Complement
BF implements an additional BF to store the elements in the
complement set of S directly. Cross-checking BF divides S
into several independent subsets and establishes a BF for each
of them separately. Yes-no BF simultaneously maintains a
yes-filter for the elements in S, and no-filters for the false-
positively matched elements. When the universe set U is large
while S is small, Complement BF is not advisable. If the
false positive queries are detectable, Yes-no BF will be a wise
choice. Cross-checking BF is a pervasive scheme and it also
leaves a trade-off space (between query accuracy and space
cost) to its users.

Combinatorial BF [97], DLB-BF [96], Space-code BF [88],
Matrix BF [103], and Parallel BF [94] are all configured
of multiple independent BFs. Combinatorial BF and DLB-
BF have multiple groups of elements to represent, therefore
they configure a BF for each group of elements. Parallel BF
represents the multiple attributes of an element with multiple
BF matrices. Space-code BF is functional with single BF
vector. But with multiple BF vectors and executing the MLE
for multiple times, Space-code BF generates a more accurate
multiplicity estimation. In Matrix BF, each row of the bit
matrix acts as a BF and record one specific document in a
file library. These rows share k hash functions and thereby
supporting copy-paste detection between documents. Note that
Bloomier filter [95] also has multiple BFs but it is none of

the above kinds. The reason is that the BFs in Bloomier filter
are nested and constructed recursively, rather than independent
with each other. In Bloomier filter, false positives in the first
level BFs will be recorded in the second level BFs. As a
consequence, these BFs are accessed sequentially.

Certainly, a common obstacle behind the scale-up and
scale-out proposals is space overhead. For scale-out proposals
which just configure multiple standard BFs, e.g., Dynamic
BF, Scalable BF, Par-BF, DBA, DLB-BF, Matrix BF, Forest-
structured BF and BloomStore, they lead to the same bpe
(bites per element) as standard BF. Most of the scale-up
proposals may result in higher bpe, with the gain of additional
functionalities (e.g., deletion, invertible decoding, parallelism)
or better performance guarantee (e.g., higher query accuracy).

3) The power of partition: A simple partition method is
to divide the bit vector into k segments such that each hash
function is responsible to one segment. This adjustment is
a natural way to enable parallel access, at the cost of a
slight increment of false positive rate. OMASS [93] stores the
information of an element in a word-size block, such that a
query can be responded with only one memory access. Bloom-
1 [92] also stores the information of an element in one word,
while the k bits are chosen by only one hash function. The
trick is to split the hash bits of an element into k parts, each
part select one position for the element from the word. Still,
only one memory access is enough for a membership query.
Ultra-fast BF [98] employs the similar scheme, but it has k
words in one block for the k hash functions, respectively. As
a consequence, Ultra-fast BF supports block-level parallelism
and each query needs to access all the k bits in the k words of
a selected block. The load of each block or word is determined
by the global hash function which is responsible to select one
word or block for an element. Ideally, the blocks or words are
load-balanced. However, in reality, it is still possible that some
blocks or words are overloaded while some are underloaded.
We suggest that the load-balance friendly hash techniques, e.g.,
d-left hash, may be an effective solution.

MPCBF [77] also divides the bit vector into multiple words,
and then goes further to establish a hierarchical structure
for better utilization of these bits. The first level of bits
are responsible for query, the later levels are leveraged for
dynamical element insertion and deletion. Compared with
CBF, MPCBF achieves lower false positive rate by logically
increasing the value of m in Equ. 1. The partitions in OHBF
[86] and Deletable BF [133], however, are not for memory
access reduction nor better utilization. OHBF divides the bit
vector into k parts with different lengths, such that the machine
word generated by one hash function can derive k hash values
with k different modulus. Deletable BF, specially, splits the
vector into r+1 regions. The first region has r bits, each of
which indicates whether the corresponding region incurs hash
collisions or not. When deleting, Deletable BF only resets the
1s in collision-free regions. Any of the associated k bits is
reset as 0 means a successful deletion of an element. In the
situation where there are no collision-free regions, Deletable
BF [133] declares that element is not deletable.

4) The game between 0s and 1s: Another explicit way to
adjust the vector is changing the values in the bits (or cells).

30

Retouched BF [75], Generalized BF [76] and Stable BF [135]
allow to reset bits from 1s to 0s when inserting an element.
Both Retouched BF [75] and Generalized BF [76] are nice
trials to eliminate 1s thereby generating lower false positive
rate if false negatives are permitted. Retouched BF proposes
both random and selective clearing strategies, while Gneralized
BF employs two groups of hash functions, i.e., one group for
set and the other group for reset. Stable BF [135] targets at
the dynamic dataset and maintains a fixed proportion of 1s in
the bit vector, such that stale elements will be eliminated when
inserting the new arrivals. Undoubtedly, all the three proposals
incur false positive, as well as false negative errors. Resetting
the 1s to 0s damages the one-sided error characteristic of BF.
As a consequence, they offer no correctness guarantee for both
the positive and negative query results.

Ternary BF [134] doesn’t reset the bits to 0s, on the contrary,
it records the bits which incur hash collision and marks their
value as X. When querying an element y, if the corresponding
k counters of y are all X, then y is identified as indeterminable.
In contrast, when deleting element z, if the corresponding k
counters of z are all X, then z is considered as undeletable.
That is, Ternary BF refuses to answer a query which may be
a false positive and rejects to delete an element which may
cause a false negative. Temporal CBF [136] saves the “time-
to-live” of an element in the k corresponding cells. All the
counters in the vector will be decreased periodically by one.
The space overhead of this proposal will be an obstacle. Each
cell must have enough bits for the maximum lifecycle. For a
set of elements with highly skewed lifecycle, Temporal CBF
is obviously not space-efficient. Spatial BF [17] leverages the
distinct values in the cells to label the elements in different
geographical areas. Larger counter values indicate more central
areas and will remain when conflicted with lower values in a
cell. In this way, Spatial BF provides better accuracy to the
queries of central areas.

Double buffering [137], A2 buffering [138], and Forgetful
BF [139], however, flush the stale BF(s) directly. In online
scenarios, these variants always cache the recently inserted
elements. Double buffering maintains an active BF and a
warm-up BF in the memory. After the active BF is half
full, the latter inserted elements will be also inserted into
the warm-up BF. Once the active BF is filled up, double
buffering switches the active BF and warm-up BF and flushes
the generated warm-up BF. Note that, in Double buffering,
only the active BF is responsible for membership query. The
A2 buffering, by contrast, implements two active BFs simul-
taneously. active1 stores the recently inserted elements, while
active2 records previous inserted elements. When active1
becomes full, active2 is flushed and the two BFs switch their
roles. The membership of an element will be confirmed if it
passes the check of either active1 or active2. Especially, the
Forgetful BF maintains several BFs simultaneously, namely,
one future BF, one present BF and one or multiple past BF(s).
During an update, the oldest past BF will be eliminated and an
empty new future BF will be added. All the BFs in Forgetful
BF are responsible for the membership query.

Besides of the k bits which represent the membership of el-
ements, Adaptive BF [114] and Shifting BF [115] programme

additional bits as 1s to record more information associated
with the elements. Adaptive BF sets additional m(x) bits
to represent the multiplicity of element x with m(x) hash
functions. Shifting BF [115] also enriches the semantics of
the bit vector by additionally storing auxiliary information for
diverse types of queries. For example, for association query,
the cells or bits will record the set or group the element
belongs to. The k bits for auxiliary information are novelly
selected by attaching an offset to the k locations for existence
information. However, the 1s for membership information and
the 1s for additional information may interfere each other.
The 1s in the bit vector to represent multiplicity information
can increase the false positive rate of membership queries.
By contrast, the 1s in the bit vector to represent membership
information may lead to inaccurate multiplicity query results.
To ease this dilemma, saving the two kinds of 1s in separated
bit vectors may be a good idea.

We also noted that, in the last years, several methods
to protect Bloom filters have been proposed. For example,
Reviriego et. al propose to use a parity to detect soft errors
[146]. Then upon an error detection, all the bits on that word
of the error were set to 1 so that false negatives were avoided.
The protection against transient errors was considered in [147]
by for example performing a recomputation if all except one
of the positions accessed had a value of one. These methods
protect BFs against errors in the memories or the hash function
calculation.

D. Qualitative comparison

In this survey, we review the existing optimization tech-
niques towards the three components of BF, from the per-
spective of both performance and generalization. To improve
the performance of BFs, the variants focus on the reduction of
false positives and implementation optimizations. Also, dozens
of variants try to generalize BF framework by representing
diverse type of sets from the input side and enabling more
functionalities from the output side. As shown in Fig. 13,
the variants augment one or more components to achieve
their design goals. Furthermore, we qualitatively compare the
capabilities and complexities of these variants and report the
results in Table IV.

