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Abstract—Demands for indoor positioning based services (IPS)
in commercial and military fields have spurred many positioning
systems and techniques. Complex electromagnetic environments
(CEEs) may, however, degenerate the accuracy and robustness
of some existing single systems and techniques. To overcome
this drawback, fusion-based positioning of multiple systems
and/or techniques have been proposed to revamp the positioning
performance in CEEs. In this paper, we survey the fusion-based
indoor positioning techniques and systems from seminal works
to elicit the state of the art within our proposed unified fusion-
based positioning framework, which consists of three fusion
characteristics: source, algorithm, and weight spaces. Different
from other surveys, this survey summarizes and analyzes the
existing fusion-based positioning systems and techniques from
three characteristics. Meanwhile, discussions in terms of lessons,
challenges, and countermeasures are also presented. This sur-
vey is invaluable for researchers to acquire a clear concept
of indoor fusion-based positioning systems and techniques and
also to gain insights from this survey to further develop other
advanced fusion-based positioning systems and techniques in the
future.

Index Terms—Indoor positioning based services (IPS),
fusion-based positioning, complex electromagnetic environments
(CEEs), ensemble learning.

I. INTRODUCTION

THE GROWING commercial and military demands for
indoor positioning based services (IPS) have spurred

the rapid development of indoor positioning techniques and
systems. Indoor positioning is becoming critical to empower
Internet of Things (IoT) [1] for various applications such
as emergency personal navigation [2], context awareness [3],
network management and security, health monitoring [4], per-
sonal information delivery, smart city [5], and so on. Although
space-based satellite navigation systems such as the global
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Fig. 1. Embedded sensors in smartphones.

positioning system (GPS) offer high accuracy in outdoor
scenarios, the poor connectivity between satellites and end
devices render them ineffective indoor, thus triggering further
research on indoor positioning [6].

With the rapid growth and ubiquitous nature of sensors,
different kinds of sensors such as inertial sensors, magnetic
sensors, etc., are integrated into user equipments (UEs), such
as smartphones, as shown in Fig. 1. These sensors can mea-
sure different information to yield a better location estimate.
Generally, positioning or tracking based on a single mea-
surement will aggravate the tracking/positioning performance.
For example, inertial navigation system (INS) can achieve
higher localization accuracy, but is limited by accumulated
errors caused by sensor noise [7], [8]. Geomagnetic signals
are omnipresent but lack local distinctiveness. Hence, fusion
of multiple measurements from different sensors is becoming
indispensable in order to improve the positioning performance.

Furthermore, UEs are generally surrounded by other
wireless communcation networks, such as GPS networks,
cellular mobile networks, wireless local area networks
(WLANs), LiFi networks, and other broadcast networks as
depicted in Fig. 2. All these networks can offer different
levels of location estimates from their own perspectives.
It is worth noting that the electromagnetic environment
of UEs is more complex due to the metamorphic nature
of indoor environments. Other intentional or unintentional
interferences also make the environment complex. Hence, the
localization and tracking of UEs in complex electromagnetic
environments (CEEs) is a challenging task in various civil and
military applications. Although different measurements such
as time-of-arrival (TOA) [9]–[12], time-difference-of-arrival
(TDOA) [13]–[16], angle-of-arrival (AOA) [17]–[20], and
received signal strength (RSS) [21]–[25], have been proposed
to enhance the robustness and accuracy of indoor positioning.
However, the positioning techniques based on single sensor
measurements or networks show inherent drawbacks in posi-
tioning accuracy. Therefore, fusion-based indoor positioning
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Fig. 2. Surrounding networks of UEs.

Fig. 3. The unified fusion positioning framework.

(FBIP) has become more prominent in recent years [26]–[35].
For example, Chen et al. [36] curbed the fluctuation of WiFi
signals by means of continuous tracking provided by INS,
while the cumulative tracking errors are adjusted by the
WiFi-based system.

It is proven that FBIP techniques can efficiently improve
the positioning performance by combining the complemen-
tarity among positioning systems and techniques [27], [30],
[37], [38]. The existing FBIP system can be divided into three
main functional parts: sources, algorithms, and fusion weights,
as shown in Fig. 3. The sources refer to the information to
be fused and algorithms are to obtain the positioning results.
The weights are obtained to efficiently amalgamate all the
positioning results to yield a better localization estimate.

The aforementioned TOA, AOA, RSS, and TDOA can
be one of the sources. These sources can be the same
measurements from different networks/sensors or different
measurements from the same or different networks/sensors.
Most existing works consider the sources from the same
network, such as WLAN [35], [39], [40], GSM [41], etc.,
which can be referred to as the fusion problem in the stand-
alone network [26]–[34]. In a single network, the increase of
measurement types or the fusion of different algorithms based
on the same type of measurements improves the robustness and
stability of the positioning system [42]. However, the single
network based positioning system exhibits its own advantages
and disadvantages. The cost of this kind of system such as
a WiFi-based positioning system is low, but the performance
fluctuates due to the nature of WiFi signals. The fusion of the
same measurements from different networks [35], [43], [44]
and the different measurements from different networks [36],

[45]–[51] have also been proposed to enhance the accuracy
and robustness of single network based positioning systems.
In addition, collaborative localization [20], [43], [52], which
acquires multiple measurements from different UEs for local-
ization, can be regarded as a special case of fusion positioning.
For example, Abadi et al. [52] demonstrated that pedestrian
dead reckoning (PDR) based indoor positioning accuracy can
be improved by fusing magnetometer data from devices carried
by different pedestrians all walking in the same direction.

Algorithms are the key in fusion based positioning frame-
work. Given a measurement, such as RSS, TOA, TDOA, AOA,
etc., an algorithm maps the measurement to the coordinate
of the UE. Some conventional methods, such as maximum
likelihood (ML) [53], least squares (LS) [42], maximum
a posterior (MAP) [54], [55], and minimum mean squares
estimate (MMSE) [44], [56] are widely used candidate algo-
rithms. It is worth mentioning that popular machine learning
methods such as neural networks [45], [57]–[59], support vec-
tor machine [25], [60]–[64], random forests [28], etc., can
also be adopted to integrate positioning information effec-
tively and improve positioning accuracy. Additionally, state
estimate methods are very effective algorithms for tracking
UEs [50], [65]–[69].

The weights are assigned to combine all the outputs of the
aforementioned algorithms to yield a more accurate position-
ing result. In general, weights can be obtained from the offline
training with a supervised learning framework [30], [41], [44],
and they can also be acquired by unsupervised learning in the
online phase [29], [31]. In the FBIP problem, some approaches
try to find the optimal one from the candidate positioning
results, and these can be regarded as the special case of
weights finding, i.e., only one weight is one, and others are
zeros [53], [70]–[72].

Although many FBIP methods were proposed during
the past decades, surveys focusing on FBIP are very
few [73]–[78]. We compare the existing surveys on FBIP
in Table I, where we can conclude that most of these arti-
cles do not discuss the FBIP problem within a unified fusion
framework. Unlike these surveys, we make a comprehensive
comparison of works that have been applied to FBIP from
the perspectives of sources, algorithms, and weights. From
the analysis within the unified framework, readers can better
understand the relationship of the existing FBIP works, and
hopefully further develop a more accurate fusion method in
CEEs.

In summary, this survey will answer the following two
questions in FBIP: what to fuse, and how to fuse?

• What to fuse? The complementarity among fusion
sources is the main factor in determining the potential
of achieving improved fusion result. In other words, only
fusion sources with good complementarity can result in
better enhancement in terms of positioning accuracy and
robustness [30]. This article summarizes commonly used
fusion sources in different network frameworks. We will
analyze the sources in terms of different measurements
from the following three positioning systems:

– Homogeneous positioning systems: Homogeneous
positioning systems obtain multiple (same or
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TABLE I
THE COMPARISON OF RELATED SURVEYS

different kinds of) measurements from stand-
alone networks, such as WLAN, GSM, ZigBee,
etc. Each of these networks offers potential
information sources to be utilized for positioning.
Positioning sources such as TOA, TDOA, AOA, RSS
information can be acquired and utilized by homoge-
neous positioning systems, based on the measuring
mechanism of each stand-alone network [26]–[34].

– Heterogeneous positioning systems: For better uti-
lization of the environmental information of UEs, it
is intuitive to combine a single type of measurements
from multiple different networks to compensate for
the constraints of a stand-alone network. In this case,
multiple different networks cooperate to acquire the
positions of UEs. For example, Fang et al. [41]
proposed dynamic positioning approaches by com-
bining multiple RSS measurements from WLAN
and GSM to overcome the drawbacks of standalone
networks. Rodrigues et al. [79] combined the RSS
measurements from WLAN, ZigBee, and Bluetooth
for localization.

– Hybrid positioning systems: To better leverage all
the merits of different measurements and different
networks, we can combine different measurements
from different networks to enhance positioning. For

example, Sun et al. [51] promulgated fusion-based
indoor localization systems based on the RSS in
WLAN environments and PDR in INS to yield accu-
rate positioning results. Different networks offering
different types of measurements can be merged to
form hybrid positioning systems. As compared with
the same type of measurements offered by different
networks, different types of measurements collected
from different networks are more effective because
they amalgamate the merits of different networks.

