
1

A Survey on Device Behavior Fingerprinting: Data
Sources, Techniques, Application Scenarios, and

Datasets
Pedro Miguel Sánchez Sánchez, José Marı́a Jorquera Valero, Alberto Huertas Celdrán, Gérôme Bovet,

Manuel Gil Pérez, and Gregorio Martı́nez Pérez, Member, IEEE

Abstract—In the current network-based computing world,
where the number of interconnected devices grows exponentially,
their diversity, malfunctions, and cybersecurity threats are in-
creasing at the same rate. To guarantee the correct functioning
and performance of novel environments such as Smart Cities,
Industry 4.0, or crowdsensing, it is crucial to identify the capabil-
ities of their devices (e.g., sensors, actuators) and detect potential
misbehavior that may arise due to cyberattacks, system faults, or
misconfigurations. With this goal in mind, a promising research
field emerged focusing on creating and managing fingerprints
that model the behavior of both the device actions and its
components. The article at hand studies the recent growth of
the device behavior fingerprinting field in terms of application
scenarios, behavioral sources, and processing and evaluation
techniques. First, it performs a comprehensive review of the
device types, behavioral data, and processing and evaluation
techniques used by the most recent and representative research
works dealing with two major scenarios: device identification
and device misbehavior detection. After that, each work is
deeply analyzed and compared, emphasizing its characteristics,
advantages, and limitations. This article also provides researchers
with a review of the most relevant characteristics of existing
datasets as most of the novel processing techniques are based
on Machine Learning and Deep Learning. Finally, it studies the
evolution of these two scenarios in recent years, providing lessons
learned, current trends, and future research challenges to guide
new solutions in the area.

Index Terms—Device Behavior Fingerprinting, Device Identifi-
cation, Cyberattack Detection, Behavioral Data, Processing and
Evaluation Techniques, Device Behavior Datasets.

I. INTRODUCTION

Previsions for 2025 estimate nearly 64 billion IoT devices
connected to each other into diverse cutting-edge environ-
ments such as Smart Cities, Industry 4.0, or crowdsensing
(e.g., Flightradar24, OpenSky, ElectroSense), among others

Pedro Miguel Sánchez Sánchez, José Marı́a Jorquera Valero, Manuel Gil
Pérez, and Gregorio Martı́nez Pérez are with the Department of Informa-
tion and Communications Engineering, University of Murcia, 30100 Mur-
cia, Spain (e-mail: pedromiguel.sanchez@um.es; josemaria.jorquera@um.es;
mgilperez@um.es; gregorio@um.es) (Corresponding author: Pedro Miguel
Sánchez Sánchez)

Alberto Huertas Celdrán is with the Communication Systems Group (CSG)
at the Department of Informatics (IfI), University of Zurich UZH, 8050 Zürich,
Switzerland (e-mail: huertas@ifi.uzh.ch).

Gérôme Bovet is with the Cyber-Defence Campus within armasuisse Science
& Technology, 3602 Thun, Switzerland (e-mail: gerome.bovet@armasuisse.ch)

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

[1]. These environments have their own particularities in
terms of devices, data, communications, and purposes, which
increase the complexity of achieving one of their common
challenges: to optimize the performance of devices and provide
accurate services. To meet this challenge, the advancement
of communication networks and computing paradigms has
influenced that behavioral data science evolved from studying
theoretical and empirical issues related to human behaviors
[2] –its initial scope– to conquer the cyberworld and offer a
promising alternative to model device behaviors [3]. Nowadays,
a thriving research field within behavior data science focuses
on creating device behavior patterns (fingerprints) able to
optimize their performance and detect potential issues in the
early stages [4], [5]. In this context, this article studies the
recent growth of the device behavior research field in terms
of application scenarios, behavioral sources, and processing
and evaluation techniques. Fig. 1 shows an overview of the
typical life cycle implemented by the literature, where different
devices, techniques, and application scenarios are considered.

The first step to build a device fingerprint is to identify the
application scenario where it will be needed. By keeping in
mind the goal of optimizing devices and systems performance,
the literature has recognized two critical application scenarios.
The first one consists in identifying devices with different
granularity levels –to differentiate them and fully exploit
their capabilities [6]– while the second focuses on detecting
cyberattacks [7], malfunction [8], or misbehavior [9] –to
mitigate them. The nature of each scenario influences the
selection of behavioral sources, data, and techniques employed
to create fingerprints since the detection of misbehavior
produced by a given cyberattack is different from identifying
several IoT devices of the same family. Even in the same
application scenario, the behavioral data might be different as
well; this is the case of some cyberattacks affecting network
communications [10], while others impact the CPU usage [11].

In both application scenarios, the literature contains an
extensive number of works where device fingerprinting has
been applied [12], [13], [4], [14], [15], [3], [16]. On the one
hand and in terms of device identification, behavioral data
science has dramatically improved the limitations of traditional
solutions, mainly focused on using names, identifiers, labels,
or tags to identify devices [17]. The main limitation of these
approaches is that they can be modified or even duplicated in an
environment where the number of devices grows exponentially.
Another relevant drawback appears when device identification

ar
X

iv
:2

00
8.

03
34

3v
2

 [
cs

.C
R

]
 3

 M
ar

 2
02

1

2

Training
data

Evaluation
data Fault detectionAttack detection

Processing and evaluation algorithms

Evaluation
result

Device identification

Train

Device behavior monitoring Behavior processing and evaluation Application scenario

Rule-
based

ML/DL-based
Time series-

based

Statistical-
based

Knowledge-
based

Behavior
database

Personal computers

Cloud systems

ICSs

SDN/NFV systems

Clusters

Embedded systems

IoT Devices

Containers and
microservices

Mobile devices

Fig. 1: Common life cycle implemented by device behavior fingerprinting solutions.

is performed at different granularity levels, requiring multiple
labels and increasing management complexity. Nowadays, the
literature categorizes the following identification granularity
levels: type, with the main goal of creating fingerprints able
to detect different types of devices [6]; model, focused on
identifying different models of devices based on common
hardware and software [18]; and individual, probably the
most challenging level because it tries to identify identical
physical devices according to minor differences occurred during
manufacturing processes [14].

On the other hand and with the goal of detecting misbehavior
or malfunction caused by cybersecurity issues, novel and
sophisticated cyberattacks are influencing the replacement
of traditional cybersecurity techniques. Existing mechanisms
based on signatures are no longer effective against unseen,
encrypted, or large-scale cyberattacks, and device fingerprinting
has been identified as one of the most promising solutions to
tackle this challenge [19]. A relevant number of works found in
the literature rely on creating “normal” behavioral fingerprints
to spot changes caused by some previous issues [7], [15], [20].
In this case, fingerprint evaluation is usually tackled from an
anomaly detection perspective [7], [21].

In this context, the article at hand performs a comprehensive
analysis of the main characteristics –devices, behavioral sources,
data, and techniques– considered by the most representative
and recent works of device identification and malfunctioning
detection scenarios. Besides, it studies how characteristics
of device identification, and misbehavior and malfunction
detection scenarios are evolving since last years.

Once having the fingerprints, there is another exciting
research area focused on applying the most suitable techniques
to process and evaluate them. Statistical approaches have been
dominating the field for the last decades. However, the incursion
of Artificial Intelligence (AI), and more concretely Machine and
Deep Learning (ML and DL) as the dominating trend, shifted
the field and generated an open discussion concerning the most
suitable methods per scenario. This manuscript seeks to help
readers understand the trend concerning behavior processing
and evaluation techniques, as well as the most appropriate
techniques for each application scenario.

Influenced by the rise of AI techniques, there is also a
crescent necessity of exhaustive datasets with which algorithms
can train models able to learn and infer valuable information
aligned with the target scenarios. Datasets are also critical

to have standard benchmarks enabling fair comparisons of
existing techniques and solutions. In this direction, this article
also pretends to support researchers working on the device
behavior research field with a review of the most relevant
characteristics of existing datasets.

II. MOTIVATION AND CONTRIBUTIONS

Device behavior fingerprinting is an encouraging research
field that has inspired the publication of several survey articles
for the last years. In terms of device identification, in 2016, Xu
et al. [22] reviewed unique device fingerprinting in wireless
networks. Moreover, Baldini and Steri [23] published in 2017
a review on mobile phone identification based on its hardware
components. Regarding the usage of device fingerprint for
cybersecurity purposes, the surveys related to this study are
mainly focused on Intrusion Detection Systems (IDS). In 2018,
Elrawy et al. [25] published a study focused on IDS and
IoT-based smart environments. Similarly, Khraisat et al. [26],
in 2019, published another review on general IDS-related
solutions and public datasets, mostly containing network data.
In [19], Mishra et al. published a survey, in 2017, where IDS
analysis is addressed with a focus on cloud environments. This
work explicitly considers system behavior analysis, one of the
main sources to ensure a cloud system. Finally, in 2018, Liu
et al. [24] analyzed existing solutions and datasets covering
attack detection based on system calls, with a special focus on
embedded devices.

Despite the contributions of the previous works, as illustrated
in TABLE I, none of them addresses device identification
and misbehavior detection in the same study. Besides, no
previous survey contemplates device behavior fingerprinting
for component malfunctioning detection. In addition, there
is no recent work reviewing from a broad and exhaustive
perspective datasets designed both for device identification
and for intrusion or malfunction detection. Moreover, other
surveys in domains such as digital forensics [27], threat hunting,
and threat intelligence [28], relying on device identification or
attack and fault detection as a basis, also considered behavior
fingerprinting as an issue or challenge to cover, motivating
the importance of this work. In this context, the literature has
some research questions that need to be solved. As the main
relevant, we highlight:
• Q1. Which scenarios, device types, and sources are present

in behavior-based solutions? Depending on the application

3

Work Year Device
Types / Area

Device
Identification

Intrusion
Detection

Malfunction
Detection

Dataset
review Focus and solution categorization

[22] 2015 Wireless
devices 3 7 7 7

• Survey on device fingerprinting in wireless networks.
• Authors differentiate between white list-based and unsupervised algorithms.

[23] 2017 Mobile phones 3 7 7 7

• Survey on mobile device identification based on physical components.
• Fingerprinting techniques are classified in two different categories, emitted
signal-based and electronic component-based.

[19] 2017 Cloud
environments 7 3 7 7

• Survey on IDSs applications focused on cloud computing environments.
• Intrusion detection techniques are divided into misuse detection (rule-based)
and anomaly detection (behavior-based).

[24] 2018
Any, focus

on embedded
devices

7 3 7 3

• Survey on IDSs deployed in hosts and based on system calls.
• IDSs solutions are divided into anomaly and detection-based and misuse
detection-based.

[25] 2018 IoT
Environments 7 3 7 7

• Survey on IDSs focused on IoT-based smart environments.
• IDS types are divided into anomaly, specification and misuse-based.

[26] 2019 Any 7 3 7 3
• IDS survey, groups the solutions in signature-based and anomaly-based.
• Data sources divided into network and system logs and audits.

This
work 2020 Any, focus

on IoT 3 3 3 3
• General survey on device behavior fingerprinting, its application scenarios,
processing techniques and public datasets.

TABLE I: Comparison of survey works considering device behavior fingerprinting.

scenario –device identification or malfunction detection–
and the problem to be solved, the devices and behavioral
sources vary. However, in the literature, there is no solution
detailing these elements and how they are combined.

• Q2. What and how behavior processing and evaluation
tasks are used in each scenario? Device behavior can
be processed and evaluated following diverse approaches.
However, the literature has not studied these approaches
from a broad perspective to have a complete view in the
area.

• Q3. What characteristics do the most recent and repre-
sentative solutions of each application scenario have? It
is required to analyze how device types and behavioral
sources are utilized to solve the problems motivated by
each application scenario. Furthermore, it is also needed to
detect the limitations of solutions related to both scenarios.

• Q4. Which behavior datasets are available and which
are their characteristics? There is no study detailing the
public datasets aligned with device behavior from a broad
perspective, analyzing their characteristics, and defining
in which application scenarios they can be utilized.

• Q5. How have application scenarios evolved for the last
years? To establish the guidelines for future research, it
is critical to describe how device behavior analysis is
evolving in the last years and which are the current trends
and open challenges of the area.