Note that, in the last column of Table IV, we also highlight
the contexts where these BF variants are proposed or applied.
Obviously, a large portion (28 out of 60 variants) of the BF
variants are designed for general usage – to represent a static
set of elements, support membership query and other function-
alities. These variants redesign the standard BF framework
to reduce the potential false positives and enable extensive
functionalities. The rest of BF variants, on the other hand,
are motivated by specific requirements in diverse contexts. In
the networking field, Spectral BF [112], Multi-class BF [3],
Optihash [67], FPF-MBF [43], and Combinatorial BF[97] are
designed to improve in-packet or in-switch BFs for multicast
forwarding; Adaptive BF [114] and Space-code BF [88] aim
at traffic engineering; Double Buffering [137], DLB-BF [96],
EABF [110], and Pipelined BF [107] are proposed for packet
processing; Temporal CBF [136] speeds up the information

31

TABLE IV
THE KEY CAPABILITIES AND COMPLEXITIES OF BF AND ITS VARIANTS. THE CAPABILITIES INCLUDE COUNTING, GROUPING, DELETION, SCALABLE,

DECAY, PARALLELISM AND FALSE NEGATIVE (FN). IN CONTRAST, WE CONSIDER THE COMPLEXITIES ABOUT INSERTION (COMP-I), QUERY (COMP-Q),
DELETION (COMP-D) AND MEMORY ACCESS (COMP-M).

Structure

C
ounting

G
rouping

D
eletion

Scalability

D
ecay

Parallelism

FN C
om

p-I

C
om

p-Q

C
om

p-D

C
om

p-M

C
ontext

Standard BF [1] No No No No No No No O(k) O(k) −− O(k) General
CBF [36] Yes No Yes No No No No O(k) O(k) O(k) O(k) General
kBF [19] Yes Yes Yes No No No Yes O(k) O(k) O(k) O(k) K-V store
Loglog BF [113] Yes No No No No No No O(kd) O(kd) −− O(dk) Smart Grid
k-mer BF [131] No No No No No No No O(k) O(2k)−O(3k) −− O(2k)−O(3k) Biometric
Adaptive BF [114] Yes No No No No No No O(k+N+1) O(k+N+1) −− O(k+N+1) Networking
Weighted BF [119] No No No No No No No O(k) O(k) −− O(k) General
Var. Len. Sin [117] Yes No Yes No No No Yes O(t) O(q) O(k−d) O(k) Networking
Pop. cons. BF [120] No No No No No No No O(ki) O(ki) −− O(k) General
Spectral BF [112] Yes No Yes No No No No O(k) O(k) O(k) O(k) Networking
Dynamic BF [89] No No Yes Yes No Yes Yes O(k) O(sk) O(sk) O(sk) Dynamic set
DBA [90] No Yes Yes Yes No Yes Yes O(k) O(rk) O(rk) O(rk) Dynamic set
Par-BF [91] No No Yes Yes No Yes No O(k) O(ksm) O(ksm) O(ksm) Dynamic set
Scalable BF [118] No No No Yes No Yes No O(k) O(lk) −− O(lk) Dynamic set
Spatial BF [17] No Yes No No No No No O(k) O(k) −− O(k) Spatial data
Space-code BF [88] Yes No No No No No No O(ck) O(lk) −− O(lk) Networking
ICBF [20] Yes No Yes No No No No O(k) O(k) O(k) O(k) General
BloomStore [18] No Yes No Yes No Yes No O(k) O(xk) −− O(xk) Storage
IBLT [21] Yes No Yes No No No No O(k) O(k) O(k) O(k) K-V store
Multi-class BF [3] No No No No No No No O(ki) O(ki) −− O(ki) Networking
Optihash [67] No No No No No No No O(1) O(1) −− O(1) Networking
FPF-MBF [43] No No No No No Yes No O(k) O(k) −− O(k) Networking
Retouched BF [75] No No No No Yes No Yes O(k) O(k) O(k) O(k) General
MPCBF [77] No No Yes No No Yes No O(k+1) O(k+1) O(k+1) O(1) General
Ternary BF [134] No No Yes No No No No O(k) O(k) O(k) O(k) General
Selected Hash [78] [79] No No No No No No No O(k) O(k) −− O(k) General
Complement BF [73] No No No No No No No O(k) O(2k) −− O(2k) General
EGH filter [80] Yes No Yes No No No No O(k) O(k) O(k) O(k) General
Cross-checking BF [72] No No No No No No No O(k) O(αk) −− O(αk) General
Generalized BF [76] No No No No Yes No Yes O(k) O(k) −− O(k) General
Yes-no BF [74] No No No No No No No O(k) O(2k) −− O(2k) General
VI-CBF [83] No No Yes No No No No O(2k) O(2k) O(2k) O(2k) General
FP-CBF [84] Yes No Yes No No No No O(k) O(k) O(k) O(k) General
Dist. Sens. BF [143] No No No No No No Yes O(k) O(k) −− O(k) General
Loc. Sens. BF [144] No No No No No No Yes O(2k) O(2k) −− O(2k) General
MLBF [142] No No No No No No Yes O(Lk+k′) O(Lk+k′) −− O(k) General
Deletable BF [133] No No Yes No No No No O(k) O(k) O(2k) O(k) General
IBF [145] Yes No Yes No No No No O(k) O(k) O(k) O(k) General
Stable BF [135] No No No No Yes No Yes O(k) O(k) O(k) O(k) Duplication
Temporal CBF [136] No No Yes No Yes No Yes O(k) O(k) O(k) O(k) Networking
Double Buffering [137] No Yes No No Yes Yes Yes O(2k) O(2k) −− O(k) Networking
A2 Buffering [138] No Yes No No Yes Yes Yes O(2k) O(2k) −− O(2k) Dynamic set
Forgetful BF [139] No Yes No No Yes Yes Yes O(2k) O(pk) −− O(pk) K-V store
Bloomier filter [95] No Yes No No No No No O(n log n) O(λk) −− O(λk) General
Parallel BF [94] Yes Yes Yes No No Yes No O(pk) O(pk) O(pk) O(pk) Networking
Less hash [85] No No No No No No No O(k) O(k) −− O(k) General
One hash BF [86] No No No No No No No O(k) O(k) −− O(k) General
Compressed BF [99] No No No No No No No O(k) O(k) −− O(k) General
Compacted BF [100] No No No No No No Yes O(k) O(k) −− O(k) General
Combinatorial BF [97] No Yes Yes No No Yes No O(n1k) O(γk) O(γk) O(γk) Networking
Bloom-1 [92] No No No No No No No O(k) O(k) −− O(1) General
OMASS [93] No Yes No No No Yes No O(k + 1) O(k + 1) −− O(1) General
Forest-struc. BF [106] No Yes No Yes No Yes No O(k + 2) O(lk) −− O(lk) Storage
DLB-BF [96] No Yes No No No Yes No O(k) O(k) −− O(k) Networking
Ultra-fast BF [98] No Yes No No No Yes No O(k + 1) O(k + 1) −− O(k) Implementation
d-left CBF [101] Yes No Yes No No No No O(d) O(d) O(d) O(d) Implementation
L-CBF [111] Yes No Yes No No No No O(k) O(k) O(k) O(k) Implementation
Mem. Opti. BF [102] No No No No No No No O(k + 1) O(k + 1) O(k + 1) O(k + 1) Storage
Energy effic. BF [110] No No No No No No No O(k) O(k1)−O(k) −− O(k1)−O(k) Networking
Pipelined BF [107] [108] No No No No No No No O(k) O(k1)−O(k) −− O(k1)−O(k) Networking
Matrix BF [103] No Yes No Yes No No No O(k) O(k) −− O(Nk) Copy dectection
Shifting BF [115] Yes Yes Yes No No No No O(λk) O(λk) O(λk) O(λk) General

32

sharing in human net; Parallel BF [94] supports multiattribute
representation on network services. Besides, for online sys-
tems where elements may join and leave dynamically, several
variants are proposed to realize capacity elasticity of BF, such
as Dynamic BF [89], DBA [90], Par-BF [91], Scalable BF
[118] and A2 Buffering [138]. Other variants are also designed
in given contexts, including kBF [19], IBLT [21], and Forgetful
BF [139] for KV store, Loglog BF [113] in smart grid, k-
mer BF [131] for biometric data representation, BloomStore
[18], Forest-structured BF [106], and Memory-optimized BF
[102] for storage systems, Spatial BF [17] for spatial data
representation, Stable BF [135] for duplication, Ultra-fast BF
[98] and d-left CBF [101] for implementation of CBF, and
Matrix BF [103] for copy detection.