• How to fuse? Given the above fusion sources, how they
are collectively and effectively fused is the key in improv-
ing the performance of fusion-based systems [80]. We
will first review major methods used in fusion-based
positioning from the following aspects:

– Conventional methods: The conventional methods
include least squares, maximum likelihood, maxi-
mum a posterior, and minimum mean squares error.
They can be used in both fingerprint-based and
parametric positioning systems for indoor position-
ing [42], [44], [53]–[56].

– Machine learning methods: They are mainly used
to solve the fingerprint-based positioning problem,
including k-nearest neighbors, random forests, sup-
port vector machine, and neural networks [25], [28],
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[45], [57]–[64]. Classification and regression are the
two main models in machine learning.

– State estimate methods: These methods, includ-
ing hidden Markov model, Kalman filter, extended
Kalman filter and particle filter, are generally
employed to track the UE [8], [38], [48], [76],
[81]–[89].

Based on the outputs of these positioning methods, super-
vised learning and unsupervised learning are the two main
methods to train and obtain the weights for fusion. We
analyze them from the following perspectives.

– Supervised learning: It trains and stores the
weights in the offline phase based on given
training samples and corresponding labels. The
obtained weights can be used in the online
phase, but they adapt poorly in changing environ-
ments [27], [28], [31], [32], [41], [44].

– Unsupervised learning: It obtains the weights in
the online phase without prior training. Some exist-
ing statistical methods in truth discovery including
expectation maximization and conflict resolution on
heterogeneous data, are the main tools for unsuper-
vised weights learning. It shows good adaptivity in
complex indoor environments [29], [30], [33].

The rest of this paper is organized as follows. In Section II,
we propose a unified positioning framework to clarify the
paradigms of most of the FBIP works. Then, based on this
framework, we will discuss the FBIP works from the source
space, algorithm space, and weight space in Section III,
Section IV and Section V, respectively. The lessons, chal-
lenges and countermeasures in FBIP are covered in Section VI.
Finally, some conclusions are drawn in Section VII.

II. A UNIFIED FUSION FRAMEWORK

Here, we propose a unified fusion positioning framework
for easy comparisons of state-of-the-art works in FBIP, as
shown in Fig. 3; the unified fusion positioning framework is
composed of three parts including the source space, algorithm
space, and weight space. Mathematically, we can obtain the
final location estimation x̂ of the UE as follows [27]:

x̂ = wT z =

M∑

m=1

N∑

n=1

ωmn fn (sm), (1)

where fn ∈ F is the n-th algorithm for positioning in
the algorithm space F for n = 1, 2, . . . ,N , and sm =
[sm (1), . . . , sm (L)]T ∈ S is the m-th source vector in the
source space S for m = 1, 2, . . . ,M with L being the num-
ber of samples of the m-th source vector. M and N are the
number of sources and algorithms, respectively. wmn ∈ W
is the weight assigned for the location estimate of the m-th
source using the j-th algorithm with W being the weight
space. w = [w11, . . . ,wMN ]T is the weight vector. z =
[f1(s1), . . . , fn (sm ), . . . , fN (sM )]T is the positioning result
obtained by fn on source sm for every n and m.

Among them, the source space S offers the sources to
be fused for positioning, and consists of original sources

Fig. 4. Two typical sources in the source space.

and transformed sources, as shown in Fig. 4. Some con-
ventional measurements, such as RSS [47], AOA [17], [19],
TOA [9]–[12], TDOA [13]–[16], channel state information
(CSI) [90]–[92], and PDR [93], can be the original sources.
Other statistics, such as signal strength difference (SSD),
power delay doppler profile (PDDP), hyperbolic location fin-
gerprint (HLF), signal strength differences fingerprints (DIFF),
delta signal strength (ΔRSS), signal subspace, etc. [32], [43],
[94]–[96], which are transformed from the received data,
can be regarded as the transformed sources to yield a bet-
ter positioning result. Sources derived from the same/different
networks may result in different positioning performance. In
Section III, we will survey the source space of homogeneous,
heterogeneous, and hybrid positioning systems to reveal the
relationships among state-of-the-art works.
F = {f1, f2, . . . , fN } is the algorithm space consisting

of algorithms, which provide location estimates when given
some relevant sources sm with fn being the n-th position-
ing algorithm. Existing methods of positioning algorithms
can be categorized into probabilistic and deterministic meth-
ods [40], [97], [98]. Here, we will categorize the existing
positioning algorithms into conventional methods, machine
learning methods, and state estimate methods from the FBIP
perspective, based on whether the positioning model is static
or dynamic. The algorithm space is detailed in Section IV.

The positioning results given by some of the above posi-
tioning algorithms can be fused with some weights from the
weight space W = {w11, . . . ,wmn , . . . ,wMN }. In general,
the positioning results may be single or multiple based on
the process of the positioning algorithm. From the fusion
positioning viewpoint, the single positioning result can also
be regarded as the final fusion result if we set the weight
to be one, i.e., w = 1, which is the special case of
FBIP. The positioning result obtained by some state esti-
mate method belongs to this case. There are typically two
ways to obtain the weights for fusing multiple positioning
results offered by multiple sources and multiple algorithms:
supervised learning [27], [31], [41], [44] and unsupervised
learning [29], [30], [32], which are done in the offline and
online phase, respectively. To obtain a better location estimate
by using FBIP, the weights learning should obey the principle
of ensemble learning [99]–[102]. Hence, we will detail the
weight space in Section V.
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TABLE II
THE DISTINCTION OF HOMOGENEOUS, HETEROGENEOUS, AND

HYBRID POSITIONING SYSTEMS

Our proposed unified fusion positioning framework can be
applied to most of the existing indoor fusion systems. We will
detail them in the following sections.

III. SOURCE SPACE

Considering that the source space may be made up of differ-
ent measurement technologies in terms of different networks,
we first review all the possible measurement technologies and
networks used for indoor positioning in existing literature, and
then carefully survey these sources from the perspective of
homogeneous, heterogeneous, and hybrid positioning systems.

Fusion-based indoor localization systems are classified
into the category of homogeneous positioning systems when
positioning is obtained in a standalone network; mean-
while, systems realized using single measurement technology
and multiple networks belong to the category of heteroge-
neous positioning systems; hybrid positioning systems employ
multiple networks and multiple measurements. Table II shows
the distinction among homogeneous, heterogeneous and hybrid
positioning systems.

A. Measurement Technologies Used for Indoor Positioning

As indicated earlier, the source space consists of original
sources and transformed sources. The original sources are the
basic measurements for different kinds of positioning systems,
which can be directly extracted from the received signals of
the existing networks. We detail them in the following.

1) RSS: RSS is prominent among the measurements
extracted from different kinds of networks such as WLAN,
GSM, GPS, and Bluetooth [91], [103]–[105] because most
wireless receivers can provide RSS measurements. RSS can
be used for the model-based [106]–[109] and fingerprint-
based [27], [29], [30] approaches.

The model-based approaches calculate the distance d based
on the well-known log-normal path loss model [110]

P(d) = P(d0) + 10γ lg

(
d
d0

)
+nσ, (2)

in which P(d) is the path loss measured in dB at distance d,
γ is the so called path loss factor, and P(d0) denotes the
average path loss at d0. nσ is a zero-mean normal random
variable reflecting the attenuation in decibel caused by shad-
owing. Given the estimated d, the location of the UE can be
estimated by trilateration methods. However, due to the fluctu-
ation of RSS in indoor environments, it is almost impossible to

achieve accurate localization using the model-based methods
in CEEs [111].

In fingerprint-based approaches, a set of RSS measurements
are collected at the grid points in the indoor environment
to construct the fingerprints database in the offline phase. In
the online phase, the UE observes RSS measurements at an
unknown location and applies algorithms to associate these
measurements to the fingerprints database by matching sim-
ilar fingerprints to estimate the UE’s position [27]. Several
key problems need to be solved in fingerprint-based indoor
localization, including low complexity fingerprint construction
techniques (such as crowdsourcing [84], [112], [113]), finger-
print calibration [49], [94], [95], [114], and localization in
changing indoor environments [27], [29]–[31].

2) CSI: CSI provides subcarrier-level channel measure-
ments for indoor positioning. It can now be obtained from
some commodity WiFi NICs, such as the Intel WiFi link
(IWL) 5300 NIC [90], [91]. CSI can reflect the considerable
impairments of signal when propagating in indoor environment
due to shadowing, multipath propagation, and distortion [92].
CSI is also used by two distinct methods: parametric and
nonparametric methods.

PhasePhi [115] is a typical nonparametric method using the
transformed phase information of CSI to construct the offline
fingerprints for accurate WiFi positioning. A deep network
with three hidden layers is used as classifier for location
prediction. Experiments in two real indoor scenarios showed
that PhasePhi outperforms the CSI amplitude- and RSS-
based methods in positioning accuracy. Other nonparametric
methods can be found in [116], [117].

The parametric methods calculate the distances or angles
between the transmitters and receivers using the phase
information extracted from CSI. Based on the estimated
distances and angles, trilateration or triangulation can be
used to determine the UE’s location [118], [119]. SpotFi
can achieve decimeter level localization using the AOA
information extracted from CSI [19]. In [120], the amplitude
information of CSI is extracted to construct fingerprint for
narrow-band IoT indoor positioning. Comparatively, CSI is
more sensitive to changing environments than RSS, and hence
it is more applicable for target detection [121].

