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Machine Learning for Wireless Link Quality
Estimation: A Survey

Gregor Cerar
Mihael Mohor¢ic

Abstract—Since the emergence of wireless communication
networks, a plethora of research papers focus their attention
on the quality aspects of wireless links. The analysis of the
rich body of existing literature on link quality estimation using
models developed from data traces indicates that the techniques
used for modeling link quality estimation are becoming increas-
ingly sophisticated. A number of recent estimators leverage
Machine Learning (ML) techniques that require a sophisticated
design and development process, each of which has a great poten-
tial to significantly affect the overall model performance. In
this article, we provide a comprehensive survey on link qual-
ity estimators developed from empirical data and then focus
on the subset that use ML algorithms. We analyze ML-based
Link Quality Estimation (LQE) models from two perspectives
using performance data. Firstly, we focus on how they address
quality requirements that are important from the perspective
of the applications they serve. Secondly, we analyze how they
approach the standard design steps commonly used in the ML
community. Having analyzed the scientific body of the survey, we
review existing open source datasets suitable for LQE research.
Finally, we round up our survey with the lessons learned and
design guidelines for ML-based LQE development and dataset
collection.

Index Terms—Link quality estimation, machine learning, data-
driven model, reliability, reactivity, stability, computational cost,
probing overhead, dataset preprocessing, feature selection, model
development, wireless networks.

I. INTRODUCTION

N WIRELESS networks, the propagation channel condi-
I tions for radio signals may vary significantly with time and
space, affecting the quality of radio links [1]. In order to ensure
a reliable and sustainable performance in such networks, an
effective link quality estimation (LQE) is required by some
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Fig. 1. The unified model of data-driven LQE comprising of physical layer
(layer 1) and link layer (layer 2).

protocols and their mechanisms, so that the radio link param-
eters can be adapted and an alternative or more reliable channel
can be selected for wireless data transmission. To put it simply,
the better the link quality, the higher the ratio of success-
ful reception and therefore a more reliable communication.
However, challenging factors that directly affect the quality
of a link, such as channel variations, complex interference
patterns and transceiver hardware impairments just to name
a few, can unavoidably lead to unreliable links [2]. On one
hand, incorporating all these factors in an analytical model is
infeasible and thus such models cannot be readily adopted
in realistic networks due to highly arbitrary and dynamic
nature of the propagation environment [3]. On the other
hand, effective prediction of link quality can provide great
performance returns, such as improved network throughput
due to reduced packet drops, prolonged network lifetime due
to limited retransmissions [4], constrained route rediscovery,
limited topology breakdowns and improved reliability, which
reveal that the quality of a link influences other design deci-
sions for higher layer protocols. Eventually, variations in link
quality can significantly influence the overall network con-
nectivity. Therefore, effectively estimating or predicting the
quality of a link can provide the best performing link from a
set of candidates to be utilized for data transmission.

More broadly, the quality of a wireless link is influenced by
the design decisions taken for: i) wireless channel, ii) physi-
cal layer technology, and iii) link layer, as depicted in Fig. 1.
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TABLE I

697

EXISTING SURVEYS AND TUTORIALS RELATING TO THE TERMS THAT CAN DEFINE THE QUALITY OF A LINK IN THE STATE-OF-THE-ART LITERATURE

Publication A summary with particular focus Related context in the relevant publication | Its related section
A survey on empirical studies of low power links in wireless sensor networks as Characteristics of low-power links and Tink
[2], 2012 well as on LQE without paying any special attention to procedures using ML . L P Section V
. quality estimation
techniques
[48], 2012 A tuthrlal on improving the reliability of wireless communication links using Failures in wireless networks Section I-B
cognitive radios
[49], 2013 A survey of the techniques and protocols to handle mobility in wireless sensor Prgdlctl_on of link quality for mobility Section IV
networks estimation
[50], 2014 A survey on fair resource sharing/allocation in wireless networks The impact of link quality on packet delay Section III-B
[51], 2016 A survey of'commumcatlon related issues in unmanned aerial vehicle ]?ynamlc topology changes and time-varying Sections 1-B/I-C
communication networks links
[52]. 2018 A survey on link- and path-level reliable data transfer schemes in underwater Channe.l quality control on physical layer as Section TII
acoustic networks shown in Table II
[53], 2018 A tutorial on key technologies of cloud access radio network optical fronthaul Link performances‘ of radio over fiber Section VII-E
transport schemes illustrated in Table X
[54], 2018 A survey on deep learning applications for different layers of wireless networks :}abl{]l;fi(;lrllscusmon on deep learning for link Section IV-C
[55], 2019 A survey on deep learning techniques applied to mobile and wireless networking Deep learning dr1V§n network coptrol and Sections VI
research network-level mobile data analysis
e . . . . A brief discussion on selection of better .
[56], 2019 A survey of effective capacity models used in various wireless networks I Section VII-B
quality links
A survey of current issues and machine learning solutions for massive machine type Learning link quality and reliability to adapt .
[57], 2019 L. . . L Section VI-A
communications in ultra-dense cellular Internet of things networks communication parameters
A comprehensive survey of data-driven LQE models, application quality aspects
regarding the development of ML-based LQE models, ML design process for LQE
models and publicly available trace-sets suitable for LQE research. Additionally, we
. provide a comprehensive performance data for wireless link quality classification o . . Lo . e
This survey and for design decisions taken throughout the LQE model development. Finally, we Data-driven link quality estimation models All sections
also put forward a comprehensive lessons learned section for the development of
ML-based LQE model as well as the design guidelines for ML-based LQE
development and dataset collection.

The channel used for communication can be described by
several parameters, such as operating frequency, transmis-
sion medium (e.g., air, water), environment (e.g., indoor,
outdoor, dense urban, suburban) as well as relative position
of the communicating parties (e.g., line-of-sight, non-line-of-
sight) [1]. The physical layer technology implemented at the
transmitter and receiver comprises several complex and well-
engineered blocks, such as the antenna (e.g., single, multiple
or array), frequency converter, analog to digital converter, syn-
chronization and other baseband operations. The link layer
is responsible for successfully delivering the data frame via
a single wireless hop from transmitter to receiver, therefore
it comprises of frame assembly and disassembly techniques,
such as attaching/detaching headers, encoding/decoding pay-
load, as well as mechanisms for error correction and con-
trolling retransmissions [3]. While the quality of a link is
ultimately influenced by a sequence of complex, well studied,
designed and engineered processing blocks, the performance
of the realistic and operational systems is quantified by a
relatively limited number of observations [2], the so-called
link quality metrics, which are detailed later in Section II-C
using Table IV.

In this article, we refer to the wireless link abstraction as
comprising of link layer and physical layer. More explicitly,
link quality is referred to the quality of a wireless link that is
concerned with the link layer and the physical layer. The LQE
models reviewed in this survey paper are based on physical
and link layer metrics, namely all potential metrics for the
evaluation of link quality that lie within the dotted rectangle
of Fig. 1.

To briefly overview, the research on data-driven LQE using
real measurement data started in the late 90s [5] and is

still carried on with a plethora of publications in the last
decade [5]-[16]. Early studies on this particular topic mainly
utilized recorded traces and the models were developed man-
ually [5], [7]-[16]. Over the past few years, researchers have
paid a lot of attention to the development of LQE using ML
algorithms [6], [17]-[19].

A. Applications of ML in Wireless Networks

The use of ML techniques in LQE is promising to sig-
nificantly improve the performance of wireless networks due
to the ability of the technology to process and learn from
large amount of data traces that can be collected across var-
ious technologies, topologies and mobility scenarios. These
characteristics of ML techniques empower LQE to become
much more agile, robust and adaptive. Additionally, a more
generic and high level understanding of wireless links could
be acquired with the aid of ML techniques. More explicitly, an
intelligent and autonomous mechanism for analyzing wireless
links of any transceiver and technology can assist in better
handling of current operational aspects of increasingly hetero-
geneous networks. This opens up a new avenue for wireless
network design and optimization [58], [59] and calls for the
ML techniques and algorithms to build robust, agile, resilient
and flexible networks with minimum or no human interven-
tion. A number of contributions for such mechanisms can be
found in the literature, for instance radio spectrum observatory
network is designed in [60] and [61].

The diagram provided in Fig. 2 exhibits a broad picture of
what problems are being solved by ML in wireless networks
and what broad classes of ML methods are being used for solv-
ing these particular problems. It can be observed that improve-
ments on all layers of the communication network stack, from
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Fig. 2. Layered taxonomy of machine learning solutions for wireless communication networks.

physical to application, are being proposed using classification,
regression and clustering techniques. For each technique, algo-
rithms having statistical, kernel, reinforcement, deep learning,
and stochastic flavors are being used. The scope of the ML

works analyzed in this article is shaded with gray in Fig. 2 and
further detailed later in Fig. 5. For a more comprehensive and
intricate analysis, [54] and [55] survey deep learning in wire-
less networks, and [62] surveys Artificial Intelligence (AI)
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techniques, including ML and symbolic reasoning in commu-
nication networks, but without investing any particular effort
on LQE.

B. Existing Surveys on LOE

To contrast our study against existing survey papers on
the aspects of link quality estimation, we have identified a
comprehensive list of survey and tutorial papers summarized
in Table I. We have observed that there are existing dis-
cussions on the “link quality” considering various wireless
networks, as outlined in Table 1. However, only Baccour et al.
attempted to address LQE in [2]. They highlighted distinct
and sometimes contradictory observations coming from a large
amount of research work on LQE based on different platforms,
approaches and measurement sets. Baccour et al. provide a sur-
vey on empirical studies of low power links in wireless sensor

networks! without paying any special attention to procedures
using ML techniques. In this survey paper, we complement
the aforementioned survey by analyzing the rich body of
existing and recent literature on link quality estimation with
the focus on model development from data traces using ML
techniques. We analyze the ML-based LQE from two comple-
mentary perspectives: application requirements and employed
design process. First, we focus on how they address qual-
ity requirements that are important from the perspective of
the applications they serve in Section III. Second, we analyze
how they approach the standard design steps commonly used
in the ML community in Section IV. Moreover, we also review
publicly available data traces that are most suitable for LQE
research.

C. Contributions

Considering recent contributions on LQE using ML tech-
niques, it can be challenging to reveal the relationship between
design choices and reported results. This is mainly because
each model relying on ML assumes a complex development
process [63], [64]. Each step of this process has a great poten-
tial to significantly affect the overall performance of the model,
and hence these steps and their associated design choices must
be well understood and carefully considered. Additionally,
to provide the means for fair comparison between exist-
ing and future approaches, it is of critical importance to be
able to reproduce the LQE model development process and
results [65]-[67], which indeed also requires open sharing of
data traces.

The major contributions of this article can be summarized
as follows.

e We provide a comprehensive survey of the existing liter-
ature on LQE models developed from data traces. We
analyze the state of the art from several perspectives
including target technology and standards, purpose of
LQE, input metrics, models utilized for LQE, output of
LQE, evaluation and reproducibility. The survey reveals
that the complexity of LQE models is increasing and that
comparing LQE models against each other is not always
feasible.

e We provide a comprehensive and quantitative analysis
of wireless link quality classification by extracting the
approximated per class performance from the reported
results of the literature in order to enable readers to
readily distinguish the performance gaps at a glimpse.

e We analyze the performance of candidate classification-
based LQEs and reveal that autoencoders, tree based
methods and SVMs tend to consistently perform better
than logistic regression, naive Bayes and artificial neu-
ral networks whereas the non-ML TRIANGLE estimator
performs considerably well on the two, i.e., very good
and good quality links, of the five classes included in the
analysis.

o We identify five quality aspects regarding the develop-
ment of an ML-based LQE that are important from the

IThis survey paper is also a more recent contribution on link quality esti-
mation models than [2] from 2012. Besides, we focus our attention on the
data-driven LQE models with ML techniques.
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Fig. 4. Timeline of the most prominent models in the evolution of wireless LQE.

application perspective: reliability, adaptivity/reactivity,
stability, computational cost and probing overhead. We
provide insightful analyses on how ML-based LQE mod-
els address these five quality aspects considering the use
of ML methods for a diverse set of specific problems.

o Starting from the standard ML design process, we inves-
tigate and quantify the design decisions that the existing
ML-based LQE models considered and provide insights
for their potential impact on the final performance of
the LQE using the accuracy as well as the F1 score and
precision vs. recall metrics.

e We survey publicly available datasets that are most suit-
able for LQE research and review their available features
with a comparative analysis.

e We provide an elaborated lessons learned section for
the development of ML-based LQE model. Based on
the lessons learned from this survey paper, we derive
generic design guidelines recommended for the industry
and research community to follow in order to effectively
design the development process and collect trace-sets for
the sake of LQE research.

The rest of this article is structured as portrayed in Fig. 3.
Section II provides a comprehensive survey of the state-of-the-
art literature on LQE models built from data traces. Section III
and Section IV analyze ML-based LQE models from the per-
spective of application requirements, and of the design process,
respectively. Section V then provides a comprehensive analy-
sis of the open datasets suitable for LQE research. As a result
of our extensive survey, Section VI provides lessons learned
and design guidelines, while Section VII finally concludes the
paper and elaborates on the future research directions.

II. OVERVIEW OF DATA-DRIVEN LINK
QUALITY ESTIMATION

With the emergence and spread of wireless technologies in
the early 90s [71], it became clear that packet delivery in wire-
less networks was inferior to that of wired networks [5]. At
the time of the experiment conducted in [5], wireless trans-
mission medium was observed to be prone to unduly larger
packet losses than the wired transmission mediums. Up until
today, roughly speaking, numerous sophisticated communica-
tion techniques, including modulation and coding schemes,
channel access methods, error detection and correction meth-
ods, antenna arrays, spectrum management, high frequency
communications and so on, have emerged. As part of this
combination of revolutionary techniques, a diverse number of
estimation models for the assessment of link quality, based
on actual data traces in addition to or instead of simulated
models, have been proposed in the literature.