1) Capability comparison: Generally, we consider six ca-
pabilities, i.e., counting, grouping, deletion, scalability, decay,
and parallelism. Besides, we also highlight the variants which
additionally incur false negative errors in Table IV.

Counting. Generally, the variants which have a counter field
in each cell (e.g., CBF, Spectral BF, FP-CBF, IBLT, IBF, ICBF,
etc) will be considered to support the counting capability and
thereby multiplicity query. The counting capability is of great
significance to extend the usage of BF from simple sets to
more general multisets. There are also other alternatives of the
counter field, e.g., using the number of hash functions [114].
Additionally, typical estimation algorithms (e.g., maximum
likelihood estimation [88], probabilistic counting [113]) can
also be leveraged to estimate the multiplicity. A more special
proposal is Shifting BF [115] which regards the multiplicity
of elements as auxiliary information.

Grouping. Grouping answers the question which group(s)
or subset(s) a queried element belongs to. This capability
widens the application of BF from a single set to multiple sets
(or groups) scenarios, e.g., IP lookup. Generally, the variants
with multiple BF vectors or BF segments (e.g., DBA [90],
Matrix BF [103], BloomStore [18], Forest-structured BF [106],
etc) naturally support the grouping capability via representing
each group with a single BF vector. This strategy has to query
the element against all the BF vectors or BF segments to draw
a probabilistic conclusion. Especially, Combinatorial BF [97]
derives the group id for an element by leveraging multiple
BFs. If the element passes the membership check of a BF, the
corresponding bit in the output group id will be 1. Spatial BF
[17] distinguishes the areas with different integer labels. If we
treat the labels as groups, Spatial BF enables grouping with
differentiated accuracy for diverse groups. OMASS enables
the grouping capability with shared bit vector for the multiple
sets. To lessen the interference of bits for diverse sets, OMASS
redesigns the hash functions to generate orthotropic hash
values for a common element in multiple sets. Proposals like
Bloomier filter [95], Shifting BF [115] and kBF [19], can store
the group id as an associated value of the element. However,
except for the proposals with multiple BFs or BF segments,
other variants only resolve the grouping problem where an
element exclusively belongs to exactly a single group.

Deletion and scalability. Both deletion and scalability are
crucial capabilities to enable the usage of BFs in dynamic
datasets. Nevertheless, most of the existing proposals achieve

one single capability, and only a few of them guarantee dele-
tion and scalability simultaneously. CBF [36] and its variants,
e.g., MPCBF [77], VI-CBF [83], FP-CBF [84], Temporal
CBF [136], d-left CBF [101] are naturally deletable. Other
proposals with a counter in each cell can also delete elements
reasonably by decreasing the corresponding counters. The
Deletable BF [133] partitions the bit vector and only resets the
bits in collision-free segments to delete elements. To achieve
scalability and elasticity, DBF [89] and DBA [90] support both
deletion of elements and introduction of additional vectors.
Note that deleting the elements in DBF and DBA by resetting
the bits from 1s to 0s may cause false negatives. A remedy is
to replace the bits with cells like the CBF does, at the cost of
nearly 4 times space overhead. The BFs in Matrix BF [103]
can be expanded but don’t support element-level deletion.
However, the BF-level deletion is permitted, since each BF
is independent and records all the strings in a document.

Decay. Decay means eliminating stale elements to better
represent the newly-arrival ones. This capability is extremely
important for online systems. Note that we distinguish the
periodical decaying operations from deletion. When decaying
the vector, we may not acknowledge what and how many
elements have been wiped out. By contrast, we are aware of
exactly what elements will be deleted during deletion. Besides,
decaying always leads to both false positive and false negative
errors, while correct deletion imposes no impact to the existing
elements. There are several variants designed to support decay,
including Generalized BF [76], Retouched BF [75], Stable BF
[135], Temporal Counting BF [136], Double buffering [137],
A2 buffering [138], and Forgetful BF [139]. Generalized BF,
Retouched BF, Stable BF, and Temporal Counting BF reset the
bits in a single BF vector with diverse strategies. By contrast,
Double buffering, A2 buffering, and Forgetful BF flush the
oldest BF among multiple BF vectors to remove the stale
elements in a batched manner.

Parallelism. Parallelism is helpful to accelerate the query
process and thereby increase the throughput of query. Typi-
cally, the variants with multiple independent BFs or segments
can be accessed in parallel, include DBF [89], DBA [90],
Par-BF [91], Scalable BF [118], BloomStore [18], FPF-MBF
[43], MPCBF [77], Parallel BF [94], Combinatorial BF [97],
OMASS [93], Forest-structured BF [106], DLB-BF [96], and
Ultra-fast BF [98]. The parallelism of query process decreases
the computation time to 1/k thus improves the query through-
put significantly.

False negatives. Certainly, all the variants of BF incur
inherited false positive, despite the proposed optimization
techniques. A dozen of the variants, additionally, suffer from
false negative errors. These variants loss the one-sided-error
characteristic. Therefore, no matter the query result is positive
or negative, the users have to further check the correctness
from an off-chip hash table (if they have). Generalized BF
[76], Retouched BF [75], Stable BF [135] reset the bits to
wipe the stale elements thereby decreasing the false positive
rate. The decay strategies may delete legal elements hence
leading to false negatives. Similarly, deleting elements from
the standard DBF and DBA vectors via resetting of bits can
also result in false negatives, if the reset bits experience hash

33

collisions. The coding strategy in Compacted BF will also
cause false negatives. Besides, the use of locality-sensitive
hash functions may also lead to false negatives. Distance-
sensitive BF [143], Locality-sensitive BF [144] and MLBF
[142] employ locality-sensitive hash functions to maintain
the distance between elements. However, it is still possible
that two neighbouring elements are mapped into two distant
cells or bits. As a consequence, false negative errors will be
triggered for the approximate membership queries. Beyond
the above major reasons, the overflow of counters in Variable
length Signature [117], as well as hash collisions in kBF [19],
also result in false negative errors.

2) Complexity comparison: To achieve the above capabil-
ities, the resultant penalty is higher computation complexity
for insertion, query, and deletion, as well as higher complexity
for memory access. The last four columns in Table IV detail
the considered complexities for each variant. Generally, the
parameter k denotes the number of hash functions for each BF
vector, n counts the number of elements in the set S. Other
dedicated parameters can find their meanings in corresponding
literatures. Note that, the complexities of several variants are
non-deterministic, hence we show both the upper bound and
lower bound. Due to space limitation, we will not elaborate
the complexities one by one but spot several representative or
special variants. Interested readers can refer to the references.

Inserting an element means mapping the element into the bit
or cell vector. Definitely, the insertion complexity is mainly de-
termined by how many hash functions have been employed to
map the element. For instance, Adaptive BF [114] records the
multiplicity of an element with the number of hash functions,
thereby the insertion complexity is O(k+N+1), where N is the
highest multiplicity. The Bloomier filter [95] encodes all the
elements recursively with multiple cascaded BFs. Accordingly,
its insertion complexity is O(n log n), and query complexity is
O(λk), where λ is the number of BFs in Bloomier filter.

Generally, the query complexity highly depends on the
insertion complexity, e.g., CBF [36], kBF [19], Ternary BF
[134], Deletable BF [133], IBF [145], Stable BF [135], Tem-
poral CBF [136], etc. By contrast, k-mer BF [131] records
the k-mers of a sequent dataset. For insertion, the k hash
functions map the sequence into k bits and set them as
1s. When querying, besides of the queried sequence, one
(one-sided k-mer BF) or both (two-sided k-mer BF) of the
neighbouring sequences will also be queried, resulting in
O(2k) and O(3k) query complexity, respectively. The other
variants which must query against multiple BFs or segments
to identify the membership of an element also need higher
query complexity, e.g., DBF [89], DBA [90], Matrix BF [103],
BloomStore [18], etc. In particular, the query complexities of
EABF [110], Pipelined BF [107] and its variants [108] [109]
are O(k1) (k1 ≤ k) for negative or less accurate answers, while
O(k) for positive or more trustable results.