3) TOA: Time of arrival (TOA) is the absolute travel time
of a signal from a reference node to a UE [9]. Different
from time-of-flight (TOF), TOA requires stricter clock syn-
chronization but lower energy cost, and is thus more suitable
for real-time positioning [122].

Let x = [x , y , z ]T be the unknown position of the UE,
and x i = [xi , yi , zi ]

T be the known coordinates of the i-th
reference node (access point, base station, beacon, etc.), i =
1, 2, . . . ,L, where L ≥ 3 is the number of reference nodes.
The distance di between the UE and the i-th reference node
can be expressed as

di = ‖x − x i‖ =

√
(xi − x )2 + (yi − y)2 + (zi − z )2. (3)

Without loss of generality, we assume that the UE emits a
signal at time 0 and the i-th node receives it at time ti ; here,
ti is the TOA. It is absolute that the UE is located on the circle
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Fig. 5. TOA based positioning.

Fig. 6. TDOA based indoor positioning.

centered at the i-th base station with a radius di = c · ti in the
noise free case, where c is the speed of light. Similarly, the UE
is located on the circles of the second and third base stations
in the same way. Hence, the position of the UE can be given
by the intersection of three circles in noise free cases [73],
[123], as shown in Fig. 5. Chan and Ho [124] proposed the
well-known Chan’s algorithm for TOA location, which can
yield a closed-form solution; other methods including least
square (LS) [125]–[127], weighted least square (WLS) [128],
[129], constrained least square (CWLS) [130] were proposed
to localize the UE in LOS and NLOS environment.

4) TDOA: Through the TDOA measurements, the location
of the UE can be obtained by the intersection of two hyperbolic
curves [131], as shown in Fig. 6. The distance difference for
the reference nodes A and B is defined as d1,2:

d1,2 = d1 − d2. (4)

The position of the UE can be determined by the intersection
of hyperboloids when the third reference node C and other
more reference nodes are taken into account [132], [133]. The
hyperbolic TDOA equation can be solved through nonlinear
regression and iterative algorithm by virtue of Taylor-series
expansion[134]. Apart from the well known LS method [135]
in TDOA localization, semidefinite relaxation (SDR) [136]
and semidefinite program (SDP) [137] based methods were
also proposed to address the nonconvex problem of the TDOA
localization. In [138], a robust TDOA localization by minimiz-
ing the worst-case position estimation error was proposed to
improve the special cases of the TDOA localization problem.

In TOA/TDOA localization, some methods assume that
the signal travels from the UE to the reference node in a
Line of Sight (LOS) environment. However, this assump-
tion does not hold in complex indoor environments due to

the multipath and non-line-of-sight propagation. Hence, some
NLOS identification and mitigation methods [9], [71], [125],
[126] were proposed to improve the accuracy of TOA/TDOA
based localization.

5) AOA: Angle-of-arrival (AOA) has important applica-
tions in array signal processing [139]. As compared to TOA
and TDOA estimation techniques, AOA estimation needs the
implementation of antenna arrays. However, only two base
nodes (equipped with antenna arrays) are sufficient to main-
tain full localization of a UE. This adds a higher flexibility
to AOA estimation techniques as compared to TOA or RSSI
estimation methods.

In summary, owing to the obstacle and multipath propa-
gation of signals, the conventional outdoor AOA-based local-
ization methods degenerate seriously in CEEs. To overcome
these drawbacks, some works were proposed to use OFDM
signals to overcome the influence of multipath propaga-
tion [19], [118]. The measurement from CSI or CFR can be
used by some classical DOA estimation algorithms, such as
MUSIC, ESPRIT, etc.

6) PDR: PDR (pedestrian dead reckoning) provides the
direction and distance obtained from inertial sensors of UEs.
The current position estimate is calculated based on previously
known position estimate. Basically, positioning using PDR
needs the step length and walking direction to track the
UE [140]. Other parameters, such as initial point and map,
can also affect the positioning accuracy [141]. PDR based
positioning methods can work well in a short moving dis-
tance. However, its performance may degenerate because
the accumulated errors will be enlarged as the walking dis-
tance increases. Recent research tends to fuse WiFi-based
and PDR techniques together to achieve better localization
accuracy [39], [142]–[145].

Three main different ways to mitigate the accumulated
errors are 1) to enhance the PDR algorithm itself, 2) to
combine PDR with other sensors, such as Wi-Fi, RFID,
etc. [146]–[148], and 3) to integrate the information on the
map in the matching algorithm to improve the positioning
accuracy and stability [149], [150].

7) Transformed Sources: In addition to the original sources
mentioned above, sources transformed from the received data
of one or multiple antennas, such as signal strength difference
(SSD) [108], [109], power delay doppler profile (PDDP) [96],
hyperbolic location fingerprint (HLF) [94], and fourth order
cumunlant (FoC) [32] can also be used to yield superior
positioning even in complex environments. These transformed
sources can depict the sources from different perspectives
and can overcome device heterogeneity, RSS fluctuation,
and NLOS propagation, by extracting other statistics from
the received signals. Most of them are proven to be effi-
cient in complex indoor positioning environments [32], [94],
[109], [151], and are summarized in Table III for comparison
purposes.

B. Networks Used for Indoor Positioning

Indoor localization systems can be categorized based
on various transmission signals harnessed for positioning.
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TABLE III
MAJOR TRANSFORMED SOURCES FOR INDOOR POSITIONING

Positioning systems include but are not limited to WLAN-
based positioning system, geomagnetism-based positioning
system, UWB-based positioning system, and RFID-based
positioning system. This section provides an overview of dif-
ferent networks used for indoor positioning. The means for
localization, the performance, positioning technique, as well
as the advantages and disadvantages of different positioning
systems are delineated in Table IV.

1) WLAN-Based Positioning System: Owing to the ubiq-
uity of 802.11 WiFi networks in indoor environments, many
solutions utilizing WLAN signals have been proposed to pro-
vision indoor positioning. There are two general methods
of WLAN localization: fingerprinting [27]–[30], [155]–[160]
and trilateration [106], [161]. Trilateration methods cannot
achieve results as accurate as fingerprinting methods due to
shadowing, multipath and numerous obstacles in indoor envi-
ronments [161], and are thus seldomly used for WLAN-based
indoor positioning.

Two conventional measurements are used in WiFi local-
ization: RSS [27], [29], [30], [158]–[160] and CSI [19],
[116], [117]. As mentioned earlier, CSI needs some advanced
NICs [90], [91] to collect, and is thus impractical in general
environments with commodity WiFi. However, CSI can obtain
centimeter-level localization accuracy [19]. Comparatively,
WiFi localization utilizing RSS is more attractive because,
RSS information can be captured without extra hardware
modification [121].

Fingerprint-based localization is a prominent technique with
the following three key advantages: 1) it can mitigate the
laborious process of fingerprint collection by using crowd-
sourcing [112], [113], 2) fingerprint calibration [49], [95] can
make brimful use of the fingerprints collected at different time
periods and from different hardwares, and 3) positioning algo-
rithms with good performances [32], both in accuracy and
robustness in complex indoor environments, can be readily
formulated.

2) Geomagnetic-Based Positioning System: Geomagnetic
field can easily differentiate the spatial variation in complex
indoor environments. However, geomagnetic field is greatly
affected by electrical equipment and metallic structures inside
the walls of modern buildings. The signal is also ubiquitous
and temporally stable [162]; different hardwares may yield dif-
ferent magnetic readings at the same location [26], as shown
in Fig. 7. Hence, calibration is an important step in using

Fig. 7. Magnetic values collected by three different smartphones along a
50-meter corridor [26].

geomagnetism. The positioning accuracy of some geomagnetic
based systems such as Indoor Atlas is between 1-2m [163].

Considering that geomagnetic field is highly affected
by H-beam building than reinforced concrete building,
Song et al. [164] proposed a geomagnetic-based indoor local-
ization approach by leveraging the dependence of RSS on
the type of building materials. Experiments demonstrated that
their proposed method not only efficiently reduced database
generation costs but also was faster.

Jang et al. [162] proposed a novel geomagnetic-based
indoor localization system by using artificial neural network
models. Their idea is to construct a sequence of geomagnetic
fingerprints as the UE moves instead of using the ambiguous
geomagnetic values. A recurrent neural network is then trained
by the sequence of geomagnetic fingerprints. The experi-
mental results showed that an average positioning error of
1.062 meters can be obtained. Other related works can be
found in [165]–[167].

3) UWB-Based Positioning System: Ultra-Wideband
(UWB) transmits data by ultra-narrow pulses in the time scale
of nanoseconds. Their accuracy can reach centimeter-level
by virtue of leveraging its high bandwidth. Therefore, UWB
systems incur high power and hardware requirements [168].
Meanwhile, direct and first path identification problems are
incurred by fading, especially in dense or NLOS indoor
scenarios [169]. Existing UWB-based positioning methods in



GUO et al.: A SURVEY ON FUSION-BASED INDOOR POSITIONING 573

TABLE IV
COMPARISON OF POSITIONING SYSTEMS

NLOS environments need to compensate for the range error
by NLOS identification and mitigation, but they make some
assumptions or require prior knowledge of the positioning
scenario. To overcome the drawback, Yu et al. [122] proposed
a less scenario-dependent and a priori knowledge-independent
NLOS identification and mitigation method for positioning
in harsh indoor environments. The RMS of absolute range
errors after NLOS mitigation was reduced from the original
1.3 meter to 0.651 meter in their real office environment.