The research of data-driven LQE based on measurement
data reaches back into late 90s [5] and has gained momen-
tum particularly in the last decade [6]. As summarized in the
timeline depicted in Fig. 4, early attempts on LQE research
mainly hinge on the recorded traces with statistical approaches
and the manually developed models [5], [7]-[16]. On the
other hand, only after 2010, researchers have started paying a
great attention to the development of LQE model using ML
algorithms [17]-[19].

To date, many analytical and statistical models have been
proposed to mitigate losses and improve the performance
of wireless communication. These models include channel
models, radio propagation models, modulation/demodulation
and encoding/decoding schemes, error correction codes, and
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multi-antenna systems just to name a few. Such models
are essentially based on model-driven link quality estima-
tors, where they calculate predetermined variables based on
the communication parameters of the associated environment.
However, their one significant shortcoming is that they abstract
the real environment, and thus consider only a subset of the
real phenomena. Data-driven models, on the other hand, rely
on actual measured data that capture the real phenomena. The
data are then used to fit a model that best approximates the
underlying distribution. As it can be readily seen in Fig. 4,
up until 2010, statistical approaches were the favored tools
for LQE research. From then on, as in other research areas
of wireless communication, portrayed in Fig. 2, ML-based
models replaced the conventional approaches and became the
preferred tool for LQE research.

Empirical observation of wireless link traffic is a crucial part
of the data-driven LQE. An observation of link quality met-
rics within a certain estimation window, e.g., time interval or
a discrete number of events, allows for constructing different
varieties of data-driven link quality estimators. However, there
are a few drawbacks of the data-driven approaches that need
to be taken into account. Since the ultimate model strictly
depends on the recorded data traces, it has to be carefully
designed in a way that records adequate information about
the underlying distribution of the phenomena. If sufficient
measurements of the distribution can be captured, then it is
possible to automatically build a model that can approximate
that particular distribution. Data-driven LQE models are in no
way meant to fully replace or supersede model-driven esti-
mators but to complement them. It is certainly possible to
incorporate a model-driven estimator into a data-driven one as
the input data.

To some extent, different varieties of data-driven metrics
and estimators were studied in [2], where the authors made
three independent distinctions among hardware- and software-
based link quality estimators. The software-based estimators
are further split into Packet Reception Ratio (PRR)-based,
Required Number of Packets (RNP)-based, and score-based
subgroups. The first distinction is based on the estimator’s
origin presenting the way how they were obtained. The sec-
ond distinction is based on the mode their data collection was
done, which can be in passive, active and/or hybrid manner,
depending on whether dummy packet exchange was triggered
by an estimator. The third distinction is based on which side
of the communication link was actively involved. LQE met-
rics can be gathered either on the receiver, transmitter or both
sides.

Going beyond [2], Tables II and III provide a comprehen-
sive summary of the most related publications that leverage a
data-driven approach for LQE research. All the studies sum-
marized in Tables II and III rely on real network data traces
recorded from actual devices. The first column in Tables II
and III contains the title, reference and the year of publica-
tion. The second column provides the testbed, the hardware
and the technology used in each publication, whereas the third
column lists the objectives of these publications with respect to
LQE approach. Columns four, five and six focus on the charac-
teristics of the estimators, particularly on their corresponding
input(s), model and output. The last two columns summarize

statistical aspects of the data traces and their public availability
of the trace-sets for reproducibility, respectively.

A. Technologies and Standards

As outlined in the second column of Tables II and III, ear-
lier studies on LQE were performed on WaveLAN [5], [7],
a precursor on the modern Wi-Fi. The study in [5] aimed to
characterize the loss behavior of proprietary AT&T WaveLAN.
It used packet traces with various configurations for the
transmission rate, packet size, distance and the correspond-
ing packet error rate. Then, they built a two-state Markov
model of the link behavior. The same model was then utilized
in [7] to estimate the quality of wireless links in the interest
of improving Transmission Control Protocol (TCP) conges-
tion performance. More recently, [70], [72] used IEEE 802.11
standard in their studies for throughput and online link
quality estimators.

Later on, the majority of publications related to LQE
focused on wireless sensor networks relying on IEEE 802.15.4
standard and only a few targeted other type of wire-
less networks, such as Wi-Fi (IEEE 802.11) or Bluetooth
(IEEE 802.15.1). This can be explained by the fact that
IEEE 802.15.4-based wireless sensor networks are relatively
cheaper to deploy and maintain. Perhaps, the first such larger
testbed was available at the University of Berkley [8] using
MicaZ nodes and TinyOS [73], which is an open source
operating system for constrained devices. Other hardware plat-
forms, such as TelosB and TMote, and operating systems,
e.g., Contiki, have emerged and enabled researchers to fur-
ther experiment with improving the performance of single and
multi-hop communications for wireless networks composed of
battery-powered devices.

Finally, one recent contribution focuses on LoRA technol-
ogy, a type of Low Power Wide Area Network (LPWAN) for
estimating the quality of links, and therefore aiming for the
improvement of the coverage for the technology [6].

Whereas earlier research on LQE leveraged propri-
etary technologies [5], wireless sensor networks utilized
relatively low cost hardware and open source soft-
ware, therefore enabled a broader effort from the
research community. This resulted in a large wave
of research focusing on ad-hoc, mesh and multihop
communications [8], [10], [13]-[17], [19], [38], [40], [74],
all of which rely on the estimation of link quality. The nodes
implementing the aforementioned technologies are still being
maintained in various university testbeds.

B. Purpose of the LQE

With respect to the research goal summarized in the third
column of Tables II and III, the surveyed papers can be cat-
egorized into two broad groups. The goal of the first group
was to improve the performance of a protocol or process. The
goal of the second group of papers was to propose a new or
improve an existing link quality estimator. For this class of
papers, any protocol improvement in the evaluation process
was secondary.

1) LOE for Protocol Performance Improvement: The
authors of [5], [7] investigated TCP performance improvement,
whereas others focused on routing protocol performance. This
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TABLE II
EXISTING WORK ON LINK QUALITY ESTIMATION USING REAL NETWORK DATA TRACES (PART 1 OF 2)

Title Tech. Goal Input Model Output Data Reproduce
A trace-based approach WaveLAN, Maximize SNR, signal Improved Probability of Not specified
for modeling wireless throughput, . (<1500 bytes/-
. BARWAN quality, two-state Markov error to occur and No*
channel behavior [5], testbed, BSD 2.1 channel error throughput, PRR model ersist packet,
1996 ’ i model eaput, P 1000 s/trace)
Explicit loss notification WaveLAN, Improve TCP Bitrate, packet CDF of error and Probability of 800000 packets
K Lo Reno on wireless . . - (100000 packets/- ;
and wireless web University of links. maximize size, no. bits, error-free error to occur and experiment No*
performance [7], 1998 California testbed y throughput, BER durations persist peri ’
throughput 8 experiments)
Shortest path,
Taming the underlying minimum

Decision on

challenges of reliable Proprietary, Improve routing transmission, keep/remove 600000 packets
multihop routing in MicaZ mote, mblep mana eme?l t PRR broadcast, routpin table (8 packets/s, No*
sensor networks [8], TinyOS & destination e 200 packets/P1y)
entry
2003 sequenced
distance vector
]ggexl I\]\//llll:;:gze Mirage: N.A.,
(4.B) Fm."_b'F wireless USC TutorNet: Improve routing LQI, PRR, Construct 4-bit Estimated link 40-69 min/experi-
link estimation [10], broadcast, . . ment; TutorNet: No*
94x TelosB; table management score of link state quality
2007 ACK count N.A.,
IEEE 802.15.4, 3-12h/experiment;
TinyOS P ;
A Kalman filter-based
link quality estimation TelosB Kalman filter + 25200000
scheme for wireless : PRR estimation RSSI, noise floor SNR to PRR PRR estimation (500 samples/s, No
IEEE 802.15.4 .
sensor networks [9], mapping 14 h)
2007
Gilbert-Elliott
PRR is not enough [11], IEEE 802.11, Link state Model (2-state . Link g_ufilnly Rutgers and
- PRR Markov process); transition . Yes
2008 IEEE 802.15.4 estimation . Mirage trace-sets
good and bad probability
state
The triangle metric: fast Pythagorean

Tmote Sky,
Sentilla JCreate,

Estimated link

link quality estimation .
q Y quality as very

equation maps to 30000 + N.A,,

RSSI, noise floor,

for mobile wireless IEEE 802.15.4, New LQE LQI dlstance. from the go0d, good, (64 packets/.ls, all No
sensor networks [12], . origin channels, unicast)
Contiki OS average or bad
2010 (hypotenuse)
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54x Tmote
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multihop wireless sensor topology changes link estimation 12h)
IEEE 802.15.4
networks [14], 2013
. . Motelab, Indriya Logistic . . X 480 0.00" Sy
Temporal adaptive link and (local) Link qualit regression with Binary, estimates bytes size, 6000
quality prediction with < quatity PRR, RSSI, SNR, e if link quality per exp., 10/sec.), No [38]
. X 54x Tmote estimation, SGD and X
online learning, bed . Routi LQI ALAP adanti above desired Rutgers and Yes [18]
(38] 2012, [18] 2014 testbed, tmprove Routing s adaptive threshold Colorado
’ IEEE 802.15.4 learning rate
trace-sets
Low-Power link quality Improve routin. Optimized F-LQE Binary sljﬁﬁﬁniiotr\{v
estimation in smart grid IEEE 802.15.4 P utng, RNP, SNR, PRR [13] with better high/low-quality ’ No
. LQE reactivity L A L data, TOSSIM 2
environments [15], 2015 reactivity link estimation .
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predict ik quaiity o IEEE 802.11, regression, LQ, NLQ, ETX regression trees, | value for different 2095 links, 7 No*
wireless community clustering, . . o -
AX.25, X . Gaussian process windows sizes days of data)
networks [68], 2015 time-series X
(FunkFeuer mesh . for regression
analysis
network)
Machine-learning based Normal
channel quality and . equation-based .
stability estimation for CC2420, ifjlzf‘:;:‘lhﬁ RSSI, LQL channel quality iﬁf‘:;iﬁgig
stream-based 1IEEE 802.15.4, . g . channel rank, prediction, : : Simulation Yes
X N . . with two possible . X on 3-class
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2016 stability extension
WNN-LQE: Wavelet-
neural-network-based 10x CC2530 Improve routing, Watv elell;n; u‘raé- Uppgr an(;i l(f)wer 2500 (20 bytes
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Note: Asterisk (*) indicates that the experiment was performed on a public testbed, but no data is available.
group of papers proposed a novel link quality estimators One of the earliest publications from this group is [8]

as an intermediate step towards achieving their goal, e.g., that aimed for improving the reactivity of routing tables in
performance improvement of TCP, routing optimization constrained devices, such as sensor nodes. They collected
and so on. traces of transmissions for nodes located at various distances
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Title Tech. Goal Input Model Output Data Reproduce
A reinforcement S“F“ Cooja .
learnine-based link simulator Sim.: co; Exp.:
mne-basec - (Contiki 3.x); PER, RSSI, N.A., 178 links, . .
quality estimation Improve RPL . Lo . Sim.: Yes;
. Exp.: energy Unsupervised ML PRR estimation mobile nodes
strategy for RPL and its protocol . Exp.: No
impact on topology 23x TelosB, consumption (0.5 m/s),
management [69], 2017 CC2420, University of Pisa
g ' IEEE 802.15.4
Research on Link
Quality Estimation 2x TelosB, . .
Mechanism for Wireless CC2420 link quality Classification, 5
Sensor Networks Based IEEE 802.15.4, :;:;m:;ig:n RSSL LQL PRR SVM classifier classes 121 datapoints No
on Support Vector TinyOS 2.x P
Machine [74], 2017
Machme—learrgpg-bz}lsed 2x IEEE 802.11ad Th{oug}_lput ] )
throughput estimation estimation, Online adaptive .
R @ 60 GHz Throughput, P regression,
using images for obstacle regularization of
(mmWave), . depth value . throughput N.A. No
mmWave detection, comm. . weight vectors N
L RGB-D camera (Kinect) estimation
communications [70], (Kinect) handover w/o (AROW)
2017 control frames
Qka. and e.f h01§nt l'mk Grenoble testbed Analysis of LQI, Classification Classify link as
quality estimation in FIT-IoT, fast decisions LQI based on arbitrar d ertai N.A. (2000 per No*
wireless sensors 28x AT86RF231, ‘nzllsrovimrloot'ln, se :al es Yy gooo,r ume}: am link, 16 channels) °
networks [16], 2018 IEEE 802.15.4 mp uting ues e
Conventional online
Online ML algorithms to routers, Link quality Perceplrons? N-A. (7500
L L " N . online regression nodes, ~2 000
predict link quality in IEEE 802.15.4, estimation, online 5 . L .
. X . trees, fast Metric estimation, links, FunkFeuer
community wireless IEEE 802.11, regression, LQ, NLQ, ETX . . Do No*
. incremental regression distributed
mesh networks [72], AX.25, compares online model trees communit
2018 (FunkFeuer mesh ML algorithms . - y
adaptive model network)
network)
rules
Link Quality Estimation Estimated link
Method for Wireless 8x TelosB, Link quality SI;E gRssl%ri‘gl’ Neural quality as very N.A., interior
Sensor Networks Based TinyOS, estimation, transmitter and network-based bad, bad, corridors, grove, No
on Stacked IEEE 802.15.4 classification ;eceiver classification common, good, parking lots, road
Auto-encoder [40], 2019 very good
Node/Gateway
AL!mmated 'Estlmatmn of Dragino LoRa 1.3 Lmlf qulallty position, SVM Mapping LoRa 8642 samples, 23
Link Quality for LoRa: . estimation, time-stamp, e .
. (RF96 chip), . classification of coverage onto sites, 1 packet per No
A Remote Sensing LoRa environment RSSL SR, LoRa coverage eographical maj 40s, Delft (NL)
Approach [6], 2019 classification multispectral & geograp P ’
aerial images
logistic, IO
On Designing a Machine Link quality regression, SVM, CIASSIﬁ?dllon of
Learning Based Wireless rediction. decision trees future link state
s : 29x IEEE 802.11 P g RSSI ’ as good, Rutgers dataset Yes
Link Quality importance of random forest, . X
. B . intermediate or
Classifier [39], 2020 preprocessing multi-layer bad
perceptron

Note: Asterisk (*) indicates that the experiment was performed on a public testbed, but no data is available.

with respect to each other. Then, they computed reception
probabilities as a function of distances and evaluated a num-
ber of existing link estimation metrics. They also proposed
a new link estimation metric called Window Mean with an
Exponentially Weighted Moving Average (WMEWMA) and
showed an improvement in network performance as a result
of more appropriate routing table updates. The improvements
were shown both in simulations and in experimentation. This
study was also among the earliest studies introducing the
three different grade regions of wireless links, i.e., good,
intermediate and bad.