These research questions are closely related to each other
and draw a complete picture of the existing challenges in
device behavior analysis for identification and attack and
malfunctioning detection. Q1 and Q2 deal with devices, data
sources, and techniques used for device fingerprinting. Q3
and Q4 refer to current publications and datasets of device
behavior –the key aspects of this survey and core sections of
the document. While Q5 focuses on the consequences of the
research done so far and its future. Fig. 2 shows where and
how the previous questions are addressed in the article at hand,
acting as table of contents.

To answer the previous questions and provide readers with
an up-to-date vision of device behavior fingerprinting, the main
contributions of this manuscript are:

• An analysis of the behavior data sources and device types

utilized in the literature, paying attention to the application
scenarios in which each source is contemplated (answering
Q1 in Section III).

• A description and comparison of the main techniques and
algorithms utilized to model and evaluate device behavior
based on the morphology of the available data (answering
Q2 in Section IV).

• A comprehensive review and comparison of the charac-
teristics, advantages, and limitations of the most relevant
proposals that consider device behavior to 1) identify
device models or types, 2) identify individual devices, 3)
detect cyberattacks, and 4) detect device/system function-
ing faults (answering Q3 in Section V).

• A description of the principal public datasets containing
device activity and behavior. This description is divided
into datasets designed for device identification and for
attack or behavior anomaly detection (answering Q4 in
Section VI).

• A set of lessons learned, current trends, and future
challenges drawn from the device behavior works and
datasets reviewed (answering Q5 in Section VII).

The remainder of this article is organized as follows. Section
III gives an analysis of device types, application scenarios,
and behavior sources. Section IV reviews the main approaches
and algorithms utilized to process behavioral data. Section V
describes and compares the main solutions found in the state-of-
the-art. Section VI examines the main public datasets containing
device activities. Section VII draws a set of lessons learned,
current trends, and future challenges in the research area.
Finally, Section VIII provides an insight into the conclusions
extracted from the present work.

III. BEHAVIOR CHARACTERIZATION ANALYSIS

With the goal of answering Q1 (Which scenarios, device
types, and sources are present in behavior-based solutions?),
this section studies the most used and promising scenarios
where device behavior has been considered: device identifica-
tion and misbehavior detection. After that, and aligned with
these scenarios, it analyzes the main device types from which
behavioral data is obtained, and the most common behavior
dimensions and characteristics considered by device fingerprint
solutions existing in the literature.

4

Device Behavior Fingerprinting
Research Questions

Q1. Which scenarios, device
types, and sources are present
in behavior-based solutions?

Section III

Device Type
Section III.B

Behavior
Source

Section III.C

Q2. What and how behavior
processing and evaluation tasks

are used in each scenario?
Section IV

Rule-based
Section IV.A

Statistical
Section IV.B

Knowledge-
based

Section IV.C

Machine Learning
Deep Learning

Section IV.D

Time series
Section IV.E

Q3. What characteristics do the
most recent and representative

solutions of each application
scenario have?

Section V

Type or Model
Identification

Section V.A

Individual
Identification

Section V.B

Malfunction and
Fault Detection

Section V.D

Q4. Which behavior datasets
are available and which are

their characteristics?
Section VI

Device
Identification
Section VI.A

Anomaly and
Attack

Section VI.B

Q5. How have application
scenarios evolved for the last

years?
Section VII

Lessons
Learned

Section VII.A

Current
Trends

Section VII.B

Future
Challenges
Section VII.C

Application
Scenario

Section III.A
Attack

Detection
Section V.C

Fig. 2: Discussed questions per article section.

A. Application Scenario

According to the heterogeneous capabilities of device
behavior fingerprinting, the literature has applied it in a wide
variety of scenarios with different objectives. After reviewing
the state-of-the-art, we highlight the following two categories
as the most used and well-known: Device identification and
Misbehavior detection.

1) Device identification: It uses the behavior of devices
to identify them and their characteristics. This task can be
performed from the following two perspectives.

Device type or model identification. Device type identifi-
cation [6], [12] aims to recognize the device category such
as general computer, IoT sensor, or embedded device, among
others. In contrast, device model identification [18], [29] aims
to differentiate between devices of the same type but different
hardware and software configurations.

Individual device identification [14], [30] distinguishes be-
tween devices with identical hardware and software capabilities.
This approach requires the lower level data, usually related to
hardware variations during fabrication. Although device activity
can also be employed to model user behavior and perform
user’s identification and authentication [31], [32], [33], user
inputs and activity monitoring fall out of the scope of this study,
which is focused only on device behavior analysis, without
human interaction.

2) Misbehavior detection: It seeks to identify anomalous
situations based on changes in normal device behaviors. The
anomalous situations are very varied; therefore, the solutions
trying to recognize these situations are also heterogeneous. The
next two main families of behavior anomaly detection solutions
can be found in the literature.

Attack detection [7], [34], [20], [35] intends to detect
anomalies, created by cyber threats, according to the previously
known normal device behavior. These solutions are commonly
deployed as an IDS based on device behavior, being either
Network-based (NIDS) or Host-based (HIDS). The cyberattacks
detected using behavior are very diverse and depend on the
monitored dimensions. These can range from impersonation
and spoofing to malware execution.

Malfunction and fault detection [8], [36], [16] tries to
identify devices that are not functioning correctly because
some component or service is failing. The malfunctioning
could be caused by faults such as damaged hardware, a service
or hardware overload, or network issues. Solutions addressing

this approach assume that the fault will somehow affect the
general device behavior.

B. Device Type

Device activities, properties, and interactions can be mon-
itored in an exhaustive range of heterogeneous devices and
systems. Then, behavioral patterns can be built with diverse
goals by almost any device. However, the data collection
process is different depending on factors such as device
hardware and software. At this point, it is important to describe
the principal device and system categories used in the previous
application scenarios.

Personal computers. This category includes computers
commonly found in homes and workplaces [37]. We can
differentiate two main kinds of personal computers, desktop
devices and laptops, differentiated by power supply.

Mobile devices. Smartphones and tablets are grouped in this
category. Mobile devices are mainly constrained by battery.

Embedded systems. These low-cost systems are designed
and built to perform very specific tasks and their functionality
is usually limited by processing and energy constraints [38].

Industrial Control Systems (ICS). This family groups
devices and systems that supervise and control critical services
of industrial processes [39], involving sensors and actuators.
ICSs are usually deployed as supervisory control and data
acquisition (SCADA) systems [40].

IoT devices. Any system with processing power and con-
nected to the Internet can be considered as an IoT device.
Typically, the IoT device concept is associated with embedded
systems with connectivity capabilities such as sensors and
smart-home objects. However, it covers a wider variety of
devices [38], including drones, or wearable devices, among
others.

Cloud systems. They provide the following three principal
service models, in which resources can be accessed remotely
and through network [41]: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS).
In the last years, Cloud paradigm has evolved towards Fog [42]
and Edge Computing [43], where cloud systems are deployed
closer to end-user devices, reducing latency and speeding up
computations.

SDN/NFV systems. SDN and NFV are concepts that usually
appear together, although they can also be utilized separately
[44]. The Software Defined Networking (SDN) paradigm [45]

5

is a network architecture where network control is decoupled
from the data plane, having a centralized controller managing
the traffic flows and enabling network programmability and
abstraction. Network Function Virtualization (NFV) paradigm
[46] is a network architecture where network devices are
vitalized using software implementations.

Containers and microservices. Containers are software
packages that include an application code and all its dependen-
cies, allowing a lightweight deployment. Microservices [47] are
applications with a single fixed function, commonly deployed
as containers. Several microservices can be combined to build
more complex applications distributedly.

Clusters. A cluster is a set of computers, typically Linux
devices [48], connected closely to combine their resources and
work as a single system. Then, the cluster behavior will be
defined by the behavior of its components.

C. Behavior Source
Once the most representative application scenarios and

devices have been explained, it is necessary to describe the
behavior sources found in the literature, their pros and cons,
and the solutions using each source. This description has been
structured by following the next two main categories considered
in the literature: externally-collected behavior sources and in-
device behavior sources. Finally, the key aspects of the behavior
data considered by each solution are compared.

1) Externally-collected behavior sources: In this category,
an external device is used to monitor the device behavior.
Concretely, network communications and emitted electromag-
netic signals are the main externally-collected sources used
to model devices behavior. In the case of network-based data,
data is usually collected by a proxy or a gateway, while
electromagnetic signal-based data is collected by a sensor
through an antenna.

Network communications. From the network communi-
cations perspective, a diverse set of behavioral features can
be extracted by monitoring network packets. They depend
on the granularity of the traffic inspection and the TCP/IP
layers gathered. The main advantage of this dimension is its
universality, as almost any device has network interfaces, and
the possibility of monitoring many devices from a single gate-
way. As drawbacks, this dimension can suffer impersonation
attacks and encryption makes data analysis more difficult. In
this context, some solutions only focus on the amount of data
sent/received and the IPs to which the device is connected
[9], [49]. Other solutions also perform packet header and flow
statistics analysis [12], [50]. And finally, other solutions also
include data related to transport or application layer protocols
or payload data [51], [52]. Generally, payload data is protected
using encryption methods, so the majority of solutions utilize
header and flow-based data. However, some works focus on
encrypted communication analysis for fingerprinting [53], [54].
From the application usage point of view, this category is
utilized for device model identification [4], [50], device type
identification [13], [6], [55], attack detection [56], [15], [7]
and fault detection [57].

Clock Skew. Based on crystal oscillator imperfections that
occurred during the manufacturing process, internal clock

counters of different devices have slight variations. In this
sense, it is possible to utilize this characteristic to differentiate
devices based on their hardware behavior. The main advantage
of this source is that it can be collected from outside the device.
As drawback, clock skew distribution concentrates around 0, so
this source cannot be applied as a unique source in large device
deployments [58]. Clock skew can be calculated by observing
how internal device timestamps vary in time, mainly using TCP
and ICMP timestamps [59] and Wi-Fi beacon timestamps [60],
[61], so it can be seen as a special category of network-based
data. From the application perspective, clock skew has been
utilized for individual device identification [60], [61], [62],
[63].

Electromagnetic signals. This category relies on the be-
havior of electromagnetic signals emitted by each device. Its
main advantage is the difficulty of tampering it, as it depends
on emitted signal properties. In terms of disadvantages, we
highlight that the data gathering process must be physically
close to the monitored device, since electromagnetic signals
lose intensity as the distance to the transmitter increases. Radio
signals are used in the literature to distinguish drone models
[64], [65], [66], [67] and to identify physical devices [14], [68].
However, although radio signals have been utilized to detect
anomalies in the radio spectrum [69], no solution specifically
focused on device behavior anomaly detection using radio
signals has been found. Following a similar approach, other
solutions utilize the electromagnetic signals radiated from the
device components to identify physical devices [70].

TABLE II compares the main characteristics of externally-
collected data. As observed, features related to network
communications are used both for device identification and
misbehavior detection, as this source is very heterogeneous. In
contrast, clock skew and electromagnetic-based features are
only applied in device identification, as they are lower-level
sources related to device component characteristics.

Feature Behavior
Source Device Type Application Scenario

DI MD

Packet headers
statistics

Network
Communications

Computers, IoT
devices, ICS

[13] [12]
[18] [29]
[71] [53]

[5] [15]
[56] [72]
[9] [73]

Network flows
statistics

Network
Communications

Computers, IoT
devices, ICS

[74] [6]
[4] [75]

[76]

[7] [10]
[34] [77]
[78] [57]
[79] [80]
[81] [82]
[83] [84]

Packet
payload data
and statistics

Network
Communications

Computers, IoT
devices, SDN, ICS

[52] [50]
[51] [85]

[86] [87]
[88] [54]

[89]
Clock drift

in time Clock Skew Computers, mobile
and IoT devices, ICSs

[60][61]
[62][63] 7

Raw IQ
samples

Electromagnetic
signals

Computers, mobile
and IoT devices, ICSs

[64][65]
[14] [68]
[66] [67]

7

Signal
frequency

Electromagnetic
signals

Computers, mobile
and IoT devices, ICSs [70] 7

TABLE II: Externally-collected behavior characteristics. (DI:
Device Identification. MD: Misbehavior Detection.)

2) In-device behavior sources: In this category, behavioral
data monitoring is performed on the target devices. Thus, lower-
level data related to the device internal functioning can be
collected. This approach has the advantage of not requiring a

6

connection to an external monitoring device. In contrast, as a
drawback, if the device suffers an anomaly, such as an attack,
the monitoring solution may suffer it as well.

