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Abstract—Future wireless networks will provide high-
bandwidth, low-latency, and ultra-reliable Internet connectivity
to meet the requirements of different applications, ranging from
virtual reality to the Internet of Things. To this aim, edge
caching, computing, and communication (edge-C3) have emerged
to bring network resources (i.e., bandwidth, storage, and comput-
ing) closer to end users. Edge-C3 improves the network resource
utilization as well as the quality of experience (QoE) of end
users. Recently, several video-oriented mobile applications (e.g.,
live content sharing, gaming, and augmented reality) have lever-
aged edge-C3 in diverse scenarios involving video streaming in
both the downlink and the uplink. Hence, a large number of
recent works have studied the implications of video analysis and
streaming through edge-C3. This article presents an in-depth
survey on video edge-C3 challenges and state-of-the-art solutions
in next-generation wireless and mobile networks. Specifically, it
includes: a tutorial on video streaming in mobile networks (e.g.,
video encoding and adaptive bit-rate streaming); an overview of
mobile network architectures, enabling technologies, and appli-
cations for video edge-C3; video edge computing and analytics in
uplink scenarios (e.g., architectures, analytics, and applications);
and video edge caching, computing and communication methods
in downlink scenarios (e.g., collaborative, popularity-based, and
context-aware). A new taxonomy for video edge-C3 is proposed
and the major contributions of recent studies are first highlighted
and then systematically compared. Finally, several open problems
and key challenges for future research are outlined.

Index Terms—Wireless communications, 5G networks, Internet
of Things, mobile edge computing, edge analytics, video analytics,
caching, task offloading, video streaming, quality of experience.

I. INTRODUCTION

THE GLOBAL mobile traffic is expected to grow about
eight times by the year 2022, where video data will

account for about 80% of the traffic [1]. This is not surprising,
given that about 60% of the worldwide population has watched
videos on their mobile devices in 2018 [2]. In general, videos
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are generated and distributed by a wide range of user equip-
ment (UE), such as smartphones, smart wearables, or devices
in the Internet of Things (IoT). Furthermore, different types
of video content are constantly generated in video production
(e.g., film and advertisement), augmented reality (AR) appli-
cations, and tele-surveillance cameras. Besides, over-the-top
service providers (SPs), such as YouTube and Netflix, deliver
live video and video-on-demand (VoD) streaming services to
their subscribers through websites, mobile applications, or
social networks. Indeed, meeting the quality of service (QoS)
requirements of video-oriented applications while satisfying
user quality of experience (QoE) is very challenging, particu-
larly, due to the time-varying nature of wireless links and UE
mobility [3].

As the video traffic over cellular networks grows expo-
nentially, mobile network operators (MNOs) are applying
novel technologies in the fifth-generation (5G) of commu-
nication networks [26] to meet the QoS/QoE requirements
of multimedia applications. The ultimate goal is to deliver
high data-rate, low-latency, and reliable multimedia services
in enhanced mobile broadband and ultra-reliable low-latency
communications [27]. To this end, multi-access edge com-
puting (MEC) [28] has been introduced by integrating cloud
computing and wireless networking technologies. The main
idea in MEC is to bring computing resources close to end-users
within the radio access network (RAN). For instance, deploy-
ing edge servers at the access points of networks allows MNOs
to support applications that require low latency and high-
bandwidth video streams. Several commercial MEC platforms
have been recently deployed [29], [30], which demonstrates
the growing interest in leveraging edge resources to deliver
rich multimedia experiences. As a step further, content caching
capabilities of information-centric networking (ICN) [31] have
been combined with MEC to empower the edge with integrated
edge caching, computing, and communication (edge-C3) capa-
bilities. In the context of multimedia applications, edge-C3
can simultaneously process and cache video content to pro-
vide low-latency and bandwidth-intensive services to users
(Fig. 1). At the same time, UEs are also increasingly equipped
with more powerful computing and storage capabilities, which
allow them to participate in the edge-C3 as well. Moreover,
mobile crowdsourcing [32], [33] and device-to-device (D2D)
communication [34], [35] enable UEs in close proximity to
share their resources with each other, eventually reducing the
network congestion and the resources to be used at edge
servers. Thus, UEs can also be considered as part of the
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TABLE I
SUMMARY OF RELATED SURVEYS AND TUTORIALS, SORTED IN CHRONOLOGICAL ORDER (I.E., NEWER LAST). SYMBOLS IN THE LAST FOUR

COLUMNS INDICATE THE EXTENT OF CONSIDERATION FOR THE TOPICS IN THE CORRESPONDING HEADINGS: � FULL, �� PARTIAL, OR × NONE

Fig. 1. Abstract view of video edge-C3 in wireless networks.

edge-C3, despite their limited resources compared to edge
servers.

Although edge-C3 has been proposed to deliver multimedia-
rich applications and services, several challenges remain.
First, edge-C3 resources are typically more limited than those
available in the cloud data centers. Thus, emerging video-
based applications, such as live streaming, AR, and virtual
reality (VR), place immense stress on edge-C3 resources.
For instance, live streaming applications must simultaneously
support low-latency interactions, as well as deliver high-
bandwidth data to a large audience. Moreover, in the context
of VR, 360◦ videos demand large storage and bandwidth

resources (an order of magnitude higher than traditional
video [36]). On the other hand, AR and video surveil-
lance applications must seamlessly process live video frames
streamed by UEs to identify and annotate objects in real-
time, which requires a large amount of computing resources.
Second, the heterogeneity of edge-C3 resources (including
edge servers and UEs) raises several challenges on how to
efficiently allocate them. Third, the operation and performance
of general edge-C3 solutions are significantly affected by the
properties of video data (e.g., their encoding models). For
instance, caching algorithms for generic content (e.g., in [14])
should be redesigned for segment-based and layered video
models to achieve optimal video delivery performance in terms
of delivery delay and service cost [37]. Finally, a growing
number of UEs (e.g., smartphones, surveillance cameras and
mixed reality glasses) generate video content in the uplink
which requires resource-intensive processing (e.g., to detect
objects in a video frame). In this context, careful system design
(e.g., efficient placement of encoding services) and alloca-
tion of wireless bandwidth for different video qualities are
required. Consequently, understanding the properties of video
data and their impact on video processing, caching, and trans-
mission performance is extremely important for developing
cost-efficient video edge-C3 solutions in wireless networks.

A. Related Surveys and Tutorials

Several existing surveys and tutorials have independently
studied the implications of video delivery, edge computing
and caching in wireless networks (see Table I). Here, we dis-
cuss the most representative publications. First, Mao et al. [9]
studied joint radio and computational resource management in
MEC. They introduced the concept of cache-enabled MEC and
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highlighted the benefits of the combined edge-C3 for emerging
AR and video streaming applications. Wang et al. [11] stud-
ied joint edge-C3 resource allocation in wireless networks.
However, their study of video applications is mostly restricted
to edge caching. Li et al. [16] studied the definition of edge
computing, architectural features of edge-C3, and resource
management therein. They classified the state-of-the-art edge-
C3 systems in terms of the objective (e.g., reducing latency,
bandwidth, energy). In this context, they considered a few
articles related to offloading video analytics tasks to the
edge; however, the discussion on video caching is limited.
Wang et al. [22] studied edge-C3 systems and defined their
key performance metrics and frameworks. They discussed a
representative AR application (see Section IV-E in [22]) which
benefits from edge-C3 for processing both uplink and down-
link video streams. However, the authors do not review the
state of the art that addresses such use cases. In contrast,
we provide a comprehensive review of edge-C3 solutions for
emerging multimedia applications, including augmented real-
ity, live streaming, 360◦ video streaming, and video analytics.
Barakabitze et al. [24] reviewed QoE management solutions
for emerging multimedia applications and edge-based network
architectures. Their main focus was on the efficient delivery of
video to the users. We consider this aspect as well as the use
of edge-C3 resources to efficiently process and deliver videos
generated by users in the context of live streaming, drone ana-
lytics, and video surveillance. Wang et al. [25] reviewed deep
learning-based applications in edge-C3. In this context, they
covered some articles related to video analytics and caching of
deep learning results at the edge. However, they mostly consid-
ered the machine learning-related aspects of such systems. In
contrast, we consider the combined use of edge-C3 resources
(caching, computing, and networking) to support analytics
applications and are not limited to deep learning-based appli-
cations alone. We additionally consider how video-specific
characteristics impact the design of edge-C3-based multimedia
applications.

To the best of our knowledge, none of the existing surveys
specifically addressed edge-C3 in video applications, trans-
mission and delivery. In particular, they have not thoroughly
investigated the benefits of both caching and computing for
different video applications. The more recent video-centric
surveys [21], [24] focus on the QoE aspects of video deliv-
ery and adaptation of bitrates for streaming. In contrast, we
study the computing, networking, and caching requirements
of such applications. The surveys [11], [22] studied the chal-
lenges and solutions of joint edge-C3 resource allocation in
wireless networks. Nevertheless, they did not consider how
the characteristics of video data (e.g., their encoding models,
formats, and properties) affect algorithms and protocols in the
edge-C3. Moreover, none of them address the benefits of edge
computing and caching for emerging applications such as live
streaming and 360◦ video delivery. Furthermore, a study of the
use of edge-C3 for video analytics and real-time processing of
uplink video data is missing from surveys, except for a deep
learning-centric summary in [25]. To fill this gap, this article
provides a comprehensive review of video caching, com-
puting, and streaming in wireless edge-C3. Specifically, we

study edge-enabled video streaming and analytics in wireless
networks for a wide range of emerging applications.

B. Contributions

The primary goal of this survey is to provide the reader
with a comprehensive review of the use of edge-C3 for video-
based applications. We provide a foundational understanding
of video edge-C3 solutions to efficiently process, cache, and
stream videos in future wireless networks. Specifically, we
focus on edge-C3 solutions to enable emerging applications
based on both downlink and uplink streaming of videos, i.e.,
wherein UEs consume (e.g., watch) and generate (e.g., record)
video data, respectively. To this end, we carefully study high-
quality research mainly published since 2012. We provide
readers with an in-depth survey of existing edge-C3 solutions,
their architectures, and the related challenges. This article
mainly targets researchers and practitioners in the fields of
telecommunications, network science, computer vision, and
data science. Fig. 2 illustrates the organization of the article
and Table II summarizes the commonly-used abbreviations.

The main contributions of this article are the following.
• A tutorial on the delivery (streaming) of video over the

Internet (Section II). We discuss the core components of
video streaming, including encoding, decoding, adaptive
streaming, and the related performance metrics. We pro-
vide insights into how such streaming solutions can be
extended to support emerging applications.

• An insightful overview of networking for video edge-
C3 in next-generation wireless and cellular networks
(Section III). We overview networking technologies, and
the challenges associated with processing and delivering
videos both in the uplink and the downlink.

• A thorough review and a new taxonomy of state-of-the-
art solutions for wireless video edge-C3. We split the
related discussion into two main areas, focusing on edge
intelligence and analytics for processing video streams
in the uplink (Section IV), as well as edge caching and
computing for efficient delivery of video streams in the
downlink (Section V). We carefully review system archi-
tectures and optimization problems addressed in these
topics, and provide a summary of the lessons learned.

• An overview of open issues and future research directions
in wireless video edge-C3 (Section VI). We specifi-
cally address selected themes for future work in edge-C3
for video applications and provide a concluding sum-
mary (Section VII).

II. VIDEO STREAMING OVER THE INTERNET:
AN OVERVIEW

We begin with a tutorial on how videos are delivered
over the Internet, with a focus on streaming in wireless
networks (Fig. 3). We introduce the main components of video
streaming (Section II-A), important properties of video data
(Section II-B) and types of video (Section II-C). The efficient
delivery of videos over a network requires that the videos are
converted (i.e., encoded) into different formats. Accordingly,
we describe the common encoding standards used today to
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Fig. 2. Organization of the content in the rest of this article.

TABLE II
LIST OF COMMONLY-USED ABBREVIATIONS IN ALPHABETICAL ORDER

efficiently compress videos (Section II-D). Once the video is
encoded, adaptation is still required to ensure that the network
can reliably transport the encoded videos even under varying
network conditions. We describe adaptive streaming methods
to address these issues (Section II-E). Furthermore, emerging
video formats (e.g., 360◦ videos) and VR applications place
even more demands on the network due to the large size and
format of such videos. To this end, we discuss the streaming
solutions proposed for transporting 360◦ videos (Section II-F).
Finally, we discuss performance indicators (in terms of QoS

and QoE metrics) that can be used to evaluate video streaming
methods (Section II-G).

A. General Video Streaming Pipeline

Video streaming refers to the transmission of an encoded
video from one node to another node over the Internet [38].
The two nodes in a video streaming pipeline may be a server
and a client or two peers, depending on the architecture of a
given video streaming solution [39]. The rest of the discus-
sion assumes a client-server architecture, but the same general
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Fig. 3. Organization of the content in Section II.

principles apply to peer-to-peer architectures as well. A key
characteristic of video streaming is that the encoded video is
progressively downloaded and played out at the same time. As
a consequence, the server is required to control transmissions
to ensure sustained availability of the video at the client for
playout, as opposed to regular file transfer where it is just the
completion time that matters [40].

A video is generally captured as a series of still pictures (so-
called frames) and displayed in rapid succession; the human
eyes perceive such as a moving scene [41]. Each video frame is
represented as a matrix of individual picture elements (namely,
pixels). The features (i.e., attributes) of the captured video vary
(as discussed in Section II-B), for instance, as to compression
formats, resolution, and frame rate. Thus, the transmission of
a video between devices with heterogeneous capabilities over
the Internet poses many challenges, for instance, in terms of
transmission delay or used bandwidth [3].

The process of video streaming between a transmitter and a
receiver over the Internet can be characterized according to the
pipeline in Fig. 4. The main components therein are detailed
next.

Video source: Videos can be created in two different ways:
as a capture of the physical (i.e., real) environment through a
certain device, such as a digital camera, a smartphone, or an
IoT video sensor; or as artificially generated (i.e., synthetic)
content rendered by a graphic engine. Special use cases, such
as AR, may also involve videos in which synthetic elements
are overlaid on natural scenes [42].

Encoder: The encoder compresses a source video into a bit-
stream according to a certain format, generally corresponding
to a standard (e.g., MPEG-4 AVC). In doing so, the encoder
leverages redundant information within the frames to obtain
a more space-efficient representation. Lossless encoding dis-
cards no original information; in contrast, lossy encoding may
discard some information in the source data. Lossless encod-
ing has a lower compression efficiency than lossy encoding;
thus, the latter is widely used in video communications over
wireless networks.

Streaming client/server: The streaming server obtains the
bitstream and the relevant metadata from the encoder, then
repackages the encoded video into a form suitable for trans-
mission over the Internet (particularly, through a transmission
medium), according to a certain streaming protocol. Such
a protocol performs media transport of video segments (or
chunks) and supports client-server interactions to maintain a

Fig. 4. A general video streaming pipeline over the Internet.

certain level of QoS. The streaming client receives the video
bitstream, extracts the encoded video, and feeds it into the
decoder. The streaming server or the client may manage the
rate adaptation of the streaming session based on dynamic
network conditions, depending on the specific use case.

Decoder: The decoder takes the encoded video received by
the streaming client and decodes it into its original format. The
video is exactly restored into its original form when a lossless
scheme is applied; otherwise, the decoded video is (possibly
marginally) different from the source. It is worth noting that
the quality of a decoded video does not only depend on the
encoding scheme, but also on the network conditions (e.g.,
due to delayed or lost messages).

Transcoder and transrater: Transcoders are widely used
in live video streaming scenarios. The transcoder decodes a
compressed (or encoded) video and re-encodes it with a dif-
ferent scheme (e.g., a different encoding standard or media
container). For instance, transcoding is used when stream-
ing clients do not support the video encoding standard of the
original video, which requires a conversion to an appropri-
ate format before transmission. In some scenarios, transrating
is applied to reduce the bitrate of a video, while keeping the
same encoding standard [43]. Both transcoding and transrating
improve the scalability of live video streaming by increasing
its efficiency and (or) reducing the required bandwidth.

Display: The decoded video is shown on a display device,
whose screen comprises a matrix of independent display ele-
ments called display pixels. The number of display pixels is
referred to as the display resolution, generally expressed in
terms of rows and columns. Display resolutions and sizes vary
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from standard to high definition and beyond, due to the diver-
sity of UEs and rich media applications (see Section II-C for a
review). There are often differences between the sensor resolu-
tion during video capture, the resolution of the encoded video,
and the display resolution. Thus, image scaling techniques are
employed to make the decoded video fit the display [44].

B. Video Attributes

A video has several features (or attributes) which affect
its encoding, transmission, and the resulting QoE. The color
information of pixels in a video is represented through a color
space; for instance, a pixel is defined in terms of red, green,
and blue components in the RGB color space. The number
of pixels in a video frame is referred to as video resolu-
tion. In addition, the ratio between the width and height of
a video is called aspect ratio. The frame rate describes the
number of frames in one second of a video, usually referred
to as frames per second (FPS). The quality of a video is
its fidelity with respect to the original (uncompressed) ver-
sion. Quality depends on several factors and can be measured
through either subjective and objective measures. The mean
opinion score is a subjective measure of video quality obtained
from video quality tests involving feedback from human
subjects. Subjective video quality testing methodologies in
telecommunications have been defined by the ITU telecom-
munication (ITU-T) standardization sector [45]. Objective
measures of video quality operate computationally, for exam-
ple, by comparing the encoded video against its original (i.e.,
unencoded) version. Widely used objective video quality met-
rics include peak signal-to-noise ratio (PSNR), video quality
metric (VQM) [46], and video multi-method assessment fusion
(VMAF) [47]. The encoding scheme is another important
attribute of a video, typically including at least the video
format (codec), the arrangement of frames, the output FPS,
the target bitrate, and rate control. Table III lists the major
attributes of videos.