Later, [10] noticed that by considering additional met-
rics alongside WMEWMA, also from higher levels of the
protocol stack, the link estimation could be better coupled
with data traffic. Therefore, they introduced a new estimator
referred to as Four-Bit (4B), where they combined information
from the physical (PRR, Link Quality Indicator (LQI)), link
(ACK count) and network layers (routing) and demonstrated
that it performs better than the baseline they chose for the
evaluation.

In [13], the authors developed a new link quality estimator
named Fuzzy-logic based LQE (F-LQE) that is based on
fuzzy logic, which exploits average values, stability and asym-
metry properties of PRR and Signal-to-Noise Ratio (SNR). As
for the output, the model classifies links as high-quality (HQ)
or low-quality (LQ). The same authors compared F-LQE
against PRR, Expected Transmission count (ETX) [77],
RNP [78] and 4B [10] on the RadialLE testbed [75]. The
comparison of the metrics was performed using different
scenarios including various data burst lengths, transmission
powers, sudden link degradation and short bursts. Among
their findings, they showed that PRR, WMEWMA and ETX,
which are PRR-based link quality estimators, overestimate the
link quality, while RNP and 4B underestimate the link quality.
The authors of [75] demonstrated that F-LQE performed
better estimation than the other estimators compared.

The authors of [14] used fuzzy logic and proposed a
Fuzzy-logic Link Indicator (FLI) for link quality estimation.
The FLI model uses PRR, the coefficient of variance of PRR
and the quantitative description of packet loss burst, which
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TABLE IV
METRICS THAT CAN BE USED TO MEASURE THE QUALITY OF A LINK

Link quality Hardware Software-based Image Topological Sides involved Gathering method .
R - ~ Related base-metric(s)
metrics based PRR-based RNP-based Score-based based Rx Tx Passive Active
RSSI v v v RSS, SNR
LQI v v v Vendor-specific
SNR v v v RSS, noise floor
BER v v v -
PRR v v v PER
WMEWMA v v v PER, PRR
4B v v v LQI, PRR, ACK,
broadcast
LQ, NLQ v v 4 v -
ETX v v v v LQ, NLQ
LQI, PRR, SNR,
ac v v v QL RS
TRIANGLE v SNR, LQI
Image-based v
Topological v

are gathered independently, while the previous F-LQE [13]
requires information sharing of PRR. FLI was evaluated in a
testbed for 12 hours worth of simulation time against 4B [10],
and it was reported to perform better.

Foresee (4C) [17] is the first metric from this group
focused on protocol improvement that introduced statistical
ML techniques. The authors used Received Signal Strength
Indicator (RSSI), SNR, LQI, WMEWMA and smoothed PRR
as input features into the models. They trained three ML
models based on naive Bayes, neural networks and logis-
tic regression. TALENT [38] was then improved on 4C by
introducing adaptive learning rate.

More recently, [69] proposed enhancement to the RPL pro-
tocol, which is used in lossy wireless networks. This backward
compatible improvement (mRPL) for mobile scenarios intro-
duces asynchronous transmission of probes, which observe
link quality and trigger the appropriate action.

New  or  Improved  Link  Quality  Estimator:
Srinivasan et al. [11] proposed a two-state model with
good and bad states, and 4 transition probabilities between
the states to improve on the existing WMEWMA [10] and
4B [10]. Then, Senel et al. [9] took a different approach
and developed a new estimator by predicting the likelihood
of a successful packet reception. Besides, Boano et al. [12]
introduced the TRIANGLE metric that uses the Pythagorean
equation and computes the distance between the instant SNR
and LQI. This study identifies four different link quality
grades including very good, good, average and bad links.
Some of the classifiers propose a five-class model [40], [74]
and a three-class model [16], [39] for LQE research. Other
LQE models leverage regression rather than classification
in order to generate a continuous-valued estimate of the
link [6], [70], [72].

C. Input Metrics for LOQE Models

With respect to the input metrics used for estimating
the quality of a link summarized in the fourth column of
Tables II and III, we distinguish between the single and the
multiple metric approaches. Single metric approaches use a

one dimension vector while multiple metric approaches use a
multidimensional vector as input for developing a model.

Single metric input approaches have a number of advan-
tages. The trace-set is smaller and thus often easier to collect,
the model typically requires less computational power to com-
pute, and as shown in [17] they can be more straightforward
to implement, especially on constrained devices. However, by
only analyzing and relying on a single measured variable,
such as RSSI, important information might be left out. For
this reason, it is better to collect traces with several, possibly
uncorrelated metrics, each of them being able to contribute
meaningful information to the final model. A good example
of the latter is using RSSI and spectral images for instance.

The estimators surveyed based on single input metric appear
in [8], [11], [16], [19], [39] whereas the estimators based on
multiple metrics are considered in [5]-[7], [9], [10], [12]-[15],
[17], [38], [40], [69], [70], [72], [74].

One can readily observe from the fourth column of Tables II
and III that the most widely used metric, either directly or
indirectly, is the PRR, which is used as model input in [5],
[8]-[11], [13]-[15], [17], [38]. Other input metrics derived
from PRR values are also used as input metrics in [9], [12].
Looking at the frequency of use, PRR is followed by hardware
metrics, i.e., RSSI, LQI and SNR in [9], [10], [12], [16], [17],
[19], [38]. Other features are less common and tend to appear
scarcely in single papers.

Table IV summarizes metrics that can be used for measur-
ing the quality of the link. Every metric from the first column
of the table can also be used as input for another new metric.
The so-called hardware-based metrics [2], such as RSSI, LQI,
SNR and Bit Error Rate (BER) are directly produced by the
transceivers, and they also depend on underlying metrics, such
as Received Signal Strength (RSS), SNR, noise floor, imple-
mentation artifacts and vendor. The so-called software-based
metrics are usually computed based on a blend of hardware
and software metrics. It is clear from the first and the last
columns of Table IV that the number of independent input
variables is limited. However, recently, additional input has
been taken into account in [68]. Topological features assum-
ing cross-layer information exchange, where LQE is informed
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of node degree, hop count, strength and distance is considered
in [68], while [70] and [6] have exclusively shown that imag-
ing data can be used as input for LQE models as an alternative
source of data, as outlined at the bottom of Table IV.

In addition to finding other new sources of data, a chal-
lenging task would be to analyze a large set of measurements
in various environments and settings, from a large number of
manufacturers to understand how measurements vary across
different technologies and differ across various implementa-
tions within the same technology, and derive the truly effective
metrics for an efficient development of LQE model.

D. Models for LQE

Considering the models used for developing LQE sum-
marized in the fifth column of Tables II and III, the
publications surveyed can be distinguished as those using sta-
tistical models [5], [7]-[9], [11], rule and/or threshold based
models [10], [12], [16], fuzzy ML models [13]-[15], [75],

[38]

Kernel methods SVM [6], [39], [74]

11

T ol e ITTTTT T 0 11

Taxonomy of the LQE approaches using ML algorithms and traditional methods.

Regression Logistic regression
[17], [18], [38], [39],
[76]
—[ Bayesian Naive Bayes [17], [18],
[38]
statistical ML models [6], [17], [18], [38], [39], [68],

[70], [72], [74], [76], reinforcement learning models [69]
and deep learning models [19], [40]. For readers’ con-
venience, the corresponding taxonomy is portrayed
in Fig. 5.

With regard to the statistical models, the authors of [5], [7]
manually derived error probability models from traces of
data using statistical methods. Additionally, Woo er al. [8]
derived an exponentially weighted PRR by fitting a curve
to an empirical distribution, whereas Senel et al. [9] first
used a Kalman filter to model the correct value of the
RSS, then they extracted the noise floor from it to obtain
SNR, and finally, they leveraged a pre-calibrated table to
map the SNR to a value for the Packet Success Ratio (PSR).
Srinivasan et al. [11] used the Gilbert-Elliot model, which is
a two-state Markov process with good and bad states with
four transition probabilities. The output of the model is the
channel memory parameter that describes the “burstiness” of
a link.
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Considering the rule based models, 4B [10] con-
structs a largely rule based model of the channel that
depends on the values of the four input metrics, whereas
Boano et al. [12] formulate the metric using geometric rules.
First, Boano ef al. [12] computed the distance between the
instant SNR and LQI vectors in a 2D space. Then, they used
three empirically set thresholds to identify four different link
quality grades: very good, good, average or bad. Finally, [16]
manually rules out good and bad links based on LQI values
and then, for the remaining links, computes additional statis-
tics that are used to determine their quality with respect to
some thresholds.

The first fuzzy model, F-LQE [13] uses four input met-
rics incorporating WMEWMA, averaged PRR value, stabil-
ity factor of PRR, asymmetry level of PRR and average
SNR, and fuzzy logic to estimate the two-class link quality.
Rekik er al. [15] adapts F-LQE to smart grid environments
with higher than normal values for electromagnetic radia-
tion, in particular 50 Hz noise and acoustic noise. Finally,
Guo et al. [14] proposed a different two-class fuzzy model
based on the two input metrics, namely coefficient of vari-
ance of PRR and quantitative description of packet loss burst,
which are gathered independently, and are different from the
ones used for F-LQE.

One of the earliest statistical ML model, the so-called
4C, was proposed by Liu and Cerpa, [17], where 4C amal-
gamated RSSI, SNR, LQI and WMEWMA, and smoothed
PRR to train three ML models based on naive Bayes,
neural networks and logistic regression algorithms. Then,
Liu and Cerpa [18], [38] introduced TALENT, an online ML
approach, where the model built on each device adapts to
each new data point as opposed to being precomputed on a
server. TALENT yields a binary output (i.e., whether PRR is
above the predefined threshold), while 4C produces a multi-
class output. TALENT also uses state-of-the-art models for
LQE, such as Stochastic Gradient Descent (SGD) [79] and
smoothed Almeida—Langlois—Amaral-Plakhov algorithm [80]
for the adaptive learning rate and logistic regression.

Other statistical models, such as Shu et al. [74] used
Support Vector Machine (SVM) algorithm along with RSSI,
LQI and PRR as input to develop a five-class model of
the link. Besides, Okamoto et al. [70] used an on-line
learning algorithm called adaptive regularization of weight
vectors to learn to estimate throughput from throughput
and images. Then, Bote-Lorenzo et al. [72] trained online
perceptrons, online regression trees, fast incremental model
trees, and adaptive model rules with Link Quality (LQ),
Neighbor Link Quality (NLQ) and ETX metrics to estimate
the quality of a link, whereas Demetri et al. [6] benefit
from a seven-class SVM classifier to estimate LoRa network
coverage area by means of using 5 input metrics to train
the classifier including multi-spectral aerial images. More
recently, [39] evaluated four different ML models, namely
logistic regression, tree based, ensemble, multilayer percepron,
against each other.

The only proposed reinforcement learning model for link
quality estimation appears in [69]. The authors train a greedy
algorithm with Packet Error Rate (PER), RSSI and energy

consumption input metrics to estimate PRR in view of protocol
improvement in mobility scenarios.

The two LQE models using deep learning algorithms have
also been proposed. For the first model, Sun et al. [19]
introduce Wavelet Neural Network based LQE (WNN-LQE),
a new LQE metric for estimating link quality in smart grid
environments, where they only rely on SNR to train a wavelet
neural network estimator in view of accurately estimating con-
fidence intervals for PRR. In the latter model, Luo et al. [40]
incorporate four input metrics, namely SNR, LQI, RSSI, and
PRR, and trains neural networks to distinguish a five-class
LQE model.

E. Output of Link Quality Estimator

Regarding the output of link quality estimators summarized
in the sixth column of Tables II and III, we can observe three
distinct types of the output values.

The first type is a binary or a two-class output, which is
produced by the classification model. This type of output can
be found in [8], [14], [15], [18], [75]. The applications noticed
are mainly (binary) decision making [8] and above/below
threshold estimation [14], [15], [18], [75].

The second type is multi-class output value. Similar to the
first type, it is also produced by the classification model. The
multi-class output values are utilized in [6], [12], [16], [40],
[74], [76], where [16], [39], [76] use a three-class, [12] utilizes
a four-class, [40], [74] rely on a five-class, and [6] leverages
a seven-class output. The applications observed are the cate-
gorization and estimation of the future LQE state, which is
expressed through labels/classes.

It is not clear from the analyzed work how the authors
selected the number of classes in the case of multi-class out-
put LQE models. The three class output models seem to be
justified by the three regions of a wireless links [2]. The seven
class output model [6] justifies the 7 types of classes based
on seven types of geographical tiles. For the rest or the work,
it is not clear what is the justification and advantage of a
four, or five class LQE model. Generally, by adding more
classes, the granularity of the estimation can be increased
while the computing time, memory size and processing power
increase.