Recently, UWB was integrated with INS for accurate
localization that may potentially spur various applications.
Fan et al. [170] proposed an INS/UWB positioning method
by using Kalman filter and outliers eliminating techniques.
Experimental results showed that the mean square error is
reduced by 24.25% as compared with the conventional KF
methods. Other related UWB/INS positioning proposals can
be found in [171].

4) Inertial Navigation Systems (INS): Inertial Navigation
System (INS) is an independent system, and its core com-
ponents, Inertial Measurement Units (IMUs), consist of
three orthogonal uniaxial accelerometers and three orthogonal
gyros, in provisioning position, velocity, and pose measure-
ments [82]. Three orthogonal linear accelerations are con-
tinuously measured by the triaxial accelerometer, and three
orthogonal angular velocities are monitored by three gyro-
scopes sensors in the inertial reference frame [36]. Recent
advances in electromechanical technology have enabled minia-
turization of senors and cost reduction, thus popularizing INS.
The most popular application of INS is tracking a UE. At each
detected step of a user, real-time estimation of displacements
from measurements of IMUs will be added to previously

estimated position to determine the current position. Wrong
estimation of the previously estimated position will result in
the accumulation of errors [7], [8]. Kalman filtering [172]
and particle filtering [86], [87], [173] are the main techniques
involved in tracking UEs by utilizing their IMU measurements.
Details of these techniques are provided in Section IV-C.

5) RFID-Based Positioning System: Radio frequency iden-
tification (RFID) positioning systems usually realize localiza-
tion by writing, storing and reading information in electronic
tag embedded in positioning targets. RFID systems can be
classified into active and passive systems, depending on
whether the electronic tag has its own energy source. The prop-
agation of an active RFID signal can reach 30m, longer than a
passive one [174]. The fingerprinting position method can be
used for active RFID based on the RSSI measurement [146].
Passive RFID positioning systems depending on inductive cou-
pling usually use the proximity detection method to achieve
positioning. LANDMARC is the typical representative system
based on RFID [175].

Aldin et al. [174] proposed a boundary virtual refer-
ence label algorithm to improve the positioning accuracy
by inserting many virtual reference tags on the bound-
ary. They built a linear regression model to eliminate the
unwanted tag information from the estimated results. Their
simulations showed that the positioning accuracy significantly
increased. Readers are referred to other RFID-based indoor
localization methods [146], [174], [176]–[178] for further
details.

6) Cellular Network-Based Positioning System: As a
matured communication technology, cellular networks can be
used to locate mobile phones [78].
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Ye et al. [179] first extracted the channel parameters from
long-term-evolution (LTE) down-link signals by using a fea-
ture extraction method. Then, the radio channel fingerprints
were collected for a feed forward neural network training.
Based on the trained neural network, the location of UEs can
be predicted when inputting the online testing signals. The
experimental results showed that, the proposed method can
obtain a median error distance of 6 and 75 meters in indoor
and outdoor environments respectively, by using only one LTE
eNodeB.

Fang and Lin [43] proposed a cooperative network posi-
tioning framework by combining cellular networks with other
networks, such as WLAN, FM, and DVB. Based on the
collected RSS measurements from different networks, they
proposed two robust fusion positioning methods to improve
the drawbacks of standalone networks. Experimental results
conducted at Yuanzhi University proved the efficiency of their
proposed methods.

7) ZigBee-Based Positioning System: ZigBee is a low-
power and short-range communication protocol based on the
IEEE 802.15.4 standard. Positioning methods based on ZigBee
perform quite well with the reported accuracy reaching of
2.1m [180].

Li et al. [181] proposed an enhanced fingerprint based posi-
tioning method using ZigBee networks. The proposed method
tries to fuse differential time difference of arrival and RSS
by using random forests, and was validated by using a soft-
ware defined radio (SDR) platform. The real data testing
results showed that the proposed system achieves a 36.1%
improvement in positioning accuracy as compared with some
traditional RSS-based methods.

Fang et al. [42] proposed a ZigBee-based ensemble learning
localization framework for indoor environments. As com-
pared with the conventional methods, such as gradient-based
search [182], multidimensional scaling (MDS) [183], and
least squares (LS) [184], the proposed method achieves high
accuracy by only using RSSI of ZigBee networks.

8) Bluetooth-Based Positioning System: Bluetooth posi-
tioning systems are characterized with close range, low power,
and low cost [185]–[187]. Bluetooth-based indoor positioning
can provide the accuracy within 1m [188], [189].

In the past few years, Bluetooth-based indoor localiza-
tion had been extensively studied for IoT, mostly based on
fingerprint-based techniques. Sikeridis et al. [190] proposed
an unsupervised crowd-assisted learning enabling location-
aware facility by using RSS of Bluetooth low energy beacons.
They designed a three-layer location-aware infrastructure from
which many moving clients can provide data from a sensing
layer. The positioning algorithms are implemented in a cloud-
based decision system. The proposed system has been verified
to be efficient both in mobility tracking and UE localization.
Other Bluetooth-based indoor positioning works can be found
in [21], [191].

9) Visible Light Positioning System: Visible light position-
ing (VLP) has attracted much attention because illuminating
systems using LED can be deployed in any building and they
can be used to build indoor positioning systems without extra
cost [10], [192]–[195].

Note that RSS [196], AOA [195], [197], TOA [10],
and TDOA [16], [133] can also be used in VLP systems.
Luxapose [198] is a well-known indoor positioning system
using LED luminaires and camera. This system can determine
the location and orientation of a smartphone by detecting the
presence of the luminaires in the image captured by the smart-
phone. A demo was given in this work to show how Luxapose
was built for localization.

Machine learning has been studied in provisioning VLP.
Guo et al. [33] proposed a visible light positioning method via
machine learning and fusion. The RSS fingerprints were first
constructed by using the peak values of power spectral density
of the received signals. Several machine learning classifiers
were trained by inputting these RSSs fingerprints. Two fusion
algorithms, namely, grid-independent least square (GI-LS) and
grid-dependent least square (GD-LS), were proposed to weigh
the outputs of these classifiers. Experimental results showed
that the probability of obtaining a mean positioning error, less
than 5 cm by GD-LS is improved by 93.03% and 93.15%
respectively, as compared with RSS ratio and RSS matching
methods.

Works like [192] integrate solar cells into garments at the
shoulder level, where radiant energy from indoor building
illumination is monitored by solar cells and utilized for local-
ization. To sum up, each positioning system presents its own
merits and drawbacks. Undoubtedly, combining the measure-
ments from different networks can improve the accuracy of
indoor positioning to some extent. We will survey these works
in the next section.

C. Source Space of Homogeneous Positioning Systems

Fusion-based indoor localization systems, realized in stan-
dalone network including situations where single or multiple
measurements are applied, are classified as homogeneous
positioning systems. In the following, we will analyze and
summarize works based on whether the related measure-
ment technology is single, according to the definition of a
homogeneous positioning system.

1) Single Measurement: From all the papers being sur-
veyed, RSS is the single measurement mostly used for FBIP
in homogeneous positioning systems because RSS is widely
available in the above different positioning wireless tech-
nologies. Other common measurements used in homogeneous
positioning systems include AOA, TOA, TDOA, and CSI [9],
[14], [20], [92].

2) Multiple Measurements: In a standalone positioning
system, different kinds of measurements can be used to
improve the localization accuracy by combining the advan-
tages of different measuring techniques. For example, the
combination of RSS and TOA in WSN has been proven to
be efficient in meliorating localization performance. In [204],
RSS measurements, modeled by Gaussian processes, are used
for crude localization while TOA measurements are used for
accurate estimation. Similarly, TOA and TDOA have been
fused to solve the position estimation problem in GSM [78].
The first level fusion process converts raw TOA measurements
into TDOA measurements. Then, weighted least-squares and
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SOURCE SPACE OF FUSION-BASED INDOOR LOCALIZATION IN HOMOGENEOUS POSITIONING SYSTEMS

ML are used to estimate the position. Based on Bayesian infer-
ence, position estimates from the TOA and TDOA estimators
are combined at the second level fusion.

As shown in Table V, we summarize the source space of
fusion-based indoor localization in homogeneous positioning
systems from the view of network and related measurement
technologies, of each surveyed paper.

D. Source Space of Heterogeneous Positioning Systems

Fusion-based indoor positioning systems are examples of
heterogeneous positioning systems. Here, the systems are real-
ized in multiple networks with single measurement technology.
From the surveyed papers, we ascertain that RSSs are widely
utilized in heterogeneous positioning systems. After all, RSSs
can be obtained from several different networks with relative
ease. There are disparate ways of fusing data extracted from
RSS measurements in different networks to significantly and
effectively refine localization performance [34], [41], [44].

Utilizing RSS measured in WLAN and Bluetooth networks
comprehensively is also a meaningful means to improve posi-
tion estimates. Aparicio et al. [35] selected a zone where
the object of interest is supposed to be using Bluetooth.
Then, WiFi signal measurements are used to refine the loca-
tion estimate within an average error tolerance of 40cm.
Rodionov et al. [213] fused the results from different
networks including WLAN, Geomagnetism, and RFID based
on Gauss-Markov theory. Other combinations of WiFi and
magnetic information can be found in [26].