C. Video Types

Emerging applications for video streaming (such as video
conferencing, Internet TV, and video blogging) and interactive
multimedia [48], [49] (e.g., immersive videos, 3D videos, and
mobile AR) employ digital videos of different types. The
following categorizes them by application scenarios.

Standard Definition (SD): Refers to videos with a resolu-
tion corresponding to that of first-generation digital TV1 (i.e.,
720× 480 pixels or 480p). SD videos are commonly employed
in VoD and live conversational applications (e.g., Skype and
WhatsApp), especially for mobile UEs with comparable screen
resolutions.

High Definition (HD): Refers to videos with a resolution
corresponding to either high-definition (HD) (i.e., 1280× 720
pixels or 720p) or full HD (i.e., 1920× 1080 pixels or 1080p)
digital TV [50]. (Full) HD videos are commonly employed
in VoD and live streaming applications (e.g., sports, cultural
events, and game streaming).

1For the sake of completeness, the low-definition TV resolutions of
320× 240 pixels or 240p and 480× 320 pixels or 320p are also employed in
the context of wireless video streaming.

TABLE III
THE MAJOR VIDEO ATTRIBUTES AND THEIR DESCRIPTION

4K: Refers to videos whose width is approximately
4,000 pixels, corresponding to Ultra-HD digital TV (i.e.,
3840× 2160 pixels) [51]. 4K videos are commonly employed
for VoD, IP television, and immersive VR/AR applications –
in the latter case, as they need to be displayed very close to
the eyes of the viewer.

Multi-view: Describes a scene from multiple points of view
to augment the user experience – for instance, to enable 3D
tele-immersion applications. The most common form of multi-
view is represented by stereoscopic videos which are recorded
by two synchronized cameras located at the average human
inter-pupillary distance. A stereoscopic video is displayed such
that each eye can only see the video channel from one of
the corresponding cameras, thereby simulating a perception
of depth. Stereoscopic videos are mainly used in 3D TV and
3D VR applications.

360◦/180◦: They are characterized by each frame contain-
ing all possible views in every direction so that the whole
visual field is captured. Typically, 360◦ videos are recorded
by using multiple synchronized cameras, each capturing a par-
tial view of the observable visual field. The captured views are
then stitched together to form the entire observable field. 360◦
videos are generally used in VR applications; they are also
called immersive or omnidirectional videos [52]. Similarly,
180◦ videos only capture half of the visual field as a compro-
mise between the level of immersion and ease of production
(in terms of capture, processing, and deployment of a video).

D. Video Encoding

Video encoding reduces the redundant information in a
video – in both the temporal and spatial domains – through
compression. The result is a reduction in the storage size of the
video, with minimal (possibly negligible) impact on its quality.
Block-based video encoding is a commonly used approach that
divides a video frame into multiple rectangles or squares [53].
The size of each block (also called macroblock) can vary from
4× 4 to 64× 64 pixels. If two macroblocks are similar, one
can be derived from another. One technique is to predict a
given macroblock based on those previously encoded as a
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TABLE IV
POPULAR CODECS AND THEIR MAJOR FEATURES

mathematical function. Such a function expresses, for instance,
the displacement of a macroblock with respect to the previous
one. A frame of predicted macroblocks is subtracted from
the actual frame to obtain a residual frame, which is then
transformed into a matrix of coefficients (e.g., by applying
the discrete Fourier transform). These coefficients are finally
quantized according to the specific encoding scheme to obtain
a sparse matrix, which reduces the storage size at the cost of
some information loss [53].

Several encoding standards have been developed by work-
ing groups, such as the ITU-T Video Coding Experts Group
and the ISO/IEC JTC1 Moving Picture Experts Group.
Additionally, other – generally open-source – encoding for-
mats have been developed by private organizations, such as
Google, AOMedia, and Microsoft. Some standards define
network-friendly encoders that format data and add suitable
headers for communication through transport layers over the
Internet; they also provide enhanced capabilities to toler-
ate message errors and losses. Indeed, most video streaming
services over the Internet currently use one of these few
network-friendly encoders, such as H264, H265, or VP9 [54].
Popular encoders and their major features are listed in
Table IV.

1) Scalable Video Coding (SVC): A scalable encoding rep-
resents a video as a set of bitstreams (also called layers) in
such a way that higher quality can be obtained by combining
individual (pre-encoded) bitstreams. SVC is the most popular
solution in this context, as an extension of H.264/MPEG4 [60]
wherein a video includes one base layer and multiple enhance-
ment layers (see Fig. 5(a)). The base layer realizes the first
(lowest) quality of the video, the combination of the base layer
and the first enhancement layer realizes the second quality
of the video, and so on until the highest quality that con-
sists of all layers. Thus, SVC encoding enables flexible video
streaming to UEs in wireless networks as it can adapt to
fast-varying wireless links without requiring re-encoding [61].
Scalable encoding is particularly beneficial in next-generation
wireless networks, wherein streaming servers are located at
the edge. In particular, streaming videos with SVC allows
to optimize the allocation of edge resources (e.g., caching
or computing) to UEs, thereby improving bandwidth utiliza-
tion and energy consumption [62]–[65]. Tele-conferencing,
live Internet broadcasting [66], and video surveillance [67]
are common applications of SVC videos.

There are three scalability modes in video coding: spatial,
temporal, and quality/fidelity. In the spatial scalability mode,
the enhancement layers improve the spatial resolution of a
video. For instance, the base layer may provide 480p video,
while the combination of the base layer with enhancement lay-
ers can increase the spatial resolution to 720p or 1080p. In the
temporal scalability, enhancement layers increase the smooth-
ness of a video by increasing its frame rate. For example, the
base layer may encode a video at 25 FPS, while the combi-
nation of the base layer with enhancement layers can increase
the frame rate to 30, 40, or 60 FPS. In the fidelity/quality scal-
ability, the SNR increases with the availability of enhancement
layers, while the spatio-temporal resolution of a decoded video
is constant irrespective of the number of enhancement layers.

E. Adaptive Streaming

The bitrate of a video is determined by the target qual-
ity, depending on the specific codec employed. For adequate
QoE, the end-to-end link between the streaming server and
the client should have enough capacity to support the trans-
mission rate of the server, namely, it should be at least the
same as the source video bitrate. Unfortunately, network con-
ditions generally vary during a streaming session – irrespective
from the nature of the communication medium – for dif-
ferent reasons, including congestion, shadowing/fading, and
message loss. Sending a video from a server to a client with
a constant (bit)rate may either result in poor link utilization if
the bitrate is set too low (e.g., as a conservative estimate)
or in unsatisfactory QoE due to delayed or lost messages
(e.g., choppy or frozen video playout). Adaptive streaming
techniques have been proposed to address these issues by
dynamically adjusting the bitrate of a video according to
network conditions.

In general, streaming techniques can be distinguished
between stateful and stateless [68]. Both the sender and
receiver store the state of a video streaming session with
stateful streaming; whereas only one of the participants may
maintain the state of the video streaming session with stateless
streaming, thereby releasing the resources of the other partic-
ipant and allowing scalable operations. Stateful streaming is
generally leveraged for live streaming and real-time interactive
applications (e.g., cloud gaming), while stateless streaming is
commonly employed in VoD applications [54]. The rest of
the section introduces commonly-used stateful and stateless
protocols for adaptive video streaming.

1) Stateful Adaptive Streaming: This approach employs a
variety of protocols; the most representative are detailed next.

The Real Time Streaming Protocol (RTSP) [69] is an
application-layer protocol that defines a connectionless stream-
ing session. RTSP leverages two other protocols [70]: the
Real-time Transport Protocol (RTP) for end-to-end media
transport over UDP; and the RTP Control Protocol (RTCP) to
exchange metadata related to the streaming session over TCP,
as an out-of-band control and feedback channel. RTSP has a
syntax similar to that of HTTP and supports three main oper-
ations: retrieving media from a server; inviting a media server
to join an existing conference, for instance, to play or record
media present therein; notifying a client about the availability
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Fig. 5. (a) Scalable and (b) non-scalable representations of a video for DASH streaming. Using the scalable representation, the base layer (i.e., quality
1) is combined with zero up to m–1 enhancement layers to be transmitted as the current segment in each time slot (for example, in Fig. 5(a), quality 1 as
segment 2 and the combination of the base layer with enhancement layer 1 as segment 3). Using the non-scalable representation, one quality is selected to
be transmitted as the current segment in each time slot (for example, in Fig. 5(b), quality 1 as segment 2 and quality 2 as segment 3).

of additional (new) media, especially useful for live streaming.
RTSP supports multicast data delivery.

The Real-Time Messaging Protocol (RTMP) [71] is an
application-layer protocol, initially developed as a proprietary
solution within the Macromedia Flash multimedia platform;
the related specifications are now publicly available. RTMP
leverages TCP to maintain a persistent connection between a
client and a server, while dynamically splitting streamed data
into fragments. The size of fragments is negotiated between
the client and server. RTMP maintains multiple parallel chan-
nels carrying different data at the same time for efficient and
low-latency streaming.

WebRTC is a peer-to-peer protocol for bidirectional
exchange of both multimedia and data in real-time between
UEs [72]. WebRTC relies on RTP as well as RTCP for media
transport and the exchange of control information (respec-
tively); it also supports peer-to-peer data channels through the
Stream Control Transmission Protocol (SCTP), a connection-
less but reliable transport protocol.

Stateful streaming protocols as those described above are
not very suitable for caching, as the streaming session
is transient and may not be re-used. However, they can
employ transcoding (transrating) to serve video requests of
UEs with different wireless link conditions. For instance,
a server may transcode an RTMP video stream from
a live-streaming client into different qualities, so as to
make it available to multiple viewers with diverse link
qualities [73].

2) Stateless Adaptive Streaming: A majority of recent
stateless streaming protocols use the HTTP protocol for
media transmission through so-called HTTP adaptive stream-
ing (HAS), primarily due to the related ease of deployment
(through reuse of existing infrastructure) and scalability.

A common feature of HAS protocols is that the streaming
server stores multiple representations of a video, each divided
into segments (equivalently, chunks) that can be independently
decoded. The client controls the bitrate of a video by request-
ing the appropriate segments (generally determined through
a local policy) during the streaming process. Adobe HTTP
Dynamic Streaming, Apple HTTP Live Streaming, Microsoft
Smooth Streaming (MSS), Dynamic Adaptive Streaming over

HTTP (DASH) are popular HAS protocols [54]. In the next
subsection, we study DASH as the most representative state-
less protocol for video streaming.

Dynamic Adaptive Streaming over HTTP (DASH): DASH is
a scalable and codec-agnostic HAS protocol developed under
the MPEG working group which is supported by telecom-
munication standardization organizations, such as the 3rd
Generation Partnership Project (3GPP) [74]. With DASH,
a video is generally represented by multiple qualities,
where each video quality is divided into multiple segments.
Generally, each video segment has a playout length of a few
seconds.

Fig. 5 illustrates segmentation in DASH through scalable
(i.e., SVC) and non-scalable video representations. In both
cases the video is divided into n segments, where each segment
is represented according to m qualities. The SVC encod-
ing includes one base layer and m–1 enhancement layers
which can be combined to realize m qualities, whereas the
non-scalable encoding includes m discrete qualities. A video
client can dynamically request video segments with different
qualities during a streaming session, since each of them is
independently decoded. With DASH, the location of video
qualities (in terms of URIs) is stored in a manifest file called
media presentation data (MPD). When a DASH client requests
a video, the DASH server responds with the MPD file. The
client can then start the download of video segments by pro-
gressively requesting them from the server, usually through a
CDN (see Section III-C for a discussion about CDNs). The
decision on the specific quality of each segment at a certain
time is realized through a rate control logic module at the
client side. Such a module evaluates the current network con-
ditions and the buffer occupancy at the client to decide on the
appropriate quality [8].

Fig. 6 illustrates a DASH video streaming session in
wireless networks.

1) A DASH client in a mobile UE (e.g., a smartphone)
requests a video from a DASH server (e.g., by clicking
a video link on YouTube).

2) The DASH server sends an MPD file to the client.
The client parses the MPD file to obtain information
about the quality versions of the video, segmentation
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Fig. 6. A DASH video streaming session.

information, and uniform resource identifiers2 (URI) of
all the video segments.

3) The client-side adaptation logic calculates the target
bitrate for the next segment, which is then requested
through its URI (e.g., from a CDN location).

4) The client downloads the video segment from the server
and stores it in its playout buffer.

Steps 3 and 4 are repeated until the last (N) segment of a
video stream is received. In conventional DASH deployments,
CDNs are networks of data centers while DASH in an edge
scenario additionally leverages resources at a base station.
Serving segments through a base station clearly reduces both
the access time and the backhaul traffic, thereby improving
the QoE.

Server and Network-assisted DASH (SAND-DASH): DASH
clients generally have limited information about the network
conditions. Hence, rate control decisions made by a DASH
client might be sub-optimal. Moreover, the service provider
has limited control on the QoS of a streaming session, since all
the intelligence resides at the client side. In contrast, the DASH
server and other nodes in the network – the so-called network
elements – have a better view of the network status, thus, they
can help improve the QoS of the service provider and the
QoE in DASH streaming. Accordingly, SAND-DASH [77] has
been proposed by introducing DASH-aware network elements
(DANEs) that recognize DASH traffic and exchange mes-
sages with each other to improve the streaming performance.
According to the SAND-DASH architecture, the content server
is also considered a DANE and messages may be passed
between the DANEs, from DANES to clients, and from
clients to DANEs. Messages between DANEs streamline seg-
ment delivery and are called Parameters Enhancing Delivery
messages; messages from DANEs to clients improve video
reception by the client and are called Parameters Enhancing
Reception messages; and messages from clients to DANEs
may be either status or metric messages. These messages allow
both the client and the DANEs to access information relevant
for improving DASH performance in terms of both QoS and
QoE.

SAND-DASH fits well the architecture of edge-enabled
wireless networks, wherein edge resources can be leveraged
as DANEs. The collaboration among network entities through
message passing enables the design of optimal rate adaptation

2The MPD file may contain direct addresses of the segments in the
CDN [75], or the server may employ DNS load balancing to redirect the
request to the appropriate CDN location [76].

Fig. 7. Division of a 360◦ video into tiles.

solutions to jointly improve the QoE of streaming and obtain
a fair resource utilization. A number of recent works have
studied SAND-DASH in such a context. The authors in [78]
design rate-control strategies, such as bandwidth reservation
and bitrate guidance, by using edge controllers for SAND-
DASH. They also evaluate the proposed streaming schemes in
terms of the average video quality received at multiple clients
and the fairness in video delivery. Heikkinen [79] proposes an
edge-enabled control mechanism for DASH, which employs
an optimal slot-based resource allocation policy based on aver-
age information on channel state. Experimental results show
that the proposed policy reduces the system-wide probability
that video playout is interrupted. An edge-enabled rate adapta-
tion system is proposed in [80] through a greedy client/server
mapping strategy to jointly maximize the QoE and fairness of
competing mobile video streaming clients. The experiments
therein demonstrate that the proposed solution outperforms
client-based rate adaptation heuristics.

F. Streaming 360◦ videos

Streaming 360◦ (or panoramic) videos is more challenging
than streaming traditional video content. First, 360◦ videos
require higher bandwidth and storage space than regular
videos. Next, such videos allow more interaction, i.e., users
can turn their heads as they want and observe different parts
of the panorama. Thus, the latency requirements for stream-
ing are stricter as a large delay in updating the display (once
a user changes his/her field-of-view) may result in motion
sickness [36]. This delay is referred to as motion-to-photon
latency and must be in the range of a few tens of millisec-
onds for a smooth viewing experience [36]. Additionally, a
streaming solution must support different viewer devices (e.g.,
head-mounted displays and smartphones) and different wire-
less network conditions. To this end, adaptive streaming is
used for streaming 360◦ videos as well, with some modifica-
tions that leverage the properties of such content. Specifically,
the panorama to be streamed is spatially divided into sev-
eral tiles (see Fig. 7), each of which can be encoded into
different bitrates. A streaming server can use a tile-based
approach to reduce bandwidth by only transmitting the tiles
that are visible in the user’s viewport (i.e., field of view),
or transmitting the tiles in the viewport with a higher qual-
ity than other tiles. However, such an approach requires that
the view is updated with a low motion-to-photon latency
when the user’s viewport changes. To this end, some articles
focus on predicting the user’s viewport [81], [82] and accord-
ingly pre-fetching the tiles in the predicted viewport. However,
the rendering of the viewport with multiple independently-
encoded tiles may require multiple decoders on the viewer’s
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device. Qian et al. [81] address this problem by designing
a solution that makes decoding and playback asynchronous.
Specifically, they design a decoding scheduler that assigns tiles
to idle decoders; the decoded tiles are stored in client buffers,
ready to play out when necessary. Finally, the prediction of
viewports may be inaccurate, which may result in rendering
errors. This can be avoided by the server sending the entire
panorama with a low resolution [83] or sending an adaptive
number of extra tiles [84] depending on the available band-
width. The MPEG working group is also in the process of
standardizing 360◦ video delivery and media formats.3

G. QoE in Video Streaming

QoS and QoE are two inter-related but distinct performance
metrics. QoS indicates a set of performance metrics that must
be fulfilled in delivering a service, even though there is no
consensus on its definition [85]. ITU-T defines QoS as “the
totality of characteristics of a telecommunications service that
bear on its ability to satisfy stated and implied needs of the
user of the service” [86]. In contrast, QoE refers to the actual
(i.e., subjective) opinion of users about their experience with
a service. Again, ITU-T defines QoE as “the degree of delight
or annoyance of the user of an application or service” [87].
In the context of multimedia applications, QoE depends on
multiple factors, including QoS, the encoding scheme, the
quality of content/display, the expectations of the user, as
well as contextual parameters (e.g., spatio-temporal or social
aspects) [88].