The third type is the continuous-valued output. In contrast to
the first two types, it is produced by a regression model, which
is considered by [5], [7], [9]-[11], [17], [19], [68]-[70], [72].
The value is typically limited only by numerical precision. The
applications observed are the direct estimation of a metric [5],
[71, [9], [19], [68]-[70], [72], probability value [11], [17] and
their proposed scoring metric [10], which are later used for
comparative analysis.

Some of the proposed or identified applications require
continuous-valued LQE estimation, for instance, network
congestion controller (TCP Reno) [7], communication han-
dover [70], and routing table managers [10], [17], [19], [68],
[69], [72]. For other routing table managers and applications,
a discrete valued LQE suffices according to the surveyed
work. Note that any continuous estimator can be subsequently
converted to discrete valued one.
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TABLE V
A SURVEY OF THE COMPARISON FOR LQE MODELS AND THEIR RESPECTIVE EVALUATION METRICS CONSIDERING
THE RESEARCH PAPERS COMPREHENSIVELY SURVEYED IN TABLES II AND III

ID Evaluation metrics The proposed LQE models LLitels ety estima;tzsc:)l:z;;?: dptr(c))posed IL{Q)D el
1 Confusion matrix [12], [16]
2 Confusion matrix, accuracy, precision, recall, F1 [39]
3 Classification accuracy, confusion matrix [18], [38] ETX [77], STLE [81], 4B [10], 4C [17]
4 Confusion matrix, recall, classification accuracy [40] SVC, extreme learning (EML), WNN [19]
5 Classification accuracy [74] FLI [14], LQI-PRR [82]
6 Classification accuracy, power estimation error [6]
7 Avg. delivery cost, classification accuracy [17] STLE [81], 4B [10]
8 RMSE, number of topology changes [14] 4B [10]
9 (RMSE) Throughput estimation error [70]
10 (RMSE) PRR estimation error [19] SNR, back-propagation Neural Network, ARIMA, XCoPred
1 MAE [68] SVM, regression trees, l(cz:l?eei;i:lssrzgzghbor, Gaussian process
Baseline routing performance, online perceptrons, online
12 MAE, computational load [72] regression trees, fast incremental model trees vs. adaptive
model rules
13 CDF, LQE stability [15] ETX [77], F-LQE [14]
14 Mean and stdev. of estimation error, CDF, R? [5]
15 LQE sensitivity, LQE stability, CDF [131, [75] ETX [77], WMEWMA [8], RNP [78], 4B [10]
16 Number of downloads [7]
17 PRR, number of parent changes [8]
13 Total number of transmissions, average tree depth, delivery [10] ETX [77], Collection Tree Protocol (CTP) [83],
rate (PSR) MultiHopLQI
19 PSR [91 ETX [77], RNP [78]
20 Throughput [11]
1 Channel rank eslir‘nali'on, energy cor}sumption, channel [76]
switching delay, stability
2 Average packet loss, num. of f:ontml packets, energy [69]
consumption

F. Evaluation of the Proposed Models

We analyze the way Tables II and III evaluate the proposed
LQE models along several dimensions. The evaluation metric
analysis of the surveyed literature is presented in Table V. The
second column of the table lists the metrics used to evaluate the
LQE model by the research papers listed in the third column of
the table. The fourth column of the table identifies what other
existing link quality estimators were utilized and compared
against the ones proposed in the papers outlined in the third
column.

1) Evaluation From the Purpose of the LQE Perspective:
Firstly, we analyze the evaluation of the models through the
lens of the purpose of the LQE as discussed in Section II-B.
We identify direct evaluation, where the paper directly quanti-
fies the performance of the proposed LQE models vs. indirect
evaluation, where the improvement of the protocol or the
application as a result of the LQE metric is quantified.

Direct evaluations of LQE models typically evaluate the
predicted or estimated value against a measured or simu-
lated ground truth. The metrics used for evaluation depend
on the output of the proposed model for LQE discussed in
Section II-E.

When the output are categorical values, then it is
possible to use metrics based on predicted label count
versus the label count of the ground truth. Confusion
matrices are used by [12], [16], [18], [38]-[40] as seen

in rows 1, 2, 3 and 4 of Table V, classification accuracy
is used by [6], [17], [18], [38], [40], [74] as observed in
rows 3,5, 6 and 7, and recall is used in combination with
accuracy and confusion matrix by [40] as illustrated in
the fourth row of the table. Only more recently, [39] uses
the combined confusion matrix, precision, recall and F1
to provide more detailed insights into the performance of
their classifier. Well known evaluation metrics, such as
classification precision, classification sensitivity, F1 and
Receiver Operating Characteristic (ROC) curve are used sel-
dom or not at all among the evaluation metrics in the surveyed
classification work. However, they can be computed for some
of the metrics based on the provided confusion matrices.

The LQE metrics listed in rows 1-3 of Table V can be com-
pared to each other in terms of performance by mapping the
5 and 7 class estimators to the 2 or 3 class estimator. This
results in a number of comparable 2 or 3 dimension confu-
sion matrices that can be analyzed. However, as the metrics
are developed and evaluated under different datasets, the com-
parison would not be exactly fair and it would not be clear
which design decision led one to be superior to another. The
same discussion holds also for other rows of the table that
share common evaluation metrics. High level comparisons that
abstract such details are provided later in Sections III and IV
for selected ML works that reported their results in sufficient
detail.
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Fig. 6. Visualization of relationships for cross-comparison of the research
papers with their corresponding evaluation metrics outlined in Table V.

When the output is continuous, then each predicted
value is compared against each measured or simulated
value using a distance metric. For instance, the authors
of [14], [19], [70] use Root-Mean-Square Error (RMSE) as
a distance metric as shown in rows 8-10 of Table V,
whereas the authors of [68], [72] use mean absolute error
(Mean Absolute Error (MAE)) as in rows 11 and 12 of the
table. Some other research papers as in [5], [13], [15], [75]
use Cumulative Distribution Function (CDF) as illustrated in
rows 13-15, while the authors of [5] leverage R? in row 14
of Table V.

Indirect evaluations of LQE models evaluate against appli-
cation specific metrics. The papers evaluate the performance of
their objective functions based on the presence of link quality
estimators. For example, the studies conducted in [S][8], [11],
[12], [16], [69], [70], [72], [76] consider their respective objec-
tive functions for the particular applications and demonstrate
to obtain better results by means of using estimators com-
pared to the cases with the absence of estimators. While these
research papers are likely to be leading on the respective use
cases of LQE models owing to their first attempts in their spe-
cific application domains, their results and design decisions are
still difficult to compare against each other. Various application
specific evaluation metrics, such as number of downloads [7],
number of parent changes [8], throughput [11] can also be
found as listed in the rows 16-22 of Table V.

2) Evaluation  From Cross-Comparison  Perspective:
Secondly, we categorize papers that evaluate their outcomes
against other estimators existing at the time of writing ver-
sus papers that are somewhat stand alone. For instance, in
row 3 of Table V, TALENT [38] is evaluated against ETX,
STLE, 4B, WMEWMA and 4C. For more clarity, this is rep-
resented visually in Fig. 6 with directed arrows exiting from
TALENT and entering the boxes of the respective metrics,
which explicitly depicts the relationship between the last two
columns of Table V. Such comparisons are informative as

demonstrated by [75]. Among their findings, they showed that
PRR, WMEWMA, and ETX, which are PRR-based link qual-
ity estimators, overestimate the link quality, while RNP and
4B underestimate the link quality. F-LQE performed better
estimation than the other compared estimators.

However, metrics of the surveyed papers [6], [16], [69],
[70], [76] are not evaluated against other existing estimators,
due to their unique approach (application) and/or being among
the first to tackle certain aspect of estimation. For instance, the
authors of [76] evaluate the estimated ranking/classification
of subset of wireless channels and the authors of [69] eval-
uate the impact of networking performance with estimator
assisted routing algorithm against vanilla (m)RPL protocol,
while the authors of [70] evaluate estimated and real through-
put degradation when line of sight is blocked by an object.
Besides, the authors of [16] evaluate data-driven bidirectional
link properties, and [6] evaluates estimated vs. ground truth
signal fading, which is influenced by ML algorithm’s ability
to classify geographical tiles.

3) Evaluation From Infrastructure Perspective: Thirdly, we
categorize papers to those that perform evaluation and valida-
tion on real testbeds [5]-[10], [12]-[14], [17], [18], [38], [69],
[70], [75] shown as in rows 1, 3, 6, 8, 9, 14-19, 22, those
that perform evaluation in simulation such as [15], [69], [76]
in rows 13, 21, 22, and the rest that perform only numeri-
cal evaluation. The papers in the first category, that perform
evaluation and validation on testbeds, are better at presenting
how the estimator will actually influence the network. The
papers from second category performing simulation can pro-
vide good foundation for further examination and potential
implementation. Finally, the papers in third category, that only
do numerical evaluation, can unveil possible improvements
through statistical relationships.

4) Evaluation From Convergence Perspective: Fourthly,
during our analysis it has emerged that a number of papers
reflect on and quantify the convergence of their model. For
instance, in [11], they concluded that their model starts to
converge at approximately 40,000 packets. In [9], the authors
demonstrated that the link degradation could be detected even
with a single received packet. The metric proposed in [12]
required approximately 10 packets to provide the estimation
in either a static or mobile scenario. In [17], they suggested
that data gathered from 4-7 nodes for approximately 10 min-
utes should be sufficient to train their models offline. Although
these papers indicate convergence rate/size, a community
wide systematic investigation of LQE model convergence is
missing.

At this point, we can conclude that research community in
general have shown remarkable improvements, use cases, and
skills toward better estimators. However, despite the afore-
mentioned evaluation of proposed estimators, providing a
completely fair comparison of LQE models is not feasible
considering the diverse evaluation metrics outlined in Table V.

G. Reproducibility

Reproducibility of the results is recognized as being an
important step in the scientific process [65]-[67] and is
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important for replication as well as for reporting explicit
improvements over the baseline models. When researchers
publicly share the data, simulation setups and their relevant
codes it becomes easy for others to pick up, replicate and
improve upon, thus speeding up the adoption and improve-
ment. For instance, when a new LQE model is proposed, it
can be ran on the same data or testbed as a set of existing mod-
els provided the data and models are publicly accessible to the
community. The existing models can also be re-evaluated in
the same setup, thus replicating the existing results or they can
be used as baselines in new scenarios. With this approach, the
performance of the new LQE model can be directly compared
to the existing models with relatively low effort.

With respect to the reproducibility of the results in the sur-
veyed publications, we notice that only [11], [18], [39] are eas-
ily reproducible because they rely on publicly available trace-
sets. Studies reported in [5], [7], [8], [10], [16], [17], [75] use
open testbeds that, in principle, could be used to collect data
and the results can be reproduced. However, it is not clear
whether some of these testbeds are still operational given that
10-20 years have passed after the date of publication of the
corresponding research. We were not able to find any evidence
that the results in [9], [12], [14], [15], [19] could be repro-
duced as they strictly rely on an internal one-time deployment
and data collection.

ITII. APPLICATION PERSPECTIVE OF ML-BASED LQES

In this section, we provide an analysis of the ML-based
LQEs from application perspectives. We identify what is
important from an application perspective and how that affects
ML methods utilized for the LQE modeling. We first focus on

—

Prediction /
Estimation

Stability [76]

Link quality [6],

# [19], [39], [40], [68],
[72], [76]

the purpose of the LQE model development followed by the
analyses of the application quality aspects.

NEN— | W ) U ) UR— ) U ) W—

Classification of the works by considering the purpose for which the ML LQE model was developed.

A. LQE Design Purpose

In Section II-B, we have reflected on the purpose for which
an LQE model was developed, and as depicted in Fig. 7, we
found that about half of the ML-based LQE studies developed
an estimator with the goal of improving an existing protocol,
while the other half aimed for a new and superior LQE model.
Fig. 7 presents that “protocol improvement” group attempts to
minimize or maximize a particular objective, such as traffic
congestion, probing overhead, topology changes, just to name
a few. Most of the studies that fall into “new & improved
LQE” group only aim to improve the prediction or estimation
of the quality of a link.

The body of the work considering “protocol improvements”
is intricate to quantitatively compare against each other since
numerical details of the LQE models are not explicitly pro-
vided in the respective works, as previously discussed in
Section II-F. Similar difficulties also arise for a large part of
the body of work related to “new & improved LQE” mod-
els since they do not utilize consistent evaluation metrics.
For instance, for LQE models formulated as a classification
problem, only a subset of the works leverages accuracy as a
metric, while other subsets use confusion matrix or specifi-
cally defined metrics, which indeed renders them impractical
to quantitatively compare against each other, as outlined in
Table V and discussed in Section II-F. Attaining a fair com-
parison is even more difficult for the works that formulate
the LQE problem as a regression. Later in Section VI-C, we
provide guidelines with regards to this aspect.
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Fig. 8 presents a high level comparison of the selected works
that use ML for LQE model development [17], [18], [38]-[40]
and one that does not [12]. All the considered works formu-
lated the LQE model as a classification problem and it is
possible to extract the approximated per class performance
from the reported performance results of those respective
works. Notice that they are different in terms of; i) the input
features used to train and evaluate the models (more details in
Section II-C), ii) the number of classes used for the model
(more details in Section II-E), and iii) the considered ML
algorithm (more details in Section II-D).

On the x-axis, Fig. 8 presents five different link quality
classes, while on the y-axis it presents the percentage of
correctly classified links. The comparison reveals that, autoen-
coder [40], which is a type of deep learning method, on
average performs best with above 95% correctly classified
very bad, bad and very good links and about 87% correctly
classified intermediate quality link classes. Autoencoders are
outperformed by the non-ML baseline [12] and SVM with
RBF kernel [74] on the very good link quality class by about
4 percentage points, by over 30 percentage points on the good
quality link class and by about 12 percentage points on the
intermediate quality link class. As autoencoders are known to
be powerful methods, we speculate that such high performance
difference on those three classes might be due to insufficient
training data or other experimental artifacts.