Combining RSS measurements from various networks such
as WLAN, WSN, and GPS is another significant strategy
for fusion-based indoor localization. For example, Fang and
Lin [43] proposed two algorithms, namely, Direct Multi-Radio
Fusion (DMRF) and Cooperative Eigen-Radio Positioning
(CERP), to fuse the RSS measurements from GSM, DVB, FM,
and WLAN for heterogeneous positioning systems. Readers

are referred to other related works [214], [215] for further
details.

Further, we summarize the aforementioned works in
Table VI, detailing the single measurement technology and
combination of networks for each work.

E. Source Space of Hybrid Positioning Systems

Here, multiple networks are harnessed for hybrid position-
ing systems with multiple different kinds of measurement
technologies.

Amalgamating WLAN and INS is an effective practice
in hybrid positioning systems. Fusing the RSS of WLAN
and PDR of INS are widely discussed in [36], [46]–[51].
Panyov et al. [46] proposed to fuse the positioning results
provided by the RSS of WLAN and the PDR of INS via
Kalman filter. Experimental results demonstrated that an accu-
racy of up to 1.5m can be achieved. In addition to WiFi
and INS, Leppäkoski et al. [217] also combined the map
information for accurate indoor positioning. Other PDR and
RSS based localization in hybrid positioning systems are
reported in [38], [218]–[221].

Wang et al. [222] proposed UnLoc, which combines the
readings of accelerometers, WiFi measurements, and magne-
tometers via unsupervised clustering to obtain unique land-
marks. Chen et al. [223] proposed a sensor fusion framework
to combine WiFi, PDR, and landmarks for smartphone posi-
tioning. The integrated landmarks can be easily identified from
the specific sensor patterns in their designed environments.
They then solved the sensor fusion problem using Kalman fil-
ter. They were able to achieve a localization accuracy of 1m.
Wu et al. [224] trained the conditional random field (CRF)
based on the labeled RSSs of geomagnetism. During the local-
ization phase, the magnetic field, step counter, and direction
are combined with the map information for accurate location
estimates.
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Fig. 8. A typical positioning framework of hybrid positioning systems.

Liu et al. [89] proposed VMag, a hybrid fusion method by
combining the RSS of geomagnetic fields and visual images
for their complementary nature. Experiments in four differ-
ent indoor settings including a research laboratory, a garage,
a canteen, and an office, demonstrated that 91% of the local-
ization errors are within 0.85m. Chen et al. [88] fused the
RSSs from WLAN and vision information from camera by
employing particle filter technology. The reported localization
accuracy could reach 2m.

Hartmann et al. [82] presented a hybrid indoor localiza-
tion method by fusing the UWB system with INS by using
a strap-down algorithm. Another typical positioning frame-
work of hybrid positioning systems is illustrated in Fig. 8,
from which different measurements from different sensors or
networks can be fused to yield a better location estimate.

This section summarizes and categorizes the source space
in FBIP under three main positioning systems: homogeneous,
heterogeneous, and hybrid positioning systems. The sources
of the three positioning systems in the surveyed papers are
summarized in Table V, Table VI, and Table VII, respectively.

1) Data Extraction for Hybrid Positioning Systems: Hybrid
positioning systems require measurements from diverse
networks for localization. Ensuring that the data generated by
these networks have the same timestamps before being fused is
prudent and imperative for meliorating localization accuracies.
Fog computing [238] can be employed in hybrid localization
systems as a promising technology for such latency-sensitive
applications. Best practices involve sending various collected

data from different networks such as RSS from WLAN, RSS
from Bluetooth networks, sensor information from wireless
sensor networks (WSNs) as well as inertial information ema-
nating from IMUs, geomagnetic data, etc. from IoT devices to
dedicated fog nodes for preprocessing, filtering of valid data
and categorizing data with the same timestamps before engag-
ing cloud servers. This in turn will aid in saving bandwidths
as well as ensuring latency reduction in hybrid positioning
systems [239]. Also, fog nodes can also be equipped with
computing resources to provide seamless localization services,
instead of constantly engaging cloud servers.

Different networks utilize different protocols for commu-
nication. To overcome the hurdles of transmitting data ema-
nating from different networks for fusion, software defined
networking (SDN) technologies such as protocol oblivious for-
warding (POF) and programming protocol-independent packet
processors (P4) can be adopted to alleviate this burden by
provisioning the flexibility to transfer data over different
networks irrespective of the underlining implemented proto-
cols [240], [241]. Reference [242] proposed a novel protocol
known as indoor localization protocol (ILP) with a simple
packet structure for aggregating data in networks for trans-
ferring data from one network to another. The protocol is
simple and can be modified as needed by each wireless stack
to fit their different approaches to meshing and routing. In
situations where all these networking technologies are avail-
able on a single device such as a smartphone, JavaScript
object notation (JSON) provides the flexibility to transmit
extracted RSS data from embedded WLAN module, Bluetooth
module, GSM module, IMU, etc. to cloud-based servers for
processing [243], [244].

IV. ALGORITHM SPACE

In the above section, we describe various combinations of
positioning sources under homogeneous, heterogeneous, and
hybrid positioning systems. Different localization algorithms
can be applied under these networks to yield a reliable local-
ization estimate. Several reviews have summarized the related
positioning algorithms. Seco et al. [245] divided the indoor
positioning methods into four categories: geometric-based
method, minimization of the cost functions, fingerprints, and
Bayesian techniques. Basri and El Khadimi [246] categorized
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Fig. 9. Taxonomy of localization algorithms.

the positioning algorithms into deterministic and probabilistic
approaches.

Here, we summarize the-state-of-the-art localization algo-
rithms into three groups: conventional methods, machine learn-
ing methods, and state estimate methods, based on whether
the positioning model is static or dynamic. Taxonomy of
localization algorithms is illustrated in Fig 9.

A. Conventional Methods

The conventional localization methods can also be divided
into Bayesian and non-Bayesian methods [76]. The non-
Bayesian methods treat the target position x as an unknown
deterministic parameter, such as least squares and maximum
likelihood. Comparatively, the Bayesian methods consider the
target position as an implementation of a random variable x
with a prior distribution px (x ), such as minimum mean square
error and maximum a posteriori. Below are four popular
estimators.

1) Least Squares (LS): LS is a standard method to solve
an overdetermined system. The fundamental idea is to min-
imize the sum of squares of the residuals of each equation
to get an approximate solution. When there is redundancy in
observations, it is feasible to use LS estimation to obtain a
unique answer. The measurements such as AOA, TOA, TDOA,
and RSS or their combinations can be solved by LS meth-
ods [184], [247]–[251]. A conventional LS-based problem can
be modeled as [111]

ẑ = fLS (s) = argmin
z

‖s − g(z )‖, (5)

where z is the location to be estimated and s =
[s1, s2, . . . , sM ]T is the measurement vector. It can further
be written as s = g(z ) + ε, where g(z) is a function of the
location of the user, z, such as path-loss model [110], and
ε is the measurement error. Unlike the conventional LS meth-
ods which treat each equation equally, Yang and Wang [252]
proposed a residual-based weight least squares method which
utilizes two groups of residuals to evaluate the credibility of
measurements by considering different importance of the ref-
erence nodes. Other relative works, such as weighted-LS and
two-step weighted LS, are reported in [184], [253].

2) Maximum Likelihood (ML): Given an observation, ML is
a probabilistic method of estimating the parameters of a statis-
tical model. The ML estimator tries to maximize the following
likelihood function [249]:

ẑ = fML(s) = argmax
z

ps|z (s|z ), (6)

where ps|z can be approximated by parametric distribution
including multidimensional Gaussian distributions, Laplacian
distributions, and others [40], [70], [254]. The ML estimator
requires the knowledge of the conditional probability density
function of the observation s.

Combining the measurements from different sensors
can improve the performance of the ML estimator.
Ayllón et al. [236] combined the local range with angle
estimates by using the ML estimator. Without requiring any
reference nodes and any prior synchronization between nodes,
the localization error ranges from 13cm to 31cm in their
experiments. Chen et al. [36] employed an ML algorithm
to combine WiFi with PDR without inputting the user’s ini-
tial information in advance. Sun et al. [51] proposed MoLoc,
a MOtion-assisted indoor LOCalization method using ML
positioning estimation, which can explore the potential of
leveraging user motion against fingerprint ambiguity. The
reported localization error in a large office hall is less than 1m.

3) Maximum A Posterior (MAP): MAP is based on empiri-
cal data to obtain point estimates of hard-to-observe quantities.
The probability of the model parameter itself is considered
to be uniform in ML, i.e., the probability is a fixed value.
Therefore, the maximum posterior estimate can be seen as a
regularized maximum likelihood estimate. The MAP estimator
finds the value of z with the maximum posterior probability



578 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 22, NO. 1, FIRST QUARTER 2020

as follows [55]:

ẑ = fMAP (s) = argmax
z

pz |s (z |s). (7)

Lu et al. [54] proved that the MAP estimator can reduce
the average localization error in juxtaposition with the LS
approach. In their paper, the target environment is first divided
into a plurality of grids of the same size, and the proba-
bility density of the target in each grid point is deduced
by Bayesian criteria. Then, each target takes the grid point
with the maximum probability density as its location esti-
mate. Kok et al. [55] proposed an MAP-based approach to
combine measurements from inertial sensors with TOA mea-
surements from an UWB system for indoor positioning. The
UWB measurements are modeled by a tailored heavy-tailed
asymmetric distribution to account for measurement outliers.
The reported accuracies in position and orientation are 3cm
and 1◦, respectively.