Hardware Events. Hardware Performance Counters (HPC)
are special registers built into modern microprocessors that
store hardware-related event counters. The main advantage of
this category is the precision achieved to model the device
operation from a low-level perspective. In contrast, the quantity
and morphology of the HPCs depend on the device CPU
model, which makes it difficult to build general solutions. In
the literature, some solutions [90], [91], [92] utilize HPCs to
model software behavior and detect abnormal operations. In
addition, [91] also utilizes HPCs to identify and authenticate
different devices.

System processors and oscillators. Some devices have
hardware components that include a crystal oscillator. As
in clock skew, the manufacturing imperfections of these
components can be utilized to differentiate physical devices
by comparing their counters drift in time. The main advantage
of this source is its low-level, which enables to differentiate
devices with the same software and hardware. However, the
device should include hardware using oscillators, something un-
usual in resource-constrained devices. Moreover, manufacturing
errors are usually small [58]. In the literature, two components
used for this purpose are the Real Time Clock (RTC) and the
Digital Signal Processor (DSP) [93]. In addition, the time it
takes to execute a particular code or function can also be used
to model system behavior. In this case, this data has been used
to identify device models and the devices themselves [94].

Resource Usage. In this category, different device compo-
nents usage and status are monitored. Commonly, the monitored
components are CPU, memory, disk, and network. Various pa-
rameters can be extracted from each component, such as usage
percentage or input/output statistics. In terms of advantages,
this source is quite general and can be monitored in many
devices and systems. As drawback, continuous resource usage
monitoring consumes many resources. In the literature, this data
is utilized to identify devices [30] and detect behavior anomalies
caused by cyberattacks [21] or system malfunctioning [95],
[36], [49].

Software and Processes. The software deployed in a device
or system also has its particular behavior. Then, the conjunction
of the isolated software behaviors can be utilized to model a
global device behavior fingerprint. As advantage, software
monitoring can accurately model normal device behavior.
However, this source is affected by system updates and
legitimate software modifications. Software can be modeled in
several ways:
• System calls and logs. They serve to monitor the

interactions between the programs running on a device
and its operating system. These interactions encompass
process, file, and communication management operations.
From the application usage point of view, system call
sequences and logs have been used to characterize device
behavior and detect anomalies [35], [96], [97], [98], [99],
[100], [101].

• Process properties. Device software behavior can be
modeled by monitoring each process properties, such as

name, status, or threads. This category also includes the
resources utilized to execute a particular program or code.
In the literature, this category is commonly monitored
together with resource usage or system calls to detect
anomalous behaviors [102].

• Software signatures. Software snapshots (signatures) are
generated for the different device executable and their
configuration files using hashing algorithms. Then, the
snapshots are used to detect software modifications that
cause behavior anomalies [16], [103].

Device Sensors and Actuators. The data collected in this
dimension is very diverse and depends on the device and
scenario typology. The main advantage of this source is that it
can also detect environment failures or attacks. As drawback,
environment knowledge is required to analyze and understand
the data from this dimension, as each device may have different
sensors and actuators. From the application usage point of
view, sensor and actuator measurements are utilized to detect
anomalies [20], [8], [89], [104], [105] and model device types
[4], while sensor hardware information is used to physically
identify the devices [106].

To conclude, on the one hand, TABLE III compares the main
characteristics of data directly collected from the modeled
device. It can be appreciated how HPCs, CPU percentage,
system calls, software signatures, and sensor values are
used both for device identification and misbehavior detection.
Besides, low-level information related to the system processors
and sensor hardware is only employed for device identification.
Finally, features related to resource usage and process properties
are only employed in misbehavior detection. On the other
hand, Fig. 3 shows the behavior sources considered by each
device type, and in which application scenario these sources are
utilized. The numbers indicate the total number of connections
each element has. It can be appreciated that the most extended
sources, based on their generality, are network communications,
hardware events, resource usage, and software and processes.

IV. BEHAVIOR PROCESSING AND EVALUATION
TECHNIQUES

Once reviewed the behavioral data monitored per type of
device and application scenario, the data needs to be processed
to create a fingerprint. This section deals with Q2 (What and
how behavior processing and evaluation tasks are used in each
scenario?) by detailing the algorithms and techniques com-
monly used in the literature to create and evaluate fingerprinting
profiles, highlighting their main advantages and drawbacks. The
existing techniques are categorized in the following five groups:
rule-based, statistical, knowledge-based, Machine Learning
and Deep Learning, and time series approaches. The previous
categories are not mutually exclusive and a particular solution
can belong to several categories. Furthermore, the behavior
processing can be centralized, in the own device or a server,
or distributed using technologies such as blockchain [112],
distributed [113] or federated learning [114], among others.

A. Rule-based
This is the most straightforward approach to create behavioral

profiles. It is useful for devices with a well-known behavior and

7

Feature Behavior
Source Device Type Application Scenario

DI MD

HPC Hardware Events Embedded systems,
IoT devices [91] [90] [91]

[92]

RTC drift System processors
and oscillators Computers [93] 7

DSP
performance

System processors
and oscillators Computers [93] 7

Code
execution time

System processors
and oscillators Computers [94] 7

CPU usage
percentage Resource Usage

Computers,
embedded devices,

microservices,
cloud, NFV, and
cluster systems

[30]

[21] [36]
[107] [11]
[95] [49]

[108] [109]
[16] [110]

CPU activity Resource Usage
Microservices,

NFV, cloud, and
cluster systems

7
[36] [107]
[95] [109]

[3]

System
storage usage Resource Usage

Microservices,
NFV, cloud, and
cluster systems

7
[36] [107]
[95] [108]

System
memory usage Resource Usage

Microservices,
NFV, cloud, and
cluster systems

7

[36] [107]
[95] [49]

[108] [109]
[16] [110]

[3]

I/O throughput
per network

interface
Resource Usage

Microservices,
NFV, cloud, and
cluster systems

7

[21] [36]
[95] [49]

[108] [109]
[110]

System calls
and logs

Software and
Processes

Computers,
resource-

constrained
devices, cloud

and NFV systems

[35]

[35][96]
[97] [101]
[98][100]

[99]

Process
properties

Software and
Processes Computers 7

[102] [111]
[3]

Software
signatures

Software and
Processes IoT devices [103] [16] [103]

Sensor
measurements

values

Device Sensors
and Actuators ICS, IoT devices [4] [20][8][89]

[104][105]

Sensor
hardware
properties

Device Sensors
and Actuators ICS [106] 7

TABLE III: In-device behavior characteristics. (DI: Device
Identification. MD: Misbehavior Detection.)

a reduced set of actions. In this approach, a set of rules defines
how the system should behave, that is, its behavioral fingerprint.
Rules can be defined statically, based on pre-defined actions, or
dynamically, based on the historical actions performed by the
device. Any deviation from these rules is considered a fault or
anomaly. The main advantages of this approach are its speed
and simplicity. As drawbacks, it requires previous knowledge
about the device behavior, and it is not suitable for changing
and complex scenarios. Rule-based evaluation is utilized for
device type or model definition and anomaly detection.

For device behavior evaluation, a recent approach is the
usage of Manufacturer Usage Descriptions (MUDs) standard
[115] files, which define the normal device functioning and are
commonly issued by vendors. This method is mainly utilized
for IoT behavior fingerprint generation and evaluation [80],
[10]. Another rule-based approach is to explicitly define the
software that the device can execute [103] or thresholds for
resource usage [116].

B. Statistical

In this approach, relatively basic statistical data processing
techniques are utilized to extract inferences (properties) from

Personal computers

Mobile devices

Cloud systems

ICSs

SDN/NFV
systems

Clusters

IoT
Devices

Embedded
systems

Hardware Events

System
processors and

oscillators

Resource
usage

Software and
Processes

Sensors and
actuators

Network
communications

Clock skew

Electromagnetic
signals

In-device sources

Externally-collected
sources

4

Containers
and micro-
services

6

7

4

4

7

4

7

8

9

2

9

9

3

9

5

5

Device Type Behavior Source Application
Scenario

Device
Identification

Misbehavior
Detection

8

5

1

1

2

2

2

2

2

1

Fig. 3: Behavior sources available in each device type and
application scenarios. (The numbers shown for each item
indicate its total number of connections.)

data samples. This approach is usually considered in data pre-
processing and anomaly detection. The main advantage of this
approach is its simplicity and that these algorithms do not
require large datasets. However, it does not handle well multi-
dimensional data, and consistent evaluation decisions require
previous knowledge in the area.

For pre-processing, it is common to infer features using sta-
tistical functions such as average, standard deviation, quartiles,
maximum, or minimum, among others. Regarding evaluation,
in some solutions [21], the interquartile range (IQR) is used
as a statistical measure representing the presence of outliers
and anomalies based on data variability (dispersion). In the
same line, Euclidean Distance is used by some approaches [57],
[89], [9] to determine anomaly values based on the distance
between two data measurements. Finally, some works [60],
[8] utilize Expectation Maximization algorithm for clustering
and parameter estimation based on statistically-inferred latent
variables.

8

C. Knowledge-based

This approach aims to represent knowledge extracted from
received data and build a reasoning system capable of inferring
new knowledge. Commonly, the knowledge is built based on a
set of ontologies, and the decision-making process is based on
if-then derivation rules. The main advantages of this approach
are the explainability of the inferred solutions and that it can
solve problems involving incomplete data. As drawbacks, this
approach takes longer time, and it has reduced scalability, as
the system could become too complex if large amounts of data
are utilized.

Knowledge-based approaches are utilized mainly for be-
havioral anomaly detection, being the main ones look-ahead
algorithms and finite state machines. Look-ahead algorithms
are commonly combined or used to make decisions in more
complicated approaches, such as state machines. Furthermore,
these algorithms are also directly used to detect anomalies
[35]. Finite state machines, such as Markov Models [117] and
n-gram models [118], describe the sequential logic followed
by a certain entity and predict its future status based on the
previous ones. In the literature, they are widely applied for
behavior anomaly detection [35], [16], [10], [92].

D. Machine Learning and Deep Learning

In recent years, and based on the increase of processing
power and available data, Machine Learning (ML) [119] and
Deep Learning (DL) [120] algorithms have gained enormous
relevance in almost every industrial or research area, becoming
the dominating trend for data processing and evaluation. The
main advantages of ML/DL based approaches are their capacity
to detect complex data patterns, handle multi-dimensional
and multi-variate data, and adapt themselves to dynamic and
heterogeneous scenarios using massive data. As disadvantages,
the model decisions are usually hardly explainable, based on
the black-box nature of the generated models. Besides, these
algorithms, especially in DL, require large amounts of data
to be trained, and the algorithm training can take much time
and resources. Also, most algorithms require parameter tuning,
which implies repeating the training process several times.
Since ML and DL techniques are very diverse, they have been
widely used for device behavior fingerprint generation and
evaluation, both for device identification [4], [50], [13], [52],
[76], [74], [14], [68], [70] and misbehavior detection [56], [15],
[5], [72], [77], [78], [88], [100].

According to the morphology of the data they receive and
the type of predictions they make, ML/DL algorithms applied
in behavior analysis are distinguished into two main categories:
Supervised Learning and Unsupervised Learning.

The goal of Supervised learning is to infer a model capable
of predicting the output of data vectors based on training
labeled data [119]. Supervised algorithms are mainly divided
into classification and regression techniques.
• Classification algorithms try, based on the training data,

to predict the class to which unseen data vectors be-
long. Additionally, anomaly detection can be performed
using classification algorithms by labeling the data as
normal/anomaly. Common ML classification algorithms

are Decision Tree (DT) [121], Random Forest (RF) [122],
Logistic Regression (LR) [123], Naive Bayes (NB) [124]
or Support Vector Machine (SVM) [125]. These algorithms
are widely utilized for behavior evaluation in device
identification [13], [6], [12], [4], [52], [75], [50], [29],
[71], [51], [70] and behavioral anomaly recognition [97],
[110], [77], [78], [72], [88], [79], [73], [83].

• Regarding Regression algorithms, the output is a con-
tinuous number and not a class. Usual ML regression
algorithms are Linear and Polynomial Regression [126],
which are applied in behavior analysis to evaluate device
behavior and its fluctuation [72].

In Unsupervised learning [119], data vectors are not labeled,
so feature vectors only contain input data. This kind of
algorithm is used to extract patterns by modeling probability
densities on the given data. The three main applications of
Unsupervised learning are dimensionality reduction, clustering,
and anomaly detection.