More specifically, the factors affecting QoE in video stream-
ing can be divided into three main classes (Fig. 8): system,
context, and human [89]. System factors generally depend
on the video attributes such as the viewing device, network
QoS, as well as quality and content of the video. System fac-
tors often impact on the visual quality and smoothness of the
delivered video stream, as perceived by the viewer. Contextual
factors include spatio-temporal and socio-economic aspects, as
well as those related to the viewing task and the used tech-
nology. For instance, QoE can be affected by the location,
the time, and the duration of a streaming session. Human fac-
tors include user expectations, the level of interaction, and
interest in the content. Human factors are viewer-specific,
ranging from the emotional and mental state of users to their
socio-economic status and even their view of the world.

1) QoE Metrics: Rate control in video streaming affects
QoE metrics that describe QoE from a system perspective [5].
The most important QoE metrics are described next.

• Startup Delay is defined as the time between the explicit
action of a user for watching a video (e.g., a click on the
play button) and the time the first segment of the video
is played out. Rate control at the client side affects the
startup delay, in addition to the network conditions (e.g.,
the server load).

• Stalling occurs when the client playout buffer at a UE
becomes empty (also known as buffer starvation) and
results in the video becoming “frozen”. Stalling mainly
occurs due to high server load, network bottlenecks, and

3https://mpeg.chiariglione.org/standards/mpeg-i

Fig. 8. Main factors affecting QoE in video streaming.

non-responsive bitrate adaptation. QoE is affected by both
the frequency and the duration of stalls.

• Bitrate Switching occurs when the client-side streaming
protocol changes the current bitrate to another one (due
to adaptive mechanisms), resulting in a sudden change
of video quality. QoE is affected by the average quality
of the received video, the perception of bitrate adaptation
(i.e., how noticeable it is), as well as its frequency.

2) QoE Assessment: Adequate QoE is crucial for both con-
tent creators and service providers because it significantly
affects customer acquisition, loyalty, and retention. Therefore,
maximizing QoE is considered at all stages of video delivery,
from network planning to video encoding and rate control in
adaptive streaming (e.g., DASH). Clearly, maximizing QoE
is not possible unless it can be accurately measured and
assessed (see [90] for a survey). A subjective measurement
is an ideal benchmark, since QoE varies across different
users. However, subjective measurements of QoE are expen-
sive and time-consuming, as they require conducting user
studies under very specific viewing conditions. Furthermore,
QoE information may be needed in real-time for appli-
cations employing adaptive streaming; real-time subjective
measurement of QoE is clearly a challenge. As a conse-
quence, QoE is rather modeled (i.e., mathematically derived
or estimated) as a function of objectively measurable quan-
tities (e.g., using a media player, bitstream, or physical-layer
information).

ITU-T has introduced recommendations for non-
invasive parametric QoE estimation of audio-visual
streaming [91], [92]. These leverage parameters from
both the media (e.g., encoder-related) and the transport (e.g.,
message loss) layers. QoE estimation can be carried out
at both the client and at the server in a video streaming
pipeline [90]. At the client side, parametric QoE measurement
is generally employed in rate adaptation. At the server side,
both online and offline QoE measurements are conducted.
Online measurements target efficient resource allocation
and fairness, improving QoE as a side effect. In contrast,
offline QoE measurements are applied to network planning
and content management. Juluri et al. [90] classify QoE
measurement methodologies based on the corresponding data
collection approach (e.g., active, passive, or based on user
feedback), the place of data collection (e.g., user or network),
and QoE metrics (e.g., initial buffer time, stall duration, and
re-buffering frequency). The authors in [93] list the factors
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Fig. 9. Organization of the content in Section III.

that affect QoE and classify methods for QoS measurement
into subjective and objective.

A QoE model at the network edge can use the resolu-
tion of delivered video segments as a measure of QoE [94].
Additional indicators of QoE are represented by the cumulative
state of playback in terms of video stalls [95] or effective loss
rate over the communication channel [96]. Khan et al. [97]
propose a QoE model for video streaming which leverages
a non-linear function of content type and sender bitrate to
predict QoE. However, their proposed model is not validated
for adaptive streaming. Nightingale et al. [98] employ flow-
based QoS metrics in a virtualized environment to model QoE
for UHD video streams. In particular, QoE is modeled as a
function of content-dependent network parameters. However,
the model therein is designed for RTP-based streams and
is not suitable for adaptive streaming applications such as
VoD. Ge and Wang [99] propose a virtualized, real-time QoE
monitoring network function for MEC which utilizes HTTP
proxying and packet sniffing to estimate buffer occupancy,
quality switching, stalling, and initial playout delay. However,
the mapping between QoE and metrics related to the video
stream is not discussed. A general QoE monitoring framework
in 5G networks is presented in [100]; it employs virtual probes
to monitor parameters such as radio resource allocation, trans-
port layer metrics, user behavior, and content characteristics.
A proof of concept MEC application is proposed in [101]
to model QoE as a function of the quality requested by a
UE and its standard deviation, as well as the related stall
duration.

3) QoE Prediction: QoE estimation aims at deriving QoE
metrics based on other parameters, as previously discussed.
QoE estimation could be performed either once or continu-
ously over time to obtain an up-to-date characterization of
video delivery. In contrast, QoE prediction aims at forecasting
QoE in the (short-term) future [102].

QoE prediction has been mainly addressed through machine
learning algorithms [21]. In general, existing techniques train
an online or offline machine learning model with (objective)
QoS and (subjective) QoE parameters. Next, they use the
trained model to predict QoE in actual deployment scenarios.
Singh et al. [103] apply random neural networks to imple-
ment a QoE-aware video transcoder for H.264/AVC video.
Specifically, playout interruptions and encoding quantization

are employed to predict QoE. Li et al. [104] propose a
rate adaptation algorithm to run DASH as a MEC service
that dynamically changes MPD files in DASH based on
QoE estimation and network conditions measurements. The
work includes a proactive strategy that leverages congestion
prediction to further improve QoE.

III. NETWORKING FOR VIDEO EDGE-C3

This section overviews the advances in networking tech-
nologies that enable edge-C3 for video applications (Fig. 9).
First, we describe the most important features of radio access
networks (Section III-A) that support video streaming and
related applications. Next, we present the softwarization of
the cellular network (Section III-B) as a key enabler for flex-
ible deployment of edge-C3. We then discuss the features
of edge-C3 deployments, including their potential locations
and software platforms (Section III-C). Finally, we charac-
terize video delivery in both the uplink and the downlink
(Section III-D).

A. Radio Access Network

Several new technologies have been included in the radio
access networks to support emerging video applications as
part of the enhanced mobile broadband requirements for
5G [105]. Specifically, enhanced mobile broadband encom-
passes use cases (e.g., 4K videos, live streaming, AR) that
require higher data rates and lower latency than current Long
Term Evolution (LTE) networks. Moreover, the number of UEs
using such multimedia services is only expected to increase.
Thus, 5G must simultaneously support a high connection
density as well as a high volume of data traffic per unit
area [106].

5G new radio: A new radio interface called 5G new radio
has been introduced to flexibly support different requirements
(i.e., high data rate, low latency) through changes in the radio
physical layer. Specifically, changes have been proposed in
the radio waveforms, subcarrier spacing, and frame struc-
ture [105]. 5G new radio also supports data transmission
in highly directional beams between the base stations and
users through beamforming [105]. Beamforming is crucial for
transmissions in higher frequencies, for instance, millimeter
wave frequencies beyond 10 GHz [107]. Such frequencies are
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expected to be a part of 5G networks as they offer much higher
capacities and data rates than the (sub-6 GHz) frequencies
used in LTE networks [26]. However, transmissions in higher
frequencies incur increased path loss, as well as blockage from
walls and objects [107]; in this regard, highly directional trans-
missions using beamforming are key in providing sufficient
coverage. Consequently, 5G new radio supports beamforming
at both the physical and the medium access layer. Moreover,
it defines a set of beam management operations to align
directional data transfer between users and base stations.

Massive multiple-input and multiple-output (MIMO):
Massive MIMO enables high throughput applications by using
multiple antennas (e.g., at least 64 of them [108]) at both the
receiver and the transmitter [109]. The antennas support both
horizontal and vertical beams. This allows parallel data trans-
missions (called layers) on the same time-frequency for each
UE, thereby increasing the overall throughput. Furthermore,
multi-user MIMO enables simultaneous transmissions on dif-
ferent layers to multiple UEs [105]. Spatial multiplexing
allows base stations to increase the overall capacity by several
orders of magnitude [26].

Heterogeneous Networks (HetNets): Another method to
increase capacity in the radio access network is through
the deployment of HetNets [110], as shown in Fig. 10.
Specifically, low-power base stations, called small cell base
stations (SBSs), are added to the network to supplement the
capacity provided by higher-power macro base stations (MBS).
SBSs also help to extend connectivity in regions with coverage
holes [109]. HetNets are more cost-efficient than deploy-
ing additional MBSs, as the latter requires extensive site
planning, particularly in dense urban areas [110]. HetNets
also encompass networks that seamlessly combine multiple
radio access technologies, including macro cells, small cells,
and wireless LANs; multiple technologies can provide up to
twice more capacity than a pure 5G network [111]. However,
HetNets require careful planning and coordination policies to
reduce interference between diverse cells [109]. Moreover,
it is challenging to provide sufficient backhaul capacity for
a large number of SBSs to the core network [112], [113].
Although wired connectivity between MBSs and SBSs has
been proposed [113], all SBSs cannot be connected through
fiber links due to the high costs [112]. Thus, the choice of
backhaul connectivity is left to the MNO [113].

Device-to-device (D2D) communications: Adding base sta-
tions in a network to increase capacity is an expensive
prospect [114]. As an alternative, network coverage and capac-
ity can be improved by allowing UEs in close proximity to
establish direct D2D links to communicate and share their
resources with each other. Such communication relies on either
licensed spectrum in inband D2D or unlicensed spectrum in
outband D2D [115]. Furthermore, the 3GPP standards include
support for multi-hop D2D networks that enable network
services for UEs that are outside coverage by using nearby
UEs as relays [114], [115]. More recently, D2D communi-
cations have also been proposed to circumvent the coverage
issues with millimeter wave transmissions [114].

Dynamic spectrum access: Spectrum shortage and under-
utilization of available spectrum remains a challenge for 5G

Fig. 10. HetNet architecture.

networks [116]. To this end, cognitive radios have been
proposed, wherein secondary users (i.e., UEs) opportunisti-
cally sense and utilize the spectrum whenever it is not occupied
by primary users. Cognitive radios can help increase the
spectral efficiency and capacity of networks [116], [117], par-
ticularly for multimedia and video streaming services [118].
However, opportunistic spectrum sensing is challenging due
to fading, shadowing, and potential security issues [119].
Future networks may rely on a spectrum prediction service
instead, and accordingly utilize algorithms to efficiently and
dynamically share spectrum between multiple users [117].
New spectrum policies have been proposed [119] and already
been deployed in the 3.5 GHz band of LTE networks (in
USA) through the citizens broadband radio service [120].
Specifically, a three-tiered spectrum access policy is defined
to protect the incumbent primary users (tier-1) from priority
secondary users with licenses (tier-2) and generally authorized
users that are unlicensed (tier-3). More recently, the same spec-
trum sharing system has been announced for 5G networks,4

which enables the deployment of private 5G networks to
support high-bandwidth services (e.g., in large hotels).

B. Softwarization of the Cellular Network

The deployment of edge-C3 in a cellular network is enabled
by virtualization throughout the network. Specifically, virtual-
ization in both the radio access and core networks plays a key
role in supporting flexible deployment of compute and storage
resources in different parts of the network.

Network function virtualization (NFV) and software defined
networking (SDN): The cellular network is expected to be fully
virtualized as part of the NFV [121] paradigm. NFV decou-
ples the network functions from the underlying infrastructure

4https://www.cbrsalliance.org/news/cbrs-alliance-opens-gates-for-first-u-s-
mid-band-5g-deployments/
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to provide flexible deployment of services and network func-
tionality. In particular, the software for specific network
functionality (e.g., mobility management) are developed as
virtual network functions (VNFs) that can run on a stan-
dard physical server [121]. Such a virtualized deployment
also enables flexible scaling and deployment of functions;
for instance, additional instances of a network function can
be instantiated on-demand according to the actual traffic.
Furthermore, SDN is used to control the flow of data to and
from the virtualized functions [122]. SDN, a complementary
technology to NFV, decouples the control plane (which makes
forwarding decisions) from the data plane (which forwards
the data) to provide flexible routing. The control plane func-
tionality is implemented in a logically-centralized controller
that can be realized as a software running on general-purpose
hardware [121]. Thus, the SDN controller itself may be imple-
mented as a VNF and leverage the benefits of scaling and
flexibility offered by such virtualized instances. On the other
hand, SDN can benefit NFV by providing the flexible routing
required to chain together VNFs to provide services. Thus,
SDN and NFV, together, enable the flexible management and
programming of the cellular core network.

Cloud radio access network (C-RAN): The architectures
of the base stations in the radio access network have also
evolved, and thus, can utilize the benefits of virtualization.
Specifically, the base station is split into two units – a remote
radio head (RRH) and baseband unit (BBU) [109], [123].
RRHs are deployed at base station sites and perform digital
processing, analog-digital conversion, power management, and
filtering [109]. On the other hand, BBU functions are central-
ized into BBU pools where they can utilize shared, virtualized
computing resources to efficiently meet the baseband process-
ing requirements of multiple RRHs. The RRHs are connected
to their respective BBU pools through point to point (often
optical) links as part of the fronthaul network [123]. Such an
architecture (Fig. 11) is referred to as C-RAN [123] and brings
the benefits of virtualization to the radio functions. BBU pools
are located at more centralized locations, such as the central
office of cellular networks [109] or distributed antenna system
hubs [124]. In 5G new radio, the BBU functions are fur-
ther split into distributed units and central units [105], [123].
The lower-layer functions in the networking protocol stack are
hosted by the distributed unit, whereas the higher-layer func-
tions are located at the central unit [105]. The C-RAN brings
significant savings in capital and operational expenditures for
MNOs by relying on centralized and virtualized processing
of radio functions [109]. Moreover, the shared processing at
BBU pools allows flexible allocation of extra resources when
traffic volume is higher [123].

Control and user plane separation: The cellular core
network supports mobility, connection establishment, and
management of user sessions [122]. The core network relies
on control and user (or data) plane separation through distinct
functions. Such an architecture also benefits from virtualiza-
tion. Specifically, the functional split allows the control and
data planes to scale independently when deployed as virtual-
ized instances. For instance, content-rich 360◦ videos and VR
scenarios demand a larger volume of data plane traffic. When

Fig. 11. C-RAN architecture.

the demand for such services increase, the data plane enti-
ties may be scaled up to support such demand. Moreover, a
fully virtualized environment allows functions to be deployed
in locations geographically closer to the users and the traffic
to be re-routed accordingly.

Support for edge computing: 5G networks support service
hosting environments [105] in different locations, where edge
computing applications can be deployed as virtualized enti-
ties. To this end, the 5G specifications support the flexible
deployment of virtualized user plane functions closer to the
users to reduce latency. Moreover, decisions about routing are
made application-specific and traffic can be steered to a local
area data network [105], which is geographically closer to the
user. Such a local network is accessible by the UEs only from
specific locations. Simultaneous access to both a local and
centralized data network allows low-latency access to specific
applications in the local network [105].

Network slicing: The concept of network slicing introduces
logical partitioning of the 5G network for different business
scenarios or applications [125]. Specifically, a slice comprises
a set of network elements specialized in providing a par-
ticular type of service [105]. Additional constraints include
supporting a certain performance (e.g., latency and data rate)
or specific UEs (e.g., corporate customers) [105]. To this end,
a new network function – namely, the network slice selec-
tion function – has been introduced in the core network to
select and create network slices [105]. A virtualized network
can be efficiently partitioned on-demand into slices comprising
the required network elements and according to the requested
QoS [125]. For instance, customized network slices can be
created, where each slice is assigned to serve video streaming
requests of particular devices (e.g., smartphones, AR glasses,
and TVs) with distinct latency and data rate requirements. A
slice for 4K streaming may require a caching function, data
unit, and cloud unit [125]; whereas a more latency-critical
service such as AR may require all functions deployed in the
edge.
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C. Deploying Edge-C3

The actual location of the caching and computing resources
for edge-C3 is not strictly defined. This section describes
the potential locations as proposed in the literature, and also
presents software platforms that enable the deployment of
edge-C3.

Deployment locations: Several locations are proposed
by the multi-access edge computing (MEC) specifica-
tion group (within European Telecommunications Standards
Institute) for deploying edge computing in LTE and 5G
networks [126], [127]. Specifically, the edge servers may be
co-located with base stations, core network functions, or
network aggregation points [127]. Examples of network aggre-
gation points include central offices or distributed antenna
system hubs where BBU processing is centralized [124].
Choosing a specific location depends on an MNO’s technical
and business constraints, including the available site facilities
and application requirements [127]. Such application require-
ments include not just latency constraints, but also bandwidth,
transport network capacity, and capabilities of the UEs [128].
For instance, co-locating edge servers with base stations results
in lowest latency, but incurs a higher deployment cost than
at the aggregation points [128]. Moreover, as UEs become
more computationally capable, they can be used to carry out
some processing themselves [129]. Thus, such devices can be
considered as part of the edge as well [10], [130].

Content delivery networks (CDNs): Although the discussion
above has discussed computing resources alone, the edge is
expected to host both compute and caching resources. Indeed,
an alternate location for hosting compute resources is in the
network of data centers deployed as part of CDNs used to
cache content [128]. For instance, three large CDN providers,
namely, Akamai,5 Cloudflare6 and Limelight,7 already sup-
port running software functions at the edge. However, these
are currently limited to simple functions – with the excep-
tion of Limelight, that also allows to run bare metal compute
services. The CDNs are usually deployed in points of pres-
ence of Internet service providers [131], thus, they are located
just outside the cellular network [132]. Recently, proposals
have been made to deploy new network functions that reside
closer to the users (e.g., co-located with base stations), and
obtain radio link information to dynamically select CDNs
accordingly [133]. Moreover, local caching at base stations
can further reduce the stress on CDNs, for example, during
live streaming events [133].