4) Minimum Mean Square Error (MMSE): MMSE estima-
tor is an estimation approach which minimizes the statistical
average of positioning errors as follows [44]:

ẑ = fMMSE (s) =

∫
zpz |s(z |s) dz . (8)

MMSE makes use of range estimates derived from measure-
ments between an UE and reference nodes. Gwon et al. [44]
adopted the MMSE algorithm for weights training and cali-
bration. In the offline phase, each input branch transmits its
own information and is weighted individually. MMSE learned
the same weights at all grid points for the position estimate,
which is simple and easy to implement, but very sensitive to
dynamic environments. Zhang et al. [255] proposed an MMSE
based hybrid positioning algorithm by combining the measure-
ments from inertial sensors and UWB. The proposed algorithm
can be implemented in a single-anchor with moderate cali-
bration. The reported improvement in accuracy is 47.2% as
compared with a pure inertial solution. Other MMSE based
indoor positioning methods are reported in [56], [256].

The characteristics of the above four conventional position-
ing methods are summarized in Table VIII for comparison.

B. Machine Learning Methods

Position estimation as a machine learning problem is actu-
ally based on the measurement samples collected at known
locations to model how the positioning information is dis-
tributed in different geographical areas. This is also the reason
why machine learning methods have been widely used for
fingerprint-based positioning. The machine learning methods
for indoor positioning can be categorized into two groups:
classification and regression.

Regardless of classification and regression, the machine
learning based indoor positioning methods try to train the
machine learning algorithm as a predictor to yield the location
or label prediction, which can be written as

ĉ = f (s,D), (9)

where D is the offline training data for classifier or regression
model training and s is the online testing measurement. f (·)

is the classification/regression function, which can be KNN,
SVM, NN, Random forests, AdaBoost, to name a few.

For the classification problem, ĉ is the predicted label,
which can be mapped to the location estimate ẑ based on the
prestored map information [27]. For the regression problem,
ĉ is the estimated location of the UE and does not need to be
transformed further [259].

Numerous machine learning based indoor positioning algo-
rithms were proposed in the past few years. Most of them
are used as classifiers in indoor positioning, such as deep
learning [92], neural networks [58], and others [32], [260];
few works focus on the regression problem [64]. It has been
proven that machine learning methods outperform the conven-
tional indoor positioning methods in mitigating the fluctuation
of RSS in CEEs [31].

Most of the existing machine learning algorithms yield the
predicted label by finding the grid index with the highest prob-
ability. It is not intelligent enough because the label index
with the highest probability may be the wrong estimation due
to the fluctuation of received signals in a complex indoor
environment [159]. Guo et al. [30] proposed an unsupervised
fusion localization method based on extended candidate loca-
tion set (UFL-ECLS) to overcome the drawbacks. UFL-ECLS
first collects an extended candidate location set by finding the
locations with predication probability greater than a certain
threshold from each classifier. A joint optimization of weights
and the location of the user is derived for unsupervised fusion.
UFL-ECLS does not need weights training and storage in the
offline phase, and can yield high accuracy in changing environ-
ment. We have summarized the performance of some existing
machine learning methods in indoor positioning in Table IX
for comparison.

C. State Estimate Methods

State estimate is used to estimate the state of targets, which
is also referred to as a tracking technology. The state estimate
is a common phase of fusion-based positioning because it also
explores the measurements from different sensors or different
networks to yield a position estimate. In this subsection, we
will introduce four popular state estimate methods including
hidden Markov model (HMM), Kalman filter (KF), extended
Kalman filter (EKF), and particle filter (PF).

1) Hidden Markov Model (HMM): Hidden Markov models
are used to represent processes that are not fully observable
because the physical states may be unobservable (e.g., tar-
get position) [65]. HMM has been widely applied in indoor
positioning environments [50], [66], [67], [69], [144].

HMM can be applied to compute the probability based
on given observed sequence in indoor positioning [67], [76].
A combination of WiFi measurements and motion
information [50], [68], [69], [144] is also widely adopted in
the design of HMM. Liu et al. [69] adopted the Weibull func-
tion to model the distribution of the signal strength over time
in order to mitigate the signal strength variation and reduce
the required number of training samples. Zheng et al. [270]
proposed an adaptive transferred HMM (TrHMM) model
to reduce the calibration burden of fingerprints in changing
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SUMMARY AND COMPARISON OF CONVENTIONAL METHODS

indoor environments. The performance of the TrHMM model
was validated by real data in improving localization accuracy
and saving calibration effort.

2) Extended Kalman Filter (EKF): The EKF has gained
popularity because it can cope with nonlinear and non-
Gaussian problems [271]. However, EKF usually approximates
the observed signal distribution with a Gaussian distribution
and does not consider potential variables in the state lineariza-
tion process [76]. The computations of Jacobians are extremely
expensive in EKF.

EKF has been successfully applied for indoor positioning
especially for the fusion of hybrid positioning measurements.
The most common positioning application is to combine PDR
and other positioning systems, such as UWB and PDR [82],
WiFi and PDR [48], [83], [84] or the combination of multiple
systems [85].

EFK can also be used to integrate different position-
ing information from stand-alone networks [14], [206].
Zhang et al. [14] introduced a novel indoor positioning
method for the TDOA-based ultrasound source localization.
The proposed method simultaneously uses EKF and robust
EKF to restrain the measuring noise for both LOS and NLOS

environments. Experiments conducted in a factory building
with size of 10 × 12 m2 showed that the proposed method
outperforms other commercially available systems.

3) Particle Filter (PF): PF is a recursive implementation
of the sequential Monte Carlo method. The basic idea is to
replace the integral operation with a set of samples that are
close to the posterior probability to obtain a final state esti-
mate [87]. As the most widely used filter in FBIP, PF can
describe any probability distribution. As long as enough num-
ber of particles are guaranteed, PF can adapt to non-Gaussian,
nonlinear problems, and can converge to true posterior prob-
ability [173]. However, the larger the number of particles, the
more complex the PF computation is [86].

Fusing heterogeneous sources from different
networks/sensors by PF has been widely studied. The
prevalent one is the fusion of WiFi fingerprint and inertial
localization [86], [87], [272], whose accuracy can be improved
by adding constraints to PF with map information [39], [143],
using local discernibility of magnetic signals [38], com-
bining vision information [88], integrating multiple above
positioning measurements [26], and ameliorating the filter
operation [173], [216].
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As compared to KF and variants of KF, walking distance
and map information can be directly integrated in PF by using
a non-linear prediction function. The map information is effec-
tive auxiliary information that can be used to remove the
impossible particles, such as setting the weights of these parti-
cles to zeros when the target exceeds certain bounds [39], [69].

4) Brief Summary of State Estimate Methods: The state
estimation methods are mainly used to solve the sensor fusion
problem for indoor positioning [50], [66], [67]. We summarize
the algorithms mentioned in the above section in Table X. In
comparison, HMM does not use any deterministic models to

limit the user’s motion, and so it has been widely used to track
target in CEEs [144]. KF shows better performance for linear
systems with Gaussian noise. EKF relaxes the assumption of
KF with slightly increased computational burden. PF is the
most widely used but incurs intensive computation.

V. WEIGHTS SPACE

Assume that we have a set of location estimates
{z 11, z 12, . . . , zMN } obtained from multiple sources or
multiple algorithms introduced in Sections III and IV,
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and zmn = fn (sm ) denotes the location estimate
obtained from the m-th measurement by using the n-th
algorithm. These results are then combined/weighed

x̂ =
∑M

m=1

∑N
n=1 wmnzmn . Note that the location

estimate here can either be a continuous valued results (e.g.,
2-D coordinates) or discrete valued results (e.g., grid points).
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Fig. 10. The process of the supervised weights learning.

The key problem here is to achieve good fusion performances
by selecting optimal weights.

Each positioning technique possesses certain advantages
for different application scenarios, while the performance
of a combined location estimation can exploit the comple-
mentary advantages of estimations made by the individual
positioning technologies. Positioning techniques or technolo-
gies can be weighed by harnessing the advantages they possess
in order to complement each other. Therefore, determining
the weights is a critical issue in fusion-based positioning
because leveraging different positioning results from multiple
sources or multiple algorithms can help in achieving promis-
ing localization performances. There are two strategies to
acquire weights: supervised learning and unsupervised learn-
ing. Supervised learning attempts to learn the weights by
using the labeled data in the offline phase. Alternatively, unsu-
pervised learning learns the weights by using online data
directly [156].