• Dimensionality Reduction algorithms aim to reduce the
number of variables or features under consideration by
obtaining a set of principal variables from the input
data. In behavior-based solutions, Principal Component
Analysis (PCA) [127] and t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [128] are utilized to speed up
computations and derive new features [5], [75], [10].
Moreover, dimensionality reduction is combined with
statistical algorithms for anomaly evaluation [36], [57],
[107], [109].

• Clustering algorithms have the objective of grouping the
input vectors into a different set of objects based on their
similarities. In device behavior fingerprinting, k-means
[129] and Density-based spatial clustering of applications
with noise (DBSCAN) [130] are usually applied to infer
device classes or types [6], [55], [51], [108], [3].

• Anomaly Detection algorithms seek to identify rare items,
events, or observations based on a set of unlabeled data
points and the assumption that most of the training data is
normal. From this approach, One-Class SVM (OC-SVM)
[131] and Isolation Forest (IF) [132] are widely used in
the literature [7], [34], [133].

From a DL perspective, Artificial Neural Networks (ANN)
[120] are frequently used in the above approaches. However,
a type of architecture cannot be related to a specific use
due to neural networks flexibility, as layers, neurons, and
their connections can be organized in many ways depending
on the problem to be solved. The main types of networks
applied in behavior processing are: Multi-Layer Perceptrons
(MLP), utilized for device identification [29], [76] and anomaly
type classification [79]; Autoencoders, applied for behavior
anomaly detection [18] and dimensionality reduction purposes;
Recurrent Neural Networks (RNN), such as Long Short-Term
Memory networks (LSTM) and Gated Recurrent Unit networks
(GRU), applied from a time series perspective for device
identification [18], [14] and behavior anomaly recognition [15],
[81], [100], [105], [20]; and Convolutional Neural Networks
(CNN), utilized for physical device identification based on
signal processing from a time series approach [14], [68].

9

The previous network topologies can be combined to perform
more complex tasks. For example, some solutions [18] utilize
LSTM layers to build an autoencoder, while other approaches
[82] combine different neural networks to build Generative
Adversarial Networks (GAN) [134].

E. Time Series

Time series analysis utilizes data measurements as a sequence
of values where each measurement is related to the previous
and the next ones. It includes a wide variety of algorithms
and models, including the ones based on ML/DL or statis-
tical algorithms. This approach is utilized both for device
identification and anomaly detection, directly in the model
generation or as data pre-processing. The main advantages of
this approach are its improved performance over single-value
processing approaches. However, it requires a large amount
of data to detect the temporal patterns, and the processing is
time-consuming.

Time series analysis methods are divided into two different
types, frequency-based methods, which analyze data as a
signal with a certain frequency, and time-based methods, which
analyze data evolution with respect to time.

In terms of frequency-based methods, Fourier Transform
(FT) [135], and derived functions, are applied as pre-processing
to obtain the frequencies that form the value signal [91], [6].
From time-based methods, AutoRegressive Moving Average
(ARMA) and derived algorithms are used in behavior prediction
applications [49], [9]. In addition, Dynamic Time Warping
algorithm is also utilized in device behavior evaluation [30],
directly comparing the values of two time series.

Besides, as stated before, Deep Learning has been applied
in behavioral data evaluation from a time series perspective
utilizing RNNs [18], [15], [81], [100], [105], [20] and CNNs
[14], [68].

TABLE IV compares the main properties of the five behavior
processing approaches identified in the literature analysis.
As general conclusion, when the behavior of the device
is composed of a limited and known number of actions
and there is not a large number of dimensions in the data,
the appropriate approaches would be those based on rules
and statistical algorithms, given their reduced complexity
and resource consumption. However, when the data features
maintain complex relationships between them, the most suitable
solutions are those based on knowledge and ML/DL approaches.
Finally, when there is a relationship between the different
measurements based on their order, a time series approach
may provide improved results. Depending on the amount of
data, the available resources, and the complexity of the feature

correlations, some particular algorithms are better than others.
For example, a simple IoT device, like a bulb, with a limited
and known set of actions, can be modeled with a rule-based
approach, leveraging its limited resources. In contrast, a cloud
service that executes different tasks would be hard to model
using rules, instead, an ML/DL-based approach exploiting the
correlations in the sources available would be more successful.
Overall, Fig. 4 shows the global and per year distribution of
works using each technique, note that some works may utilize
techniques belonging to more than one category. ML and DL
rise as the leading group of processing techniques applied to
device behavior fingerprinting, as it is already the main trend
in the area and is still gaining even more prominence.

13.40%

100%

100%

100%

100%

50%

50% 50%

25%25%50%

33.3%

33.3%

33.3% 44.4%

21.73% 4.34% 56.52% 17.39%

13.79% 10.34% 3.44% 48.27% 24.14%

17.64% 17.64% 5.88% 52.94% 5.88%

66.6%

66.6%

11.1% 11.1%

50%

8.24%

24.74%

46.39%
7.21%

Fig. 4: Yearly and global distribution of processing techniques
used by device behavior fingerprinting solutions.

Additionally, to properly evaluate and compare the solutions
performance, it is critical to define relevant metrics. Then,
independently of the evaluation approach followed, there is a
set of common metrics utilized in the majority of behavior-
based solutions. TABLE V shows these common metrics. In
the case of classification approaches, these metrics are based
on the values present on a confusion matrix, while in the case
of regression approaches, the metrics are based on prediction
errors [136], [11]. Moreover, some solutions also consider
factors such as detection time or resource usage.

V. BEHAVIOR-BASED SOLUTIONS AND APPLICATIONS

After analyzing the processing and evaluation techniques
used in device fingerprinting (Q2), and the scenarios, devices,
and data sources (previously, with Q1), we have the background
needed to review and understand device behavior-based solu-
tions. In this sense, this section performs an in-depth review

Approach Simplicity
Expert

knowledge
required

Fast
computation /
Low resource

Large
datasets
required

Large
training time

Multi-
dimensional

data

Decision
explainability Adaptability

Complex
feature

correlations

Rule-based 3 3 3 7 7 7 3
Dynamic

approaches 7

Statistical 3 3 3 7 7 7 7 7 7
Knowledge-based Partial 7 7 7 7 7 3 7 Partial

ML/DL-based 7 7 7 Mainly DL Mainly DL 3 Partial 3 3

Time series 7 7 7 3 3 ML/DL-based 7 ML/DL-based ML/DL-based

TABLE IV: Behavioral processing approaches comparison.

10

Metric name Description Equation

Accuracy Total number of correct
predictions over the total made

TP + TN

TP + FP + TN + FN

Precision Ratio of actual positives over all
the elements predicted as positives

TP

TP + FP
Recall,

Sensitivity or
True Positive
Rate (TPR)

Proportion of actual
positives correctly identified

TP

TP + FN

Specificity or
True Negative
Rate (TNR)

Proportion of actual
negatives correctly identified

TN

FP + TN

False Positive
Rate (FPR)

or False
Acceptance
Rate (FAR)

Proportion of the elements
wrongly determined as positive

among the actual negatives

FP

FP + TN

False Negative
Rate (FNR)

or False
Rejection

Rate (FRR)

Proportion of the elements
wrongly determined as negatives

among the actual positives

FN

TP + FN

F1-Score
It is the harmonic mean of
precision and recall. Also

known as F-Score or F-measure

2× precision× recall

precision + recall

Equal Error
Rate (EER)

Threshold that equals
the FAR and FRR. FAR = FRR

Area Under
Curve (AUC)

Area covered by the plot of TPR
and FPR (ROC Curve) at different
threshold values between 0 and 1

∫
ROC

Mean Squared
Error (MSE)

Average of the squares of
the prediction errors. It
is utilized in regression

1

n

n∑
i=1

(yi − xi)
2

Root Mean
Squared Error

(RMSE)

Root of the average of the
squares of the prediction errors.

It is utilized in regression

√
(

∑n
i=1(yi − xi)2

n
)

Mean
Absolute

Error (MAE)

Absolute average of the prediction
errors. It is utilized in regression

1

n

n∑
i=1

|yi − xi|

Root Relative
Squared

Error (RRSE)

Error relative to a simple
predictor that always returns

the average of the actual values

√
(

∑n
i=1(yi − xi)2∑n
i=1(xi −X)2

),

X =
1

n

n∑
i=1

xi

Detection or
modeling time

Period elapsed between an
attack or anomaly starts and the

monitoring system detects it, or the
time elapsed to model the device

behavior accurately [12], [15]

−

Processing
overhead

or resource
consumption

Resource usage of behavior
monitoring and processing, which
is particularly relevant in resource-
constrained devices [90], [92], [95]

−

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.

TABLE V: Common evaluation metrics considered by device
behavior fingerprinting solutions.

of the most relevant works of the literature that deal with
behavioral fingerprinting to answer Q3 (What characteristics do
the most recent and representative solutions of each application
scenario have?). The analysis of each solution considers
the application scenario, device type, behavior source, data
monitored, processing and evaluation algorithms, and results
criteria. We give particular importance to IoT devices because of
their role in current real-world deployments. Still, it is important
to note that other devices could be fingerprinted considering
the same data sources. Below, the approach followed by each
solution is detailed and grouped by application scenario and
behavior source.

A. Device Type or Model Identification

In this application scenario, we review solutions whose
objective is to identify device models or types. Devices

belonging to the same model or type are treated as equals
by the literature. The main characteristics, algorithms and
performance of each solution are compared in TABLE VI.

1) Network-based identification: Many works in the area
of device type or model behavior fingerprinting address the
identification problem from a network analysis perspective,
deriving statistical features for ML/DL technique application.
Furthermore, they are mainly focused on IoT and ICS devices
differentiation, as this section shows. In this context, the authors
of [71], proposed two fingerprinting methods for ICS device
models. The first was based on the response time between a
TCP acknowledgment and the application layer response, once
the data had been processed. The second method used physical
operation times by measuring the time elapsed to apply some
actions in an actuator. In [12], Miettinen et al. proposed IoT
Sentinel, an IoT device type identification approach based on
device setup network communications. The main goal of this
work was to recognize potentially vulnerable device types and
enhance their security based on rules. Packet headers were
analyzed to derive features resilient to traffic encryption.

Bezawada et al. [52] also presented a network-based method-
ology to perform behavioral fingerprinting and device type
identification inspired in SIP-based fingerprinting [137], [138].
A behavior model data was divided into static, based on the
header protocols used by the IoT device, and dynamic, based
on flow sequences and packet payloads. By following the same
direction, Shahid et al. [75] identified different IoT device
types using bidirectional flow characteristics. Four different
device types were utilized: sensor, camera, bulb, and plug.

Also dealing with device type or model identification, the
authors of [13], utilized ping operations to generate a fingerprint
of different IoT devices to distinguish real embedded machines
from virtual and emulated embedded systems. Several devices
were grouped in each category to make them diverse enough
to model previously unseen devices. For each ping, time-based
statistical features were calculated using ping requests separated
by 0.2 seconds. Oser et al. [29] utilized TCP timestamps
to measure the clock skew of different IoT device models
and identify them. 562 devices of 51 different models were
utilized for classification-based testing. Using only clock skew,
the system could not identify most of the devices. Then, the
authors decided to utilize 12 additional features derived from
the timestamps gathered to calculate the clock skew. Thangavelu
et al. [51] proposed DEFT, a distributed device fingerprint and
identification system. In this approach, SDN network gateways
performed device monitoring and classification locally, while
a centralized control entity generated and distributed the
classifiers. Statistical features were extracted based on packet
headers and application layer protocols, and grouped in 15-
minutes sessions. To identify new device types, clustering
algorithms (k-means) were applied. Similarly, Perdisci et al.
[85] analyzed DNS application protocol to derive IoT model
fingerprints following a document retrieval-based approach.

Another relevant work in the scenario of IoT device model
identification was proposed by Marchal et al. [6]. The authors
presented AuDI (Autonomous IoT Device-Type Identification),
a system designed to identify IoT device type by passively
analyzing its periodic network communications, grouping

11

them using clustering algorithms. To recognize periodic flows,
Discrete Fourier Transform (DFT) was applied to candidate
periods, transforming time domain to frequency domain. Then,
33 different features were calculated for each period. Similarly,
Arunan Sivanathan et al. [4], [136] worked on device type
classification. In this case, packet and flow-based statistical
features were utilized to perform device classification and
behavioral monitoring tasks. Using the same dataset, Msadek
et al. [53] focused on encrypted traffic analysis to identify
IoT device models. In this work, the authors derived statistical
features from headers using a sliding window.