As shown in Table IV, the deletion operation (if supported)
incurs the same complexity as a query operation since BFs
have to query the existence of an element before actually
deleting it. The only outlier is Variable length signatures [117],
which inserts an element by setting q≤t≤k bits as 1s and
declares element x∈S if at least q bits are non-zero. Therefore,

deleting an element must reset k−d (d<q) bits as 0s, such that
the element will not be recognized as a member. By contrast,
the complexity of memory access quantifies the number of
memory access for a query process. For variants in which the
hash functions share the entire bit or cell vector (e.g., CBF
[36], Adaptive BF [114], FP-CBF [84], IBF [145], IBLT [21],
ICBF [20], etc.), arbitrary query has to read the k target bits
with k memory accesses. The reason is that the k target bits
disperses randomly in the vector, and one memory access may
not cover multiple target bits. MPCBF [77], Bloom-1 [92]
and OMASS [93], however, only require exactly one memory
access since the existence information for an element is stored
in one block with a word-size length.

IX. SUMMARY AND OPEN ISSUES

Heretofore, tens of variants are proposed for diverse pur-
poses, enriching the BF paradigm. Table IV qualitatively
summaries the key capabilities and complexities of BF and
its variants. These variants leverage the component(s) in the
basic framework to improve the performance or generalize the
BF to more scenarios. Based on the review of current literature
on optimization of BF, we now outline some open issues that
should be considered in the future.

Implementation in extreme hardware. BF is easy-
deployable, however, implementing BFs in extreme hardware
is still problematic. Firstly, in light-weight hardware (wireless
sensors, RFIDs), the memory, bandwidth, and computation
unit are scare resources. As a consequence, deploying large-
scale or complicated variants is not possible. To resolve this
problem, one may pre-clean the dataset and only store the
necessary elements, or alternatively, sacrifice the FPR and
overload the bit vector to accommodate all the elements.
As for the transmission, besides of shrinking the length of
BF, one may reasonably utilize the bandwidth and send the
vector when the channel is not busy. Secondly, newly advanced
hardware (TCAM, CAM, programmable hardware like FPGA,
ASIC), by contrast, bring great opportunities for the imple-
mentation of BF and its variants. Several existing proposals
jointly leverage both RAM and flash memory to extend their
capacity without significant damage of access speed. The
TCAM or FPGA-embedded devices, on the contrary, will lose
their superiorities if the BFs are deployed in a traditional way.
This open issue calls for extra efforts.

Extension or downsizing at arbitrary scale. The existing
variants to support capacity extension or downsizing (e.g.,
DBF [89], DBA [90], Matrix BF [103], Scalable BF [118],
etc.) can only be resized at the level of sub-BFs. That is, only
an entire sub-BF can be added or deleted. However, storing
only one element with an added sub-BF is uneconomical. By
contrast, overloading a sub-BF results in unacceptable false
positive rate. An ideal extension scheme, however, should have
the ability to extend the BF with an arbitrary scale. This vision
brings the flexibility of implementing BF at any scale.

Representation of inter-element relationships. Basically,
standard BF and most of its variants represents elements inde-
pendently without any consideration of the inner relationship
between them. Exceptions only include those variants which

34

employ locality sensitive hash functions to map close elements
into neighbouring or same bits, e.g., Distance-sensitive BF
[143], LSBF [144] and MLBF [142]. Besides of the distance
between elements, other kinds of relationships are still beyond
the capability of the existing variants. For instance, the BFs
are capable to record the nodes in a multicast tree, but fail
to tell the parents and children of any node. Therefore, we
envision new variants which not only record the membership
of the elements, but also represent the inner dependency of the
elements. Besides, researchers are trying to learn the proper
location for elements in BFs (also other data structures), so
that there are no false positive errors [148] [149].

Alternates of BFs. Besides of optimizing the BF frame-
work, another approach is to propose alternates with better
performance. Recently, Cuckoo filter [150], Quotient filter
[151], and their variants [152] [153] [154] [155] [156] generate
wide attention due to their similar or even more integrated
functionalities as the BF framework. Unlike BFs, these hash
tables store the fingerprints of elements directly. Cuckoo filter
[150] is a redesigned hash table to support membership query
based on the theory of Cuckoo hashing [157] [158]. The
Quotient filter (QF) [151] is a hash table of slots to store the
fingerprints of elements with quotienting technique [159]. The
fingerprint of an element is divided into two parts, i.e., the q
most significant bits as quotient, and the r least significant bits
as remainder. A remainder is stored in the slot suggested by the
quotient. We vision that in the future, the Cuckoo filters and
Quotient filters will be further improved and other alternative
data structures will be presented.

Extensive applications of BFs. Hitherto, BFs have been
widely employed in various systems. More applications may
occur in near future, beyond of communications (e.g., cogni-
tive radio networks, wireless sensor networks, device-to-device
communications, smart grid, etc.), networking (e.g., packet
forwarding and routing, web caching, gossiping, resource
discovering, scheduling, etc.), and database (e.g., informa-
tion retrieving, recommendation, record linkage, duplication,
anonymization, etc.). In Bioinformatics, BFs are employed to
represent sequenced genomes, biometric information such as
iris, face, handshape, fingerprint, etc. In the coming applica-
tions, BFs can be customized for diverse design goals partially
with the optimization techniques summarized by us.

X. CONCLUSION

BF has been widely applied in the society of communi-
cations and networking. As we stated in this survey, when
such a data structure is employed, the users can redesign it
to suit their contexts. In this survey, we review the existing
BF variants from mainly two dimensions, i.e., performance
and generalization. To improve the performance, dozens of
variants devote themselves to reducing the false positives and
implementation costs. Besides, tens of variants generalize the
BF framework in more scenarios by diversifying the input
sets and enriching the output functionalities. Specifically, to
reduce false positives, the existing BF variants utilizing prior
knowledge, select optimal hash functions, generate multiple
BFs and queries, reset the bits in vectors, or represent elements

differentially. To further ease the implementation of BF, a
dozen variants are proposed to optimize its computation cost,
memory access, space efficiency, and energy usage. Besides
the representation of general sets, variants are investigated to
represent multisets, dynamic sets, weighted sets, key-values,
sequence sets, and spatial sets. Lastly, besides element in-
sertion and query, more BF functionalities are enabled, such
as element deletion, element decay, approximate membership
query, and semantic enrichment. Additionally, we also classify
the existing optimization techniques from the perspective of
the components of BF, and then compare them in terms of both
functionality and complexity. We expect more applications
and redesigns of BF in the next generation of networks,
communication systems and beyond.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[2] F. Angius, M. Gerla, G. Pau, “Bloogo: Bloom filter based gossip
algorithm for wireless NDN,” in Proc. ACM workshop on Emerging
Name-Oriented Mobile Networking Design-Architecture, Algorithms,
and Applications, Hilton Head, SC, USA, 2012.

[3] D. Li, H. Cui, Y. Hu, Y. Xia, X. Wang, “Scalable data center multicast
using multi-class Bloom filter,” in Proc. IEEE ICNP, Vancouver, BC
Canada, 2011.

[4] X. Tian, Y. Cheng, “Loop mitigation in Bloom filter based multicast: A
destination-oriented approach,” in Proc. IEEE INFOCOM, Orlando, FL,
USA, 2012.

[5] I. Nikolaevskiy, A. Lukyanenko, T. Polishchuk, V. Polishchukc, A. Gur-
tov, “isBF: Scalable in-packet Bloom filter based multicast,” Computer
Communications, vol. 70, pp. 79-85, 2015.

[6] D. Guo, Y. He, Y. Liu, “On the feasibility of gradient-based data-centric
routing using Bloom filters,” IEEE TPDS, vol. 25, no. 1, pp. 180-190,
2014.

[7] G. Chen, D. Guo, L. Luo, B. Ren, “Optimization of multicast source-
routing based on boom filter,” IEEE Communication Letters, vol. 22,
no. 4, pp. 700-703, 2018.

[8] D. Guo, Y. He, P. Yang, “Receiver-oriented design of bloom filters for
data-centric routing,” Computer Networks, vol. 54, no. 1, pp. 165-174,
2010.

[9] O. Rottenstreich, I. Keslassy, “The Bloom paradox: When not to use a
Bloom filter? ” in Proc. IEEE INFOCOM, Orlando, FL, USA, 2012.

[10] H. Alexander, I. Khalil, C. Cameron, Z. Tari, A. Zomaya, “Cooperative
web caching using dynamic interest-tagged filtered Bloom filters,” IEEE
TPDS, vol. 26, no. 11, pp. 2956-2969, 2015.

[11] Y. Li, R. Miao, C. Kim, M. Yu, “FlowRadar: A better NetFlow for data
centers,” in Proc. USENIX NSDI, Santa Clara, CA, USA, 2016.

[12] E.A .Durham, M. Kantarcioglu, Y. Xue, C. Toth, M. Kuzu, B. Malin,
“Composite Bloom filters for secure record linkage,” IEEE TKDE, vol.
26, no. 12, pp. 2956-2968, 2014.