A. Supervised Weights Learning

In supervised learning, we focus on how to estimate
the performance of different algorithms to obtain reason-
able weights when training data are available. Most of the
existing supervised weights learning is based on minimiz-
ing positioning errors using available training data in the
offline phase [27], [31], [34], [40]–[42], [44], [106], [156], as
depicted in Fig. 10. There are two key components in super-
vised weights learning: weight training and weights selection.
Both of them can determine the accuracy of FBIP. Therefore,
we detail them as follows:

1) Weights Learning Methods: Desired weights should
fully reflect the intrinsic complementarity among fused
information. The existing weights calculation is mainly based
on minimization of the positioning errors [31]–[33], [41],
[42], [44] and maximization of the source efficiency [274].
Fang et al. [41] proposed to search the weight of the n-th
positioning algorithm for the k-th grid point by minimizing
the average positioning error over the L training samples and
M sources, which can be represented as follows:

ω̂k
n = arg min

0≤ωn≤1

1

LM

L∑

l=1

M∑

m=1

e(fn (sm (l))|ω), (10)

where e(fn (sm(l))|ω) is the localization error of the n-th
function, the m-th source, and the l-th sample with the

Fig. 11. The weights assignment using Eqs. (10) and (12).

weight ω, and M is the number of the sources. After hav-
ing obtained all the weights of multiple fingerprint functions
sequentially, they are normalized such that

N∑

n=1

ω̂k
n = 1. (11)

Consider that the weight computing strategy is just optimal for
each individual algorithm, and so it cannot fully excavate the
intrinsic complementarity among fingerprint functions. Hence,
Guo et al. [27] proposed to jointly optimize the average
positioning error for all algorithms simultaneously, namely,
knowledge aided adaptive localization (KAAL), i.e.,

ŵk = argmin
w

1

LMN

M∑

m=1

N∑

n=1

L∑

l=1

e ′(fn (sm (l))|w)

s.t. wT 1 = 1

wk
n ≥ 0,n = 1, 2, . . . ,N (12)

where wk = [wk
1 ,w

k
2 , . . . ,w

k
N ]T is the weights of all the

algorithms at the k-th grid point, 1 is an N × 1 all one vec-
tor, and e ′(fn (sm(l))|w) is the positioning error given by the
l-th sample of the m-th source using the n-th algorithm. This
weights computing strategy is better than DFC [41] in achiev-
ing improved performance in accuracy and robustness because
it searches for the weights in all algorithm and source spaces.
Fig. 11 depicts the weights assignments by using DFC and
our proposed KAAL method, which indicates that the weights
assigned by KAAL show bigger difference than those by DFC.
Similar works can be found in [31], [156].

Instead of training different weights for different grid points,
Fang et al. [42] proposed to train different weights for different
anchors by minimizing average positioning errors in the offline
phase. The final weights used for fusion are chosen from the
anchor with the maximum signal strength in the online phase.
It outperforms other conventional positioning methods, such
as LLS and MDS, in accuracy and robustness.

Different from the above methods, Gwon et al. [44] trained
the same weights for all grid points based on the minimum
mean square error (MMSE) criterion that is simple to imple-
ment and can avoid the weights selection problem [27], [41].
However, it shows poor performance in changing environ-
ments. It is effective in VLC localization because the signal
strength is more stable than that in WLAN environments [33].

Another way of calculating the weights is to maximize
source efficiency. Taniuchi and Maekawa [274] built a sta-
ble positioning model by integrating multiple weak classifiers
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for WiFi-based indoor positioning. Each weak classifier per-
forms location estimation through a randomly selected access
point (AP) set, and sets corresponding weights according to
the validity of the AP. Three indicators are defined to evaluate
the importance of AP: mean of signal strengths, observation
frequency, and variance of signal strengths. The first two met-
rics reflect the efficiency of AP, and the last metric stands for
the robustness. The key idea of this weights assignment strat-
egy is that we believe the weakness classifiers trained with
the data from high quality APs show better performance than
those trained with the data from the poor APs.

The fusion sources used by most of the supervised fusion
methods are RSS measurements [27], [31], [41], [44], [274]
or RSS related measurements [33], [42], [158]. Some RSS
measurements are from the same positioning system [31],
[158] and some are from different positioning systems [41],
[44]. In summary, the accuracies of the fusion methods using
the RSS measurements from the same positioning system are
lower than those using the RSS measurements from differ-
ent positioning systems. The fusion of multiple classifiers
and multiple fingerprints can potentially achieve the highest
accuracy [158].

2) Weights Selection Methods: Note that not all weighed
fusion methods need weights assignment; for example, the
MMSE method [44] only trains the same weights for all grid
points, and it does not need to assign weights for different grid
points. Other fusion methods, such as DFC [41], KAAL [27],
and others [27], [31], [33], [42], [43] should consider how to
select the proper weights for fusion in the online phase.

As mentioned above, Fang et al. [42] trained different
weights for different anchor nodes and selected the weight of
the anchor with the maximum signal strength. Comparatively,
Li et al. [207] adopted the nearest neighbor rule to find
an appropriate weight by directly matching the distance
between the online observations and the offline collected sig-
nals. However, this positioning strategy is susceptible to the
influence of dynamic factors in indoor environments as the
data distribution changes, thus resulting in poor positioning
accuracy.

Two advanced strategies have been proposed to reason-
ably select weights for better fusion. One is to select the
weights based on the average of the outputs of multiple
algorithms [27], and this can improve the accuracy of the
weights selection to some extent, but it is often limited
by the performance of the worst algorithm. Another alter-
native technique is based on the output of the best algo-
rithm, i.e., we can select the weights of the grid point
predicted by the best algorithm because it is possible to deter-
mine the best one given some trained data in the offline
phase [27], [31].

B. Unsupervised Weights Learning

In contrast to supervised weights learning, unsupervised
weights learning simply exploits the online measurements
to calculate the weights, does not need to train and store
the weights in the offline phase, and is thus more attractive
in actual positioning environments. Furthermore, it is more

robust to changing environments as compared with supervised
weights learning. There are two typical unsupervised weights
learning methods: conventional unsupervised weights learning
and truth discovery.

1) Conventional Unsupervised Weights Learning: Given
online measurements, the conventional unsupervised weights
learning methods learn the weights by some rules, such
as Best Linear Unbiased Estimate (BLUE) [34], majority
voting [275], etc.

In indoor positioning, simple averaging cannot depict the
intrinsic complementarity among different positioning results
because it assumes that the errors of different position esti-
mates are uncorrelated. Hu et al. [93] calculated the weighted
mean of results to fuse PDR with WiFi via setting a coef-
ficient to combine measurements, where the coefficient is
proportional to the absolute distance between the results from
PDR and WiFi. Guo and Ansari [32] proposed to estimate
the most credible positioning result by evaluating the occur-
rence of positioning results. However, more testing samples
are required to yield a better estimate. Besides, majority vot-
ing [32], [275] is a widely used fusion method in combining
positioning results without prior knowledge about information
sources. In the majority voting method, the final result is the
one with the most votes. It performs poorly in changing envi-
ronments because it neglects the quality of each positioning
algorithm [29].

Wang and Wong [34] proposed a BLUE-based fusion posi-
tioning algorithm to efficiently combine all the estimates from
different algorithms. The new estimate can differentiate the
correlated and uncorrelated positioning results. They con-
cluded that the performance of the proposed fusion positioning
algorithm increases as the correlation between each position-
ing result decreases. It was reported that more than 20 percent
reduction in the mean distance error can be achieved by using
the proposed fusion method.

2) Truth Discovery Methods: Truth discovery is a data
mining method used in text classification and other big data
applications. The main idea is to find the most credible posi-
tioning result among the multiple candidate positioning results.
In this case, the weight for the most credible positioning
result can be considered as 1, while the weights of the other
positioning results can be regarded as 0 [145].

Guo et al. [29] proposed an expectation maximization
method for accurate indoor positioning. It can estimate the
location of the UE and fingerprint quality simultaneously. The
mean RMSE of the proposed method can achieve 2.51m in a
real office environment, and it outperforms other related meth-
ods. The key of this work is to offer a knowledge evaluation
model, which can be used in transfer learning to alleviate the
burden of fingerprints construction.

Note that the conventional machine learning methods are not
robust in presence of multipath and changing environments,
i.e., the location estimates predicted by conventional machine
learning methods may be wrong in changing indoor environ-
ments, as shown in Fig. 12. The index of the true location
of the UE is 40, while the predictions of SVM, LR, and
KNN are 50, 50, and 46, respectively, owing to the fluc-
tuation of RSS measurements. To overcome this drawback,
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Fig. 12. The biases between the true location and the estimated locations of three typical classifiers [30].

Guo et al. [30] proposed unsupervised fusion localization
based on an extended candidate location set (UFL-ECLS) to
estimate the weights by empowering the existing machine
learning methods. UFL-ECLS iteratively updates the weights
and location of the UE by minimizing the positioning errors.
Experimental results showed that UFL-ECLS can reduce 67th
percentile RMSE by 21.6%, 21.4%, and 16.5% as compared
with MMSE [44], DFC [41], and KAAL [27], respectively.

The sources used in unsupervised fusion RSS measure-
ments [29], [30], [34] and other statistics [28], [32], aided by
other measurements, such as PDR, can achieve more accurate
results [49], [276]. Expectation-maximization [29] and con-
vex optimization [49], [276] are the two main strategies for
higher accurate unsupervised fusion positioning. The former
can intelligently estimate the locations of targets because it
can yield the source quality estimate simultaneously. The lat-
ter can work well with a small size of samples but it imposes
heavy computational burden.

We have summarized the characteristics of the weights
learning methods in Table XI for comparison.