Tree-based methods and SVM [39] as well as the cus-
tomized online learning algorithm TALENT [38] follow the
performance of the autoencoders very closely with a tiny mar-
gin on very bad, very good and intermediate link quality
classes. Next, the offline version of TALENT [18] exhibits
very similar performance to tree-based methods and SVM on
the intermediate class and about 17 percentage points worse

good

(very) good

Comparison of the wireless link quality classification performances throughout the surveyed papers.

on the very good class. Moreover, traditional artificial neu-
ral networks, logistic regression and Naive Bayes [17] follow
next with almost 20 percentage points difference compared
to autoencoders on the very good and very bad link quality
classes and almost 30 percentage points on the intermediate
link quality class. The relative performance difference of the
work reported in [17] might be due to the poor data pre-
processing practices, such as the lack of interpolation, which
can significantly influence the final model performance that is
discussed later in Section IV.

To summarize, the analysis of Fig. 8 reveals that autoen-
coders, tree based methods and SVM tend to consistently
perform better than logistic regression, naive Bayes and ANNs
while the non-ML TRIANGLE estimator performs very well
on two of the classes, namely very good and good link quality
classes.

Discussion: The observations from Fig. 8 also conform to
the general performance intuitions regarding ML approaches.
Namely, fuzzy logic and Naive Bayes are generally compara-
ble with the latter being far more practical and popular. Neither
of the two are known to exhibit better relative performance
against logistic or linear regression. As shown in [17], [38],
Naive Bayes tends to exhibit reduced performance compared
to logistic regression, whereas ANNs are usually superior.
Fuzzy logic, Naive Bayes, linear and logistic regression
are relatively simple and require modest computational load
and memory consumption. Therefore, these ML methods
can be suitable for implementation in embedded devices,
especially for small-dimensional feature spaces. Besides,
ANNs can be designed to optimize computational load and
memory consumption, particularly by simplifying their con-
sidered topologies, which in turn, comes with a cost to their
performance.



CERAR et al.: MACHINE LEARNING FOR WIRELESS LINK QUALITY ESTIMATION: A SURVEY 711

For classification in constrained embedded devices, the
authors of [17], [38] selected logistic regression for its
simplicity among other three candidates. The selection was
based on practical considerations, but their experiments proved
that ANNs were superior compared to other LQE models. The
reason behind this is because logistic and linear regressions
are linear models that tend to be more suitable to approximate
linear phenomena. Contrarily, LQE models do not follow lin-
ear models and therefore ANN-based model outperformed its
counterpart LQE models in [17], [38].

SVMs, part of the so-called Kernel Methods, were pop-
ular and frequently used at the beginning of the century
before significant breakthroughs brought by deep learning
(deep neural networks (DNN)). SVMs often exhibit at least
similar performance to ANNs and also to decision/regression
trees [68]. However, there are only a paucity of contribu-
tions on adapting them for embedded devices [84]. In [72],
the authors performed an in-depth comparison of ML algo-
rithms including SVM, decision trees and k nearest neighbors
(k-NN) from several perspectives, such as accuracy, com-
putational load and training time. Their results showed that
SVMs are constantly superior in terms of accuracy to k-NN
and regression trees at the expense of significant resource
consumption.

While many of the traditional ML methods including deci-
sion/regression trees and k-NN typically require an explicit,
often manual feature engineering step, SVMs are able to
automatically weight the features according to their impor-
tance automatizing part of the effort allocated for manual
feature engineering. SVMs are known to be highly customiz-
able through hyperparameter tuning, which is a dedicated
research area within the ML community. Through appropri-
ate selection of the kernel and parameter space [85], they are
able to perform very well on both linear and non-linear prob-
lems. Therefore, from this particular perspective, SVMs and
the broader Kernel Methods are indeed favorable choices for
developing LQE models.

Deep learning, represented by DNNs are a new class of
ML algorithms that are currently under intense investigation
in various research communities penetrating also wireless and
LQE [40]. These algorithms are very powerful and accu-
rate for approximating both linear and non-linear problems,
albeit requiring high memory and computational cost. Such
models are prohibitive for embedding in constrained devices.
However, there are a number of research efforts [86] invested
in employing transfer learning approaches [87]. When an
LQE based data processing occurs on a non-constrained
device, such as the case in [6], DNNs can show an outstanding
performance. While the authors of [6] proposed a novel and
visionary approach for the development of an LQE model and
accomplished robust results using SVMs, employing DNNs
might assist in surpassing those existing results.

B. Application Quality Aspects

Following the analyses from Sections II-B and II-F, we
have identified five important link quality aspects to consider
when choosing or designing an LQE model (estimator). These

aspects are often used to indirectly evaluate the performance
of LQE models, by evaluating the behavior of the application
that relies on LQE versus the one that does not rely on it.

1) Reliability - The LQE model should perform estimations
that are as close as possible to the values observed. More
explicitly, LQE models should maintain high accuracy.

2) Adaptivity/Reactivity - The LQE model should reach
and adapt to persistent link quality changes. This indi-
cates that when a link changes its quality for a longer
period of time, the LQE model should be able to capture
these changes and accordingly perform the estima-
tions. Changes in estimation subsequently unveil routing
topology changes.

3) Stability - The LQE model should be immune to tran-
sient link quality changes. This immunity ensures a
relatively stable topology leading to reduced cost of
routing overheads.

4) Computational cost - The computational complexity
of LQE models should be considerate of the target
devices, where computational load can be appropriately
apportioned among constrained and powerful devices.

5) Probing overhead - LQE models consider a diverse set
of metrics to estimate the link quality, as discussed in
Section II-C, which are gathered through probing. LQE
models should be designed in an optimal way so that
the probing overhead is minimized.

A comprehensive classification of the ML-based LQE stud-
ies according to the aforementioned five application quality
aspects is exhibited in Fig. 9, which reveals that most of the
LQE studies explicitly consider computational cost and relia-
bility aspects in their evaluations, whilst only a paucity of the
studies considers probing overhead, adaptability and stability.
With respect to computational cost, it can be readily observed
from the figure that tree- and neural network-based meth-
ods tend to have higher computational cost, whereas online
logistic regression has medium cost, and Naive Bayes, fuzzy
logic and offline logistic regression have relatively low com-
putational cost. With regards to the probing overhead for
trace-set collection, it is perceived from Fig. 9 that some LQE
models are designed to incur zero-overhead, and one incurs
both asynchronous and synchronous (async. & sync.) prob-
ing, whereas the other is devised to use an adaptive probing
rate. As far as reliability is concerned, some LQE studies focus
on the reliability of the routing tree topology, and on the link
prediction/estimation, whereas others put emphasis on the traf-
fic. Adaptability is explicitly taken into consideration mostly
in studies employing online learning algorithms, while stabil-
ity is considered for those studies focusing on offline learning
algorithms.

Discussion: To support a more in-depth understanding,
Table VI presents an aggregated and elaborated view of the
papers that are systematically categorized in Figs. 7 and 9.
The first column of the table shows the purpose for which
LQEs have been developed, the second column of the table
lists the problem that is being solved using ML-based LQE
models, the third provides the relevant research papers solv-
ing those respective problems, column four includes the ML
type and method, while the last five columns correspond to
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Fig. 9. Classification of the surveyed LQE papers by taking into consideration the identified application quality aspects.

the link quality metrics previously enumerated in this section.
The last five columns are filled in, if those quality aspects are
given consideration in these respective research papers and left
empty otherwise.

The first line of Table VI indicates that the problem solved
by [17], [18], [38] is to reduce the cost of packet delivery
with a well-known multi-hop protocol, the so-called collection
tree protocol (CTP). In their first approach, [17] achieve this
by developing three batch ML models that, according to their
evaluation, perform better than 4BIT. However, ML models are
trained in batch mode and remain static after training, therefore
the estimator is not adaptive to persistent changes in the link.
Batch or offline training of ML algorithms [88] means that the
model is trained, optimized and evaluated once on available
training and testing sets, and has to be completely re-trained
later in order to adapt the possible changes in the distribution
of the updated data. In practice, this corresponds to sporadic
updates, e.g., once in few hours and once per day depend-
ing on how the overall system is engineered. For the case of
embedded devices, the device has to be fully or partially repro-
grammed [89]. In the specific case of [17], it is clear that the
coefficients of the linear regression model learned during train-
ing are hard-coded on the target device and reprogramming is
required for obtaining the updates.

When the behavior of the links changes significantly, espe-
cially for wireless networks having mobility, the offline model
is expected to decrease in performance, since those link
changes may not be recognized by the ML model residing
on the devices. In [18], [38], they improve their previously
proposed offline modeling by introducing adaptivity to their
models and thus developing online versions of the learning
algorithms. Online ML algorithms are capable of updating
their model [88] as new data points arrive during regular

operation. The authors of [18], [38] also address reliability
and computational cost aspects in their evaluation, as can be
readily seen in the respective columns of Table VI.

Realizing the shortcomings of the offline-models [68] for
estimating LQE in community networks and then developing
on-line [72] models can be also noticed in the sixth line of
Table VI. This research problem is formulated as a regression
problem, while the previous one addressed in [17], [18], [38]
is formulated as a classification one. Both approaches are suit-
able for the purpose and both need to implement a threshold-
or class-based decision making on whether to use the link or
not. ML methods used in [68] and [72] target WiFi devices
(routers) and are thus more expensive in terms of memory
and computational cost than those that target constrained
devices (sensors), as outlined at the first line of Table VI.
Generally speaking, ML algorithms, such as SVM and k-NN
used in [68], [72] and outlined at line six of Table VI are
computationally more expensive than naive Bayes and logis-
tic regression utilized in [17], [18], [38] and outlined at the
first line of Table VI.

In addition to the adaptivity trade-offs noticed in research
papers at the first and sixth rows of Table VI, reactivity trade-
offs can be perceived from research papers outlined in the
second, third and seventh rows of Table VI. More explicitly,
in the second row, LQE model is used to improve network
reliability by reducing topology changes and the depth of the
routing tree [14], while still maintaining high reliability, and in
the third and seventh rows, [15] and [76] enhance reliability,
stability and reactivity, respectively. The application require-
ments of these studies seem to favor reliable and cost effective
routing with minimal routing topology changes. To sum up, the
LQE model has to be as accurate as possible, update the model
on significant link changes and remain immune to short-term
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variations for the sake of a stable topology. To achieve such
goal, the right tuning of on-line learning algorithms that ensure
a good stability vs adaptivity trade-offs has to be performed.

The computation of LQE models involves probing over-
head to collect relevant metrics, as discussed in Section II-C
and Table IV. Minimizing the probing overhead has also been
a major concern for a number of research papers [6], [69],
and [70], as it can be readily observed from rows four, ten and
eleven of Table VI. In row four, probing overhead is reduced
by using reinforcement learning to guide the probing pro-
cess [69], while in [6] and [70], network related information
obtained via probing is replaced with external non-networking
sources based on imaging. Replacing the probing overhead
with additional hardware components that involve learning
from image data, image capturing and processing, conse-
quently leads to increased computational complexity of the
system.

The remaining research papers [19], [40], and [74] out-
lined at lines five, eight and nine of Table VI address the
aspects of developing more accurate estimators against pre-
determined baseline models. Additionally, the LQE model
proposed by [19] provides probability-guaranteed estimation

using packet reception ratio for satisfying reliability require-
ments of the smart grid communication standards.

IV. DESIGN PROCESS PERSPECTIVE OF ML-BASED LQES

For the development of any ML model, the researchers
have to follow some very precise steps that are well estab-
lished in the community, defined in the Knowledge Discovery
Process (KDP) [63], [90], namely data pre-processing, model
building and model evaluation. The data pre-processing stage
is known to be the most time-consuming process, tends to have
a major influence on the final performance of the model and is
applied on the training and evaluation data collected based on
the input metrics discussed in Section II-C. This stage includes
several steps, such as data cleaning and interpolation, feature
selection and resampling. The model building and selection
steps usually take a set of ML methods, train them using
the available data and evaluate their results, as discussed in
Section II-F.

Analyzing the existing works from the perspective of the
design process is equally important and complements the anal-
ysis from the application perspective performed in Section III.
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Fig. 10. Overview of the design decisions taken during the development of the ML-based LQE models for the relevant papers surveyed in Tables II and III.

Fig. 10 classifies the studies based on the reported design deci-
sions taken while developing ML-based LQE models, namely
cleaning and interpolation, feature selection, re-sampling strat-
egy and ML model selection. Fig. 11 compares the reported
influence of the respective steps on the final model consider-
ing accuracy as the metric while Fig. 12 depicts the trade-off
for the process considering the F1 score? and the precision’
and recall* metrics.

A. Cleaning & Interpolation Steps

From the Cleaning & Interpolation branch of the mind map
depicted in Fig. 10 it can be seen that only seven of the
ML-based LQE models provide explicit consideration of the
cleaning and interpolation step. While in the general ML prac-
tice that use real world datasets, the cleaning step is very
difficult to avoid and LQE-based research papers mostly lever-
age carefully collected datasets, often generated in-house from
existing testbeds, as discussed in Section II-A. For instance,
Okamoto et al. [70] perform cleaning on the image data they
selected to use as part of the model training.

2F1 =2 % precision * recall /(precision + recall).
3precision = true positives [(true positives + false positives).
4recall = true positives [(true positives + false negatives).