Platforms for edge-C3: Several platforms have been
proposed to deploy edge-C3 through either commercial offer-
ings or open-source platforms. Among the commercial solu-
tions, AWS Wavelength [29] enables developers to use the
compute and storage resources within the data centers of
selected 5G networks. Similarly, Microsoft Azure provides
Edge Zones [30] where compute and storage are hosted close
to the users, either in data centers of selected 5G MNOs or
in private infrastructure on-premise. Both AWS Wavelength

5https://developer.akamai.com/akamai-edgeworkers-overview
6https://developers.cloudflare.com/workers/
7https://limelight.com/resources/data-sheet/edge-compute/

and Azure Edge Zones provide a consistent software develop-
ment experience with realizing and deploying applications on
their respective public clouds. However, the support for cellu-
lar network providers and locations are currently limited, and
may result in vendor lock-in. As an alternative, several open-
source platforms have been proposed as well. First, the Linux
Foundation Edge8 aims to build an open and inter-operable
framework for edge computing. To this end, Akraino [134]
and EdgeXFoundry [135] are the most mature open-source
projects within the Linux Foundation Edge. Akraino defines
an edge computing platform that supports multiple access
network providers, including cellular, wired, WiFi, and IoT
networks [134]. It defines a set of application and infrastruc-
ture blueprints (i.e., declarative configurations of the entire
deployment stack) for different use cases and network deploy-
ments. EdgeXFoundry defines an open source software frame-
work that is targeted towards IoT networks [135]. The platform
was initially developed to run on IoT gateways, and has
since been extended to support both heterogeneous hardware
(e.g., gateways, servers and the cloud) and tiered deploy-
ments. Next, the Open Networking Foundation9 is a non-profit,
operator-led consortium that includes several projects for
transforming the architecture of network providers. Central
Office Re-architected as a Data Center (CORD) [136], [137]
and Aether [138] are two such projects that target edge
deployments. First, CORD utilizes NFV, SDN, and cloud tech-
nologies to reconstruct existing infrastructure (e.g., central
offices) as data centers [137]. Such an architecture supports
flexible deployment of VNFs at the edge to support emerging
applications. Aether extends CORD to support an edge cloud-
as-a-service platform. Moreover, it supports multiple radio
access (licensed, unlicensed, and citizens broadband radio
service spectrum), and flexible deployment of VNFs across
multiple edge locations.

D. Edge-C3 for Video

The advances in communications and networking of wire-
less networks highlighted so far enable the high-bandwidth,
video-based applications that are the focus of this survey.
Moreover, emerging applications rely on processing videos
in real-time. This section discusses such application scenarios
and highlights the key differences between them.

Application scenarios in edge-C3: Videos can be generated
by either the UEs (e.g., smartphones, AR glasses, surveil-
lance cameras) or video content providers (e.g., YouTube,
Netflix). Videos published by large content providers are
accessed by UEs (i.e., streamed by their subscribers) over the
Internet. On the other hand, videos generated by UEs can be
either consumed by other UEs (e.g., live streaming), or pro-
cessed by computer vision algorithms to gain insights from
the videos (e.g., live surveillance). Integrating content caching
and computing at the network edge can significantly improve
the performance of such applications in wireless networks.
Specifically, edge-C3, comprising both compute and storage
close to the users (at the edge of the network or on the UEs

8https://www.lfedge.org/
9https://www.opennetworking.org/
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Fig. 12. Video edge-C3 tasks.

themselves), is crucial for efficiently streaming and processing
videos. For instance, popular videos can be streamed to UEs
from locations closer to the users, thereby maximizing spec-
tral efficiency, improving QoE, and reducing network traffic
in the backhaul. Furthermore, edge-C3 can efficiently process
videos generated by UEs, extract useful information, and fur-
ther convert the video streams into appropriate formats that
can be served to other users.

Thus, edge-C3 is beneficial for videos generated by UEs (in
the uplink), as well as videos consumed (watched) by the UEs
(in the downlink). In particular, some of the important tasks
(Fig. 12) that are carried out are as follows. In the downlink,
videos from content providers are distributed to viewers using
edge-C3 resources that cache and stream videos with a low
latency to UEs. On the other hand, in uplink scenarios, videos
generated by the UEs are encoded / transcoded in the edge-C3
to efficiently stream such content. Moreover, analytics tasks
(using either computer vision or machine learning models)
are run to derive intelligent insights from the video streams.
Certain tasks such as encoding, decoding, and transcoding
(see Section II) are required for both uplink and downlink
video streams to efficiently support different types of devices
and network conditions. However, in the downlink, encoding
and transcoding are typically done in large cloud-based data
centers before being distributed to UEs.

Differences between uplink and downlink: Uplink and
downlink scenarios exhibit different properties which impact
resource allocation and application design in edge-C3. First,
the wireless bandwidth available in the uplink is typically
smaller than that in the downlink. For instance, in 5G
networks, the data rates in the uplink are expected to be
half of those in the downlink [105]. Thus, interesting trade-
offs arise in applications that rely on videos generated from

UEs. Such applications must intelligently adapt requirements
(e.g., detecting an object within a certain deadline) accord-
ing to variations in the quality of the video frames (e.g.,
bitrate, dropped frames) due to constrained uplink bandwidth.
Second, the limited computing capabilities in the edge-C3
place constraints on the pre-processing of videos (encoding
and transcoding) that are streamed in the uplink. Specifically,
streaming videos is demanding in the uplink, as the choice of
representations often needs to be made in real-time with lim-
ited computing resources. In fact, real-time encoding of 4K
videos is not feasible without a powerful CPU or GPU, and
sufficient energy capacity [139]. In contrast, in the downlink,
content is typically processed offline in to multiple repre-
sentations (e.g., resolutions and encoding formats to support
different devices and network links) on powerful cloud servers
and then streamed to users. Third, video content in downlink
streaming is typically consumed by human viewers, and thus,
adaptation targets improving the viewer’s QoE. In contrast,
new applications need to run real-time analytics and infer-
ence on uplink video streams generated by IoT devices and
UEs [140]. Streaming content for such applications is differ-
ent, as it aims to maximize the quality of the analytics results
rather than user-perceived QoE [67], [141]. Finally, applica-
tions relying on uplink video streams typically have strict
latency constraints (e.g., surveillance, AR, and live streaming)
as compared to downlink scenarios (e.g., VoD). Thus, in the
uplink, there exist different application-specific considerations
than in the downlink for hiding latency from the UEs.

To this end, we classify the works reviewed in this survey
into uplink (Section IV) and downlink scenarios (Section V).
Specifically, for uplink scenarios, we focus on the processing
of videos generated by UEs: how applications can leverage
the computing and caching resources in edge-C3 for video
analytics and intelligence. On the other hand, for downlink
scenarios, we focus on the use of edge-C3 for efficient delivery
of videos to the UEs.

IV. UPLINK SCENARIOS IN VIDEO EDGE-C3

This section overviews video edge-C3 for uplink scenarios.
In particular, it focuses on emerging applications that lever-
age video data streamed by UEs (for instance, smartphones,
AR glasses, and surveillance cameras). Such applications
typically have strict latency requirements for end-to-end trans-
mission and processing, which are highly dependent on the
considered use case. For instance, AR demands stringent
latency deadlines, whereas live video surveillance places more
emphasis on reducing bandwidth of large number of video
streams. Accordingly, this section focuses on application-
specific approaches at the edge-C3 for processing video
streams from UEs (Fig. 13). First, we introduce the main
characteristics of applications that rely on streaming videos
in the uplink (Section IV-A) and the representative processing
tasks in such applications (Section IV-B). Next, we provide
a comprehensive review of the state of the art leveraging
edge-C3 in emerging applications: live video surveillance,
augmented reality, drone analytics, vehicular video analytics,
privacy-preserving analytics, and live streaming (Sections IV-C
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Fig. 13. Organization of the content in Section IV.

to IV-H). Specifically, we take an application-centric approach
as many trade-offs are specific to application requirements.
To this end, in each sub-section, we first introduce the main
features of such applications and describe how the problems
of limited bandwidth and computing resources at the edge-C3
have been addressed in the literature. Finally, we conclude with
a summary of the lessons learned and highlight commonalities
across different applications (Section IV-I).

A. Overview

The edge-C3 allows seamless processing of compute-
intensive and delay-sensitive data streamed from diverse UEs
such as smartphones, drones, surveillance cameras, and wear-
ables. For instance, surveillance applications can process and
query live video streams generated by UEs in real-time. AR
is another emerging application wherein video streams from
hand-held smartphones or head-mounted displays (e.g., Magic
Leap10 or HoloLens11) are processed in real-time so as to
overlay useful information for end users. Furthermore, drones
and connected cars can take advantage of edge resources for
several applications, including surveillance, streaming of sport
events, traffic analysis, and parking management. The edge-
C3 can also ensure privacy-preserving processing of video
streams in different ways. For instance, sensitive information
(e.g., faces) can be removed from a video before it is sent
to a cloud server for batch processing. Finally, live stream-
ing applications allow normal users to broadcast live video
streams from their handheld devices and interact with viewers
in real-time.

The applications described above require processing of live
video streams to extract information from them and take
real-time actions. Computer vision and machine learning mod-
els are extensively used to analyze video streams. Thus,
relatively powerful computing resources are required at the
edge, with multi-core processors of at least 2.7 GHz [142],
[143], [144] and powerful GPUs (e.g., in [143], [145], [146]).

10https://www.magicleap.com
11https://www.microsoft.com/en-us/hololens

Fig. 14. Main components in video analytics at edge-enabled wireless
networks.

However, recent advances in machine learning allow not
only edge servers but also resource-constrained UEs to per-
form complex computer vision tasks. To this end, UEs may
carry out less resource-intensive tasks whereas the remaining
compute-intensive tasks are offloaded to the edge or the cloud.
Offloading requires the UEs to transmit video frames (or rel-
evant data such as image features) to the edge-C3 or cloud,
where the tasks are run and the results of which are typically
sent back to the UE. Fig. 14 provides a high-level overview
of an edge-based architecture, along with representative tasks
(detailed later) that are carried out at the different layers of the
network. It is important to note that the cloud is still required
for batch processing of videos, long-term storage, or more
resource-intensive computations.

Several challenges remain in the design and deployment
of video applications in the edge-C3. First, applications must
identify whether analytics tasks (e.g., object detection) are to
be processed by the UE itself or offloaded to edge servers
(e.g., co-located with base stations). This is challenging when
considering the limited and heterogeneous computing capabil-
ities of the edge devices (both UEs and edge servers). Second,
the wireless network bandwidth becomes a bottleneck when
multiple video streams are streamed to the base stations. Novel
approaches are thus required to reduce the bandwidth require-
ments and allow real-time processing of videos from multiple
devices at the edge servers. Finally, latency constraints are
very stringent for applications such as AR, wherein the overlay
needs to be processed and rendered seamlessly at high frame
rates. This requires careful system design to fulfill the require-
ments of real-time processing applications while meeting their
bandwidth and computational constraints.

B. Video Analysis Pipelines at the Edge

Video analytics typically consists of object detection, recog-
nition, and tracking chained together in an analytics pipeline.
Object detection determines whether an object (face) is present
in a video frame or not and localizes the object by drawing a
bounding box around the detected object. Recognition consists
of object detection and additionally classifying or recogniz-
ing its type (e.g., a face). Finally, object tracking in a video
requires detecting an object, localizing the object within each
video frame, and then tracking the object across frames.
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The tasks in an analytics pipeline mainly rely on com-
puter vision algorithms or – more recently – deep neural
networks (DNNs) and convolutional neural networks (CNNs).
Fig. 15 shows an overview of the main steps in object recog-
nition through computer vision algorithms on edge-C3. Once
a video is streamed by a UE, the video is segmented into
multiple frames (e.g., images) and the background is removed
from each frame in the pre-processing stage. Next, feature
descriptors are extracted from each frame in the feature extrac-
tion component. Such descriptors are typically vectors that
represent important points in an image (or frame) and are
usually invariant, i.e., independent of orientation, scale, or
transformation [147]. Some commonly used algorithms to
compute feature descriptors are SIFT [148], SURF [149], and
ORB [150] for objects, as well as HOG [151] and Haar fea-
tures [152] for faces.12 The algorithms differ in terms of the
size of the generated vectors and processing time required.
For instance, ORB is more efficient and compact followed
by SURF and SIFT [147]. In the context of face or human
detection, HOG feature descriptors represent the human shape,
whereas Haar features describe the appearance (e.g., color and
texture) [153]. Once the feature descriptors are extracted, the
images can be classified by matching the features through
existing models that are already trained with features extracted
from a database of images. This step involves using differ-
ent algorithms, such as nearest neighbor matching or machine
learning models [154]. The final results from object recogni-
tion can be transferred to the cloud or UEs. In the case of
object tracking, feature descriptors are additionally used to
track and localize objects in different frames.

CNNs have become very popular in computer vision
recently as they do not require feature descriptors to be
selected beforehand; instead, the features of an image are auto-
matically learned through the different layers in the CNN.
In edge-assisted video analytics, CNNs are typically trained
offline against a database of images and then deployed on edge
devices to run inferences on the video frames. The popular-
ity of CNNs started growing in 2012, when AlexNet [155],
a CNN model, achieved a low top-5 error rate (that mea-
sures the presence of the correct label in the top five predicted
classes) in classifying images from the ImageNet dataset.13

This was achieved through the use of GPUs and a deep
network architecture [156]. Other noteworthy architectures
that appeared thereafter – VGGNet [157] and ResNet [158]
– achieved better performance by increasing the depth of
the networks [156]. Next, new models emerged that specif-
ically address the problem of object detection (i.e., drawing
a bounding box around an object in addition to classifying
the object therein). To this end, R-CNN [159] uses a region-
based approach, wherein a CNN is used to extract features
from 2,000 different region proposals in an image. The fea-
tures are then fed into a classifier to detect the presence of
objects in the proposed regions. However, the computational
time and memory required for training R-CNN models is very

12The interested reader may refer to [147] for a review of feature descriptors
for objects and [153] for a review of descriptors for humans.

13ImageNet (http://www.image-net.org/) is a popular dataset commonly
used in computer vision research.

Fig. 15. Object recognition in video streaming at the network edge (adapted
from [154]).

high [156]. A real-time object detection, YOLO [160], was
proposed to address this issue. This model uses a single CNN
to predict both the bounding boxes and the class probabili-
ties in each box directly from an image in a single evaluation.
Thus, it is able to perform inference in real-time at 45 frames
per second [160].

Running video analysis and computer vision tasks by
resource-constrained UEs or edge servers requires lightweight
versions of standard computer vision algorithms and CNN
models. For instance, Drolia et al. [161] demonstrate how
the resources required by SIFT, SURF and ORB descriptors
can be reduced by changing the number of extracted features.
This results in lower processing time at the expense of a small
decrease in accuracy. Similarly, reducing the number of layers
in CNNs lowers the storage and computational requirements at
the expense of a small decrease in accuracy. Furthermore, layer
reduction has the added benefit of lower inference latency.
Finally, the CNN models can be specialized for the particular
task for which they are intended; for instance, CNN models
can be trained to detect objects of a specific color. Such spe-
cialized models are smaller in size and require less time for
inference. The approaches discussed above have been imple-
mented in different application scenarios, which we discuss
next.

C. Video Surveillance

Video surveillance systems involve queries (generated by
UEs or at cloud servers) to detect or track objects such as
humans or cars. Real-time surveillance of videos can help
locate a target person (e.g., missing child) or detect danger-
ous situations such as slippery roads. The analytics pipeline
for such systems typically includes object detection, tracking,
and recognition. In the context of surveillance, the analytics
pipeline is sometimes referred to as a query plan, as each
query requires a set of analytics tasks to be carried out. We
study edge-assisted surveillance applications from the follow-
ing perspectives: task offloading models, trade-off between
latency and accuracy of queries and collaborative processing
of surveillance queries.

1) Task Offloading Frameworks: Several recent works have
studied strategies for offloading video analytics tasks to edge
servers by taking into account the latency, network bandwidth,
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and computational constraints. Offloading frameworks need to
make complex decisions to choose whether tasks are executed
on the UEs, at edge servers, or on the cloud. Specifically,
the limited computational resources on the UEs and the edge
servers may be stressed when the number of queries increases.
Moreover, edge servers may have intermittent connectivity
which affects what tasks can be realistically offloaded to such
devices. Finally, task offloading decisions need to consider the
network bandwidth required to offload videos to edge servers.

The following studies propose task offloading frame-
works for video surveillance with different objectives.
Trinh et al. [142] design an energy-efficient task offloading
framework in which facial recognition tasks submitted by UEs
can be executed by edge servers or the cloud. The offloading
decisions take into account the energy and latency require-
ments, as well as the workloads at edge and cloud servers.
In addition, the authors propose an energy-aware routing
algorithm for data forwarding that is aware of the network con-
ditions and node failures. Offloading decisions are evaluated
through experimental evaluation, whereas the routing algo-
rithm is evaluated through simulations. Li et al. [162] focus
on the latency and bandwidth constraints of video surveillance.
They propose a distributed deep learning approach for object
recognition in video streams. Specifically, they optimally place
deep learning layers at edge servers with respect to latency and
bandwidth constraints. Both online and offline schedulers are
proposed to maximize the number of tasks (layers) deployed
at the edge. Simulation results show that this solution outper-
forms other task placement schemes in terms of the number of
offloaded tasks with guaranteed QoS. Ding et al. [144] focus
on the problem of limited radio spectrum and propose a cog-
nitive radio access for data delivery between UEs and edge
servers. The placement of tasks take both the limited compu-
tation and spectrum resources into account. Caching resources
at the edge are employed to temporarily store data when the
wireless spectrum is not available. The authors propose a
mixed integer linear programming formulation to achieve an
optimal task placement that maximizes the number of queries
served. The specifics of the tasks from the analytics pipeline
are not presented; instead, the computational requirements are
modeled as CPU cycles.