In the same direction, OConnor et al. [50] proposed
HomeSnitch, a framework designed to classify home IoT
devices communication by semantic behavior (e.g., firmware
update/check, audio/video recording, data uploading). To build
application-level models from packet headers, HomeSnitch
used adudump [139] traffic analysis tool. After that, 13
different features were extracted to describe application data
exchanges. The authors used YourThings dataset [140] for
solution testing. Similarly, Trimananda et al. [84] proposed
Ping-Pong, a tool designed to extract packet-level signatures
for events (e.g., light bulb turning ON/OFF) based on device
model. This work covered traffic encryption and unknown
proprietary protocols by applying a clustering-based approach
over statistical packet analysis. Furthermore, Hafeez et al. [55]
proposed IoT-KEEPER, a system for both identify device types
and detect malicious activities using an unsupervised approach
based on fuzzy C-means clustering and interpolation.

Applying more sophisticated DL-based solutions, Ortiz et
al. [18] presented DeviceMien, a probabilistic framework
for device identification which considered stacked LSTM-
autoencoders to automatically learn features and classes from
raw TCP packets. Then, the system modeled, using DBSCAN,
each device as a distribution of the generated classes. For
testing, the authors used two different datasets, one public,
[4], and another private. Kotak and Elovici [76], as a novel
approach, performed a pre-processing step that converted the
TCP network traffic (pcap format) to grayscale images. Then,
an MLP was utilized to classify different device flows based
on the device type. The dataset utilized was from [4].

Another research line covering device identification is based
on the analysis of deployment scenarios such as Smart Homes
or agriculture networks [141], [142]. Kumar et al. [143]
analyzed home networks in order to perform device type
identification and security analysis. In total, 83M devices
deployed in 16M households were collected, analyzing their
distribution and known vulnerability issues. In a device subset, a
96% accuracy was achieved using expert rules and an ensemble
of RF classifiers trained using data from different application
layer protocols. Another smart home device analysis was
performed by Huang et al. [144]. However, device categories
were only manually standardized in this study, mentioning
device type identification and anomaly detection as future
work paths.

Digital forensics has also leveraged device identification
when it helps in forensic investigations, as the increasing
number of devices generates new challenges and motivates
to work on more advanced identification methods [145], [146].

One example of these scenarios is Amazon Alexa ecosystem
forensics [147], [148], where the behavior-based identification
of the devices present in the scenario is a highly valuable
asset. Moreover, the digital forensics field is also leveraging
new technologies such as blockchain when dealing with large
scenarios such as IoT environments [149].

2) Radio-based identification: Drone model identification
is the main research area where radio behavior fingerprinting
is employed for type or model identification. Although this
problem has been traditionally addressed based on physical
characteristics, such as images [150], RADAR and LIDAR
[151], or sound [152](out of the scope of this study), there
is an emerging research line based on radio analysis and
fingerprinting. A relevant work presented by Ezuma et al. [64]
analyzed controller signals to classify unmanned aerial vehicles
(UAV). In the same line, Al-Sa’d et al. [65] used DNNs to
classify drone models based on their radio communications.
Using the same dataset, Allahham et al. [66] improved the
previous results using a 1D CNN. Similarly, Basak et al. [67]
also applied CNNs for drone identification but using their own
dataset, which will be published in the near future.

TABLE VI compares the solutions focused on device type
and model identification. From the previous solution analysis,
we can observe that the device type and model identification
application scenario has been mainly covered from a network
communication perspective. Moreover, it is noticed that most
of the solutions in this area are focused on IoT, as the
heterogeneous nature of IoT devices motivates the usefulness
of solutions capable of distinguishing devices according to
their type and model. Many solutions achieve classification
results over 99% in accuracy and F1-Score metrics, which
indicates that this area is relatively covered by approaches
with good performance. Besides, drone identification is the
main application of radio-based fingerprinting for model
identification. Here, further research is still required to achieve
similar performance to network-based identification.

B. Individual Device Identification

This section analyzes behavior-based solutions focused on
identifying the device itself. It means that they differentiate
devices with the same hardware/software. At this point, it is
important to note that these approaches will also be able to
distinguish different device types and models (the previous
category), and this fact is also considered and evaluated in
some of them. In these solutions, features usually have a lower
level, related to hardware components, trying to differentiate
fabrication variations on the device components. TABLE VII
compares the main characteristics, algorithms applied and
performance of solutions detailed in this subsection.

1) Processor-based identification: In this category, Salo’s
[93] proposed a fingerprinting software method capable of dif-
ferentiating identical personal computers using quartz crystals
characteristics. Concretely, the author utilized the CPU Time-
Stamp Counter (TSC), the Real-Time Clock (RTC), and the
Sound Card Digital Signal Processor (DSP). The solution aimed
to verify how accurate the RTC and DSP were in terms of CPU
cycles by measuring the one-second ticks of the RTC and the

12

Work Year Device
Type Approach Algorithms Behavior

Source Features Dataset Classes Results

[71] 2016 ICS Classification ANN, NB Network Response
delay times Private Device Model 99% and 92% accuracy for response and

operation time recognition, respectively.

[12] 2017 IoT
Devices Classification RF Network Packet

header-based [12] Device Type 81.5% average accuracy on 27 devices,
over 95% for 17 of them.

[52] 2018 IoT
Devices Classification Gradient boosting,

k-NN, DT Network Header and
payload statistics Private Device Type 99% average accuracy and 86-99% TPR

[75] 2018 IoT
Devices Classification t-SNE, RF Network Flow statistics Private Device Type 99.9% accuracy differentiating sensor,

camera, bulb, and plug devices.

[13] 2018 IoT
Devices Classification RF Network Ping timestamps Private Real / Virtual

Device
Detection rate of 99.5% using 25 pings
and 99.9% using 200 pings.

[29] 2018 IoT
Devices Classification RF, SVM, MLP Network Clock skew and

timestamp features Private Device Model 97.03% precision, 94.64% recall and
99.76% accuracy identifying 51 models.

[51] 2018 IoT
Devices Classification k-means, RF Network IoT protocol

flows statistics Private Device Type 97% accuracy, +97% F1-Score (14/16
classes)

[6] 2019 IoT
Devices Classification Clustering + k-NN Network Flow periods

(DFT)
To be

published Device Type F1-Score above 90% for 21/23 labels
and 98.2% overall accuracy.

[4] 2019 IoT
Devices Classification RF Network Flow and

packet statistics [4] Device Model 99.88% accuracy 5.06% RRSE.

[53] 2019 IoT
Devices Classification AdaBoost Network Encrypted

flow statistics [4] Device Model 95.5% accuracy and F1-Score.

[50] 2019 IoT
Devices Classification RF, k-NN,

Gradient Boosting Network Data exchange
statistics [140] Device

Behavior Type
99.69% accuracy, 93.93% F1-Score and
96.82% TPR, and 11.96% UBMR.

[143] 2019 IoT
Devices Classification Rules + RF Network Header and

app-layer statistics Private Device Type 96% accuracy on a manually labeled
subset.

[18] 2019 IoT
Devices Classification

LSTM-autenc.,
DBSCAN,
OC-SVM

Network
Derived

using LSTM-
autoencoders

Private
/ [4] Device Model

Seen devices: 99% accuracy. Unseen
devices: 82% F1-Score and 70%
accuracy.

[84] 2020 IoT
Devices Classification DBSCAN,

State machine Network Packet sequence
statistics Private Device

Activities
97.05-97.48% avg detection and 0.18-
0.32% avg FPR in actions of 19 devices.

[76] 2020 IoT
Devices Classification DNN Network Images generated

from raw data [4] Device Type 99% accuracy identifying 10 network
flow types (9 IoT and 1 non-IoT).

[55] 2020 IoT
Devices Classification C-means and

interpolation Network Flow and
header statistics [55] Device Type

/ Anomalies

99% accuracy for device type
identification and 98% TPR, 4% FPR
and 98% F1-Score for attack detection.

[85] 2020 IoT
Devices Classification Statistical based

on term frequency Network DNS analysis To be
published Device model ≈95% avg AUC and 0.01% max FPR

on 53 models.

[64] 2019 IoT
Devices Classification k-NN Radio

signals IQ samples Private Drone model 98.13% accuracy identifying 15 UAV
controllers.

[65] 2019 IoT
Devices Classification DNN Radio

signals IQ samples [153] Drone model 99.7% accuracy using 2 classes, 84.5%
using 10 classes.

[66] 2020 IoT
Devices Classification 1D CNN Radio

signals IQ samples [153] Drone model 94.6% accuracy for 10 drone classes.

[67] 2020 IoT
Devices Classification CNN Radio

signals IQ samples Private Drone model ≈99% accuracy for 10 drones and
controllers when SNR is 0 dB.

TABLE VI: Device type or model identification solutions based on device behavior fingerprinting.

time needed by the DSP to process one second of audio. Then,
statistical analysis was applied to distinguish computer pairs
between them. Also exploiting processor differences, but based
on execution time, Sanchez-Rola et al. [94] proposed CryptoFP,
a novel approach to identify machines with the same software
and hardware through the generation of a fingerprint using
the time taken to execute a specific function. This fingerprint
was generated by executing the same function many times,
repeating different parameters to model its time variability. In
the fingerprint comparison, the tool compared the most frequent
(mode) time values for each call parameter over all iterations.
The authors conducted several experiments to test long-term
fingerprint stability, and CPU workload and temperature impact
in the fingerprint generation. For future work, the authors
considered solution scalability as fingerprints are compared
one by one. Finally, Lorenz et al. [154] considered embedded
circuits of IoT sensors for unique fingerprinting. To perform
the fingerprinting, predefined voltage sequences were supplied
to the sensor, monitoring how its output varies. Fingerprints
were evaluated directly comparing output sequences and using
RMSE as error measure. Results in individual identification
varied according to sensor model, meaning that some models

have more fabrication variability that others.
2) Clock-based identification: Based on clock skew capa-

bilities, Jana and Kasera [60] worked on uniquely differentiate
wireless access points (AP) based on the clock skew calculated
from their beacon frame timestamps. This work utilized the
uw/sigcomm2004 dataset [155]. The results, using Expectation
Maximization statistical algorithm to compare AP frames,
indicated that clock skew seems to be an efficient and robust
fingerprinting method capable of detecting different WLAN
APs. Similar results to the previous ones were presented by
Sharma et al. in [62]. In this case, the authors utilized TCP
and ICMP timestamp headers to calculate the clock skew
between two devices, validating the work of Kohno et al. [59].
They tested their approach with 210 different devices, some of
them identical, finding that they were able to distinguish both
different and identical devices. Besides, they also tested clock
skew stability based on the measurement methodology and on
several environmental factors, such as temperature or operating
system. Based on these results, the authors concluded that this
approach is suitable for moderate size networks.

Focused on wireless unique device identification, Lanze
et al. [61] considered clock skew stability and uniqueness.
To measure the clock skew, the authors took the timestamps

13

from a wireless AP (sender) sent in wireless beacons and
the timestamps from the measuring wireless client (receiver).
To carry out their experiments, they gathered clock skews
using five different laptops from 388 different APs. Through
their experiments, they concluded that all clock skews were
in a rather short range (±30 ppm) due to restrictions of the
suppliers’ quality specifications. Therefore, although the clock
skew restricts the set of possible devices, it cannot serve as
a unique fingerprint for a wireless access point and has to
be enriched with other features to achieve uniqueness. In the
same line, Radhakrishnan et al. [74] published GTID, a system
for individual wireless device and device type fingerprinting
based on clock skew. This approach utilized clock skew and
communication patterns to generate device signatures from a
DL-based time series approach. The system was tested using
a previous dataset of the team [156], [157], collected from 37
different devices, including some repeated models. Similarly
to [61] and [74], Polčák et al. [58], [63] also discussed clock
skew performance when uniquely identifying different devices.
Here, the authors concluded that clock skew is not completely
stable. Besides, based on the clock skew distribution of the
evaluated devices, the authors claimed that clock skews are
distributed close to 0 ppm. These factors prevent a quick
fingerprint technique to be capable of uniquely differentiate
devices in large scenarios. Finally, the authors also discussed
and demonstrated the possibility of masquerading or falsifying
the clock skew. The authors concluded that this technique
might be suitable for small networks or in combination with
additional data.