[13] M. Moreira, R. Laufer, P. Velloso, and O. Duarte, “Capacity and
robustness tradeoffs in Bloom filters for distributed applications,” IEEE
TPDS, vol. 23, no. 12, pp. 2219-2230, 2012.

[14] B.M. Maggs, R.K. Sitaraman, “Algorithmic nuggets in content delivery,”
in Proc. ACM SIGCOMM, London, United Kingdom, 2015.

[15] X. Zhu, R. Hao, S. Jiang, H. Chi, H. Li, “Verification of boolean queries
over outsourced encrypted data based on Counting Bloom filter,” in Proc.
IEEE GLOBECOM, San Diego, CA, USA, 2015.

[16] A. Margara, G. Cugola, “High-performance publish-subscribe matching
using parallel hardware,” IEEE TPDS, vol. 25, no. 1, pp. 126-135, 2014.

[17] L. Calderoni, P. Palmieri, D. Maio, “Location privacy without mutual
trust: The spatial Bloom filter,” Computer Communications, vol. 68, pp.
4-12, 2015.

[18] G. Lu, Y.J. Nam, D.H.C. Du, “BloomStore: Bloom filter based memory-
efficient key-value store for indexing of data de-duplication on flash,”
in Proc. IEEE MSST, Pacific Grove, Canada, 2012.

[19] S. Xiong, Y. Yao, Q. Cao, T. He, “kBF: A Bloom filter for key-value
storage with an application on approximate state machines,” in Proc.
IEEE INFOCOM, Toronto, Canada, 2014.

35

[20] L. Luo, D. Guo, J. Wu, O. Rottenstreich, Q. He, Y. Qin, X. Luo,
“Efficient multiset synchronization,” IEEE/ACM ToN, vol. 25, no. 2,
pp. 1190-1205, 2017.

[21] M.T. Goodrich, M. Mitzenmacher, “Invertible Bloom lookup tables,”
in Proc. Annual Allerton Conference on Communication, Control, and
Computing, Monticello, Illinois, USA, 2011.

[22] D. Chen, C. Konrad, K. Yi, W. Yu, Q. Zhang, “Robust set reconciliation,”
in Proc. ACM SIGMOD, Snowbird, Utah, USA, 2014.

[23] L. Luo, D. Guo, X. Zhao, J. Wu, O. Rottenstreich, X.
Luo, “Near-accurate multiset reconciliation,” IEEE TKDE,
DOI10.1109/TKDE.2018.2849997, 2018.

[24] D. Guo, M. Li, “Set reconciliation via counting bloom filters,” IEEE
TKDE, vol. 25, no. 10, pp. 2367-2380, 2013.

[25] S. Dutta, A. Narang, S.K. Bera, “Streaming quotient filter: a near optimal
approximate duplicate detection approach for data streams,” in Proc.
VLDB, Riva del Garda, Trento, Italy, 2013.

[26] J. Hermans, B. Mennink, R. Peeters, “When a Bloom filter is a doom
filter: Security assessment of a novel iris biometric template protection
system,” in Proc. BIOSIG, Darmstadt, Germany, 2014.

[27] M. Gomez-Barrero, C. Rathgeb, J. Galbally, J. Fierrez, C. Busch,
“Protected facial biometric templates based on local gabor patterns and
adaptive Bloom filters,” in Proc. ICPR, Stockholm, Sweden, 2014.

[28] P. Jiang, Y. Ji, X. Wang, J. Zhu, Y. Cheng, “Design of a multiple Bloom
filter for distributed navigation routing,” IEEE Transactions on SMC:
Systems, vol. 44, no. 2, pp. 254-260, 2014.

[29] S. Tarkoma, C.E. Rothenberg, E. Lagerspetz, “Theory and practice of
Bloom filters for distributed systems,” IEEE Communications Surveys
and Tutorials, vol.14, no. 1, pp.131-155, 2012.

[30] A. Broder, M. Mitzenmacher, “Network applications of Bloom filters:
A survey,” Internet mathematics, vol.1, no. 4, pp. 485-509, 2004.

[31] S. Geravand, M. Ahmadi, “Bloom filter applications in network security:
A state-of-the-art survey,” Computer Networks, vol.57, no. 18, pp. 4047-
4064, 2013.

[32] L. L. Gremillion, “Designing a Bloom filter for differential file access,”
Communications of the ACM, vol. 25, no. 7, pp. 600-604, 1982.

[33] J. K. Mullin, “A second look at Bloom filters,” Communications of the
ACM, vol. 26, no. 8, 1983.

[34] P. Bose, H. Guo, E. Kranakis, “On the false-positive rate of Bloom
filters,” Information Processing Letters, vol. 108, no. 4, pp. 210-213,
2008.

[35] R. L. Graham, D. E. Knuth, O. Patashnik, “Concrete Mathematics,”
Addison-Wesley, 2nd edition, 1994.

[36] L. Fan, P. Cao, J. Almeida, A.Z. Broder, “Summary cache: A scalable
wide-area web cache sharing protocol,” IEEE/ACM ToN, vol. 8, no. 3,
pp. 281-293, 2000.

[37] K. Chen, P. Wu, B. Lai, “Reduce data coherence cost with an area
efficient double layer counting bloom filter,” in Proc. PPAP, Taipei,
Taiwan, 2012.

[38] E. Papapetrou, E. Pitoura, K. Lillis “Speeding-up cache lookups in
wireless ad-hoc routing using bloom filters,” in Proc. IEEE PIMRC,
Berlin, Germany, 2005.

[39] S. Kavitha, R. Thanuja, A. Umamakeswari, “Updating distributed cache
mechanism using bloom filter for asymmetric cryptography in large
wireless networks,” Indian Journal of Science and Technology, vol. 9,
no. 48, pp. 1-6, 2016.

[40] H. Lim, K. Lim, N. Lee, K.H. Park, “On adding Bloom filters to longest
prefix matching algorithms,” IEEE TC, vol. 63, no. 2, pp. 411-423, 2014.

[41] G. Park, M. Kwon, “ An enhanced bloom filter for longest prefix
matching,” in Proc. IEEE/ACM IWQoS, Montreal, Canada, 2013.

[42] C. Rothenberg, C. Macapuna, M. Magalhaes, F. Verdi, A. Wiesmaier,
“In-packet Bloom filters: Design and networking applications,” Com-
puter Networks, vol. 55, no. 6, pp. 1364-1378, 2011.

[43] J. Tapolcai, J. Biro, P. Babarczi, A. Gulyas, Z. Heszberger, D. Trossen,
“Optimal false-positive-free Bloom filter design for scalable multicast
forwarding,” IEEE/ACM ToN, vol. 23, no. 6, pp. 1832-1845, 2015.

[44] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, Q. Dong,
“Namefilter: Achieving fast name lookup with low memory cost via
applying two-stage bloom filters,” in Proc. IEEE INFOCOM, Turin,
Italy, 2013.

[45] W. Quan, C. Xu, J. Guan, H. Zhang, L. Grieco, “Scalable name lookup
with adaptive prefix bloom filter for named data networking,” IEEE
Communications Letters, vol. 18, no. 1, pp. 102-105, 2014.

[46] J. Trindade, T. Vazao, “HRAN - A scalable routing protocol for
multihop wireless networks using bloom filters,” Wired/Wireless Internet
Communications, pp. 434-445, 2011.

[47] J. Trindade, T. Vazao, “Routing on large scale mobile ad hoc networks
using bloom filters,” Ad Hoc Networks, vol. 23, pp. 34-51, 2014.

[48] F. Klingler, R. Cohen, C. Sommer, F. Dressler, “Bloom hopping: Bloom
filter based 2-Hop Neighbor Management in VANETs,” IEEE TMC,
10.1109/TMC.2018.2840123, 2018.

[49] X. Li, J. Wu, J. Xu, “Hint-based routing in WSNs using scope decay
bloom filters,” in Proc. IEEE NAS, Shenyang, China, 2006.

[50] P. Hebden, A. Pearce, “Data-centric routing using Bloom filters in
wireless sensor networks,” in Proc. IEEE ICISIP, Bangalore, India, 2006.

[51] A. Reinhardt, O. Morar, S. Santini, S. Zoller, R. Steinmetz, “CBRF:
Bloom filter routing with gradual forgetting for tree-structured wireless
sensor networks with mobile nodes,” in Proc. IEEE WOWMOM, San
Francisco, USA, 2012.

[52] M. Grissa, A. Yavuz, B. Hamdaoui, “Cuckoo filter-based location-
privacy preservation in database-driven cognitive radio networks,” in
Proc. IEEE WSCNIS, Hammamet, Tunisia 2015.