2) Accuracy-Computation Trade-Off Analysis: Performing
computer vision tasks with very high accuracy is not always
the main objective in surveillance applications at the wireless
edge. The reason is that achieving very accurate results often
requires more edge computing resources as well as higher
wireless bandwidth to transmit high-resolution frames. The
following articles leverage this trade-off by designing task
schedulers for edge servers. Zhang et al. [163] empirically
characterize the accuracy of computer vision tasks with dif-
ferent settings (e.g., frame resolution, sampling rate) against
the resources required to execute them. The data are then used
in a query scheduler that places tasks appropriately based on
the available resources, required accuracy of results, and a
latency threshold. The proposed solution is evaluated over
representative datasets (of videos and queries) and found to
outperform a fair scheduler by 80% in terms of the quality
of results. In contrast to [163], Hung et al. [164] characterize

the accuracy of different implementations of analytics tasks
– including both CNNs and computer vision algorithms –
against both resource requirements and network conditions.
Moreover, tasks in the analytics pipeline (or query plan) can
be reused for different queries. Based on these insights, the
authors propose a binary integer program to determine a query
plan that maximizes the accuracy of the tasks upon placement
on heterogeneous clusters. The objective of the scheduler is to
maximize the accuracy of the query result while taking into
account the cluster capacity. The proposed formulation has an
exponential time complexity and, thus, a greedy heuristic is
proposed. The authors evaluate their solution over represen-
tative video datasets and find that the accuracy is 5.4 times
higher than what is achieved in [163]. Yi et al. [165] focus on
the trade-off between accuracy and speed, and rely on client-
side adjustments of video resolutions to address this. They
propose a mixed integer non-linear programming-based sched-
uler that uses empirical data on the accuracy of analytics tasks
for different devices with varying resource capabilities. The
scheduler places tasks on edge servers with the objective of
minimizing the overall latency while meeting bandwidth con-
straints. The scheduler is then evaluated through experimental
evaluation in terms of number of tasks executed per second
as well as the response time per client query. The proposed
solution outperforms other baseline algorithms.

3) Cooperative Processing: Some studies incorporate a col-
laborative approach for processing surveillance queries. In
particular, cooperative processing leverages overlapping videos
generated by different UEs of the same scene to maximize the
accuracy of computer vision tasks. Moreover, edge servers can
utilize the spatio-temporal locality of surveillance queries to
re-use tasks for different queries. In this context, Lu et al. [166]
propose a computing platform for cooperative object detec-
tion on videos generated by smartphones. The components
from the analytics pipeline are performed either on UEs or
the cloud. The object detection tasks are carried out with
CNNs on CPUs (and not GPUs) of the smartphones. Thus,
the processing time becomes shorter when the video frames
are processed in batches. Based on this observation, an inte-
ger linear programming solution is formulated to determine
the optimal number of batches, as well as the number of
frames in each batch, such that the computation latency is
minimized. Furthermore, a heuristic is proposed to determine
the batch features and decide whether to offload the tasks
to the cloud. The system is implemented on Android phones
and evaluated through experiments. The cooperative process-
ing approach results in a two times speedup with respect
to state-of-the-art offloading platforms such as MAUI [167].
Long et al. [168] apply cooperative processing on smartphones
to detect humans in video streams. In contrast to [166], the
offloading framework in this work is not specific to CNNs. The
authors propose an integer non-linear programming formula-
tion to partition video analytics tasks, create groups of edge
devices, and assign the partitioned tasks to the edge devices.
The objective is to maximize the accuracy of detection of all
tasks within a latency threshold. The proposed solution is eval-
uated through simulations and the accuracy is found to be
higher than a non-cooperative approach. Zhang et al. [169]
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Fig. 16. The analytics pipeline for AR applications (adapted from [171]).

propose a video surveillance system that uses collaborative
data from clusters of cameras with overlapping views to
improve the accuracy of object detection. Edge servers pro-
cess the data streams from multiple cameras and transfer
analytics information to the cloud for further processing. The
system aims to send the maximum number of frames having
a queried object. Finally, Jang et al. [170] address the collab-
orative processing of video frames by multiple applications
on a surveillance camera. To this end, they design a practi-
cal framework that allows multiple virtualized applications to
simultaneously access the video stream from a single camera.
They then address the configuration of video parameters to
support different application-specific QoS requirements.

D. Augmented Reality and Continuous Mobile Vision

Augmented reality (AR) and continuous vision appli-
cations display an overlay of virtual information on live
videos streamed from devices such as head-mounted dis-
plays and smartphones. The AR pipeline (Fig. 16) requires
both recognition and tracking of objects detected within video
frames [171]. Additionally, a mapper builds a model of the
environment. Finally, an overlay is rendered on the video
shown to end users. The tracker, mapper, and object recog-
nition modules can be offloaded to the edge servers, whereas
rendering of the overlay has to be carried out on the UE.
The latency requirements in AR applications are very strict.
For instance, objects need to be recognized and the over-
lay rendered before users change their field of view. The
overall latency of the entire pipeline needs to be lower than
100 milliseconds [146]. Thus, it is challenging to offload tasks
from the analytics pipeline to edge and cloud servers due to
the very low latency constraints and limited wireless network
bandwidth for video in the uplink. We classify existing studies
in AR into task offloading frameworks and trade-off between
accuracy and latency of AR tasks.

1) Task Offloading Frameworks: Offloading tasks from
an AR pipeline to edge or cloud servers should take into
account strict latency constraints, in addition to the wireless
bandwidth and computational constraints. Moreover, the lim-
ited energy requirements of UEs should be considered when
making offloading decisions. To this end, Al-Shuwaili and
Simeone [171] study task offloading in multi-user AR appli-
cations through edge servers with the aim of minimizing the
energy consumption of UEs. In particular, the authors propose
to share the CPU cycles required by common tasks offloaded

by multiple users. Only one user is required to send the data
stream to the edge server if multiple users offload similar
content or tasks (e.g., image recognition of objects from the
same view). The authors propose an optimized task allocation
formulation for offloading under such assumptions, which is
then numerically evaluated. The works in [146], [172] design
edge-assisted AR systems for low-latency object recognition
at high frame rates (e.g., 60 FPS). Their main goal is to offload
the computationally-heavy recognition tasks to edge servers,
whereas the relatively faster tracking algorithms are performed
on UEs. Local object tracking allows UEs to render overlays
when the output is received from the recognition tasks. Such an
approach results in improved detection accuracy with very low
resource consumption on UEs. Accordingly, network band-
width is saved by not sending all frames to the edge server or
by lowering the encoding quality of uninteresting portions of
the frames.

2) Accuracy-Latency Trade-Off Analysis: As latency is
a stringent constraint for AR applications, several articles
analyze the trade-off between latency and accuracy of the
analytics tasks. In particular, a high accuracy is not always
required for recognition tasks in AR – a good-enough result
is often better than a late but very accurate result. Such a
trade-off can be leveraged to determine the placement of
analytics tasks for AR applications, which we discuss next.
Han et al. [173] empirically examine the trade-off between
the accuracy of several DNN models and their resource uti-
lization in terms of memory, energy, and latency. Accordingly,
the authors propose an algorithm to choose a certain vari-
ant of the model and where to execute it. The goal is to
maximize the accuracy of the analytics tasks under resource
utilization budgets and latency constraints. Similar to [173],
Ran et al. [143] first empirically characterize the trade-off
between accuracy and different attributes of the videos (frame
rate, resolution, bitrate). In addition, the authors consider the
impact of network conditions (bandwidth and latency) on
accuracy. Again, empirical measurements are employed in an
optimization problem to choose the most appropriate config-
uration of the tasks to maximize accuracy. The authors then
propose an online heuristic algorithm to achieve a near-optimal
result. The proposed solution adaptively configures the set-
tings of the analytics tasks under varying network conditions
and achieves a higher accuracy than [173]. Liu et al. [174]
design a multi-objective optimization problem to optimally
assign edge servers and video resolutions to end users. The
objective function includes a weight parameter to charac-
terize the accuracy-latency trade-off at different resolutions.
Specifically, a high-resolution video can increase the detec-
tion accuracy at the expense of longer latency. The proposed
formulation is a mixed integer non-linear problem that cannot
be solved efficiently. The authors design an algorithm using
the block coordinate descent method to find a near-optimal
solution. Their solution is evaluated through simulations and
a prototype implementation. The latency of the task place-
ment is overall lower than other baseline approaches with
minimal loss of accuracy, even under scenarios where the
edge server is overloaded or the network latency is signifi-
cant. Finally, Drolia et al. [154], [161] examine the trade-off
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between the accuracy and latency of computer vision algo-
rithms. The authors find that the accuracy increases along with
an increase in latency as the number of extracted features from
an image increases. Thus, the authors propose dynamically
adjusting the number of extracted features to minimize latency.
Moreover, only relevant parts of the trained computer vision
model are stored at the edge based on the spatio-temporal fea-
tures of the requests. The proposed system reduces the latency
of image recognition tasks while maintaining accuracy under
different conditions.

E. Drone Video Analytics

Edge-assisted analytics has recently become popular for
videos streamed from unmanned aerial vehicles or drones.
Drones are increasingly being used in surveillance and
mission-critical rescue applications. They represent a different
class of surveillance applications due to the different capa-
bilities of drones. For instance, drones are mobile, which
affects the decisions on when to offload frames to edge servers.
Moreover, the computing resources available on the drone are
affected by the form factor and weight of the processing units.
Accordingly, we classify the works in this area into those
which carry out analytics on the drones themselves and those
that offload computation to edge servers.

1) On-Drone Processing: Performing analytics on drones is
becoming popular due to the increasing availability of small
computing boards that allow running complex computer vision
algorithms locally [175], [176]. However, the size and weight
of a hardware board attached to a drone impact its flight
time and energy consumption [177]. Thus, analytics on-board
the drones demand less computationally intensive algorithms
and CNN models. Accordingly, Tijtgat et al. [176] analyti-
cally determine the energy requirements for a drone to carry
a certain mass on-board. The authors then evaluate the quality
(in terms of the precision and achievable frame rate) of stan-
dard CNN models (e.g., YOLO and TinyYOLO) and feature
descriptor-based approaches with different video resolutions.
The results show that YOLO outperforms other solutions with
a higher frame rate and high accuracy. Next, Azimi [175]
designs a lightweight CNN model that is specialized for the
real-time detection of vehicles. The proposed CNN model
is compared with state-of-the-art CNN models; the obtained
results demonstrate the feasibility of applying the devised
model on drones.

2) Task Offloading: Offloading tasks from drones to edge
servers can reduce the computational demand on the drones
at the expense of increased use of wireless network band-
width. To this end, the following two solutions aim to reduce
bandwidth requirements of offloading. First, Wang et al. [178]
investigate methods to reduce network bandwidth require-
ments by offloading only certain video frames selected using
context-aware information (e.g., a specific color in the video
frame). The experiments show that applying context-aware
filters also significantly reduces the computational require-
ments of object detection algorithms on edge servers. Next,
Chowdhery and Chiang [179] apply edge computing to gen-
erate image mosaics from aerial images captured by drones
(see Fig. 17). The computationally expensive components of

Fig. 17. Overview of generating a mosaic with aerial images captured by
drones.

the pipeline, such as feature extraction, are carried out at
edge servers. The drones compress captured video frames and
offload only selected frames to the edge server to save limited
bandwidth. Moreover, the drones run a predictive algorithm
to maximize the utility of the application by adjusting the
compression parameters based on real-time feedback about
the quality of images from the edge server. Different from
the above, Wang et al. [180] study real-time video stream-
ing at sports stadiums. In particular, video streaming servers
are deployed near a stadium to which the drones stream their
data over a wireless network. A controller running at the edge
server decides the paths of the drones and assigns each drone
to a streaming server. The authors propose a joint optimization
problem to maximize both the coverage and quality of video
streaming. The proposed system is evaluated through simula-
tions and achieves 94% coverage with a high average quality
of the video streams.

F. Vehicular Video Analytics

Vehicular analytics typically consist of queries to detect or
track objects (e.g., vehicles and parking spaces). Detecting
license plates of cars (e.g., using OpenALPR [181]) is also
an important component of such analytics applications. The
related pipeline consists of first detecting a license plate and
then carrying out character recognition on the video frames. The
components of this pipeline can be offloaded to the edge servers.
However, the mobility of vehicular UEs makes offloading tasks
to edge servers extremely challenging. Nevertheless, it is possi-
ble to run complex video processing tasks (e.g., object detection)
on vehicles, as they today have sufficient computational capabil-
ities. To this end, the following two articles present frameworks
for vehicular data analytics. Zhang et al. [182] present an open-
source vehicular data analytics platform – namely, OpenVDAP –
which distributes computing tasks of the analytics pipeline over
multiple vehicles and edge servers. Additionally, OpenVDAP
addresses the sharing of data between different applications
deployed at the wireless edge. Zhang et al. [183] present
an edge analytics framework called Firework. Firework allows
sharing of data from multiple sources for different applications.
The authors focus on developing a programming interface that
allows software developers to program applications on top of
the proposed framework. The authors evaluate their solution
with an application to detect license plates. The following
systems leverage other mobile devices such as smartphones to
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carry out analytics. Qiu et al. [184] design a system to track a
car’s path over a network of fixed surveillance cameras that uses
computational resources on mobile devices (e.g., smartphones
and cameras on-board vehicles) when necessary. Specifically,
the tracking system uses a light-weight analytics pipeline on
the mobile devices. In addition, it uses a resource-intensive
pipeline on the cloud, consisting of object detection, track-
ing, and association of cars between video frames captured by
multiple cameras. Processing is carried out on mobile UEs only
when the results from the cloud have low confidence. Finally,
Grassi et al. [185] present a system to detect vacant parking
spots in a city using video streams captured by smartphones.
Analytics are carried out on the smartphones and the output is
sent to the cloud, where data from multiple cars is aggregated.

G. Privacy-Preserving Analytics

Applications deployed at edge servers can enhance the pri-
vacy of users by removing sensitive information from their
videos before sending them to the cloud. This concept was
first introduced in a system for analytics on crowd-sourced
videos [186]. The system allows users to specify privacy poli-
cies (e.g., to blur faces) that are applied to their streamed
videos. The policy is implemented through a denaturing pro-
cess. The denaturing pipeline consists of first detecting an
object (e.g., a face), recognizing the object to apply user-
specific policies, and finally applying a blur or filter to the
region. In this pipeline, interesting trade-offs arise between
the achieved throughput, accuracy of denaturing, and different
video resolutions. The denaturing process is further explored
in [187], where the authors extend the denaturing pipeline to
speed up the overall process. In particular, a tracking compo-
nent is added to track already recognized faces across video
frames to prevent multiple invocations of the recognition algo-
rithm. Fig. 18 presents the improved denaturing pipeline with
added revalidation tasks to prevent drifting of the detected
boxes (around the object or face) as well as the option to save
encrypted original frames. Finally, the authors describe a pol-
icy for reversing the denaturing process by trusted third parties
(such as the police) in case of surveillance queries. Different
from the approaches above, Miraftabzadeh et al. [188] present
a privacy-aware framework for identifying and tracking peo-
ple across surveillance cameras. Each surveillance camera is
equipped with computing resources on which face detection
is run, and feature vectors or embeddings of the faces are
generated. The cameras send the embedding vectors to edge
servers, which aggregates the vectors from different cameras
within its range. The actual recognition of faces occurs in the
cloud. Privacy is preserved as only the embedding vectors (and
not images) are sent to edge servers and the cloud.

H. Live Streaming

Live streaming applications such as Facebook Live,14

Periscope,15 and Twitch16 allow users to stream live video
content from their smartphones and other handheld devices.

14https://www.facebook.com/facebookmedia/solutions/facebook-live
15https://www.pscp.tv/
16https://www.twitch.tv/

Fig. 18. A denaturing pipeline for blurring or removing privacy-sensitive
data from videos [187].

Live streaming systems need to ingest large volumes of video
content from the UEs (broadcasters), transcode the content,
and adaptively stream the videos to multiple viewers from edge
servers close to the viewers. Transcoding is required to provide
the appropriate format to viewers based on their device capa-
bilities and quality of their network links. Such systems differ
from video-on-demand services as content must be transcoded
and delivered to users with a very short end-to-end delay
(e.g., 100 ms [189]). Moreover, the broadcasts are sponta-
neous in nature (i.e., users can stream videos whenever they
want); thus, decisions to transcode streams need to be taken in
real-time based on the quality of the network link and avail-
ability of computing resources for transcoding. An analysis of
user traces from existing cloud-based live streaming applica-
tions demonstrate the need for edge-C3 to provide localized
resources for such systems. For instance, Ma et al. [190] find
that 45% of the computing resources are consumed by broad-
casts which are all viewed by users in the same geographic
region as the broadcaster [190]. Raman et al. [191] demon-
strate that close to 40% of broadcasts are not viewed at all;
however, current systems still upload these streams to dis-
tant cloud data centers resulting in unnecessary use of cloud
resources and congestion in the backhaul links.