With respect to interpolation, however, several works [14],
[18], [38], [40] fill in missing values with zeros. Their design
decision with respect to this step of the process can also be
referred to as interpolation using domain knowledge as they
replace the missing RSSI values with 0, which represents a
poor quality link with no received signal, yielding PRR equal
to 0. It is not clear how [72] handle the missing data, however,
they drop measurement data if there are not enough variations
in their values.

Explicitly mentioning the design decision with respect to
cleaning and interpolation is important for reproducibility (dis-
cussed in Section II-G) as well as for its potential influence
on the final performance of the ML model. For instance, it
can be readily seen from Fig. 11(a) that, all the other set-
tings kept the same, domain knowledge interpolation denoted
by “padding” can increase the accuracy of a classifier on
good classes from 0.88 to 0.95, while also increasing the
performance on the minority classes from 0.49 to 0.87 for
intermediate and nearly O to 0.98 for bad, which can also be
perceived from the findings of [39]. Going beyond accuracy

as an evaluation metric, Fig. 12 shows significant performance
increase, measured with F1 score which is the harmonic mean
of the precision and recall, if the type of used interpolation is
optimized for a particular scenario. More specifically, F1 score
for no-interpolation is about 0.43 on the left lower part of the
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Fig. 11. Accuracy performance analyses for various steps of the design process as an exemplifying three-class LQE classification problem with unbalanced

training data.

figure, then increases to 0.80 with Gaussian interpolation, and
finally reaching 0.94 with constant interpolation (denoted by
“padding” in Fig. 11(a)) that utilizes domain knowledge.

B. Feature Selection

According to the feature selection branch of the mind map
depicted in Fig. 10, all research papers provide details on their
feature selection. Often, all the features directly collected from
testbed and simulator are used, as discussed in Section IV-B.
Part of the literature, i.e., [17], [18] and [38] also considers
the performance of the final model as a function of the input
features as part of their analysis, while others only report a
fixed set of features that are then used to develop and evaluate
models. It may be because, the authors implicitly considered
the feature selection step and solely reported the final fea-
tures selected for their models to keep their paper concise. In
such cases, the influence of other features or synthetic fea-
tures [91] cannot be readily assessed in the related works
surveyed.

Perceived from an extensive comparative evaluation in [39]
and from another study that explicitly quantifies the impact of
the feature selection on an LQE classification problem in [17],
we summarize the reported performances with respect to the
feature selection step in Fig. 11(b). While the works of the
aforementioned figure leverage different datasets and distinct
ML approaches, therefore they cannot be fairly benchmarked
against each other, it is clear that the feature engineering can
significantly increase the accuracy of a classifier within the

same work by keeping all the other settings the same. Liu and
Cerpa [17] reports up to 9 percentage points classification
improvement in all classes by using LQI+PRR compared to
the scenario using LQI only and PRR only, while Cerar [39]
reports on average classification performance increases from
0.89 to 0.95, while also increasing the performance on the
minority class from 0.38 to 0.87. Furthermore, according to
Fig. 12, classification performance of F1 score ranges from
0.61 to 0.93, of precision ranges from 0.62 to 0.93 and of
recall ranges from 0.63 to 0.93.

C. Resampling Strategy

Resampling is used in ML communities when the available
input data is imbalanced [92], [93]. For instance, assume a
classification problem where the aim is to classify links into
good, bad and intermediate classes, similar to the problem
approached in [16], [76]. If the good class would represent
75% of the examples in the training dataset, bad would repre-
sent 20% and intermediate would represent the remaining 5%,
then a ML model would likely be well trained to recognize the
good classes as it has been exposed to many such instances.
However, it might be difficult for the model to recognize the
other two classes, as they are scarcely populated instances in
the dataset.

According to the resampling branch of the mind map in
Fig. 10, only one very recent research papers elaborates on
their resampling strategy. In other works it is often not clear
whether they employed a resampling strategy in the case of
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where the figure situated at the top-right corner is a zoomed-in portion of the closest region to F1=1 of the main figure.

imbalanced datasets. For instance, the performance of the pre-
dictor on two of the five classes is modest in [40]. It would
be interesting to understand whether employing a resampling
strategy would provide a better discrimination of the consid-
ered classes. Resampling could also improve other surveyed
estimators in [6], [18], [38], [74].

From Fig. 11(c), it can be seen that, all the other settings
being the same, performing resampling can slightly decrease
the accuracy of a classifier on the two majority classes from
0.97 to 0.95, albeit it can yield a dramatic increase in the
classification performance of the minority intermediate class
with an accuracy raise from 0.61 to 0.88, which can also be
worked out from the findings of [39]. Going beyond accuracy
as an evaluation metric, Fig. 12 exhibits significant precision,
recall and F1 score increase for the minority class, when a
resampling strategy is leveraged. More specifically, an LQE
model without resampling yields an F1 score of about 0.87,
which then increases to about 0.93 with undersampling and
remains at 0.93 when oversampling is considered.

D. Machine Learning Method

According to the ML method branch of the mind map shown
in Fig. 10 seven of the works estimate the link quality in

terms of discrete values, therefore they perform classification,
while the remaining seven estimate it as actual values, hence
regression is employed. The preferred ML method is cho-
sen according to the specific application considered. It can
be seen from this branch that the same type of algorithm can
be adopted for classification and regression, respectively. For
example, SVMs are exploited for regression in [68] and for
classification in [6], [74]. Besides, every ML algorithm can be
adapted to work in an on-line mode by means of retraining
the model with every new incoming value during its operation.
As discussed in Section III, online learning are particularly
suitable for LQE models that also optimize the adaptivity
in [18], [70], [72].

For classification, the most frequently used ML algorithms
are naive Bayes, logistic regression, artificial neural networks
(ANNSs) and SVMs. The first three are used in [17], [18], [38],
while SVMs are used in [6], [74]. The ML algorithms used
for regression are more diverse ranging from fuzzy logic
to reinforcement learning. While the performance of the
classification algorithms is often evaluated according to the
precision/recall and F1 scores in ML communities, potentially
via complementary confusion matrices, the performance of
regression are evaluated using distance metrics, such as RMSE
and MAE.
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TABLE VII
PUBLICLY AVAILABLE TRACE-SETS FOR THE ANALYSIS OF LQE

Origin of Trace-sets HW. & Technology Measurements Data Points Type Additional Notes
MIT, Roofnet, [94], [95], Cisco Aironet 350, Source, destination, 21258359 Which packets were lost on a link is
IEEE 802.11b, mesh, sequence, time, signal, A . 1-to-N X
2002 . (1725 links, 4 bitrates) not provided.
custom Roofnet protocol noise and so on
611632
Rutgers University, . (406 links,
ORBIT testbed, [96], 29x Irl::%]; E.;Aot;lelrlo;bSZlZ, Seq. number, RSSI 300 packets/link, 1-to-N Minor preprocessing is involved.
2007 . 2 1 packet/100 ms, 5 levels
of noise)
RSSI, LQI, noise floor, 14515200
“Packet-metadata”, [97], 2x TelosB, packet size, no. retries, (300 packets per l-to-1 It requires minor preprocessin
2015 IEEE 802.15.4 energy, Tx power, ACK, 80646 runs per 4 prep! &
queue size and so on 6 distances)
Signal strength, data rate, 29000
Colorado, [98], 2009 5x listeners, IEEE 802.11 channel, time-stamp and (500 packets per 58 1-to-1 It requires preprocessing.
S0 on locations)
580762 Ic\/é/:;l;EeArEdSa:iin?r:Zofr?ﬂin:tZ[ntlsdata is
University of Michigan, 14x Mica2, proprietary RSSI (1 pagket/OZSS, L-to-N observed (leading zeros and no units).
[99], 2006 protocol, sub-GHz ISM 30 min/device, 2
R Source and destination nodes are not
3191 records/link) . X
clearly identified.
EVARILOS, UGent, . . " 5938 Hospital environment is considered in
[100], 2015 6 nodes, Bluetooth RSSI, time-stamp (<2000 records/link) N-to-1 the absence of interference.
EVARILOS, UGent, RSSI, time-of-arrival, 110126 Hospital environment is considered in
[100], 2015 5 nodes, IEEE 802.15.4 time-stamp (<35000 records/link) I-to-N the absence of interference.
6x PC with
omni-directional 5x 623207 Experiment is composed of nodes
University of Colorado, antennas, 1x distinctly Seq: number, coordinates, (500 palclfels per equipped with e}ntennas that are
[101], [102], 2009 configured direction, TX power, 180 positions per 1-to-N capable of serving 4 different
’ ’ omni-directional antenna 5x RSSI values per log 4 directions per directions. Tx power is variable and
for transmitter, 11 Tx levels per 5 nodes) extensive documentation is available.
IEEE 802.11
It requires advanced preprocessing.
Sequence numbers are rarely
Brussels University, 19x Tmote Sky, Seq. number, RSSI, LQI, 112793 L-to-N inconsistent. There are three more
[103], 2007 IEEE 802.15.4 time-stamp (<1600 packet/link) trace-sets available from this
experiment that is intended for
localization.

Fig. 11(d) shows that, all the other settings being the same,
the selection of the ML method for a selected classification
problem has a relatively smaller impact on the accuracy of
a classifier compared to the other steps of the design pro-
cess. As reported in both [17] and [39], the accuracy changes
by up to 3 percentage points between the considered mod-
els. The zoomed portion of Fig. 12 exhibits the negligible
impact of the model selection on the F1 score, which is up to
around 0.02.

V. OVERVIEW OF MEASUREMENT DATA SOURCES

To complement the survey of the LQE models developed
using data, we perform a survey of the publicly available trace-
sets that have already been used or could be used for LQE.
The data collected for a limited period of time on a given
radio link, is referred to as traces in this section. When a set
of these traces is recorded using more links and/or periods in
several rounds of tests for a given testbed, we refer for it as a
trace-set. Traces and trace-sets, in general, are prone to have
irregularities and missing values that need to be preprocessed,
especially when ported into ML algorithms. In this article,
we refer to a trace-set that has been preprocessed as dataset.
Ideally, a trace-set should include all the information available
that is directly or indirectly related to the packets’ trip.

To support our analysis, Tables VII and VIII summarize the
publicly available trace-sets and the available features in each

trace-set respectively. Our survey only analyzes publicly avail-
able trace-sets for LQE research that we were able to look into,
however we mention other applicable trace-sets that are not
publicly available. Table VII reviews the source of the trace-
sets and the estimated year of creation along with the hardware
and technology used for the trace-set gathering. Additionally,
data that each trace relies on, the size of the trace/trace-set,
the type of communication used in the measurement campaign,
and additional notes on the specification and characteristic of
the trace-sets can also be found in Table VII. Table VIII lists
the trace-sets in the first column while the remaining columns
refer to various metrics contained within the trace-set. This
table maps the available metrics, also referred to as features,
to the analyzed trace-sets.

To summarize the important points of these trace-sets, they
were collected by the research teams at various universities
worldwide using their own testbeds [94], [96], [100] or via
conducting one-time deployments [97]-[99], [101], [103]. This
confirms that the trace-sets were likely generated on testbeds
developed and maintained in universities, which is consistent
also with our findings in Section II-A. According to the sec-
ond column of Table VII, four of the trace-sets are based
on IEEE 802.11, three utilize IEEE 802.15.4, one is based
on IEEE 802.15.1, and one operates on a proprietary radio
technology. According to the fourth column of the table, the
number of entries, i.e., data points, ranges from only 6 thou-
sand up to 21 million, whereas the number of measured data
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TABLE VIII
AVAILABLE FEATURES OF THE TRACE-SETS SURVEYED IN TABLE VII FOR THE SAKE OF LQE

Trace-set Seq. Numbers | Ti tamp | RSSI | LQI | SNR (Signal/Noise) | Location | Queue (Size/Length) | Frame Size | HW. Specs.
Roofnet [94], [95] v (implicit) VIV v
Rutgers [96] v v v X v v v
“Packet-metadata” [97] v v v v I v VIV v v
Colorado [98] v v v v v v
Universit; of

Michigany[99] v v v
EVARILOS [100] v v v v v
Colorado [101], [102] v v v v v
Brussels [103] v v v v v

per entry ranges from one to about fifteen. The third column of
the table lists the measurements available in each trace-set. For
more clarity, the measurements are summarized in Table VIII
for each trace-set and their meaning and importance for LQE
is summarized as follows:

e A sequence number holds key information on the con-
secutive orders of the received packets and/or frames.
With the aid of the sequence number, reconstruction of
time series is enabled and thus it inherently provides
information on packet loss and duplicated packets. It is
already part of the frame headers owing to the standard-
ization efforts. Sequence numbers can be processed to
provide PRR and its counterpart PER that are useful input
for LQE model.

e A time-stamp, which can be relative or absolute, is a
suitable addition to the aforementioned sequence number.
It reveals the amount of elapsed time between measure-
ments. Therefore, it can help for deciding on whether a
previous data point is still relevant and thus improving
LQE in a dynamic environment. If a high precision timer
and dedicated radio hardware are available, time-stamps
can also empower localization.

e Measurement points indicating the quality of received
signal on the links are mainly described by SNR, RSSI
and LQI. SNR represents the ratio between the signal
strength and the background noise strength. Compared to
all other features, it allows the most clear-cut observa-
tion of the radio environment. However, some hardware,
especially constrained devices, might not support direct
SNR observation. In contrast to SNR, RSSI is the most
widely-used measurement data and it can be accessed
on the majority of radio hardware. It shows high corre-
lation with SNR, since it is obtained in a similar way.
Researchers may argue on its inaccuracy due to the
low precision, i.e., quantization is around 3dB on most
hardware. As opposed to the SNR and RSSI, LQI is a
score-based measurement data and mostly found in radios
of ZigBee-like (IEEE 802.15.4) technologies, which pro-
vides an indication of the quality of a communication
channel for the transmission and the flawless reception
of signals. However, the drawback of LQI is the lack
of strict definition, leaning it to the vendor to decide its
way of implementation and it may lead to the difficulty
of cross-hardware comparison across vendors.

e For a more dynamic environment of wireless networks,
where nodes are mainly mobile, information regarding
the physical (geographical) locations can be beneficial.

o Additionally, there are other software related measure-
ments data including queue size, queue length and frame
length just to name few. If we refer to domain knowl-
edge,5 shorter frames tend to be more prone to errors,
while queuing statistics can reveal information concern-
ing buffer congestions.

o For the interpretation of the technical research out-
come, revealing which hardwares were utilized during
data collection is important to help diagnosing potential
erratic behaviors of some hardware, including sensitivity
degradation with time.