[53] M. Grissa, A. Yavuz, B. Hamdaoui, “Location privacy preservation in
database-driven wireless cognitive networks through encrypted proba-
bilistic data structures,” IEEE TCCN, vol. 3, no. 2, pp. 255-266, 2017.

[54] C. Rathgeb, F. Breitinger, C. Busch, H. Baier, “On application of bloom
filters to iris biometrics,” IET Biometrics, vol. 3, no. 4, pp. 207-218,
2014.

[55] D. Karapiperis, V. Verykios, “An LSH-based blocking approach with
a homomorphic matching technique for privacy-preserving record link-
age,” IEEE TKDE, vol. 27, no. 4, pp. 909-921, 2015.

[56] E. Oriero, K. Rabieh, M. Mahmoud, M. Ismail, E. Serpedin, K. Qaraqe,
“Trust-based and privacy-preserving fine-grained data retrieval scheme
for MSNs,” in Proc. IEEE WCNC, Doha, Qatar, 2016.

[57] M. Alaggan, S. Gambs, S. Matwin, M. Tuhin, “Sanitization of call detail
records via differentially-private bloom filters,” in Proc. IFIP DBSec,
Fairfax, VA, USA, 2015.

[58] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy, and
access control in information-centric networking: A survey,” IEEE
Communications Surveys and Tutorials, vol. 20, no. 1, pp. 566-600,
2018.

[59] L. Demir, A. Kumar, M. Cunche, C. Lauradoux, “The pitfalls of hashing
for privacy,” IEEE Communications Surveys and Tutorials, vol. 20, no.
1, pp. 551-565, 2018.

[60] M. Ambrosin , A. Compagno, M. Conti, C. Ghali, G. Tsudik, “Security
and privacy analysis of national science foundation future internet
architectures,” IEEE Communications Surveys and Tutorials, vol. 20,
no. 2, pp. 1418-1442, 2018.

[61] M. Conti, S. Kumar, C. Lal, S. Ruj, “A survey on security and privacy
issues of bitcoin,” IEEE Communications Surveys and Tutorials, DOI
10.1109/COMST.2018.2842460, 2018.

[62] M. C. K. Khalilov, A. Levi, “A survey on anonymity and privacy in
bitcoin-like Digital cash dystems,” IEEE Communications Surveys and
Tutorials, vol. 20, no. 3, pp. 2543-2585, 2018.

[63] K. Rabieh, M. Mahmoud, K. Akkaya, S. Tonyali, “Scalable certificate
revocation schemes for smart grid AMI networks using bloom filters,”
IEEE TDSC, vol. 14, no. 4, pp. 420-432, 2017.

[64] M. Cisse, N. Usunier, T. Artieres, “Decentralised Peer-to-Peer data
dissemination in wireless sensor networks,” Pervasive and Mobile Com-
puting, vol. 40, pp. 242-266, 2017.

[65] R. Carbajo, C. Goldrick, “Robust bloom filters for large multilabel clas-
sification tasks,” Advances in Neural Information Processing Systems,
pp. 1851-1859, 2013.

[66] K. Choi, D. Wiriaatmadja, “Discovering mobile applications in cellular
device-to-device communications: Hash function and bloom filter-based
approach,” IEEE TMC, vol. 15, vol. 2, pp. 336-349, 2016.

[67] L. Carrea, A. Vernitski, M. Reed, “Optimized hash for network path
encoding with minimized false positives,” Computer Networks, vol. 58,
no.11, pp. 180-191, 2014.

[68] J. Tapolcai, A. Gulyas, Z. Heszbergery, J. Biro, “Stateless multi-stage
dissemination of information: Source routing revisited,” in Proc. IEEE
GLOBECOM, Anaheim, California, USA, 2012.

[69] W. Yang, D. Trossen, J. Tapolcai, “Scalable forwarding for information-
centric networks,” in Proc. IEEE ICC-NGN, Budapest, Hungary, 2013.

[70] D. Lagutin, K. Visala, S. Tarkoma, “Publish/subscribe for Internet:
PSIRP perspective,” Towards the Future Internet-Emerging Trends from
European Research, Amsterdam, The Netherlands: IOS Press, 2010.

[71] H.M. Ju, H. Lim, “On reducing false positives of a Bloom filter in trie-
based algorithms,” in Proc. ACM/IEEE ANCS, Marina del Rey, CA,
USA, 2014.

[72] H. Lim, N. Lee, J. Lee, C. Yim, “Reducing false positives of a Bloom
filter using Cross-Checking Bloom filters,” Applied Mathematics and
Information Sciences, vol. 8, no. 4, pp. 1865-1877, 2014.

36

[73] H. Lim, J. Lee, C. Yim, “Complement Bloom filter for identifying true
positiveness of a Bloom filter,” IEEE Communications Letters, vol. 19,
no. 11, pp. 1905-1908, 2015.

[74] L. Carrea, A. Vernitski, M. Reed, “Yes-no Bloom filter: A way
of representing sets with fewer false positives,” arXiv preprint,
arXiv:1603.01060, 2016.

[75] B. Chazelle, J. Kilian, R. Rubinfeld, A. Tal, “Retouched Bloom filters:
allowing networked applications to trade off selected false positives
against false negatives,” in Proc. ACM CoNEXT, Lisboa, Portugal, 2006.

[76] R.P. Laufer, P.B. Velloso, O.C.MB. Duarte, “A generalized Bloom
filter to secure distributed network applications, ” Computer Networks
Amsterdam, vol. 55, no.8, pp. 1804-1819, 2011.

[77] K. Huang, J. Zhang, D. Zhang, G. Xie, “A Multi-partitioning approach
to building fast and accurate counting Bloom filters,” in Proc. IEEE
IPDPS, Cambridge, MA, USA, 2013.

[78] S. Lumetta, M. Mitzenmacher, “Using the power of two choices to
improve Bloom filters,” Internet Mathematics, vol.4, no. 1, pp. 17-33,
2007.

[79] F. Hao, M. Kodialam, T.V. Lakshman, “Building high accuracy Bloom
filters using partitioned hashing,” in Proc. ACM SIGMETRICS, San
Diego, CA, USA, 2007.

[80] S.Z. Kiss, E. Hosszu, J. Tapolcai, L. Rónyai, O. Rottenstreich, “Bloom
filter with a false positive free zone,” in Proc. IEEE INFOCOM,
Honolulu, HI, USA 2018.

[81] D. Pei, S. Arto, C. Ding , “Chinese remainder theorem: applications in
computing, coding, cryptography,” World Scientific,1996.

[82] D. Z. Du, F. Hwang, “Combinatorial group testing and its applications,”
World Scientific, 1993.

[83] O. Rottenstreich, Y. Kanizo, I. Keslassy, “The variable-increment count-
ing Bloom filter,” in Proc. IEEE INFOCOM, Orlando, Florida, USA,
2012.

[84] S. Pontarelli, P. Reviriego, J. A. Maestro, “Improving counting Bloom
filter performance with fingerprints,” Information Processing Letters,
vol. 116, no. 4, pp. 304-309, 2016.

[85] A. Kirsch, M. Mitzenmacher,“Less hashing, same performance: Building
a better Bloom filter,” Random Struct. Algorithms, vol. 33, no. 2, pp.
187-218, 2006.

[86] J. Lu, T. Yang, Y. Wang, H. Dai, L. Jin, H. Song, B. Liu, “One-hashing
Bloom filter,” in Proc. IEEE/ACM IWQoS, Portland, OR, USA, 2015.

[87] A. Kirsch, M. Mitzenmacher,“Building a better Bloom filter,” in Proc.
Annual European Symposium on Algorithms, Palma de Mallorca, Spain,
2005.

[88] A. Kumar, J.J. Xu, L. Li, J. Wang, “Space-code Bloom filter for efficient
traffic flow measurement,” in Proc. ACM IMC, Miami Beach, FL, USA,
2003.

[89] D. Guo, J. Wu, H. Chen, Y. Yuan, X. Luo, “The Dynamic Bloom filters,”
IEEE TKDE, vol. 22, no. 1, pp. 120-133, 2010.

[90] J. Wei, H. Jiang, K. Zhou, D. Feng, “DBA: A dynamic Bloom filter array
for scalable membership representation of variable large data sets,” in
Proc. IEEE MASCOTS, Raffles Hotel, Singapore, 2011.

[91] Y. Liu, X. Ge, D.H.C. Du, X. Huang, “Par-BF: A parallel partitioned
Bloom filter for dynamic data sets,” The International Journal of High
Performance Computing Applications, vol. 30, no. 3, pp. 259-275, 2016.