3) Resource usage-based identification: Resource usage was
exploited for individual identification in [30]. In this work, the
authors developed a fingerprinting method based on the CPU
usage graph when the device is executing a fixed task. For this
purpose, a benchmark program that included several read/write
operations and calculations was developed. In the evaluation
process, the graph was compared to the previous ones of
the same device using the Dynamic Time Warping algorithm.
The percentage of stable fingerprints was calculated using
the Shannon entropy and stability measurement, achieving a
93.43% of unique fingerprints.

4) Electromagnetic signal-based identification: Other works
solved the identical device identification problem using elec-
tromagnetic signals as data source. Using radio signals, Jafari
et al. [14] used DL techniques to identify wireless devices and
distinguish among identical wireless devices from the same
manufacturer. The authors used ZigBee devices from which a
historical radio frequency trace dataset was obtained. In total,
six identical devices were employed in the tests, concluding that
it was possible to identify devices based on their radio frequency
traces, even if they were from the same model. A similar
approach was addressed in [68], where Riyaz et al. utilized
raw radio samples to build a unique device signature using
Software Defined Radio (SDR) transmissions. This solution
was tested on 5 identical devices. In addition, the authors
analyzed how detection accuracy is impacted by measuring
distance, concluding that classification performance starts to
degrade at 34 feet. Finally, Cheng et al. proposed in [70] a
method capable of identifying identical laptops and smartphone

devices (also different models) based on the electromagnetic
signals radiated from the CPU. As a drawback, this solution
requires the use of an external sensor to measure the CPU
radiated signals within a 16 mm range.

TABLE VII compares the solutions focused on individual
device identification. As a general view of individual device
identification solutions, it can be appreciated that solutions
are focused on general computers and wireless devices. This
ensures solution universality, but opens the door to future
perspectives focused on more specific device types such as IoT
or ICS. It is also noticed the lower-level nature of the behavior
sources utilized, which in this case are mainly based on clock
and processor properties, and electromagnetic signals. Many
solutions achieved high individual identification performance.
However, many of these approaches noticed scalability issues in
large device deployments, as fabrication variations are limited
within determined quality standards.

C. Attack Detection

The third main scenario where behavior fingerprinting is
highly relevant is attack detection. Abnormal situations can
have a wide range of forms, such as network attacks, malware,
malicious firmware modifications, or unauthorized user inter-
actions. Detection can be performed either modeling normal
device behavior and detecting deviations, from an anomaly
detection standpoint, or collecting normal and abnormal labeled
data and performing classification tasks. TABLE VIII compares
the main characteristics, algorithms applied and performance
of solutions detailed in this subsection.

1) Network-based attack detection: The most exploited
source in terms of behavior-based attack detection is network
monitoring. Many solutions, mainly focused on IoT [78], [9],
[72], [87], [7], [10], [15], [77], [88], [158], [5], [34], [56] but
also on SDN/NFV [79], [80] and general computers [82], [83],
[81], [73], have utilized this source for attack detection.

One of the leading research lines focuses on detecting attacks
that deploy unauthorized devices in the environment. In [78],
the authors worked on unauthorized IoT device detection using
white lists and classification ML algorithms. TCP/IP flows
were used to extract features capable of characterizing nine
different types of devices (17 distinct IoT devices were used).
This work also discussed the system resilience to cyberattacks.
Similarly, in [77], the authors used packet headers and payload
data to extract flow-based features capable of creating device
type fingerprints. Then, unknown or suspicious devices with
abnormal behavior could be identified, and their communication
restricted for further monitoring. The dataset used for testing
came from IoT Sentinel [12]. In the same line, Ferrando and
Stacey [9] built a behavior profile of IoT devices based on
entropy and dispersion of metrics related to IP directions, ports,
bytes received/sent, and latency. Anomalies were detected based
on the distance between the average values and the ones being
evaluated.

In contrast, the majority of works in this area cover the
detection of direct cyberattacks, both common ones such as
flooding or port scans, and more sophisticated ones like DDoS,
botnets or ransomware. Amouri et al. [72] proposed an IDS

14

Work Year Device Type Approach Algorithms Behavior
Source Features Dataset Classes Results

[93] 2007 General
computers Classification Statistical

System
processors

and oscillators

RTC and DSP
drift compared

to the TSC
Private Different

physical devices
98.5% and 93.3% of differentiation by
RTC and DSP in 38 PCs, respectively.

[94] 2018 General
computers Classification Statistical

(Mode)
System

processors
Matrix of code
execution times Private Different

physical devices

100% host-based and +80% web-based
device identification in two sets of 89
and 176 PCs.

[154] 2020 IoT Devices Classification Statistical System circuits Outputs based
on voltage Private IoT sensors 0% to 94.3% FPR in individual sensor

and 0% FPR in model identification.

[60] 2009 Wireless
access points Classification Expectation

Maximization Clock skew Wi-Fi beacons
timestamps [155] Known APs Clock skew is a robust method and

can detect different WLAN APs.

[62] 2012 General
computers Classification Statistical Clock skew TCP and ICMP

timestamp Private Different
physical devices

Both identical and different devices
correctly identified.

[61] 2012 Wireless
devices Data analysis Statistical Clock skew Wi-Fi beacons

timestamps Private Different
physical devices

Clock skew is not enough to uniquely
identify a large set of devices.

[74] 2014 Wireless
devices Classification ANN Clock skew

+ Network

Communi-
cation skew
and patterns

[156]
Individual

devices and
device type

From 99 to 95% accuracy and 74%
recall on ID, and 86% accuracy and
68% recall on type classification.

[63] 2015 General
computers Data analysis Statistical Clock skew TCP

timestamps Private Different
physical devices

Clock skew is only suitable for small
networks or combined with other data.

[30] 2019 General
computers Classification Dynamic

Time Warping Resource usage CPU usage-
based graph Private Physical devices 93.43% of uniqueness in the generated

fingerprints of 10 identical devices.

[14] 2018 Wireless
devices Classification MLP, CNN,

LSTM
Electromagnetic

signals

Radio
frequency

IQ samples
Private Different

physical devices

96.3% accuracy for MLP, 94.7%
for CNN and 75% for LSTM when
identifying 6 identical ZigBee devices.

[68] 2018 Wireless
devices Classification CNN Electromagnetic

signals
Raw frequency

IQ samples Private Different
physical devices

98% accuracy is achieved when
identifying 5 identical devices.

[70] 2019 Laptops and
Smartphones Classification Extra-Trees Electromagnetic

signals

CPU radiated
magnetic
signals

Private Different
physical devices

99.1% average precision and recall for
all devices (70), and >98.6% precision
and recall for 30 identical devices.

TABLE VII: Individual device identification solutions based on device behavior fingerprinting (works are grouped by behavior
source, using double horizontal lines to separate them, and sorted by year).

based on IoT device network behavior. This system had a
distributed architecture composed of traffic sniffers in the local
network and a central super node. Device behavior was built on
packet counters determined by MAC and network layer data.
The proposed architecture applied DT algorithm to classify
network instances, and then Linear Regression to generate
time-based device profiles relying on the measure of behavior
fluctuation.

Also from an ML-based perspective, Sivanathan et al. [5]
addressed behavioral changes and attack monitoring based on
flow and packet network analysis and clustering. The authors
tested both direct network attacks (ARP Spoofing, Ping of
Death, TCP SYN flooding, and Fraggle) and reflection attacks
(Smurf, SNMP, SSDP, and TCP SYN reflection). A similar
approach was followed in [88], where the authors performed
attack and anomaly classification using MQTT protocol traces
gathered from DS2OS dataset [159]. In the same line, Lima
et al. [73] presented an approach for detecting DoS/DDoS
attacks using ML techniques. The authors built a customized
attack dataset based on several public datasets (CIC-DoS,
CIC-IDS2017, and CIC-IDS2018 [160]) to benchmark normal
traffic and different DoS/DDoS classification. The solution
presented in [81] also considered network traffic data extracted
from the CIC-IDS 2017 [160] dataset, but in this case for
an unsupervised anomaly detection approach. Here, traffic
sequences were modeled in sliding windows that were fed to
an LSTM network. Similarly, traffic-based anomaly detection
is covered by a wide variety of other works using anomaly
detection approaches [79], [87].

A different view was provided by Yin et al. [82], who applied
DL for botnet behavior modeling and detection. This solution

was based on a GAN that generates simulated data, augmenting
the model trained with the original data. The authors utilized
network flows derived from ISCX botnet dataset [161] as
benchmark. Also focused on botnet attacks, Blaise et al. [56]
presented a bot detection technique based on host behavior.
This solution was divided into three steps: characterizing the
host behavior based on network signatures (aggregated attribute
frequency distribution), inferring benign host behavior using
clustering algorithms (DBSCAN), and classifying new hosts
based on previously labeled instances. To validate the approach,
the authors used the CTU-13 dataset [162]. On similar research
paths, Fernández et al. [158] analyzed ransomware detection
based on behavior analysis in Medical Cyber-Physical Systems.
This work analyzed network flows extracting different statistical
features. Then, anomaly detection and classification ML models
were combined to evaluate the live generated vectors.

In another line, some authors have proposed the usage of
Manufacturer Usage Descriptions (MUDs) to enhance IoT
security. In Hamza et al. [10], flow counters were used to
generate feature vectors, applying PCA and k-means for
dimensionality reduction and clustering, respectively. Then, an
approach based on boundary detection and Markov Chains was
applied for MUD monitoring and anomaly detection, testing it
on several network attacks such as ARP spoofing, TCP SYN,
and UDP flooding or reflection attack. Another approach using
MUD to improve IoT security was proposed by Afek et al.
in [80]. From an NFV perspective, this proposal presented a
hybrid approach where MUD compliance checking is a service
implemented as a virtual network function (VNF), and traffic
monitoring is implemented on the network gateway to ensure
P2P communications. For devices with no MUD, the authors

15

used the algorithm proposed in [163] for MUD generation.
Additionally, other works also apply trust-based approaches

to their solutions, increasing the granularity of the evaluation.
Haefner and Ray presented ComplexIoT in [7], a behavioral
framework designed to evaluate each traffic flow in an IoT
device and calculate a trust score for it. The authors collected
traffic of 25 devices approximately (general computers, smart-
phones, IoT devices). Based on the Flow Trust Score of each
connection, calculated using IF, different policies and rules are
applied to mitigate possible attacks. This solution is deployed
on an enforcement architecture as an SDN environment based
on OpenFlow.

From a distributed perspective, the authors of [15] used
federated learning to build DÏoT, an autonomous self-learning
distributed system for detecting compromised IoT devices.
The system created communication profiles for each device
based on network packets and flows. Then, an anomaly
detection-based approach was applied to detect changes in
the device behavior caused by network attacks (Mirai botnet).
The architecture was deployed using a network gateway (router)
as the Anomaly Detection component. Besides, an IoT Security
Service was in charge of maintaining a repository of GRU
models. Another DL-based distributed solution was proposed
in [34], in which Ali et al. submitted an IoT device behavior
capturing system powered by blockchain and designed to
enable trust-level confidence to outside networks. The authors
deployed a Trusted Execution Environment (TEE) [164] to
provide a secure execution environment for sensitive code and
blockchain data. The data came from the N-BaIoT dataset
[165] and contained network features related to benign and
botnet attack flows. Also from a distributed perspective, in
[83], the authors proposed a behavior anomaly detection system
based on network traffic. Here, the data was stored using a
Hadoop Distributed File System (HDFS), and the processing
was based on distributedly training a Deep Belief Network
(DBN) and a stacked layer SVM using Apache Spark. The
system was tested using different datasets, (KDD99 [166],
NSL-KDD [167], UNSW NB-15 [168], CIC-IDS 2017 [160]).

2) Sensor-based attack detection: Regarding sensor mea-
surements to detect attacks, the main solutions based on this
approach are applied to IoT and ICS environments [89], [20],
[104], [105]. Pacheco and Hariri [89] focused on IoT sensor
behavior analysis to detect common attacks such as DoS,
Flooding or Impersonation. This approach recognized previ-
ously known and unknown attacks by calculating Euclidean
distance from normal sensor measurements. The authors of
[20] performed anomaly detection in cyber-physical systems
(CPS), using GANs and time series data. From this perspective,
the authors built an unsupervised GAN framework based on
LSTM networks , which was tested using SWaT dataset [169],
WADI dataset [170], and KDD99 dataset [166].