VI. LESSONS, CHALLENGES, AND COUNTERMEASURES

Various FBIP systems have been detailed from three per-
spectives: source space, algorithm space, and weight space.
Here, we further deliberate on lessons, challenges, and coun-
termeasures for FBIP systems.

A. Lessons

Designing an indoor fusion-based location system requires
consideration of many factors, including the selection of com-
plementary information, efficient localization algorithms, and
appropriate weights.

In homogeneous positioning systems, indoor localization is
mainly based on the combination of single or different mea-
surement techniques. Obviously, redundant data can enhance
the robustness and stability for positioning systems, regard-
less of their raw measurements, processed data or position
estimates [42], [98]. Meanwhile, different types of combina-
tions mentioned above can be used for indoor positioning.
For positioning systems belonging to the class of heteroge-
neous positioning systems, the same type of applied mea-
surement technologies facilitates an easier fusion framework
as compared with the hybrid positioning systems. It is clear

that the combination of data from different networks can
enhance the robustness of positioning systems. The greatest
advantage of fusion-based positioning in different networks
is complementarity [43]. For example, geomagnetism-based
positioning system can adjust the accumulated error for INS,
while INS can alleviate the signal low identification problem
for geomagnetism-based localization system. Hence, the final
position estimation will be determined by the complete uti-
lization of the network’s respective advantages.

An appropriate positioning algorithm is the key to improve
the positioning accuracy. Different positioning algorithms have
their own advantages and disadvantages. The selection of posi-
tioning algorithms should balance the accuracy and complex-
ity. For example, machine learning methods can achieve better
performance as compared with conventional methods [276],
but they need numerous training data for model training.
ML, MAP, and Bayesian methods show better performance in
indoor positioning, but they need to assume some probability
distribution in localization measurements, and such probability
distribution is often not known in reality [254].

For the case with available training data, the weights can
be learned based on the offline data. Generally speaking, fixed
weight shows poor adaptivity for changing positioning scenar-
ios. A dynamic and area-dependent weight can better exploit
the advantages of different results in different subareas. In
practice, it is generally impossible to obtain labeled data in
advance, and the weights can only be calculated based on the
testing samples. Therefore, unsupervised weights learning is
more attractive in real indoor positioning.

Note that the fingerprints construction is a laborious task in
indoor positioning, and it is always difficult to obtain enough
label fingerprints for positioning. To overcome the bottlenecks,
crowdsourcing [84], [112], [113], [190] and other calibration-
free [49], [95], [277] techniques are two candidate strategies
in easing the burden of data collection in the offline phase.
Crowdsourcing resorts to other clients to automatically sending
their positioning data to a server, and thus greatly reduces the
site-survey fingerprint construction work.

The calibration-free techniques mainly focus on improv-
ing the fingerprints efficiency in indoor positioning because
the constructed fingerprints may no longer be valid as the
positioning environments change. Two alternative techniques
have been proposed to fully leverage the constructed finger-
prints for positioning in new environments. One is transfer
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TABLE XI
SUMMARY AND COMPARISON OF WEIGHTS SPACE

learning [270], [278]–[280], which tries to transfer knowl-
edge from an old domain to a new domain for high accurate
positioning. The other is the gain-without-pain method, which

makes full use of the existing fingerprints to obtain more robust
location features [31], [32], [94], [95], [98], [109], [281]. Both
of them require more in-depth research in the future.
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Fig. 13. The architecture of motion-assisted localization.

B. Challenges

Fusion-based indoor positioning technology has become a
hot topic, and a large number of works have been discussed
in our review. However, there are still some issues that limit
the adoption of fusion-based positioning.

1) Positioning Accuracy of Single Network: In CEEs, posi-
tioning accuracy of the single network/measurement is lower
due to multipath propagation, changing environment, or short
of measurement. From the ensemble learning theory [282],
we know that the positioning accuracy of a fusion-based tech-
nique is constrained by the positioning accuracy of each single
network/measurement. Hence, we should try to obtain more
accurate positioning results from each network/measurement
before fusion.

2) Positioning Cost: The cost in indoor positioning mainly
consists of two aspects: computational cost and fingerprint
construction cost. Computational cost is greater in fusion-
based indoor localization. Note that the amount of data
obtained by different measurement technologies is greater than
the one that just depends on a single location technology
regardless of homogeneous, heterogeneous or hybrid position-
ing systems, and so the computational cost is higher. How
to design a computationally efficient positioning framework
is the key in FBIP [190], [283]. To reduce the cost of finger-
print construction, crowdsourcing is an alternative solution, but
how to make full use of the unlabeled data from crowdsourc-
ing is a great challenge in FBIP. Transfer learning can also
reduce the cost of fingerprints construction to some extent,
but the existing transfer learning methods show limited abil-
ity in transferring knowledge from different networks and in
evaluating the efficiency of the transferred knowledge; they
are also computationally expensive (e.g., most of them need
eigen decomposition of a large size matrix). Plenty of efforts
should be made to improve the computational efficiency of
existing FBIP methods.

3) Fusion Efficiency: Multiple sources, multiple algo-
rithms or both can be fused to improve the positioning
accuracy. Fusion-based level also presents multiple choices.
Effectiveness is the basic premise of the design of a fusion-
based positioning system. A good fusion scheme can fully
exploit the complementary advantages among various signal
sources and compensate for the limitations among differ-
ent algorithms. However, the fusion level and the efficiency
of the combination technique are the two critical issues
that require further investigation. Over-fusing may lose the

discriminative information of data, while under-fusing will
result in the complementary advantages not fully exploited.
Ensemble learning [99], [101] is a baseline for fusion local-
ization, but how to select a good combination of algorithms
and sources based on localization accuracy and diversity using
ensemble learning principle is an interesting direction and
deserves further study.

4) Fusing Data From Diverse Networks: Fusing data from
different networks is one of the major hurdles especially
with hybrid positioning systems because different protocols
harnessed by different networks make communication across
networks challenging. There is therefore a need to design spe-
cialized protocols to realize cross network communication so
that different measurements can be extracted and harnessed
for localization.

C. Countermeasures

To mitigate the above challenges, we suggest some coun-
termeasures below:

1) Improving the Positioning Accuracy of Single
Network/Measurement: Nowadays, the indoor position-
ing methods using different networks or measurements have
been developed rapidly. A growing number of algorithms
have emerged to improve the positioning accuracy for the
single network or measurement technology. For example, in
WLAN environment, although the RSS-based positioning
methods show low accuracy, but other useful measurement
technologies from the WiFi interface card, such as CSI, have
been proven to improve the positioning accuracy effectively
by using high resolution techniques. The improvement in
positioning accuracy of the single network/measurement will
greatly improve the positioning accuracy and robustness of
fusion-based positioning results.

2) Reducing Positioning Cost: Reducing the positioning
cost inevitably needs to trade-off the positioning accuracy
and computational cost. Selection of a suitable fusion strat-
egy should be considered in reducing the computational cost.
For example, if we can obtain a robust feature from given
sources, it is better to fuse the sources instead of fusing the
positioning results [98]. Designing efficient fusion methods to
fully leverage the sources is the key to lessen the burden of
the computational cost, such as SLAC [49]. For the case of
reducing the burden of fingerprints construction, crowdsourc-
ing and transfer learning technologies should be paid much
attention in the future.
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3) Fusion Efficiency: Generally speaking, fusion efficiency
can be improved by jointly considering the diversity and accu-
racy of each single network/measurement based positioning
technique. As show in Fig. 13, a variety of information, such
as motion, map, and different measurements from different
networks can be combined to obtain a refined positioning
result. Additionally, most of the existing fusion works assume
that the positioning results from multiple algorithms and
multiple measurements are independent; such assumption is
not realistic in many applications because the adopted mea-
surements and algorithms may be correlated [37]. So, how to
design an fusion strategy with good efficiency for correlated
sources also requires further investigation.

4) Fusing Data From Diverse Networks: To resolve the hic-
cup of fusing data from different networks, protocols such as
POF, P4, ILP, etc., can be utilized as they alleviate the burden
of cross network communication by provisioning flexibility for
transferring data over different networks irrespective of their
underlining implemented protocols [240]–[242]. That is, dif-
ferent networks such as WLAN networks, Bluetooth networks,
UWB networks, RFID networks, etc. can cross communicate
to realize localization.

VII. CONCLUSION

The demand for location based services have attracted much
attention; the pursuit of localization performance has thus
become paramount both in academic and industrial commu-
nities. We cannot deny that data fusion is an effective way to
further improve the accuracy and robustness of indoor-based
localization, while existing single positioning technology is
maturing.

In this survey, we have proposed a novel architecture for
fusion-based indoor-localization, composed of a source space,
algorithm space, and weight space. In the source space, we
summarize the sources of homogeneous, heterogeneous, and
hybrid positioning systems, based on the different combi-
nations of networks and measurement technologies. In the
algorithm space, the indoor positioning algorithms are grouped
into three categories based on whether the positioning model
is static or dynamic. In the weight space, we have reviewed
related works from supervised and unsupervised learning.
Finally, we have delineated the lessons, challenges, and coun-
termeasures for fusion-based indoor localization in this study.
Readers will quickly gain a good grasp on state-of-the art
indoor localization modus operandi from tables and figures
that summarizes key concepts from different perspectives. The
foundation for fusion-based indoor positioning has also been
laid in this survey.
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