[92] Y. Qiao, T. Li, S. Chen, “Fast Bloom filters and their generalization,”
IEEE TPDS, vol. 25, no. 1, pp. 93-103, 2014.

[93] M. Mitzenmacher, P. Reviriego, S. Pontarelli, “OMASS: One memory
access set separation,” IEEE TKDE, vol. 28, no. 7, pp. 1940-1943, 2016.

[94] B. Xiao, Y. Hua, “Using Parallel Bloom filters for multiattribute repre-
sentation on network services,” IEEE TPDS, vol. 12, no. 1, pp. 20-32,
2010.

[95] Y. Lu, B. Prabhakar, F. Bonomi, “The Bloomier filter: An efficient data
structure for static support lookup tables,” in Proc. ACM-SIAM, New
Orleans, Louisiana, USA, 2004.

[96] H. Song, F. Hao, M. Kodialam, T. V. Lakshman, “IPv6 lookups using
distributed and Load Balanced Bloom filters for 100Gbps core router
line cards,” in Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, 2009.

[97] F. Hao, M. Kodialam, T. V. Lakshman, H. Song, “Fast dynamic multiset
membership testing using Combinatorial Bloom filters,” in Proc. IEEE
INFOCOM, Rio de Janeiro, Brazil, 2009.

[98] J. Lu, Y. Wan, Y. Li, C. Zhang, H, Dai, Y. Wang, G.Zhang, B. Liu,
“Ultra-fast Bloom filters using SIMD techniques,” in Proc. IEEE/ACM
IWQoS, Vilanova i la Geltrú, Spain, 2017.

[99] M. Mitzenmacher, “Compressed Bloom filters,” IEEE/ACM ToN, vol.
10, no. 5, pp. 604–612, 2002.

[100] N. Mosharraf, A.P. Jayasumana, I. Ray, “Compacted Bloom filter,” in
Proc. IEEE CIC, Pittsburgh, PA, USA, 2016.

[101] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S Singh, G. Varghese, “An
improved construction for counting Bloom filters,” in Proc. European
Symposium on Algorithms, Zurich, Switzerland, 2006.

[102] M. Ahmadi, S. Wong, "A memory-optimized Bloom filter using an
additional hashing function," in Proc. IEEE GLOBECOM, New Orleans,
LA, USA, 2008.

[103] S. Geravand, M. Ahmadi, “A novel adjustable matrix Bloom filter-
based copy detection system for digital libraries,” in Proc. IEEE CIT,
Paphos, Cyprus, 2011.

[104] A. Broder, M. Mitzenmacher, “Using multiple hash functions to
improve IP lookups” in Proc. IEEE INFOCOM, Alaska, USA, 2001.

[105] Y. Lu, B. Prabhakar, F. Bonomi, “Perfect hashing for network appli-
cations,” in Proc. IEEE ISIT, Seattle, WA, USA, 2006.

[106] G. Lu, B. Debnath, D.H.C. Du, “A Forest-structured Bloom filter with
flash memory,” in Proc. IEEE MSST, Denver, Colorado, 2011.

[107] I. Kaya, T. Kocak, “Energy-efficient pipelined Bloom filters for network
intrusion detection,” in IEEE ICC, Istanbul, Turkey, 2006.

[108] T. Kocak, I. Kaya, “Low-power Bloom filter architecture for deep
packet inspection,” IEEE Communications Letters, vol. 10, no. 3, pp.
210-212, 2006.

[109] M. Paynter, T. Kocak, “Fully pipelined Bloom filter architecture,” IEEE
Communications Letters, vol. 12, no. 11, pp. 855-857, 2008.

[110] Y. Zhou, T. Song, X. Wang, “EABF: Energy efficient self-adaptive
Bloom filter for network packet processing,” in Proc. IEEE ICC, Ottawa,
Canada, 2012.

[111] E. Safi, A. Moshovos, A. Veneris, “L-CBF: A low-power, fast counting
Bloom filter architecture,” IEEE TVLSI, vol. 16, no. 6, pp. 628-638,
2008.

[112] S. Cohen, Y. Matias, “Spectral Bloom filters,” in Proc. ACM SIGMOD,
Madison, Wisconsin, USA, 2003.

[113] Y. Yao, S. Xiong, H. Qi, Y. Liu, L.M. Tolbert, Q. Cao, “Efficient
histogram estimation for smart grid data processing with the loglog-
Bloom-filter,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 199-
208, 2015.

[114] Y. Matsumoto, H. Hazeyama, Y. Kadobayashi, “Adaptive Bloom filter:
A space-efficient counting algorithm for unpredictable network traffic,”
IEICE Transactions on Information and Systems, vol. 91, no. 5, pp.
1292-1299, 2008.

[115] T. Yang, A. Liu, M. Shahzad, Y. Zhong, Q. Fu, Z. Li, “A shifting
Bloom filter framework for set queries,” in Proc. IEEE VLDB, New
Delhi, India, 2016.

[116] M Durand, P Flajolet, “Loglog counting of large cardinalities,” Euro-
pean Symposium on Algorithms, Berlin, Heidelberg, 2003.

[117] Y. Lu, B. Prabhakar, F. Bonomi, “Bloom filters: Design innovations
and novel applications,” in Proc. The Annual Allerton Conference on
Communication, Control and Computing, Monticello, Illinois, USA,
2005.

[118] P. S. Almeida, C. Baquero, N. Preguica, D. Hutchison, “Scalable Bloom
filters,” Information Processing Letters, vol. 101, no. 6, pp. 255-261,
2007.

[119] J. Bruck, J. Gao, A. Jiang, “Weighted Bloom filter,” in Proc. IEEE
ISIT, Seattle, WA, USA, 2006.

[120] M. Zhong, P. Lu, K. Shen, J. Seiferas, “Optimizing data popularity
conscious Bloom filters, ” in Proc. ACM PODC, Toronto, Ontario,
Canada, 2008.

[121] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels,“Dynamo: Ama-
zon’s highly available key-value store,” in Proc. ACM SOSP, Stevenson,
Washington, USA, 2007.

[122] Memcached Website. Available: https://memcached.org, Oct. 2017.
[123] Apache Foundation. Available: Cassandra Website, http:// cassan-

dra.apache.org, Oct. 2017.
[124] Redis Website. Available: http://redis.io/, Oct. 2017.
[125] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proc. USENIX OSDI, Seattle,
Washington, USA, 2006.

[126] C. H. Wu, T. W. Kuo, L. P. Chang, “An efficient b-tree layer imple-
mentation for flash-memory storage systems,” ACM TECS, vol. 6, no.
3, 2007.

[127] S. Nath, A. Kansal, “FlashDB: Dynamic self-tuning database for
NAND flash,” in Proc. ACM/IEEE IPSN, Cambridge, Massachusetts,
USA, 2007.

[128] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, S. Nath, “Cheap
and large cams for high performance data-intensive networked systems,”
in Proc. USENIX NSDI, San Jose, California, USA, 2010.

http://arxiv.org/abs/1603.01060
http://redis.io/

37

[129] D.E. Wood, S.L. Salzberg, “Kraken: Ultrafast metagenomic sequence
classification using exact alignments,” Genome Biology, vol. 15, no. 3,
2014.

[130] D.R. Zerbino, E. Birney “Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp.
821-829, 2008.

[131] D. Pellow, D. Filippova, C. Kingsford, “Improving Bloom filter per-
formance on sequence data using k-mer Bloom filters,” Journal of
Computational Biology, vol. 24, no. 6, pp. 547-557, 2017.

[132] G. Holley, R. Wittler, J. Stoye, “Bloom filter Trie: An alignment-free
and reference-free data structure for pan-genome storage,” Algorithms
for Molecular Biology, vol. 11, no. 3, 2016.

[133] C. Rothenberg, C. Macapuna, F. Verdit, M. Magalhaes, “The deletable
Bloom filter: A new member of the Bloom family,” IEEE Communica-
tion Letters, vol. 14, no. 6, pp. 557-559, 2010.

[134] H. Lim, J. Lee, H. Byun, C. Yim, “Ternary Bloom filter replacing
counting Bloom filter,” IEEE Communications Letters, vol. 21, no. 2,
pp. 278-281, 2017.

[135] F. Deng, D. Rafiei, “Approximately detecting duplicates for streaming
data using stable Bloom filters,” in Proc. ACM SIGMOD, Chicago,
Illinois, USA, 2006.

[136] Y. Zhao, J. Wu, “The design and evaluation of an information sharing
system for human networks,” IEEE TPDS, vol. 25, no. 3, pp. 796-805,
2014.