As can be seen from Table VIII, no single metrics appears
in all trace-sets, however, sequence numbers, time stamps,
RSSI, location and hardware specifications are available in
the majority.

The Roofnet [94] is a well known WiFi-based trace-set built
by MIT. It contains the largest number of data points among
the trace-sets listed in Table VII. However, it is difficult to
obtain the exact Roofnet setup/configuration used during the
collection of the measurement data, since it has evolved with
other contributions. One particular drawback of Roofnet is that
PRR, as a potential LQE candidate, can only be computed as
an aggregate value per link without the knowledge of how the
link quality varied over time. Table VIII shows that this partic-
ular trace-set strictly depends on SNR values for the analysis
of LQE.

The Rutgers trace-set [96] was gathered in the ORBIT
testbed. It is large enough for ML models, requires only
moderate preprocessing and is appropriately formed for data-
driven LQE. It contains the overall packet loss of 36.5%. The
meta-data contains information regarding physical positions,
timestamps and hardware used. The trace-set for each node
contains raw RSSI value along with the sequence number,
as depicted in Table VIII. From the surveyed papers, [18]
relies on both Rutgers and Colorado, while [11] considers only
Rutgers.

The “packet-metadata” [97] comes with a plethora of fea-
tures convenient for LQE research, as indicated in Table VIII.
In addition to the typical LQI and RSSI, it provides
information about the noise floor, transmission power, dis-
sipated energy as well as several network stacks and buffer
related parameters. One of the major characteristic of this
trace-set is to enable the observation of packet queue. Packet

SDomain knowledge is the knowledge relating to the associated environ-
ment in which the target system performs, where the knowledge concerning
the environment of a particular application plays a significant role in
facilitating the process of learning in the context of ML algorithms.
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loss can only be observed in rare cases with very small packet
queue length.

Upon closer investigation for the remaining six trace-sets
listed in Table VII, they are not primarily targeted for data-
driven LQE research. The trace-set from the University of
Michigan [99] is somewhat incomplete and suffers from
an inconsistent data format containing lack of units, miss-
ing sequence numbers and inadequate documentation. The
two EVARILOS trace-sets [100] are mainly well formated,
whereas each contains fewer than 2,000 entries, and thus
both are not well suited for data-driven LQE research. In
Colorado trace-set [101], the diversity of the link performance
is missing as all links seem to exhibit less than 1% packet
loss. Finally, the trace-set of Brussels University [103], at the
time of writing, is inadequate for data-driven LQE analysis,
and suffers from an inconsistent data structure and deficient
documentation.

After careful evaluation of the candidate trace-sets, we can
conclude that the most suitable candidate for data-driven anal-
ysis of LQE is the Rutgers trace-set. Roughly speaking, all the
other candidates lack sufficient size, are structured in improper
format, contain negligible packet loss hindering from practi-
cal LQE investigation and/or rely on deficient documentation.
However, these are the main characteristics required for ML-
based LQE investigation, where it’s classification primarily
depends on PRR. Even though we concluded that the Rutgers
trace-set is the most suitable one for data-driven LQE research,
it also lacks some critical aspects for near-perfect data-driven
LQE research including explicit time-stamps and non-artificial
noise sources just to name a few. We take this conclusion
in account later in Section VI-C where we suggest industry
and research community a design guideline on how a good
trace-set should be collected.

VI. FINDINGS

In this section, we present our findings as a result of the
comprehensive survey of data-driven LQE models, publicly
available trace-sets and the design of ML-based LQE models.
First, we elaborate on the lessons learned from the afore-
mentioned survey of the literature, then we suggest design
guidelines for developing ML-based LQE models based on
application quality aspects and for generic trace-set collection
to the industry and research community.

A. Lessons Learned

Having surveyed the comprehensive literature for LQE mod-
els using ML algorithms in Section II, we now outline the
lessons we have learned throughout this section.

e While traditionally, most LQE models were developed
to be eventually used by a routing protocol, recently
researchers have also identified their potential application
in single hop networks, particularly with the intention of
reducing network planning costs via automation [6].

o Recently, new sources of information or input metrics,
such as topological- and imaging-based are considered for
the development of LQE models, as noted in Section II-C.

e From Sections II-D and III, it can be concluded that rein-
forcement learning is a relatively less popular ML method
for LQE research.

¢ A number of LQE models provide categorization (grade)
for link quality rather than continuous values. The anal-
ysis in Section II-E shows that the number of categories
or classes (link quality grades) varies between 2 and 7.

e There is no standardized and easy way of evaluating and
benchmarking LQE models against each other, as it is
evident from the analysis in Section II-F.

e Only a small number of research papers provide all the
details and datasets so that the results can be readily
reproduced by the research community to improve upon
and to be utilized as a baseline/benchmarking model
for the sake of comparative analysis, as discussed in
Section II-G.

We highlight the following lessons learned from the appli-
cation perspective analysis of the ML-based LQE models
performed in Section III.

e From the application that uses LQE, such as a multi-
hop routing protocol, we were able to identify five
application quality metrics that are indispensable for
the development of an ML-based LQE model: relia-
bility, adaptivity/reactivity, stability, computational cost
and probing overhead. These application quality metrics
are outlined and explained in Section IIl and distilled
from the extensive survey in Section II. These metrics
are sometimes used to evaluate the performance of the
application with/without using LQE.

¢ Only a paucity of contributions explicitly considers adap-
tivity, stability, computational cost and probing overhead
in their evaluation for the performance of an LQE model,
as perceived from the analysis in Section III. No research
paper considers all five aspects together.

e To develop LQE models for wireless networks with
dynamic topology, adaptivity can be enabled with the
aid of online learning algorithms. Important link changes
are difficult to capture with offline models, resulting in a
degradation of the performance of the LQE model, as the
up-to-date link state is unknown to the intended devices.

The lessons learned from design decisions taken for
developing existing ML-based LQE models as analyzed in
Section IV can be summarized as follows.

¢ Training data for ML models often miss data points, for
example no records for the lost packets can be found.
The approach adopted for compensating the missing data,
such as interpolation, may have significant impact on
the final performance of the LQE model and explic-
itly describing the process is important for enabling
reproducibility.

o The feature sets that are utilized for LQE research are not
always explicitly reported nor identical among different
LQE models, which hinders fair comparative analysis for
diverse parameter settings.

e Training data for ML models can be highly imbalanced.
Classification-wise, for example, the training dataset can
be dominated by one type of link quality class (grade),
which consequently leads to a highly biased LQE model
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that is unable to recognize minority classes. To counter
this artifact, resampling has to be employed for highly
imbalanced datasets. No research papers explicitly state
their resampling strategy, as readily observed in Fig. 10
of Section IV-C.

o Logistic and linear regressions are linear models that tend
to be more suitable to approximate linear phenomena.
In practical scenarios, LQE models do not obey linear-
ity and therefore ANN-based models outperform linear
models. However, ANN- and DNN-based models usually
require high memory and computational resources, which
is unfavorable for constrained devices, albeit they may be
tuned to necessitate less resources but at the expense of
proportional performance.

From the overview of measurement data sources in

Section V, we have learned the following lessons.

e Only a limited number of publicly available datasets
record overlapping/identical metrics, which can indeed
empower fair comparative analyses between diverse LQE
models.

e Measurement points indicating the quality of the received
signal on links are commonly defined by SNR, RSSI
and LQL

B. Design Guidelines for ML-Based LOE Model

Due to a very large decision space for developing a ML-
based LQE model, it can be challenging to provide a universal
decision diagram or methodology. However, showing how
application requirements affect design decisions, and by reflex-
ivity, how certain design decisions can favor some application
requirements can be invaluable for the development of ML-
based LQE models. In this section, we provide design guide-
lines on developing a ML-based LQE model starting from the
five application quality aspects identified in Section III and
their implications on decisions during the design steps of the
ML process discussed in Section IV. The visual relationship
of how the application quality aspects influence the design
decisions for developing LQE models is illustrated in Fig. 13.

1) Reliability: When reliability is the only application
quality aspect to be optimized for developing a ML-based
LQE model, trace-set collection, data pre-processing and ML
method selection should be carefully considered, as depicted
in the Reliability branch of the mind map in Fig. 13.

Trace-set collection: The trace-set collection and subse-
quent probing mechanism utilized during the actual operation
of an LQE model, can collect all the input metrics listed in
Table VIII and perhaps even other inventive metrics that have
not been used up-to-date in the existing literature.

Data pre-processing: During data pre-processing, high
dimensional feature vectors using recorded input metrics as
well as synthetically generated ones (see Section IV-B) can be
used as there are no constraints on the memory use or com-
putational power of the machine used to train the subsequent
model.

ML method selection: During ML method selection, more
computationally expensive methods, such as DNN, SVMs with
non-linear kernel as well as ensemble methods, such as random
forests can be considered. For accurate models that provide

very good reliability, these methods are able to train on high
dimensional feature vectors. However, they will also require
many training data-points, possibly hours or days of measure-
ments. While DNNs are known to be very powerful, they
are also excessively data hungry. Their performance can be
significantly diminished if the data-points are not sufficient.

2) Adaptivity: When adaptivity is the only application qual-
ity aspect to be optimized for developing an ML-based LQE
model, data pre-processing and ML method selection are the
two aspects to be examined, as illustrated in the Adaptivity
branch of the mind map in Fig. 13.

Data pre-processing: Adaptivity requires LQE model to
capture non-transient link fluctuations, therefore it has to mon-
itor temporal aspects of the link. This is usually realized
by introducing time windows on which the pre-processing is
done. As opposed to pre-processing all available data in a
bulk mode for subsequent offline development as employed
for reliability aspect, each window is pre-processed separately
for the adaptivity. The size of the window then influences the
adaptivity of the model, where a smaller window size yields
a more adaptive model.

ML method selection: During the ML method selection,
online versions of ML methods or reinforcement learning are
more suitable for capturing the changes in time. Generally, the
online version of an offline ML method may be slightly more
expensive computationally and its performance may be slightly
reduced. Reinforcement learning is a class of ML algorithms
that learn from experience and these are inherently designed
to adapt to changes. The higher the required adaptivity, the
faster the model has to change, leading to a more reactive ML
(method) parameter tuning.

3) Stability: When stability is the only application qual-
ity aspect to be optimized for developing an ML-based LQE
model, the same ML design steps are affected as outlined in the
Adaptivity aspect, namely data pre-processing and ML method
selection, as portrayed in the Stability branch of the mind
map in Fig. 13. However, they are reversely affected when
compared to the adaptivity aspect.

Data pre-processing: Stability requires LQE model to be
immune to transient link behavior. While it may assume
changes over time, it encourages only relevant changes. The
size of the window chosen in this case typically represents a
compromise between the batch approach mentioned for relia-
bility and the relatively small reactive window that maximizes
adaptivity.

ML method selection: During the ML method selection,
online versions of ML methods or reinforcement learning are
more suitable for capturing changes in time, however, they
need to be optimized to detect persistent link changes, while
being immune to transient ones.

4) Computational Cost: When computational cost is the
only application quality aspect to be optimized for developing
an ML-based LQE model, data pre-processing and ML method
selection should be carefully contemplated, as outlined in the
Computational Cost branch of the mind map in Fig. 13.

Data pre-processing: Computational cost optimization
requires reducing memory and energy consumption as
well as processor performance aspects required for the
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LQE model development. For offline or batch process-
ing, the size of the feature vectors should be kept to
a minimum, therefore it has to include only the most
relevant real or synthetic features. Alternatively, project-
ing large feature vectors to a lower dimensional space
might help for training. Additionally, for online processing,
smaller time windows that minimize RAM consumption are
favored.

ML method selection: During ML method selection, less
intensive methods, such as naive Bayes or linear/logistic
regression are preferred. When online versions of the ML
methods are utilized, their configurations should be appropri-
ately adjusted so that the resource usage is kept at minimum.

v Traceset :', available data

\ .
\ collection !+ Minimize feature set
——
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Consider Alternative

1

1

' .
\ learning datasets
L

Mind map representation of design guidelines for LQE model development.

For instance, transfer learning [87] approaches enable stripped
down versions of a complete model that was previously
learned on a powerful machine, which is then deployed to
the production environment. Transfer learning is becoming a
relatively popular way of deploying DNN-based models on
flying drones for instance [87].

5) Probing Overhead: When Probing overhead is the only
application quality aspect to be optimized for developing an
ML-based LQE model, trace-set collection is the only design
process that requires careful attention, as illustrated in the
probing overhead branch of Fig. 13.

Trace-set collection: Trace-set collection and subsequent
probing mechanism utilized during actual operation of the
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LQE model should only collect few and most important met-
rics from the ones listed in Table VIII. Ideally, LQE model
can be engineered to work on passive probing so that it can
only use the metrics that the transmitter captures.

6) Practical Scenarios: A practical application using LQE
will likely request optimizing more than one of the five iden-
tified application quality aspects. As a result, the guideline
and its illustrations for such cases would be more sophis-
ticated and interconnected than in Fig. 13. However, the
proposed guideline provides an overview of the measures to
be taken and presents an invaluable trade-off between these
application quality aspects that require careful attention for
the development of an ML-based LQE model.