To address the aforementioned problems, some recent works
discuss the use of edge-C3 for live streaming. The following
studies discuss the assignment of broadcasters to edge servers
with the objective of minimizing latency of streaming.17

Ma et al. [190] study the efficient scheduling of broadcasters
to appropriate edge regions to minimize latency while keeping
operational costs low (i.e., the cost of running the computa-
tional resources for transcoding and delivering services). The
authors design a matching algorithm with a classic many-
to-one matching to assign broadcasters to edge regions. If
necessary, the broadcasters are re-assigned to different regions
to balance load while meeting QoS requirements, and until
a Nash-stable solution is obtained. The proposed solution is
evaluated by using traces from a live streaming platform. The
authors find that an edge-based solution reduces latency by
35% as compared to a cloud-based system. Chen et al. [192]
focus on the problem of choosing both the bitrate of the
uploaded video and the edge server where the videos are

17See Section V for a discussion about the downlink aspects of live
streaming.
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Fig. 19. Organization of the content in Section V.

uploaded and transcoded. The authors propose an optimization
problem to choose the bitrate and server while minimizing the
end-to-end latency and maximizing the bitrate of all viewers.
Their system model also includes routing of videos between
different servers and the choice of edge servers for view-
ers. They present polynomial time heuristic algorithms to
solve the problem and evaluate the performance through trace-
driven evaluation. Their solution improves latency and bitrates
of viewers as compared to baseline approaches that simply
choose the nearest edge server.

Some studies propose the use of smartphones for transcod-
ing and distributing live streams. To this end, Zhu et al. [193]
focus on the problem of choosing UEs for transcoding as
well as incentivizing them. In particular, the authors propose
a greedy algorithm to select UEs and payment schemes to
offer such transcoding services. The objective is to lower the
costs of delivering such applications and reduce the end-to-end
latency. In their system, a local edge server is responsible for
assigning tasks to the UEs, ingesting and forwarding source
videos, and recollecting transcoded videos. On the other hand,
Dogga et al. [189] focus on the operational aspects of live
streaming systems that also allow users to distribute videos in
a peer-to-peer manner. In particular, they describe a multicast
tree-based system wherein users demanding a particular bitrate
are modeled as a distributed balanced tree. The leader/root of
each tree transcodes video frames and distributes the video to
its children in the tree.

All the articles reviewed above use a trace-driven approach
to evaluate their solutions, typically using a dataset from
Twitch, whereas a more comprehensive dataset (including QoS
metrics such as buffering events) is used in [190].

I. Summary and Discussion

Table V summarizes the key features of the articles surveyed
in this section. In particular, it describes whether the compu-
tation is carried out on UEs (on-device), edge servers or the
cloud, and the models or algorithms used to implement tasks
in the analytics pipeline (where available). First, we observe
that many articles consider running tasks from the analytics
pipeline locally on UEs. In the case of analytics applica-
tions, these tasks typically comprise lightweight or specialized
models for computer vision or computationally-inexpensive

tasks such as tracking objects. In the case of live stream-
ing, these tasks typically comprise transcoding. Next, we
observe that most surveyed articles use state-of-the-art CNNs
for implementing tasks in the analytics pipeline. The CNNs
are modified to enable these models to run seamlessly on
resource-constrained devices. Moreover, the models may also
be specialized for a particular task (e.g., to detect objects
of a specific color or type) to further reduce their resource
requirements.

In addition to the computational requirements, the design
of edge-assisted analytics systems requires careful considera-
tion of latency thresholds and network bandwidth constraints.
Different approaches have been proposed to reduce the uplink
bandwidth utilization. First, tasks such as object recognition
need not be run on all video frames as there is usually
some spatio-temporal similarity between frames. Thus, video
frames can be sampled at the application layer or by using
hardware-based solutions (e.g., [194]) to run analytics only
on a subset of frames. The network bandwidth requirements
of offloading can be further reduced by compressing videos
or reducing the frame resolution. However, such approaches
result in reduced accuracy. This can be balanced by defining
application-specific QoS requirements and designing offload-
ing frameworks that balance the trade-off between accuracy
and latency, bandwidth, and computing constraints. Many arti-
cles use an empirical approach, wherein the tasks are first
profiled in an offline phase and then used to optimize task
placement. However, such an approach may exhibit local pat-
terns and the empirical estimates may need to be updated
over time. This aspect has not been addressed in the sur-
veyed articles. Second, the bandwidth requirements can be
reduced by running the computer vision tasks at the UEs
and only aggregating the results at the edge or the cloud.
However, this is usually limited to only certain types of spe-
cialized tasks. Finally, customized video streaming protocols
for uplink video streams have also been recently proposed to
control frame settings while ensuring a minimum accuracy for
inference [67]. Such custom protocols are key to improving
the overall performance of systems for video analytics [141].

V. VIDEO EDGE-C3 IN DOWNLINK SCENARIOS

This section reviews and categorizes recent works on video
delivery through edge-C3 in downlink scenarios (Fig. 19).
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TABLE V
SUMMARY OF WORKS ON VIDEO ANALYTICS IN EDGE-C3

First, it describes the implications of video streaming and
processing through resources deployed at the edge, in the
specific context of wireless networks (Section V-A). Next,

it proposes a new taxonomy for video edge-C3 techniques
and introduces the state-of-the-art in each category by high-
lighting the most important contributions. Specifically, we
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Fig. 20. A general video edge-C3 scenario.

consider collaborative approaches, wherein network elements
(e.g., SBSs or UE) explicitly cooperate for resource allo-
cation in video delivery (Section V-B). Next, we examine
popularity-based schemes that (re)allocate storage and com-
puting resources based on how popular videos are among sets
of UEs (Section V-C). Moreover, we address how contextual
information support video delivery based on knowledge of
UE mobility, users’ social ties, or viewport for 360◦ videos
(Section V-D). Then, we focus on joint optimization for
resource allocation based on two primary criteria, namely, QoE
of users and revenue through pricing/trading in a market-based
setting (Section V-E). Finally, we conclude by a summary and
comparison between the considered approaches (Section V-F).

A. Overview

Edge-enabled video streaming and delivery for downlink
scenarios aims at utilizing the edge-C3 resources to provide
cost-efficient and seamless video streaming services to client
UEs in next-generation wireless networks [195]. The main
rationale is to cache popular videos with an appropriate qual-
ity (e.g., the most downloaded quality) at edge devices (i.e.,
base stations or UEs). Once a video requested by a UE is
hit at the edge (e.g., in a base station or a neighboring UE),
the video segments (or chunks) are transcoded to appropriate
bitrates in real-time (e.g., based on the current wireless link
quality) and transmitted to the UE. Fig. 20 illustrates a general
video edge-C3 scenario for downlink streaming, in which dif-
ferent qualities of a (cached) video are transmitted to UEs with
different service requirements through an edge server. In par-
ticular, the requested video is transmitted to UE 1 without any
transcoding, whereas the video is transcoded to appropriate
qualities before it is streamed to UEs 2-4.

Optimal allocation of edge-C3 resources to simultaneous
video streaming tasks in real-time is challenging because
specific allocation policies result in different performance
trade-offs (e.g., QoE versus traffic or latency) [195], [196] and
economic models [197]. For instance, by allocating more com-
puting resources, edge servers can transcode and send videos
with different qualities to UEs rather than fetching them from
the network backhaul, thereby reducing the network backhaul
traffic. In addition more videos can be cached at the edge

Fig. 21. An SBS-assisted video edge-C3 scenario.

by increasing the storage space in edge devices. As a conse-
quence, the number of video requests served by edge devices
increases, thereby reducing the download latency observed by
UEs [198].

B. Collaborative Video Edge Delivery

Video delivery through edge-C3 resource involves com-
plex network systems with different elements involved (recall
Fig. 20). As a consequence, effective allocation of resources
requires coordination between base stations and UEs. In the
following, we focus on collaborative approaches that leverage
explicit cooperation between network elements. In particular,
we distinguish between: SBS-based approaches, as performed
exclusively by MNOs; and D2D-assisted schemes, wherein
UEs actively participate in video delivery according to the
crowdsourcing paradigm.

1) SBS-Assisted: Fig. 21 illustrates an SBS-assisted video
edge streaming scenario in which SBSs cooperate with each
other to serve the video requests of their UEs. It is assumed
that a 1080p quality video cached in SBS 1 is requested in
different qualities by UEs 1-3, where each UE is associated
with a distinct SBS. UE 1 requests the video with the same
quality; thus the video is transmitted to UE 1 through SBS 3.
The video requested by UE 2 is transcoded to quality 720p
in SBS 1 and then transmitted to the UE through SBS 2. In
a different scenario, the video with 1080p quality at SBS 1
is first transmitted to SBS 4. Next, it is transcoded to 480p
quality by SBS 4 and streamed to UE 3. As highlighted in
this scenario, the coordination among SBSs in collaborative
video streaming is non-trivial, especially when neighboring
SBSs have different traffic loads.

Different SBS-assisted video edge delivery mechanisms
have been proposed in the literature. Octopus [199] is a
hierarchical video caching strategy in C-RAN in which the
video requests of UEs are first looked up in their associ-
ated SBS and then in their neighboring SBSs. The problem
is formulated as a delay-cost optimization, where proactive
cache distribution and reactive cache replacement algorithms
are proposed to solve the problem. The experiments using
real-world YouTube data shows that Octopus improves cache
hit ratio, video delivery delay, and backhaul traffic load sig-
nificantly. Qu et al. [200] study how multiple bitrate videos
should be cached in SBSs proactively so that the cooperation
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Fig. 22. D2D-assisted video edge-C3 scenarios (adapted from [197]).

between SBSs in video delivery maximizes UEs’ QoE func-
tion. The QoE function is defined as a UE’s perceived QoE
and received bitrate. Analytical and experimental results show
that the proposed greedy algorithm achieves an approxima-
tion ratio arbitrarily close to 1/2, which outperforms existing
benchmark solutions (such as FemtoCaching [201]) under
non-linear and linear QoE functions. Ao and Psounis [202]
design a video delivery architecture by combining the idea of
FemtoCaching [201] and SBS cooperation in which clusters
of neighboring SBSs are formed dynamically to cooper-
atively deliver UEs’ video requests. Specifically, a cross-
layer optimization (i.e., video placement in the application
layer and cooperative transmission in the physical layer) is
proposed to jointly optimize the video caching and transmis-
sion. Liu et al. [203] address collaborative video caching and
delivery wherein different segments of a video are streamed
to UEs by different SBSs. When one UE requests a video,
a greedy algorithm selects a proper SBS for downloading
the segments of the video, and when multiple UEs request
to watch a video, the greedy algorithm is combined with
interference alignment method to jointly reduce the video
freezes while improving UEs’ QoE. Yu et al. [65] propose a
centralized collaborative caching mechanism in which appro-
priate video bitrates are selected for streaming with the aim of
maximizing the number of video requests served while min-
imizing the transmission cost. The problem is formulated as
a joint video caching and scheduling optimization, for which
a two-stage rounding-based algorithm is proposed. Simulation
results show that collaborative caching significantly reduces
the delivery delay but not the number of served UEs.

Next, collaborative caching and delivery has also been stud-
ied in the context of 360◦ videos. Maniotis et al. [204]
study a collaborative approach with SVC encoding of 360◦
videos to decide which tiles and layers of videos are cached
in each SBS and which route to deliver them to interested
UEs. Decoupling the problem into caching and routing opti-
mizations, Lagrange partial relaxation method is applied to
solve the problem. Dai et al. [205] propose a synthesis-based
VR caching scheme in C-RAN. Synthesis involves combining
multiple views (e.g., texture and depth) to generate a multi-
view 360◦ video. The authors propose an architecture where

edge servers are deployed in the BBU pool and RRH to syn-
thesize views and serve the 360◦ video requests of UEs. The
problem is formulated as a hierarchical collaborative caching,
where an online MaxMinDistance algorithm is applied to find
optimal video tiles for caching. The experiments show that
the proposed solution maximizes the cache hit ratio and UEs’
QoE while minimizing the backhaul traffic.

2) D2D-Assisted: In this model, UEs in close proxim-
ity cooperate with each other via short-range RATs (e.g.,
Bluetooth or Wi-Fi) [34] to serve the video requests of each
other. Crowdsourced mobile streaming (CMS) [206] is a com-
mon D2D-assisted communication model in which UEs with
high-quality Internet access share their resources (e.g., band-
width) with those in proximity that have slower or unreliable
Internet connections [197].

Fig. 22 illustrates different D2D-assisted (or crowdsourced)
video streaming scenarios in which UEs 1-3 in proximity
download video segment from SBSs and share them among
each other cooperatively. In particular, Fig. 22(a) shows a
video with three frames delivered to UE 1, where some seg-
ments of the video are delivered to UE 1 by UEs 2 and 3. For
the same video, Fig. 22(b) illustrates the case where UEs first
download video segments and then share them with each other.
Finally, Fig. 22(c) shows the delivery of three different videos
to distinct UEs; UE 2 has a higher-speed and reliable Internet
access, thus, it downloads and delivers some segments of other
videos to UEs 1 and 3 (according to the CMS paradigm).

Different techniques have been proposed to realize D2D-
assisted video caching and computing at the wireless edge.
Some studies have investigated the impact of cache size
and video popularity on the performance of D2D-assisted
video delivery. Golrezaei et al. [207] extended the idea of
FemtoCaching [201] to D2D-assisted video delivery in which
UEs with caching capabilities play the role of mobile helper
nodes and upscale the network capacity with low deploy-
ment cost. The experiments demonstrate that D2D-assisted
video delivery achieves 1 to 2 orders of magnitude increase in
network capacity. However, how to stimulate UEs to partici-
pate in video relaying and coordinate their cooperation are the
main challenges in D2D-assisted video delivery. Zhou [208]
proposes a D2D-assisted video delivery system wherein UEs
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make caching decisions by estimating the popularity of videos
using information from neighboring UEs. Moreover, UEs can
vary their mobility and transmission parameters based on the
availability of videos. The proposed scheme outperforms com-
mon practical video streaming methods in terms of robustness
and efficiency.

Some studies have explored the impact of caching policies
of UEs and video size on the performance of video stream-
ing. Kim et al. [209] consider a scenario in which each UE
caches a subset of video files from a library. Next, UEs in
proximity fetch their requested videos through D2D communi-
cation from their neighboring UEs. A quality-aware stochastic
DASH streaming algorithm is designed for link scheduling
and streaming phases. The experiments show a considerable
gain in terms of fair link scheduling with respect to off-
the-shelf streaming components. The experiments in [210]
show that the current fixed-thresholding mechanisms for con-
tent caching in Android devices cannot effectively balance
the trade-off between the cost of unconsumed content and
the QoE. To resolve this issue, an adaptive thresholding
solution is proposed to efficiently cache content in UEs.
Zhang et al. [211] consider the high bit cost of video caching
over flash memory as opposed to conventional (magnetic) hard
drives. Accordingly, they design a fault-tolerant solution to
enable the use of lower-cost (thus, less-reliable) flash memory
chips; their solution also reduces the complexity of transcod-
ing by leveraging both video characteristics and the physics
of flash memories.

C. Popularity-Based Video Edge Delivery

The popularity of videos viewed by UEs is highly pre-
dictable [212], [213]. Hence, the video viewing behavior of
UEs can be collected and locally analyzed by edge servers
(e.g., at SBSs) to proactively decide resource allocation in
edge-C3, particularly of storage at SBSs. Popularity prediction
of content in a general context (i.e., other than video) has been
extensively studied [214]. In the following, we only consider
works specifically targeting video in wireless networks. We
classify the surveyed article according to their focus: place-
ment of resources in the network, or their replacement if
previously allocated.

1) Video Placement: Hou et al. [215] propose a light-
weight transfer learning technique to estimate the popularity
of videos through base stations with short training time.
The motivation is to transfer the popularity knowledge from
previous learning tasks to a target task when the latter has
limited high-quality training data. The experiments show that
the proposed method improves the cache hit ratio between
17%-117% while reducing average transmission cost by 15%
compared to alternative caching solutions. Müller et al. [216]
propose an online multi-armed bandit algorithm to learn
context-specific popularity of videos. The devised solution
dynamically updates cache placement by observing contextual
information of UEs. In addition, the authors derive a sublin-
ear regret bound which characterizes how fast the proposed
solution converges to optimal cache placement. Numerical
evaluation using real-world datasets demonstrates that the
proposed method increases the cache hit rate by 14% with

respect to the state-of-the-art. Chen et al. [217] apply echo
state networks – a type of recurrent neural network – in
a C-RAN setting, which leverages patterns of UEs’ content
requests at each base station to predict video popularity and
UEs’ mobility at the BBUs. Experimental results using real-
world video traces show that the proposed solution increases
the total effective capacity by 27.8% and 30.7% with respect
to two random-caching with clustering and random-caching
without clustering, respectively.

Once the popularity of videos in each edge server is pre-
dicted, proactive caching techniques are applied to identify
which videos need to be cached at each base station or
edge server. StreamCache [218] leverages the video popular-
ity to provide proactive online caching in ICNs, where the
popularity of videos is modeled using a Zipf distribution.
StreamCache updates the popularity of videos in rounds using
the most recent video request statistics. The objective is to
fill the gap between offline theoretical optimal solution and
the real-world application. Simulations show that StreamCache
obtains an average video throughput per UE that is very
close to optimal offline caching. Hoiles et al. [219] propose
an adaptive video caching algorithm that leverages both the
short-term and long-term video popularity to maximize cache
hit ratio. In particular, a non-parametric learning algorithm
is applied to characterize preferences of YouTube viewers
and predict their video request probability in the short term.
In addition, a regret-matching algorithm is applied to pro-
vide base stations with caching decisions for the long term.
Liu et al. [220] analyze 10 million video requests of six popu-
lar video SPs in China to derive optimal regions for deploying
cache-enabled base stations and to determine what content
is cached in each location. The authors propose new met-
rics such as view concentration, popular video number, cache
revenue, and popular topics. Their evaluation shows that con-
sidering these metrics improves the average cache hit ratio
up to 30%. Carlsson and Eager [221] analyze YouTube video
data collected over 20 months to design on-demand edge video
caching policies. Specifically, a workload model is applied to
study the ephemeral popularity of videos, i.e., videos that are
watched once or a few times in a particular period. Finally,
Hong and Choi [222] propose caching the beginning (called
prefix) of popular videos on the UEs themselves. The goal is to
minimize the startup delay by building a library of prefixes of
videos based on the user’s interests. Accordingly, they derive
optimal prefix sizes that are to be cached to minimize average
delay and storage space.