Similarly, Neha et al. [105] proposed a behavioral-based
IDS for ICSs, in this case for SCADA systems. This approach
applied RNNs to detect cyber-physical attacks. The model
received sensor measurements gathered from the SWaT dataset
[169]. Zhanwei and Zenghui [104] also proposed an anomaly
detection system for ICSs, but based on the behavior of the data
sequences from the industrial control Modbus/TCP network

traffic. The authors tested their system both in a simulated
water tank scenario and in a real chemical mixing infrastructure,
utilizing sensor measurements to generate a behavior model
and predict future behavior.

3) System calls, logs and software signature-based attack
detection: Other solutions rely on system calls, execution
logs, and software signatures to model device activity and
detect attack situations [96], [35], [97], [99], [103]. These
solutions cover a wide range of device types, including resource-
constrained devices, general computers, and cloud systems.

Based on system call collection and processing, Gideon
Creech [96] developed an IDS based on system call patterns.
The authors utilized a semantic approach over the system call
traces to understand running programs and detect anomalies
utilizing an Extreme Learning Machine (ELM). A Linux
system was monitored under different types of vulnerability
exploitation attacks, and the dataset was made publicly available
as ADFA-LD [96]. Also covering cloud intrusion detection
using system calls, in [98], the authors developed a HIDS
for cloud environments that utilized system calls to build
a normal behavior profile based on Term Frequency-Inverse
Document Frequency (TF-IDF). Then, ML-based classifiers
were employed to recognize the attacks. Following similar
paths, Liu et al. [99] developed a general IDS based on system
call TF-IDF statistical patterns derived from n-gram models.
In [97], Deshpande et al. also faced cloud computing intrusion
detection based on system calls using ML classifiers and call
frequency vectors.

From a different perspective, Attia et al. proposed in [35] an
adaptive host-based anomaly detection framework for resource-
constrained devices. The designed use case targeted the detec-
tion of malicious updates on Android applications. It generated
a normal behavioral model for each monitored application using
n-gram language models. Additionally, He et al. [103] proposed
BoSMoS, a distributed software status monitoring system for
Industrial IoT (IIoT) enabled by blockchain. To accomplish its
goal, the system stored a snapshot of the device software in
the blockchain and then monitored its system file calls. This
solution was executed in 300s intervals, so modified software
did not run for more than these 300s. Finally, the authors also
tested solution scalability, performance, and security.

4) Hardware event-based attack detection: Apart from the
behavioral data considered by the previous solutions, other
works such as [90], [92], [91] used Hardware Performance
Counters (HPC) to model system behavior. These solutions
focused on resource-constrained devices such as embedded
systems and IoT devices. In [90], the authors presented
ConFirm, a technique to identify device behavior and detect
malicious modifications in the firmware of embedded systems
using HPCs. Deviations, based on execution paths, were
calculated to evaluate the system performance. The proposal
was tested on ARM and PowerPC embedded processors,
verifying that the solution was able to detect all the tested
modifications with low resource overhead. In [92], Golomb et
al. proposed CIoTA, a lightweight framework using blockchain
to perform distributed and collaborative anomaly detection in
resource-constrained devices. In this solution, an Extended
Markov Model (EMM) captured an application control-flow

16

asynchronously using HPCs. Attack informing blocks were
submitted to the blockchain (validated by neighbor devices)
to ensure that an attacker cannot exploit a large number of
devices within a short period of time. The system was tested in
an IoT platform composed of 48 Raspberry Pi simulating smart
cameras and lights. An exploit was executed to simulate a bot
behavior in some devices. The authors also mentioned some
countermeasures, such as alerts, service restart, or poweroff.

Ott and Mahapatra [91] utilized HPCs and their occurrence
frequency to enable continuous authentication of embedded soft-
ware. For this purpose, the HPCs streams were processed using
Short-Time Fourier Transforms (STFT) to extract frequency
information. The authors discussed the usage of classifiers;
however, they considered these models too heavy for embedded
systems and chose to build their own authentication algorithm
based on cyclic redundancy check (CRC) function and state
machines.

5) Resource usage-based attack detection: An alternative
approach to detect anomalies caused by attacks consists in
resource usage monitoring [3], [21], [11], applied mainly in
cloud and container systems. Shone et al. proposed in [3] a
misbehavior monitoring solution for DoS detection in cluster-
based systems. This solution utilized resource usage metrics
together with process and file modification monitoring to model
the system behavior. Anomaly detection was addressed based
on thresholds, clustering, and statistical similarity calculation.
Similarly, Barbhuiya et al. proposed in [21] a DDoS and
cryptomining attack detection framework for cloud data centers.
The solution, called RADS (Real-time Anomaly Detection
System), monitored CPU and network utilization as a time
series for anomaly detection. Then, different window-based
approaches were applied to perform attack identification based
on IQR Spike detection analysis. For testing, a real-world
dataset was gathered from Bitbrains data center [171].

Additionally, some works have also covered attack counter-
measure actions. In this line, the authors of [11] presented
an anomaly detection mechanism based on resource behavior
designed to identify when a cloud system should be auto-
scaled. To detect anomalies, an AutoRegressive (AR) model
was trained using CPU usage statistics, and the prediction
error on the test dataset was used as anomaly measurement.
The system was only tested using two DoS and stress attacks,
detecting both of them.

The main characteristics of the attack detection solutions
are summarized in TABLE VIII. Based on the attack detection
solution analysis, we can claim that attack detection is the
most varied behavior application scenario. Although network is
the most used source, others such as system calls or resource
usage also have notable relevance. The same heterogeneous
distribution can be observed regarding processing and evalua-
tion approaches, having a balance between classification and
anomaly detection. The concrete sources and techniques applied
are related to the type of attacks addressed. Thus, although
many solutions achieved successful results, the rapid evolution
of attack techniques leads to the need for new future solutions
in this area.

D. Malfunction and Fault Detection
The last behavior application scenario identified is malfunc-

tion and fault detection. In these solutions, the purpose is
to detect faulty devices or malfunctioning components based
on device behavior changes. This approach has been applied
to several device types, such as IoT [86], [57], ICSs [8],
NFV systems [100], [95], [49], [108], general computers [101],
cloud systems [36], [107], and containers [109], [16], [110].
TABLE IX compares the solutions detailed in this subsection.

1) Network-based fault detection: Choi et al. [86] addressed
faulty IoT device identification based on behavior fingerprinting
from sensor data and its correlation. This solution was named
DICE, and it was installed in the network gateway to extract
context from application-layer communications and generate
statistical features for a vector distance-based evaluation. In the
same line, Spanos et al. [57] proposed a security solution based
on the generation of behavioral templates using the IoT device
network communications. PCA dimensionality reduction and
DBSCAN clustering were applied to the network data to detect
abnormal devices. Based on Euclidean distance, devices located
far from a cluster center generated an alert and triggered some
mitigation actions. This proposal was validated under simulated
physical damage and mechanical exhaustion anomalies.

2) Sensor-based fault detection: Sensor data has also been
applied in the literature for fault detection. In this line, Manco
et al. [8] explored ICS fault detection based on sensor stream
data analysis. The system performed window-based processing
to obtain statistical features, and then clustering to build classes
from unlabeled data. Finally, outlier detection was performed to
distinguish failures using Expectation Maximization algorithm.
This approach was tested in train door failure detection.

3) System log-based fault detection: From the system
log perspective, in [100], the authors applied a multimodal
LSTM network approach to perform anomaly detection in
NFV microservices based on distributed execution traces.
Kubacki et al. [101] explored abnormal behavior detection
based on system logs related to performance metrics. The
authors performed a pulse-oriented time series analysis to
characterize periodical behaviors and detect anomalies using
a self-developed algorithm called PANAL. The correlation
between metrics was evaluated on real logs, finding a high
correlation during anomalous situations such as truncated
cyberattacks or data backups.

4) Resource usage-based fault detection: In the malfunction
and fault detection scenario, the most common data source
is resource usage, especially for fault finding in cloud and
container systems. In this context, Gulenko et al. [95] proposed
an anomaly detection architecture for large-scale NFV systems.
In this proposal, different resource usage metrics were collected
from each host in short time intervals. To process the data,
the architecture used techniques based on online unsupervised
clustering and classification algorithms. The authors claimed
that the preliminary evaluation showed a high degree of
reliable recognition of pre-defined failure scenarios. In addition,
Sorkunlu et al. [109] published a method to track the behavior
of a cluster system based on its resource usage. Data was
organized into three-dimensional tensors (compute nodes,
usage metrics, and time). To measure behavior changes, data

17

Work Year Device
Type Approach Algorithms Behavior

Source Features Dataset Attack Type Results

[78] 2017 IoT
Devices Classification RF Network Flow-based

statistics Private Untargeted /
targeted attacks

99% accuracy in white-listed devices
and 96% in not white-listed.

[9] 2017 IoT
Devices Classification

ARIMA,
Euclidean
distance

Network Header
statistics Private Unusual changes

and attacks

Anomalies visualized based on
behavioral distance, no performance
metrics were given.

[72] 2018 IoT
Devices Classification DT, Linear

Regression Network
Mac and

network layer
counters

Private Traffic
anomalies

100% detection (TPR) after 3000s (3
reports).

[82] 2018 General
computers Classification GAN Network Traffic flow

statistics [161] Botnet behavior
74.04% precision, 71.17% accuracy,
70.59% F1-Score, 15.59% TPR for
botnet activity detection.

[83] 2018 General
computers Classification (Spark) DBN

and SVM Network Traffic flow
statistics

[166], [167],
[168], [160] Network attacks 93-97% F1-Score in the tested

datasets.

[79] 2018 SDN Anomaly
Detection

SVM,
kNN, MLP Network Traffic statistics Private DDoS, port-scan

and flash crowd Attacks were detected and mitigated

[81] 2018 General
networks

Anomaly
Detection LSTM Network Traffic flows [160] Common

network attacks
87% AUC average, over 71% AUC in
all attacks.

[87] 2019 IoT
Devices

Anomaly
Detection

RPNI +
RANSAC Network Application-

layer series Private IoT anomalies The attacks are discovered with high
accuracy.

[7] 2019 PCs, IoT
Devices

Anomaly
Detection IF Network Flow statistics Private DDoS and

botnets
Different device confidence based on
behavior Flow Trust Score.

[10] 2019 IoT
Devices

Anomaly
Detection

PCA, k-means,
Markov Chains Network Flow counters [10] Network attacks 94.9% accuracy, 89.7% TPR, and 5.1%

FPR.

[80] 2019 NFV Anomaly
Detection

While-listing
(MUD) Network Traffic flows Private Unauthorized

connections Unknown connections forbidden

[77] 2019 IoT
Devices Classification RF Network Flow-based

statistics [12] Attack
prevention

90.3% accuracy using RF, outperform-
ing other ML algorithms.

[88] 2019 IoT
Devices Classification SVM, RF,

ANN, LR Network MQTT-traces
features [159] DoS, control,

Scan
99% F1-Score classifying normal and
attack traces.

[73] 2019 General
computers Classification RF Network TCP/IP header

statistics [73] DoS/DDoS 96.5% attack detection rate, 99.5%
F1-Score, 0.2% FAR

[158] 2019 CPSs
Anomaly

Detection /
Classification

OC-SVM / NB Network Flow statistics Private Ransomware
attacks

95.9% F1-Score, 4.6% FPR in
anomaly detection, and +99%
classification accuracy.

[15] 2019 IoT
Devices

Anomaly
Detection

(Fed. Learn.)
GRU Network Header

statistics
To be

published IoT attacks 95.6% attack detection rate and fast
(≈257 ms) attack detection.

[5] 2020 IoT
Devices

Anomaly
Detection PCA, k-means Network Header

statistics [4], [10] Network attacks
91.3%-84.3% average detection rate
for direct network attacks, and 99.1%-
58.8% for reflection attacks.

[34] 2020 IoT
Devices

Anomaly
Detection

(Blockchain)
Neural Network Network Flow statistics [165] DDoS attacks 99.2% TPR and 175 ± 230ms to

attack detection.

[56] 2020 IoT
Devices Classification DBSCAN Network TCP, UDP,

ICMP headers [162] Botnet detection
(and attacks) 100% TPR, 0.9% FPR

[89] 2018 IoT
Devices Classification Euclidean

Distance Sensors Sensor
measurements Private Common

network attacks
98% accuracy for known attacks and
up to 97.4% for unknown attacks.