For example, when the application requires high reliability
and adaptivity, large feature spaces can be used with powerful
online algorithms on appropriately identified time windows.
However, if computational cost is appended to the require-
ments, the feature space should be limited and the algorithm
parameters should be optimized. If the LQE model is still
computationally expensive, transfer learning or other out-of-
the-box ML methods should be employed. When probing
overhead is also appended to the previously-mentioned appli-
cation quality aspects, then the feature set should only include
locally available data (passive probing) and limited number
of metrics (possibly none) involving active probing, as dis-
cussed in Section II-C. In brief, this guideline can be used as
a reference for the development of an ML-based LQE model
depending on the combination or quality aspects relevant for
the application.

C. Design Guidelines for Trace-Set Collection

We now attempt to provide a generic guideline on how to
design and collect an LQE trace-set, as portrayed in Fig. 14.
It is worth noting that this design guideline comprises of plau-
sible and reasonable observations gleaned from this survey of
LQE and trace-sets, and from the analysis of ML methods
reviewed for the sake of LQE models. Our plausible recom-
mendations on how to design and collect an LQE trace-set
can be summarized as follows, which can also be followed as
in Fig. 14.

1) Core Components of a Trace-Set: Deciding on the data
collection strategy, the application and the environment is
a crucial stage, since the development of an LQE model
is strictly dependent on the trace-set environment including
industrial, outdoor, indoor and “clean” laboratory environ-
ments. State of the radio spectrum and interference level are
important metrics to be taken into account before collecting a
trace-set. For example, for an LQE model to work efficiently
in a particular environment that is exposed to interference,
then the LQE model has to be developed and trained over
this kind of trace-set. More explicitly, one cannot expect an
ML-based LQE model to perform well in an interference-
exposed environment without having it implemented and tested
on a trace-set containing interference measurement data, which
leads us to data collection strategy and the application.

2) Availability and Documentation: Making trace-set pub-
licly available is also another important stage, which can

indeed empower better cross-testbed comparisons and pro-
vide good support/foundation from research community to
conduct and disseminate research on LQE models. There are
numerous ways to make trace-sets publicly available. One
well known repository for wireless trace-sets is CRAWDAD,®
although researchers can also take advantage of other meth-
ods like public version control systems, e.g., GitHub, GitLab
and BitBucket just to name a few. Moreover, a systematic
description on how the trace-set was collected is also required
for research community to understand, test and improve upon.
This will indeed help in capacity building between research
groups.

3) Essential Measurements Data: Plausible logic dictates
that a generic trace-set that can be utilized for any kind of LQE
research is infeasible considering numerous features induced
by the wireless communication parameters. By interpreting our
overall observations gleaned from this survey paper, some of
the most important measurements data or features that are rec-
ommended for an effective LQE research are already included
in the design guideline of Fig. 14 with a notice that other
application-dependent features may be required for a strong
analysis of the LQE model. The elaborated details of these
essential measurements data can be found in Section V.

There may be other application-dependent metrics and fea-
tures (measurements data) related to the set of parameters
of wireless communication that could be taken into account
for a healthy investigation of a particular LQE model. We
observe from the outcomes of this survey paper that each appli-
cation can have unique characteristics and requirements for
maintaining reliability, for satisfying a certain QoS and more
generally for accomplishing a target objective, such as in smart
grid, wireless sensor network, mobile cellular communication,
air-to-air communication, air-to-ground communication, tradi-
tional terrestrial communication, underwater communication
and other wirelessly communicating networks. Explicitly, for
each application of these networks, determining a suitable
evaluation metric is vitally important for the sake of main-
taining a reliable and adequate communication. Therefore,
trace-sets have to be designed and collected based on not
only applications but also on evaluation metrics considering
diverse environments, settings and technologies in order to be
able to derive the properly effective metrics for an efficient
development of the link quality estimation models.

Nonetheless, from the perspective of innovative data
sources, a trace-set can be built without on-site measure-
ments and before embarking on hardware deployments in
order to provide a good estimate for the link quality for
the sake of maintaining reliable communications. To achieve
such goal, Demetri et al. [6] exploited readily available multi-
spectral images from remote sensing, which are then utilized
to quantify the attenuation of the deployment environment
based on the classification of landscape characteristics. This
particular research demonstrates that the quantification and
classification of links can be conducted via solely relying on
the image-based data source rather than the traditional on-site
measurements data.

6A repository for archiving wireless data at Dartmouth: https://crawdad.org.
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research.

For urban area applications, the aforementioned tech-
nique can also be leveraged for maintaining up to a certain
degree of the link quality, but only considering the sta-
tionarity of the deployment environment. This is mainly
because the spectral images obtained via remote sensing rep-
resent a stationary instance of the landscape and thus this
technique would dramatically fail, since the LQE model
developed using remote sensing would not be able to cope
with the high mobility in such a scenario with moving
vehicles, slowly-fading pedestrian channels, mobile UAVs
and so on.

Besides, 3D model of large buildings can also be leveraged
for the optimal indoor deployment of access points and wire-
less devices in order to supply with the adequate connectivity

Design guidelines recommended for the industry and research community to follow in order to design and collect trace-sets for the sake of LQE

and coverage. The trace-set built from this indoor deployment
can be utilized for other large and similar indoor buildings
along with an indoor-generic LQE model to understand the
characteristics of indoor links and to provide high quality link
performance. Similarly, the same strategy can be implemented
for a particular city to understand the link behavior in different
weather conditions. One study for such scenario is conducted
using high frequency [104], [105], where the impact of rainfall
on wireless links was researched. They utilized rain gauges and
their models are demonstrated to contain large bias, and rain-
fall predictions were underestimated, which indicates that a
long-lasting and realistic measurement conditions are required
along with a plethora of measurements data before developing
a healthy LQE model.
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Finally, recording hardware related metrics on a trace-set
could also help in diagnosing potential problems during the
model development. This would indeed require commercial
radio chips that are capable of reporting the chip errors or
chip related issues in order to pinpoint problems that may be
encountered at the time of measurements data collection [106].

VII. SUMMARY

Having outlined the lessons learned along with a compre-
hensive design guideline derived for ML-based LQE model
development and trace-set collection, we now provide our
concluding remarks and future research directions along with
challenging open problems.

A. Conclusion

The data-driven approaches have been long ago adopted in
the study of LQE. However, with the adoption of ML algo-
rithms, it has recently gained new momentum stimulating for
a broader and deeper understanding of the impact of commu-
nication parameters on the overall link quality. In this treatise,
we first provide an in-depth survey of the existing literature on
LQE models built from data traces, which reveals the expand-
ing use of ML algorithms. We then analyze ML-based LQE
models using performance data with the perspective of applica-
tion requirements as well as with the ML-based design process
that is commonly utilized in the ML research community. We
complement our survey with the review of publicly available
datasets relevant for LQE research. The findings from the anal-
yses are summarized and design guidelines are provided to
further consolidate this area of research.

B. Future Research Directions

Finally, we conclude the paper with a discussion on the
open challenges, followed by several directions for future
research, regarding (i) data sources utilized for developing
LQE models, (ii) applicability of LQE models to hetero-
geneous networks incorporating multi-technology nodes, and
(iii) a broader and deeper understanding of the link quality in
various environments.

It is highly likely that commercial markets will leverage
either pre-built LQE models for a particular application or
entire training data to develop models from scratch. The poten-
tial opportunity of “model stores” and “dataset stores” can fol-
low a similar way to conventional application stores/markets,
distributing models for diverse applications. The competition
will gradually become ripe as time elapsed. However, data-
driven models are still in their infancy and several critical open
challenges await concerning LQE models, which are outlined
as follows.

1) A significant challenge is to directly compare differ-
ent wireless link quality estimators. As discussed in
Section II-F, there is no standardized approach to eval-
uate the performance of the estimators, and only a very
small subset of estimators are compared directly in exist-
ing works. Establishing a uniform way of benchmarking
new LQE models against existing ones using standard
datasets and standard ML evaluation metrics, such as

2)

3)

4)

5)

6)

practiced in various ML communities, would greatly
contribute to the ability to reproduce and compare
innovative ML-based LQE models.

The performance of the existing LQE models using
classifiers are solely evaluated based on the accuracy
metric, possibly in addition to another application-
specific metric, as discussed in Section II-F. However, it
is well-known in the ML communities that accuracy is
a misleading performance evaluation metric, especially
for imbalanced datasets [107]. Adopting standardized
metrics for classification, e.g., precision, recall, F1 and,
where necessary, the detailed confusion matrix would
lead to a more in-depth understanding of the actual
performance and behavior of the LQE models for all
the target classes. The same challenge applies to LQE
models solving a regression problem.

Another challenge is to encourage researchers and indus-
try to share trace-sets collected from real networks. More
suitable public trace-sets would allow algorithms and
machine learning models to be properly evaluated across
different networks and scenarios considering the impor-
tant metrics discussed in Section V. Indeed, trace-sets
collected in an industrial environment could better repre-
sent a realistic communication network potentially with
a broad number of parameters.

The other challenge is to go beyond one-to-one trace-
sets. Research community is required to extend the scope
to a more realistic measurement setup, e.g., consider-
ing multi-hop, non-static networks representing several
wireless technologies. Such instances of trace-sets are
scarce due to the necessity of exhausting efforts to mon-
itor and record a packet’s travel through a particular
communication network.

Another challenge is that certain types of trace-sets are
very expensive and time-consuming to gather. One way
to overcome this is to conduct a synthesis of artifi-
cial data using generative adversarial neural networks
as pointed out in [108]. Roughly speaking, this open
challenge is a formidable task, since conducting such
synthesis could potentially introduce unwanted bias
to existing data, even though for specific applications
a number of suitable examples of this method can
be found in the literature, such as wireless channel
modeling [109], [110].

The traditional approach to measure interference is
mainly conducted through SNR or RSSI measurement
data, which strictly relies on the data collection at cer-
tain intervals, and communication established from other
nodes is mainly treated as a background noise for the
sake of simplicity. The aim of interference measurement
as part of this challenge is to develop LQE models
that are aware of the on-going communication within
a heterogeneous communication environment. None of
the trace-set layouts surveyed in Section V is designed
for such asynchronous information. Therefore, research
community and industry have to pay attention to col-
lecting such realistic trace-sets in order to be able to
develop robust, agile and flexible LQE models that can
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readily adapt in dynamic and realistic communication
environments.

7) The wireless link abstraction comprised of channel,
physical layer and link layer represents a complex
system affected by a multitude of parameters, but most
of the LQE datasets and research only leverages a
small number of observed parameters. While recently
additional image-based and topological-based contextual
information has been incorporated in LQE models, it
would be necessary in future large scale multi-parameter
measurement campaigns to also capture the type of
antenna, modulation and coding utilized, producer of
the transceiver, firmware versions, to name a few. Such
efforts would lead to a more in-depth understanding of
the real-world operational networks and potential use
of the findings to make well-informed decisions for the
design of next-generation wireless systems, even beyond
ML-based LQE model development.

In order to realize beyond simple decision making, i.e.,
channel and radio behavior modeling, hand-tuning of com-
munication parameters within transceivers must be avoided.
It is anticipated that the transceivers’ internal components
will be gradually replaced by software-based counterparts.
Therefore, an inevitable incorporation of software-defined
radio (SDR), FPGAs and link quality estimators is expected
for intelligently handling parameters and operations through
self-contained smart components. These joint LQE models
can be designed in a similar manner to [111], particularly
for heterogeneous networks involving the 5G and beyond
communications.

The recent advancements in data-driven approaches in the
form of machine learning and deep learning have already
proven to be successful for the applications of communication
networks. For example, attempts to use neural network-based
autoencoders for channel decoding provide promising solu-
tions [112], which can also be adopted for data-driven LQE
investigation as it is discussed in [40].

The performance of link quality estimator is constrained
by the dynamic network topology and one can keep track of
the network topology changes considering replay-buffer-based
deep Q-learning algorithm developed in [113], where authors
control the position of UAVs, acting as relays, to compensate
for the deteriorated communication links.

Additionally, LQE models involved in the optimization
problems may become very large in size, and thus algorithms
that can reduce complexity have to be developed to tackle
with the scale of the problem. For example, a similar deep
learning approach to [114] can be adopted for improving the
performance of the proposed LQE model by means of elimi-
nating the links from optimization problem that are not utilized
for transmission.

Referring back to Section II-F, we discussed the conver-
gence rate of LQE models. While some contributions [9], [11],
[12], [17] focus their attention on the convergence of their LQE
model, majority of the papers tend to neglect it. Motivated by
this premise, we suggest the research community to pay par-
ticular attention on the LQE model convergence in order to
prove the validity of their proposed models.

In addition to finding other new sources of data, a chal-
lenging task would be to analyze a large set of measurements
in various environments and settings, from a large number of
manufacturers to understand how measurements vary across
different technologies and differ for various implementations
within the same technology, and derive truly effective met-
rics for an efficient development of the link quality estimation
model.

ACRONYMS
4B Four-Bit
4C Foresee
Al Artificial Intelligence
BER Bit Error Rate
CDF Cumulative Distribution Function
ETX Expected Transmission count
FLI Fuzzy-logic Link Indicator
F-LQE Fuzzy-logic based LQE
KDD Knowledge Discovery and Data mining
KDP Knowledge Discovery Process
LQ Link Quality
LQE Link Quality Estimation
LQI Link Quality Indicator
MAE Mean Absolute Error
ML Machine Learning
MSE Mean Squared Error
NLQ Neighbor Link Quality
PER Packet Error Rate
PRR Packet Reception Ratio
PSR Packet Success Ratio
RMSE Root-Mean-Square Error
RNP Required Number of Packets
ROC Receiver Operating Characteristic
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
TCP Transmission Control Protocol
WMEWMA Window Mean with an Exponentially

Weighted Moving Average
WNN-LQE Wavelet Neural Network based LQE.
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