2) Video Replacement: The popularity of videos in some
applications can change frequently, which implies that some
already-cached content need to be replaced in order to reflect
the newer video demand. Thus, a reactive video replacement
policy should be applied periodically to replace some already-
cached low-popular videos with newer and more popular items
so that the cache hit ratio is maximized. To this end, conven-
tional cache replacement strategies include the least recently
used (LRU) and least frequently used (LFU) [223]. The LRU
scheme replaces the least recently used content with newer
items, whereas the LFU method replaces the least frequently
used content with newer content. However, methods leveraging
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LRU/LFU can result in poor performance in wireless edge
caching scenarios because UEs may be associated with differ-
ent base stations at different time periods (e.g., due to their
mobility or time-varying features of wireless channels).

To deal with above-mentioned challenges, novel stud-
ies have leveraged the RAN information to improve the
performance of video replacement at the wireless edge.
Mokhtarian and Jacobsen [224] propose a flexible ingress-
efficient algorithm to enhance the LRU strategy by forecasting
future requests of UEs and considering the varying traffic load
at the edge devices. The experiments show that the proposed
scheme increases the caching efficiency by up to 12% during
peak video traffic periods. Ahlehagh and Dey [225] pro-
pose a combined proactive and reactive video-aware resource
scheduling technique which utilizes UEs’ profile information
to maximize the number of parallel video sessions served
by base stations while satisfying UEs’ QoE and minimizing
the stalling. The experimental results show that the proposed
scheme improves the network capacity by 50% compared to
video replacement methods that use LRU. Qiao et al. [226]
develop a video replacement method to support highly-mobile
users. Their solution leverages UEs’ video request statistics
to identify videos to be cached at each mmWave base sta-
tion so that the handoffs of UEs are minimized. Specifically,
a Markov decision process is applied to dynamically allocate
proper cache memory space of each SBS to its associated UEs.
Zhan and Wen [62] study SVC video placement at SBSs using
the RAN topology information, in addition to the popularity
and structural characteristics of layered videos. A heuristic
solution with convex relation is proposed to solve the inte-
ger programming problem, where the objective is to minimize
the average download time under the constraint of cache size
at each SBS. Claeys et al. [227] propose cache replacement
algorithms for video streaming by using not only the tempo-
ral features of videos but also user behavior, i.e., in watching
consecutive episodes of video series. Based on trace-driven
VoD data, simulation results show that the proposed caching
strategies improve the state-of-the-art with a 20% increase in
the cache hit rate and 4% lower bandwidth usage.

D. Context-Aware Video Edge Delivery

The video delivery process can significantly benefit
from information other than the sheer content itself. Such
information is mostly represented by the context of UEs, which
include their activity (e.g., spatio-temporal network utiliza-
tion and mobility pattern) and intrinsic characteristics (e.g.,
social ties and view within the video). We group recent works
on context-aware video accordingly under the following cate-
gories: approaches that rely on knowing the mobility of UEs;
schemes leveraging social ties between different users; and
solutions specifically considering the portion of video that is
interesting for a user, particularly, the view or gaze in videos.

1) Mobility-Aware: Streaming videos to highly-mobile UEs
is extremely challenging because different segments of a video
viewed by a UE might be fetched from different base sta-
tions as the UE passes through their coverage areas [223].
Furthermore, frequent quality switching may occur in adap-
tive streaming due to the time-varying quality of wireless

links, which in turn negatively impact users’ QoE. A com-
mon solution is to leverage movement information about the
UEs to predict their future mobility (e.g., moving speed and
direction) [213].

In this context, the majority of mobility-aware video
edge caching and streaming studies have addressed vehicular
network scenarios. Zhang et al. [228] propose a mobility-
aware hierarchical caching architecture in which smart vehi-
cles store popular video content by explicit cooperation with
SBSs. Moving vehicles communicate with each other or with
the roadside communication infrastructure to facilitate efficient
delivery of content to mobile UEs. Experimental evaluations
show that the proposed solution improves the performance of
content delivery in term of delivery latency. Guo et al. [229]
propose a video caching and streaming solution in vehicu-
lar networks that relies on two time-scales. Specifically, video
quality adaptation and cache replacement are performed at
a larger time-scale, whereas the transmission of video seg-
ments is carried out at a small time-scale. The objective is
to maximize the weighted sum of video quality delivered
to UEs while reducing the backhaul traffic. Dai et al. [230]
analyze video caching in a C-RAN in which the centralized
BBU pool leverages the UEs’ mobility and video popularity
information to predict the next cell visited by each UE, so as to
efficiently allocate caching and computing resources to base
stations. Experimental results demonstrate that the proposed
solution improves on traditional caching solutions by 20%
and 16% in terms of average transmission delay and cache
hit rate, respectively. Kumar et al. [231] propose a QoS-aware
hierarchical Web caching scheme for video streaming in vehic-
ular ad hoc networks. Their solution takes into account two
metrics, namely, load utilization ratio and connectivity ratio.
Simulation results show that the proposed scheme reduces
communication costs by about 16% and increases the cache
hit rate by nearly 9% with respect to conventional approaches.
Vigneri et al. [232] propose to use vehicles as mobile relays
for low-cost video delivery without imposing any streaming
delay on UEs. Simulations using real traces – for both video
popularity and vehicular mobility – determine that up to 60%
of traffic load on the cellular network is reduced by caching
content in the vehicular infrastructure.

2) Social Ties: UEs with strong social ties or similar
interests exhibit similar mobility and content demand behav-
iors [213], [233]. Hence, the social features of UEs can be
leveraged to predict their preferences and future interactions
in video edge delivery. Su et al. [234] propose a social-aware
caching algorithm for SVC videos in which multiple groups
of users with social ties compete with each other for the
number of layers they request to cache. Specifically, a non-
cooperative game is designed to model the competition among
user groups with the aim of maximizing their total profit.
Social-Forecast [213] leverages the propagation patterns of
content on social media to predict the popularity of videos
for different UEs. The objective is to maximize the forecast
reward by jointly optimizing the accuracy of predictions and its
timeliness. The analytical and simulations-based results reveal
that Social-Forecast improves the prediction reward by more
than 30% against approaches that use no context information.



458 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

Wu et al. [236] explore mobility patterns and social aspects of
UEs to design a pricing-based system for video edge caching
and delivery. In particular, they elect so-called core users to
collaborate with an SBS and distribute videos to other UEs
through D2D communications. Zhao et al. [237] leverage the
history of UEs’ requests and their social similarity to optimize
cache hit ratio and transmission delay in D2D-assisted video
edge caching and streaming. The cache replacement problem
is formulated as 0-1 knapsack problem which is solve using
Lagrangian multipliers to maximize the cache hit rate while
minimizing the transmission delay. Sermpezis et al. [238]
introduce the concept of soft cache hits based on which
UEs get recommendations on similar videos rather than the
requested one, when the latter is not cached at SBSs. The
authors argue that UEs are likely to accept the recommended
alternative since the majority of video content in the Internet
is entertainment-oriented.

3) View-Aware: The current view of a user can be used
to improve its QoE in scenarios such as cloud gaming and
streaming 360◦ videos. This is known as foveated video
streaming, wherein the downlink bandwidth requirements are
reduced by streaming high quality video at the viewer’s gaze
location in a frame and low quality video elsewhere. This
relies on the fact that the acuity of the human visual system
is highest in the gaze direction and decreases exponentially
away from the gaze [239]. Thus, foveated video streaming
can be imperceptible with suitable parameterization. We first
discuss some approaches which rely on foveated streaming
for conventional videos and then discuss them in the con-
text of 360◦ videos. An additional eye tracker is required for
traditional videos, whereas newer VR head-mounted displays
contain built-in eye trackers. Thus, a view-aware approach
to caching and streaming is a promising method to support
streaming of 360◦ videos.

Ryoo et al. [240] design a foveated video streaming solu-
tion using a Web-camera based eye tracker and a tile-based
encoder. The proposed solution divides a video frame into
multiple spatial tiles and encodes each tile in multiple res-
olutions. The resolution of a tile delivered to the streaming
client is proportional to its spatial proximity to the gaze
location reported by the client. Illahi et al. [241] design a
foveated video streaming solution for cloud gaming, wherein
a consumer-grade eye tracker at the gaming client is used to
report the players’ gaze to a cloud gaming server deployed
in the edge-C3. The cloud gaming server is configured to
encode the gameplay video with a quality dependent on the
gaze location. Such a solution reduces the downlink bandwidth
requirement by upto 50% with minimal impact on players’
quality of experience.

In the context of 360◦ videos, properties of the field-of-view
or viewport of the user are used to cache or proactively send
high quality frames, such that the users’ QoE is improved.
Maniotis et al. [204] consider an optimal caching scheme
that uses layered and tile-based encoding of 360◦ videos.
Specifically, each tile is encoded into layers of different quali-
ties. The tiles belonging to popular viewports are cached with
higher quality in the edge-C3, whereas the remaining tiles are
cached with a lower quality. The authors propose an algorithm

to determine the optimal set of tiles and their qualities to
cache in the edge-C3 considering the limited storage space.
Mahzari et al. [242] propose a tile-based caching policy at
the edge servers, that additionally determines which tiles to
replace from the cache when capacity is exceeded. In their
system model, the UE chooses the quality of the requested
tiles based on network conditions and informs the edge-C3
whether the requested tiles are within its viewport or not.
These parameters are used by the edge server to learn a proba-
bilistic model of the tile and quality requests. Such a model is
used to make caching decisions, i.e., which tiles and qualities
are to be cached or replaced. Their proposed solution outper-
forms the cache hit ratio as compared to LRU and LFU by 17%
and 40% respectively. Papaioannou and Koutsopoulos [243]
consider an optimal caching scheme for tile-based 360◦ video
streaming. The authors examine both layered and non-layered
video encoding scenarios where each tile has multiple pos-
sible resolution levels and each level has different request
frequencies based on historical viewing data. The authors
propose a solution to maximize the caching of tiles at the
resolution level with the highest request frequency, while con-
sidering foveated display of the tiles. Different from the above
approaches, Perfecto et al. [244] propose a proactive schedul-
ing algorithm of 360◦ video frames to UEs based on predicted
viewports. Specifically, they consider a scenario where high-
quality (e.g., HD) frames are already cached at the base
stations, and SD frames on the UEs themselves. The UEs
report their viewports and video indices to an edge server.
This information is used in the edge-C3 to predict UEs’ future
viewports as well as to cluster UEs (based on their over-
lapping viewports and physical locations). The edge server
then proactively sends high quality frames to clustered groups
from the appropriate base station. Such an approach allows
the streaming service to maintain low latency of streaming
and prevent VR sickness, while maximizing the quality of
streaming. Lungaro et al. [245] propose a gaze-aware video
streaming solution for 360◦ videos using a head-mounted dis-
play with an eye tracker. The proposed solution utilizes a
server for video tile provisioning and streaming that can be
deployed in the edge-C3. The authors propose modifications
to the HEVC encoding standard to support foveated streaming
of 360◦ videos. They determine through user studies that the
downlink bandwidth is reduced by 60% to 80%.

E. Joint Optimization of Video Edge-C3 Resource Allocation

Complex resource allocation problems arise in video
streaming systems, due to trade-offs between the utilization
of different resources (e.g., network bandwidth, caching, and
compute) and the QoE of UEs. For instance, videos may be
streamed with a higher quality at the expense of increased
network bandwidth. On the other hand, the choice of video
quality levels depend on both the storage capacity and com-
pute capacity (for transcoding in case the requested quality is
not cached) at the edge server. Finally, an increasing empha-
sis is placed on lowering the energy consumption of UEs in
emerging VR applications based on 360◦ videos. On the other
hand, allocation of edge-C3 resources can also be driven by
the goal to maximize the revenue of MNOs and video SPs. For
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instance, caching and compute resources in the edge-C3 result
in increased operating costs for the MNOs. Furthermore, when
many MNOs and video SPs are part of the system, competi-
tive market-based allocation problems emerge wherein MNOs
sell caching resources to SPs. The objective is to maximize
the revenue while meeting a target quality.

In the following, we classify recent solutions for the joint
optimization of edge-C3 resource allocation for video stream-
ing according to the criteria above. Specifically, we distinguish
solutions wherein the optimization is driven by the QoE of
UEs from those primarily addressing the revenue of different
actors in a market-based (or economic) setting.

1) QoE-Driven: The following articles propose
optimization problems to maximize the QoE of UEs
while minimizing the utilization of edge-C3 resources.
Different combinations of edge-C3 resources are considered
in the surveyed articles, which we describe next.

Jin et al. [246] study the joint optimization of edge caching,
computing (i.e., transcoding), and bandwidth resources for
on-demand video streaming. They formulate a constrained
optimization problem to minimize the total caching, comput-
ing, and bandwidth utilization for each user request. They
then derive closed-form solutions for the optimal transcod-
ing configuration and allocation of cache space. They evaluate
their solution through simulations and find significant resource
savings compared to state-of-the-art approaches. Moreover,
they investigate the trade-offs between utilizing different types
of resources and how they impact practical video streaming
solutions in edge-C3. For instance, they report that if the tran-
coding costs are high, it is better to fetch content directly from
the SP’s server rather than caching the high quality repre-
sentations. Liang et al. [94] propose an optimization problem
to assign an optimal video quality level to each UE while
determining an optimal network path. They also incorporate
the computing resources required for transcoding the video
streams in case the chosen quality level is not cached at the
edge server. A dual-decomposition method is applied to obtain
the decision variables (video data rate, computing resource,
and network path selection) independently while maximizing
the user’s QoE. In contrast, Xu et al. [247] investigate joint
cache allocation and bitrate selection in adaptive video stream-
ing and leave the computing costs as future work. The authors
use a combination of a Stackelberg game and matching algo-
rithm to identify videos to be cached in each base station.
Mehrabi et al. [248] investigate QoE-based traffic optimization
in collaborative DASH video caching and streaming. They
devise a self-tuned bitrate selection algorithm to maximize the
QoE while minimizing both the backhaul and fronthaul traffic.
The same authors in [80] jointly optimize the QoE of UEs and
the balancing of load between edge servers connected to base
stations. They aim to fairly allocate edge computing resources
for adaptive video streaming to base stations while maximiz-
ing the QoE of UEs. The problem is shown to be NP-hard,
thus an auto-tuned parameterization technique is proposed to
find a near-optimal solution.

In the context of VR, new types of content (360◦ degree
and 3D videos) have to be streamed to UEs. This results in
novel considerations of the caching and computing capabilities

of both the edge server and the UEs (head-mounted displays)
themselves. Liu et al. [249] aim to maximize the quality of the
tiles in a viewport for 360◦ video streaming while minimizing
the energy consumption of the UE. First, they provide closed
form equations for the transmission latency and energy con-
sumed in different scenarios of 360◦ streaming. Specifically,
they consider different types of network links (both mmWave
and sub-GHz bands) and whether the viewport is rendered
at the edge server or at the UE itself. Next, they propose
a multi-objective joint optimization problem to optimize the
video chunk quality, link adaptation, and adaptive viewport
rendering. As the proposed problem is NP-hard, the problem
is solved using a genetic algorithm. Next, Sun et al. [250]
study the joint allocation of resources for mobile VR that
includes both 3D and 2D content. They analyze the differ-
ent trade-offs between utilizing both computing and caching
resources for delivering VR streams that contain 3D con-
tent. Specifically, both 2D and 3D content can be cached
at the edge, and the compute resources are used to project
3D to 2D content. Caching 3D content lowers the comput-
ing requirement as no projections need to be computed before
streaming the content to the UE. However, this comes at the
expense of increased storage space; specifically, 3D content
requires twice more storage space than regular 2D content.
The authors investigate different trade-offs taking into the
account the caching/compute capabilities of the UE and devise
optimal joint caching and computing policies for streaming
such content.

Finally, different resource allocation approaches have been
proposed in live streaming scenarios, which have stricter
latency requirements. Ge et al. [251] propose a cache-based
mechanism at the edge for live streaming 4K video that
reduces the latency, buffering, and startup delays at the
viewer’s device. To this end, they propose an edge-based
transient holding of live segment scheme that holds back an
optimal number x of video segments from the receiver in order
to ensure a certain QoE. The edge server than opens up paral-
lel connections to the live source and downloads the segments
before the viewers request them. When the local content at
the edge server is at least x segments ahead of the viewer’s
request, the parallel connections are no longer maintained and
only one segment at a time is downloaded from the live source
to remain ahead of the viewer’s request. They evaluate their
solution through real-world experiments and show that such
an approach eliminates buffering and significantly reduces the
live stream latency. Zhang et al. [252] aim to maximize the
quality of the live stream (in terms of PSNR) while minimiz-
ing the latency of the video stream. Their system model takes
into account the computing resources required for trancod-
ing and allocation of wireless spectrum to the viewers. They
model the problem as a Markov Decision Process; the authors
then propose an enhanced version of reinforcement learn-
ing to solve the problem. Their solution outperforms baseline
reinforcement learning approaches. Finally, Hung et al. [253]
focus on the assignment of caching space to live streamers to
improve the QoE of UEs. They use an auction-based mech-
anism to optimally assign caching space to streamers taking
into account both storage space and backhaul capacity. They
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provide low-complexity and scalable algorithms to solve the
assignment problem in real-time at the edge server.