[137] F. Chang, C. Wu, and K. Li, “Approximate caches for packet classifi-
cation,” in Proc. IEEE INFOCOM, Honkong, China, 2004.

[138] M.K. Yoon, “Aging Bloom filter with two active buffers for dynamic
sets,” IEEE TKDE, vol. 22, no. 1, pp. 134-138, 2010.

[139] R. Subramanyam, I. Gupt, L.M. Leslie, W. Wang, “Idempotent dis-
tributed counters using a forgetful Bloom filter,” Cluster Computing,
vol. 19, no. 2, pp. 879-892, 2016.

[140] M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. ACM SoCG,
Brooklyn, New York, USA, 2004.

[141] P. Indyk, R. Motwani, “Approximate nearest neighbors: towards re-
moving the curse of dimensionality,” in Proc. ACM STOC, Dallas, TX,
USA, 1998.

[142] J. Qian, Q. Zhu, H. Chen, “Multi-granularity locality-sensitive Bloom
filter,” IEEE TC, vol. 64, no. 12, pp. 3500-3514, 2015.

[143] A. Kirsch, M. Mitzenmacher, “Distance-sensitive Bloom filters,” in
Proc. The Workshop on Algorithm Engineering and Experiments, Miami,
Florida, USA, 2006.

[144] Y. Hua, B. Xiao, B. Veeravalli, D. Feng, “Locality-sensitive Bloom
filter for approximate membership query,” IEEE TC, vol. 61, no. 6, pp.
817-830, 2012.

[145] D. Eppstein, M.T. Goodrich, F. Uyeda, G. Varghese, “What’s the
difference?: Efficient set reconciliation without prior context,” in Proc.
ACM SIGCOMM, Toronto, Ontario, Canada, 2011.

[146] P. Reviriego, S. Pontarelli, J.A. Maestro, M. Ottavi, “A method to
protect Bloom filters from soft errors”, in IEEE DFT, Amherst, MA,
USA, 2015.

[147] A. Sánchez-Macián, P. Reviriego, J.A. Maestro, S. Liu, “Single event
transient tolerant Bloom filter implementations”, IEEE TC, vol. 66, no.
10, pp. 1831-1836, 2017.

[148] T. Kraska, A. Beutel, E. Chi, J. Dean, N. Polyzotis, “The case for
learned index structures,” in Proc. ACM SIGMOD, Houston, TX, USA,
2018.

[149] M. Mitzenmacher, “A model for learned Bloom filters and related
structures,” arXiv preprint, arXiv:1802.00884, 2018.

[150] B. Fan, D. Andersen, M. Kaminsky, M. Mitzenmacher, “Cuckoo
filter: practically better than Bloom,” in Proc. ACM CoNEXT, Sydney,
Australia, 2014.

[151] M. Bender, M. Farach-Colton, B. Kuszmaul, B. Kuszmaul, D. Medje-
dovic, P. Montes, P. Shetty, R. Spillane, E. Zadok, “Don’t thrash: How
to cache your hash on flash,” in Proc. USENIX HotStorage, Portland,
OR, USA, 2011.

[152] D. Eppstein, “Cuckoo filter: Simplification and analysis,” arXiv
preprint, arXiv:1604.06067, 2016.

[153] M. Mitzenmacher, S. Pontarelli, P. Reviriego, “Adaptive Cuckoo fil-
ters,” in Proc. SIAM ALENEX, New Orleans, Louisiana, USA, 2018.

[154] H. Chen, L. Liao, H. Jin, J. Wu, “The dynamic Cuckoo filter,” in IEEE
ICNP, Toronto, Canada, 2017.

[155] L. Luo, D. Guo, O. Rottenstreich, X. Luo, R. T.B. Ma, B. Ren, “The
consistent Cuckoo filter,” in IEEE INFOCOM, Paris, France, 2019.

[156] P. Pandey, M. Bender, Rob. Johnson, R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proc. ACM SIGMOD,
Chicago, Illinois, USA, 2017

[157] R. Pagh, F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 51,
no. 2, pp. 122-144, 2004.

[158] B. Fan, D. G. Andersen, M. Kaminsky, “MemC3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
Proc. USENIX NSDI, Lombard, IL, USA, 2013.

[159] D. E. Knuth, “The art of computer programming: Sorting and search-
ing,” vol. 3, Addison Wesley, 1973.

Lailong Luo received his B.S. and M.S. degree at the school of systems
engineering from National University of Defence Technology, Changsha,
China, in 2013 and 2015, respectively. He is currently working toward a Ph.D
degree in the school of systems engineering, National University of Defense
Technology, Changsha, China. His research interests include probabilisitic
data structures and data analysis.

Deke Guo received his B.S. degree in industry engineering from Beijing
University of Aeronautic and Astronautic, Beijing, China, in 2001, and
the Ph.D. degree in management science and engineering from National
University of Defense Technology, Changsha, China, in 2008. He is a
Professor with the College of Information System and Management, National
University of Defense Technology, Changsha, China. His research interests
include probabilisitic data structures, software-defined networking, data center
networking, wireless and mobile systems, and interconnection networks. He
is a member of ACM and IEEE.

Richard T.B. Ma received the Ph.D. degree in Electrical Engineering in
May 2010 from Columbia University, New York. During his Ph.D. study, he
worked as a research intern at IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA, and Telefonica Research, Barcelona, Spain. He is currently
a Research Scientist in Advanced Digital Science Center, University of
Illinois, USA, and an Assistant Professor in School of Computing at National
University of Singapore. His research interests include distributed systems and
network economics.

Ori Rottenstreich is an assistant professor at the Department of Computer
Science and the Department of Electrical Engineering of the Technion, Haifa,
Israel. He is also the chief scientist of Orbs. His main research interest
is computer networks and blockchain technologies. In 2015-2017 he was
a Postdoctoral Research Fellow at the Department of Computer Science,
Princeton University. Earlier, he received the BSc in Computer Engineering
(summa cum laude) and PhD degree from the Technion in 2008 and 2014,
respectively.

Xueshan Luo received his B.E. degree in information engineering from
Huazhong Institute of Technology, Wuhan, China, in 1985, and his M.S. and
Ph.D degrees in system engineering from the National University of Defense
Technology, Changsha, China, in 1988 and 1992, respectively. Currently, he is
a professor in the College of Information System and Management, National
University of Defense Technology. His research interests are in the general
areas of information system and operation research.

http://arxiv.org/abs/1802.00884
http://arxiv.org/abs/1604.06067

	I Introduction
	II Bloom Filters
	II-A Framework of Bloom filter
	II-B Intrinsic characteristics of Bloom filter
	II-C Challenging issues of Bloom filter

	III Applications of Bloom filters
	III-A Content caching
	III-B Packet routing and forwarding
	III-B1 BFs in wired networking
	III-B2 BFs in wireless networking

	III-C Privacy preservation
	III-D Network security
	III-E Gains of using BFs

	IV Reduction of false positives
	IV-A Reducing FP with prior knowledge
	IV-B Reducing FP with the one-sided error
	IV-C Reducing FP via bit resetting
	IV-D Reducing FP with selected hash functions
	IV-E Reducing FP by differentiated representation
	IV-F Summary and lessons learned

	V Optimizations of implementation measurements
	V-A Computation optimization
	V-B Memory access
	V-C Space efficiency
	V-D Energy saving
	V-E Summary and lessons learned

	VI Representation of diverse sets
	VI-A Multisets
	VI-B Dynamic sets
	VI-C Weighted sets
	VI-D Key-values
	VI-E Sequence sets and spatial sets
	VI-F Summary and lessons learned

	VII Functionality enrichments
	VII-A Element deletion
	VII-B Element decay
	VII-C Approximate membership query
	VII-D Enrichment of BF semantics
	VII-E Summary and lessons learned

	VIII Classification and comparison
	VIII-A Techniques towards elements
	VIII-A1 Imposing fingerprints to elements
	VIII-A2 Dividing elements into independent groups

	VIII-B Techniques towards hash functions
	VIII-B1 Leveraging the number of hash functions
	VIII-B2 Optimization of hash implementation
	VIII-B3 Application of advanced hash techniques

	VIII-C Techniques towards the bit vector
	VIII-C1 Scale-up: beyond one single bit
	VIII-C2 Scale-out: more BF vectors
	VIII-C3 The power of partition
	VIII-C4 The game between 0s and 1s

	VIII-D Qualitative comparison
	VIII-D1 Capability comparison
	VIII-D2 Complexity comparison

	IX Summary and Open Issues
	X Conclusion
	References
	Biographies
	Lailong Luo
	Deke Guo
	Richard T.B. Ma
	Ori Rottenstreich
	Xueshan Luo