2) Revenue-Driven: Video caching at base stations result
in additional operational costs to MNOs, particularly in terms
of the costs of edge resources (e.g., storage and process-
ing). Thus, resource allocation problems for video stream-
ing can also be studied in terms of the costs to MNOs.
Ghoreishi et al. [254] formulate the trade-off between the stor-
age cost and bandwidth savings in hierarchical video caching
systems as a binary-integer programming model. The objec-
tive is to find the optimal cache size at different layers of a
hierarchical caching system so that the ratio between the trans-
mission costs and storage cost is minimized. The evaluations
show that benefit-cost and cost-efficiency ratios are improved
more than 43% and 38%, respectively. Poularakis et al. [37]
address the joint optimization of the storage costs and per-
ceived latency for the delivery of SVC videos in HetNets. The
proposed framework takes into account different system con-
straints, such as the backhaul link capacity, the cache size, and
wireless capacity of SBSs. Moreover, the framework includes a
penalty cost to account for future revenue losses when the UE
requests cannot be met due to limited resources. The experi-
mental results reveal that a 10% improvement in video delivery
latency may cause about 10% to 30% increase in the opera-
tional costs, depending on the network load. Zhou et al. [255]
study the joint optimization of video caching, transcoding, and
communication resources in a virtualized HetNet. In particu-
lar, the costs of computing and caching are inversely related.
Specifically, when more video versions are cached, the require-
ment for transcoding (and thus computing) is lowered. Their
proposed system uses multicast to simultaneously transmit the
same video content to multiple UEs over the same frequency
band. They then evaluate the impact of storage and computing
capacity on the MNO’s revenue. For instance, when the size
of the cached videos increase, fewer versions can be cached
resulting in lower caching revenue and higher computing cost.

Data sponsoring has been considered as a promising mech-
anism to increase the number of video streaming subscribers
of SPs (and thereby their revenue). Through this approach,
video SPs subsidize the UE’s cost for watching videos thereby
increasing the number of users (and thus, advertising revenue
by placing in-video advertisements in exchange for the reduced
data access cost). In such a context, Sun et al. [256] propose
a two-stage decision making process to maximize the revenue
of a single SP within a fixed budget that has to be spent on
both sponsoring and storage costs. Accordingly, SP determines
the edge caching policy in the first stage and the real-time
sponsoring decision in the second stage. Simulation results
demonstrate that such a joint optimization improves the rev-
enue of the SP by 124%–154%, compared to data sponsoring
without edge caching.

The articles described above have focused on single MNOs
and single video SPs. In practice, the network infrastructure
and edge resources are provided by one or multiple MNOs,
which are rented by different video SPs. Due to the limited
edge resources, sellers compete with each other over renting a
portion of them to deliver quality services to UEs. This implies
the creation of a market, where the price of edge-C3 resources

is defined based on profit analysis (i.e., based on related costs
and revenues) for both resource sellers (e.g., MNOs) and buy-
ers (e.g., video SPs). Generally, the sellers and buyers of edge
resources have incomplete information about each other and
the network status, thus they have to estimate their expected
profit (i.e., the utility and cost) from trading these resources.

Different economic models (e.g., game-theoretic
approaches) have been employed to analyze the pricing
and trading of edge-C3 resources in wireless networks. The
authors in [257], [258] apply a Stackelberg game to model
the trading of caching resources between one SP who aims
at renting and caching its popular videos in SBSs provided
by multiple MNOs. The problem is formulated in terms of
social welfare maximization (i.e., the total profit of the video
SP and MNOs). Next, the Stackelberg equilibrium is applied
to find optimal cache prices while maximizing social welfare.
Numerical results reveal that effective resource pricing can
maximize the profit of the SP and MNOs. Li et al. [259]
study a different scenario wherein an MNO leases its edge
resources at SBSs to multiple video SPs. The authors also
use a Stackelberg game to maximize the social welfare of the
system. Analytical results based on stochastic geometry show
that the proposed solution achieves efficient resource pricing
which matches the empirical data. Dai et al. [260] study
collaborative multimedia streaming in edge-enabled wireless
networks in which selfish SPs compete with each other
to maximize their individual revenue. Given limited edge
caching resources, the authors propose a Vickrey-Clarke-
Groves auction to maximize the system social welfare while
satisfying economic properties such as incentive-compatibility
and truthfulness. Jedari and Francesco [261] propose a double
auction method called DOCAT for cache trading of SVC
videos between an MNO and multiple video SPs in HetNets.
They assume that SPs have different popularity, hence, videos
of highly popular SPs are requested by their subscribed UEs
more frequently. As a consequence, the value of caches at
SBSs is higher for more popular SPs, compared to those that
are less popular. DOCAT targets efficient and fair trading
through an iterative auction; specifically, the cache of SBSs
is segmented and then traded in multiple rounds through a
many-to-one matching algorithm. Numerical results based
on a real video dataset show that DOCAT maximizes the
system welfare while guaranteeing the economic properties
of rationality, balanced budget, and truthfulness.

F. Summary and Discussion

Tables VI, VII, VIII and IX summarize the major con-
tributions and key features of the articles surveyed in this
section. The tables show that the majority of recent works
focused on caching, whereas edge computing for downlink
video scenarios is more relevant for emerging use cases such
as live streaming and 360◦ video streaming. This is because
videos are typically encoded offline in multiple resolutions
for VoD scenarios and thus, do not require further process-
ing (computations). On the other hand, edge computing is
important in the context of live streaming, wherein transcod-
ing of live streams may be required to support heterogeneous
devices and network links (e.g., transcode to lower quality
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TABLE VI
SUMMARY OF WORKS ON COLLABORATIVE VIDEO EDGE-C3

TABLE VII
SUMMARY OF POPULARITY-BASED VIDEO EDGE STREAMING AND DELIVERY APPROACHES

for UEs with low-bandwidth wireless links). In this context,
UEs may also cooperate to share their computing resources
to transcode and stream live videos with low latency to

neighboring devices. Moreover, edge computing is required
for streaming VR content (e.g., to compute projections from
spherical to equirectangular coordinates). For instance, edge
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TABLE VIII
SUMMARY OF CONTEXT-AWARE VIDEO STREAMING AND DELIVERY APPROACHES AT THE WIRELESS EDGE

computing resources can be used to pre-render complex 3D
content and stream such content to resource-constrained VR
devices.

Next, popularity-based and context-based video caching has
received significant attention from the research community
(see Tables VII, VIII). However, none have considered the use
of edge computing resources to learn patterns of user requests
and determine which videos are to be cached or replaced.
Finally, the joint optimization (Table IX) of edge-C3 resources
may be QoE or revenue-driven. However, most of economic
models have considered simple trading models in video edge-
C3 and did not study how the structure of videos (e.g., their
encoding models) can affect the cost and utility of SPs and
MNOs in video service delivery.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

This section introduces several important open questions
and future research directions for video edge-C3 in next-
generation wireless networks.

Learning-based video edge-C3: Artificial intelligence (AI),
specifically (deep) learning techniques, is expected to play a
vital role in delivering low-latency and ultra-reliable video

services in wireless cellular networks [262]. For instance, deep
learning models can be used to predict the popularity of videos
at the edge by utilizing the context and request patterns of
UEs connected to the local SBS. Such predictions enable
intelligent video placement decisions based on the context of
users, which can improve the cache hit ratio and video deliv-
ery latency. This is especially beneficial in scenarios where
local popularity trends do not reflect the global trends. Thus,
predicting content popularity trends at the network edge allows
SPs to proactively react to local changes (e.g., to allocate more
resources to hotspots). Moreover, training prediction models at
the edge removes the need to send private information about
UEs to the cloud. In this context, federated learning [263]
has emerged as a promising solution to enable collabora-
tive model training at the edge servers. Federated learning
is a distributed learning approach wherein a global model is
learned with updates from multiple distributed devices. Each
device (edge server, in this case) updates a model (that can
be shared with other edge servers in the region) with train-
ing data observed locally. Thus, a popularity prediction model
can be created based on contextual information gathered at
the edge servers. However, there are several practical open
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TABLE IX
SUMMARY OF THE WORKS ON JOINT OPTIMIZATION OF VIDEO EDGE-C3 RESOURCE ALLOCATION

issues for training models at the edge. First, the impact of
limited edge computing resources for training models must
be analyzed. Second, the communication overhead with fed-
erated learning may be quite large as the model parameters
need to be shared and aggregated at regular intervals in the
edge servers. Recent studies show that the convergence of
the trained model depends on the choice of system param-
eters such as the frequency of updates and aggregation [264].
Thus, a careful study of such parameters is required for edge-
based solutions. Third, the design of prediction models must
take into account the trade-off between prediction accuracy
and algorithm complexity. Applying highly-accurate popular-
ity prediction algorithms improve the caching performance, but
it entails higher computational complexity and thus, increased
utilization of computing resources in the edge-C3. Finally, it
is important to quantify the benefits of using a localized popu-
larity model at the edge (in terms of cache hit ratio or latency)
as a trade-off against the increased computation and latency
incurred in the training itself. Based on such a trade-off, MNOs

can decide whether to use a localized popularity model or a
global one to make caching decisions.

Economics of resource allocation in video edge-C3: From
an economic perspective, cost-efficient allocation of edge-C3
resources provided by MNOs to multiple video SPs is non-
trivial due to several reasons. First, the revenue and cost of
different types of edge-C3 resources for MNOs and SPs are
different. For instance, the cost of storage resources at the
edge (e.g., SBSs) might be lower than processing resources
for MNOs, but it can bring higher revenue to SPs. Thus, it
is challenging to allocate both dynamically and economically
edge-C3 resources to SPs (i.e., their subscribed UEs) such
that the social welfare of the system is maximized. Second,
since SPs generally have different popularity (e.g., they have a
different number of subscribers), the revenue and cost of edge-
C3 resources for different SPs might vary. For instance, the
revenue of high data-rate bandwidth can be more significant
for popular SPs. Therefore, how to allocate edge-C3 resources
to SPs with different popularity is a critical and vital decision
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Fig. 23. Main directions for future work by theme.

for MNOs. The problem becomes even more challenging when
MNOs and SPs do not have complete information about the
profit of each other. Few recent studies have addressed the
economics of video edge-C3 resource trading in terms of either
caching (e.g., [261]) or computing (e.g., [265]). Nevertheless,
how to maximize social welfare in a system with multiple
video SPs when they price edge-C3 differently remains an
open research problem.

Sustainable video in edge-C3: Infrastructure in edge-C3
systems consume a large amount of energy, which is expected
to only increase with the roll-out of dense deployments of
edge servers and base stations in future 5G networks. MNOs
aim to reduce the energy consumed, both from the perspec-
tive of lower operating costs as well as meeting sustainability
goals. Thus, new solutions are required to reduce energy con-
sumption as an increasing amount of video content is being
consumed and generated by UEs. First, renewable energy
sources can be integrated into the edge-C3. Currently, edge
servers are mainly powered by energy from brown power
grid sources which in turn causes unavoidable environmental
concerns in long-term system operation. Renewable sources
such as solar or wind help to move towards environmentally-
friendly video processing and streaming. In this context,
interesting resource allocation problems emerge that require to
balance the trade-off between the QoE of streaming, backhaul
traffic, and energy consumed [266]. Second, energy consump-
tion can be reduced by switching off under-utilized edge
servers. In the context of video edge-C3, switching off servers
requires re-directing processing tasks (e.g., transcoding or ana-
lytics tasks) from multiple servers to a few edge servers. The
design of such a solution requires careful consideration of
balancing the trade-off between lowered QoE and reduced
energy consumption. Furthermore, determining a switch-off
schedule remains an open challenge. For instance, the time
intervals can be determined either in an online (e.g., whenever
observed traffic is low) or offline manner (based on predicted
request patterns). Future research directions include determin-
ing the impact of different switching-off schedules on the
QoE of video applications and energy consumption. In addi-
tion to designing intelligent algorithms, system measurements
are required to quantify the trade-off between reducing energy
consumption and lowered QoE (e.g., due to processing on edge
servers that are further away) for the end users.

Video streaming for emerging applications: AR and VR
place new demands on wireless networks in terms of real-
time processing of uplink streams with low-latency. We have
surveyed state-of-the-art solutions that reduce latency through

intelligent application design and caching of data. However,
several open research directions still remain. For instance,
emerging wireless technologies (such as mmWave in 5G
networks) demand new scheduling algorithms to transmit 360◦
videos to UEs with low latency [267]. Moreover, none of the
surveyed articles have considered the end-to-end design of live
streaming, wherein the edge server adapts the video streams
based on both uplink and downlink bandwidth capacities.
Additionally, new forms of video content are being gener-
ated today. For instance, volumetric videos [268], comprising
three-dimensional content in the form of volume pixels or
3D meshes, are increasing in popularity. Such content can be
viewed on both smartphones and head-mounted displays, and
provide a wider range of interactions compared to traditional
or even 360◦ videos. Specifically, volumetric videos provide
users with 6 degrees of freedom, allowing them to change even
the orientation (yaw, pitch and roll) of their viewport. The
enhanced capabilities of 5G networks are expected to support
the streaming of such content over the Internet. This gives way
to several new applications, such as immersive telepresence
and live streaming of concerts. However, streaming volumet-
ric content is challenging as it is not possible to simply buffer
frames at the client device as users may zoom-in or rotate the
3D content when desired. Thus, traditional video streaming
solutions (e.g., DASH, WebRTC, HAS) require modifications
to support such interactions with a small latency and adequate
QoE for end users. To this end, new QoE metrics are also
required to evaluate the performance of streaming solutions.
Finally, the heterogeneity of viewer devices (smartphones and
head-mounted displays) mean that all devices may not be able
to decode and render 3D content. Edge-based solutions are
ideally suited to provide the computational resources for such
applications with very low latency [268]. To this end, new
algorithms are required to determine when to render content
at the edge server or at the UE based on the available network
bandwidth, computational resources and energy available at
the UE.

Offloading video analytics tasks: The surveyed articles
demonstrate the importance of edge computing to enable real-
time analytics on live video streams. There are still several
open research challenges in designing efficient edge-assisted
systems for analytics. For instance, running analytics tasks
such as object recognition at high frame rates is still an open
problem. As reviewed in this article, several works propose the
use of specialized CNN models at the edge to speed-up the
inference. Such specialized models are trained offline based
on known application characteristics (e.g., detect object of a
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certain color) or user request patterns. However, contextual
information and the spatio-temporal locality of requests could
be used to automatically specialize CNN models deployed at
the edge. For instance, the CNN models can be re-trained
at the edge based on recently observed input video streams
and user requests. This would increase the efficiency of ana-
lytics by reducing the latency of inference for similar future
requests at the edge-C3. Second, real-time analytics in the
presence of high mobility of users – for instance, in vehicles
– is an important open issue. Specifically, offloading decisions
require careful consideration of where tasks are offloaded,
where the UEs will receive the computational results, and
whether applications (or tasks) need to be migrated between
edge servers. Designing task offloading frameworks for mobile
users and with strict latency constraints required by video
analytics has yet to be fully addressed. Specifically, system
measurements and experimental benchmarks are required to
understand the trade-off between migrating application tasks
(or state) between edge servers and reducing latency towards
the end users.

Security and Privacy: Security and privacy in video edge-
C3 remains an open problem. In this context, securing both the
processing and streaming of uplink and downlink video data is
required. Securely caching and streaming downlink videos to
end users has been well-studied, even in the context of edge-
C3 (see [269] for a review of threat models and solutions).
However, ensuring the security and privacy of uplink video
streams raises several new challenges. First, secure processing
of video frames (e.g., to detect objects) can be achieved using
either homomorphic encryption and secure multiparty com-
putation [129]. In homomorphic encryption, the input data
is encrypted and analytics tasks are carried out directly on
such encrypted data. However, this requires a large amount
of computing resources. On the other hand, secure multiparty
computation allows multiple servers to compute a function
over the input data that is kept private. In the edge-C3, such
an approach places stress on the communication resources as
intermediate results need to be exchanged between the coop-
erating servers. An evaluation of such different approaches
in the edge-C3 remains an open direction for future work.
Specifically, it is important to quantify the impact of the above
methods taking into account the limited computing resources
of both UEs and edge servers, as well as the overhead in
communication. Second, in the uplink, video streams may
be manipulated to negatively impact video analytics tasks.
This aspect is crucial for analytics based on crowdsourced
video streams, but has not been well-studied in the literature.
One approach to verify the integrity of the source is through
watermarking the video frames, which can then be verified at
the destination [270]. However, watermarking all frames is a
compute-intensive process, whereas watermarking only certain
key frames requires careful consideration (e.g., certain frames
are more important from an analytics perspective). The design
of an analytics pipeline that takes into account the integrity
and security of processing while still maintaining a low latency
(e.g., in the range of 100 ms for AR applications) is an open
challenge. Finally, the privacy of end users in analytics systems
is discussed only in a few articles [187], [188] that address

such concerns in detecting faces (discussed in Section IV-G).
However, several open challenges remain for general analyt-
ics tasks, where even input frames from a general environment
may reveal private information of the end user. To this end,
obfuscating the input data has been proposed to alleviate such
concerns. Unfortunately, the amount of noise to be added may
be large [129], as there may be only few users (and conse-
quently less input data compared to a cloud-based solution)
as well as specialized CNN models in the edge-C3. Thus, a
rigorous analysis of the amount of noise for different analyt-
ics tasks and in the presence of different specialized models
is required.

VII. CONCLUSION

This article presented a comprehensive review of video
edge caching, computing, and communication (edge-C3) in
next-generation wireless networks. In particular, it has first
overviewed the core components of video streaming and how
they can be extended to support emerging applications. Next, it
has discussed the networking technologies for edge-C3 and the
challenges associated with processing and delivering videos
both in the uplink and the downlink. The latter part of the sur-
vey provided a thorough and up-to-date review of the state of
the art in video edge-C3 according to different classes, based
on the primary target of the considered solutions: the uplink
(for video analytics at the edge) and the downlink (for edge-
assisted video delivery). The works presented in each class
have been crisply summarized, classified according to a novel
taxonomy, and compared with each other. Several illustrations
and summary tables therein further assist the reader in under-
standing the broad landscape of video edge-C3. Finally, the
article provided insights on open issues and future research
challenges in the considered context. We hope that this sur-
vey will help networking protocol designers and multimedia
application developers to design efficient solutions for video
streaming and delivery in future wireless networks.
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