[20] 2019 ICSs Anomaly
Detection

LSTM-based
GAN Sensors

Measurement
value

sequences

[169],
[170], [166]

Cyber-physical
attacks

99.99%-46.98% precision, 99.98%-
96.33% recall and 94%-37% F1-Score,
depending on the dataset.

[104] 2019 ICSs Anomaly
Detection Linear model Sensors Sensor

measurements Private Tampering
and MitM 5.5-6.4% FPR and 11-17% FNR

[105] 2020 ICSs Classification RNN Sensors Sensor value
sequences [169] Cyber-physical

attacks
98.05% accuracy and 97% TPR when
classifying normal and injected data.

[96] 2013 General
computers

Anomaly
Detection ELM System

calls
Semantic
features [96] Vulnerability

exploitation 100% TPR and 0.6% FPR.

[35] 2015 Mobile
devices

Anomaly
Detection

Look-ahead,
N-gram tree

System
calls

n-gram
sequences Private Malicious

app updates
≈70% detection rate and 0% FPR.
20-50% CPU and <8% RAM.

[97] 2018 Cloud
systems Classification k-NN System

calls
System call

traces (audit) Private Anomalous
call sequences 90% accuracy, 96% TPR, 42.5% TNR

[98] 2020 Cloud
systems Classification RF System

calls
Frequency
statistics [172] Anomalous

system calls
100-94% TPF, 6.2-0% FPR and 6-0%
FNR.

[99] 2020 General
computers Classification IF, LOF,

OC-SVM, k-NN
System

calls
n-gram

sequence stats.
[96], [173],

[102]
Anomalous
system calls

73.7% overall best AUC. < 110s for
evaluation.

[103] 2020 IoT
Devices

Anomaly
Detection

Hash equality
checking

Software
signatures File snapshots Private

(Simulated)
Software

modification
Executable modification detection
within 300 seconds.

[90] 2015 Embedded
systems

Anomaly
Detection

Execution
path deviation

Hardware
Events HPCs Private Firmware

modifications
The system is plactical with low
overhead

[92] 2018 IoT
Devices

Anomaly
Detection

(Blockchain)
EMM

Hardware
Events

HPCs app
control-flow Private Adversarial

attacks
Exploit execution easily identified,
enhancing network overall security.

[91] 2019 Embedded
systems

Continuous
Authenticat.

Own (Window +
Fourier + CRC)

Hardware
Events HPCs Private Abnormal

software
97% TPR, 1.5% FPR in the
authentication of embedded software.

[3] 2013 Cluster
systems

Anomaly
Detection

Threshold+
k-means +
statistical

Resource
usage

Hardware,
process and

file info
Private DoS attacks

0.11% FPR and 0% FNR detecting
DoS attacks, consuming only 0.5%
RAM and 14% of CPU.

[21] 2018 Cloud data
centers

Anomaly
Detection IQR Resource

usage CPU, network [171] DDoS,
Cryptomining 90-95% F1-Score and FPR of 0-3%

[11] 2018 Cloud
systems

Anomaly
Detection

Autoregressive
(AR) model

Resource
usage CPU Private DoS, service

stress attack Attacks are fully detected

TABLE VIII: Main attack detection solutions based on device behavior fingerprinting (works are grouped by behavior source,
using double horizontal lines to separate them, and sorted by year).

18

was grouped in ten-minute time windows and dimensionality
reduction algorithms were applied. Finally, the reconstruction
error was measured. In [49], by the same team as [95], the
authors proposed an unsupervised detection approach using the
Online ARIMA forecasting algorithm [174]. This model was
based on predicting the next expected values and comparing
them with the actual ones. The authors introduced controlled
anomalies, such as disk pollution, or HDD, CPU, and memory
stress and leak, being able to recognize all of them. This team
also addressed black-box service modeling [108] based on
clustering to detect functioning anomalies like in the previous
work. The used clustering algorithm was BIRCH [175].

Following a similar approach, Wang et al. [36] proposed
a self-adaptive monitoring architecture for online anomaly
detection in cloud computing. The system gathered performance
metrics from different sources such as CPU, Network, Memory,
and Disk. To calculate anomalies, the PCA-based eigenvector
of the metrics was compared to the standard eigenvector. The
adaptability could be achieved by adjusting a sliding window
based on the estimated anomaly degree. A similar line to
this work was covered by Agrawal et al. [107], where similar
features were collected and PCA was used as dimensionality
reduction algorithm. Besides, Du et al. [110] proposed a
framework to monitor and classify anomalous behaviors in
microservices and containers. Different anomalies, such as
high CPU consumption or memory leak, were injected, and the
generated data was labeled for using ML classifiers. Finally,
Samir and Pahl [16] utilized hierarchical hidden Markov models
(HHMM) to detect anomalies in container clusters. HHMM
model was compared with Dynamic Bayesian Network and
Hierarchical Temporal Memory to detect resource exhaustion
and workload contention, achieving the best results in three
different generated datasets.

TABLE IX compares the main characteristics and results of
the solutions focused on fault and malfunction detection. From
the description of the previous solutions, we can observe that

resource usage and system logs are the most used behavior
source for fault detection, especially in NFV, cloud, containers,
and microservice systems. In contrast, IoT devices and ICSs
faults have been solved based on a network and sensor-based
perspective. Moreover, most of the solutions are focused on
anomaly detection-based evaluation, instead of using labeled
data. Finally, Fig. 5 shows the distribution of the analyzed
solutions regarding their application scenario and behavior
source, and their publication year.

VI. PUBLIC DATASETS

To address Q4 (Which behavior datasets are available and
which are their characteristics?), this section reviews the
main public datasets containing device behavior activities and
characteristics found in the literature. Specifically, it analyzes
datasets contemplating the scenarios, devices and sources
discussed in Q1, allowing validating most of the techniques
presented in Q2, and studying the scope of the solutions
analyzed in Q3. Each dataset is described by taking into account
the devices and sources monitored, and data morphology. Below,
the analysis is organized according to the two main application
scenarios stated in Section III, which are Device identification
and Misbehavior detection –attack and anomaly detection.

A. Device Identification Datasets

Several datasets published in recent years and collecting
device behavior are conceived to perform device model, type, or
individual identification. In 2006, Maya Rodrig et al. published
the uw/sigcomm2004 dataset [155]. The main purpose of this
dataset is to analyze how Wi-Fi networks work and how they
can be improved. This dataset contains 70 GB of both wired
and wireless traces. The wireless traces were collected for
five days using three computers in monitor mode near access
points. Selcuk Uluagac published in [156] the dataset associated
with his research work on network-based individual device
identification [74], [157]. This dataset contains the inter-arrival

Attack detection
(35)

Sensors
(4)

System calls
and logs

(5)

Software
signatures

(1)
Hardware

events
(3) Resource

usage
(3)

Network
(2)

System calls
and logs

(2)

Sensors
(1)

Resource usage
(8)

Individual
identificaion

(12)

Behavior-based
Solution

Distribution

Type or model
identification

Network
(17)

Electromagnetic
Signals

Electromagnetic
Signals

(3)
Resource usage

(1)

System processors
and oscillators

(3)

Clock skew
(4)

Network
(1)

Malfunction and
fault detection

(13)

Network
(19)

(4)

(21)

(a) Scenario and source distribution scheme. (Internal ring: Application
Scenario. External ring: Behavior Source.)

100%

100%

100%
50%50%

50%
50%50%
33.3% 66.6%

100%
100%

100%

16.6%33.3%

19%
20.83% 12.5%

50% 35.71% 7.14%7.14%
9.5%

45.83%
57.1% 14.3%

20.88%

(b) Yearly solution distribution.

Fig. 5: Distribution graphs of device behavior fingerprinting solutions.

19

Work Year Device Type Approach Algorithms Behavior
Source Features Dataset Anomaly Results

[86] 2018 IoT Devices Anomaly
Detection Vector distance Network Sensor values

statistics
[176],
[177]

Faulty IoT
sensors

94.9% and 92.5% average precision and
recall, respectively. 3 mins for detection.

[57] 2019 IoT Devices Classification
PCA, DBSCAN,

Euclidean
distance

Network Statistical
features Private

Physical and
mechanical

errors

Successful threat detection regarding
physical damage and mechanical
exhaustion.

[8] 2017 ICSs Anomaly
Detection

Expectation
Maximization Sensors Sensor values

statistics Private System Faults 89.5% AUC detection train door failures.

[100] 2019 NFV systems Anomaly
Detection LSTM System logs Execution

traces statistics Private Microservice
anomalies

>90% accuracy using real-word cloud
traces.

[101] 2019 General
computers

Statistical
Analysis

PANAL
(time series) System logs Performance

metrics Private Anomalous
behavior

Study on metric correlations regarding
performance, event, and process logs.

[95] 2016 NFV systems Anomaly
Detection

Clustering and
Classification

Resource
usage

CPU, memory,
disk, network Private NFV

anomalies
95% recognition of pre-defined anomalous
scenarios.

[109] 2017 Cluster
systems

Anomaly
Detection PCA Resource

usage
CPU, memory,
disk, network Private Cluster

anomalies Anomalies correctly detected.

[107] 2017 Cloud
systems

Anomaly
Detection Robust PCA Resource

usage
CPU,

memory, disk Private Cloud faults 88.54% accuracy and 86% F1-Score

[49] 2018 NFV systems Anomaly
Detection Online ARIMA Resource

usage
CPU, memory,
disk, network Private NFV Resource

anomalies
100% accuracy detecting controlled HDD,
CPU and memory anomalies.

[36] 2018 Cloud
systems

Anomaly
Detection

PCA,
eigenvector

Resource
usage

CPU, memory,
disk, network Private Cloud faults The system detects injected test faults.

[108] 2018 NFV systems Anomaly
Detection BIRCH Resource

usage
CPU, memory,
disk, network Private System

anomalies
All anomalies detected, except 83%
detection for memory leak and CPU stress.

[110] 2018 Microservices
Containers Classification SVM, RF,

k-NN, NB
Resource

usage
CPU, memory,

network Private Container
anomalies 97-93% F1-Score using k-NN as classifier.

[16] 2020 Container
clusters

Anomaly
Detection HHMM Resource

usage CPU, memory Private Resource
exhaustion 95-90% F1-Score and 19-31% FAR.

TABLE IX: Main malfunction and fault detection solutions that use device behavior fingerprinting (works are grouped by
behavior source, using double horizontal lines to separate them, and sorted by year).

time of network traffic packets collected from 30 wireless
devices. 1.5 GB of data was collected both actively, directly
communicating with the devices, and passively, sniffing the
communications. This dataset can be used to generate network-
based fingerprints and derive parameters such as approximated
clock skew.

With a similar goal, but focused on IoT, Miettinen et al.
published the IoT Sentinel dataset [12]. This dataset contains
the traffic generated during the setup of 31 IoT devices
of 27 different types (4 types have 2 devices). To avoid
anomalies and have data variety, the device setup process
was collected at least 20 times for each device, generating
a total of 64 MB of data. Another dataset dealing with IoT
devices is the Yourthings dataset [140], which contains raw
network traffic from 45 different smart-home IoT devices. The
data was collected for 10 days in March and April of 2018.
Each day data contains from 10 to 13 GB. Following the
same approach, in [4], Sivanathan et al. published a dataset
collected for IoT device classification under IoT Traffic Traces
name. The data was collected in 2016 for 20 days from 28
different IoT devices, including cameras, lights, plugs, sensors,
appliances, and health-monitors. In addition, this dataset also
includes captures from non-IoT devices such as laptops and
smartphones. In total, ≈9.5 GB of raw pcap files are available.
As additional content, post-processing tools to obtain IP, NTP,
and DNS flows are also enclosed. Regarding radio frequency,
Allahham et al. [153] published DroneRF in 2019, a dataset
containing 3.8 GB of radio data collected from 3 different
drones during functioning. This dataset has been designed
for drone detection, identification and tracking. More recently,
Hagelskjær et al. published in 2020 a dataset designed for
IoT device identification based on radio spectrum monitoring
[178]. The dataset contains +50 GB of 863-870 MHz band

raw spectrum measurements with a sampling frequency of
10 MSPS collected in November 2018. The published dataset
contains both raw spectrum captures and pre-processed features
extracted with PCA.

TABLE X summarizes the public datasets previously de-
scribed, paying attention in their publication year, monitored
devices, and data sources collected. Most of the datasets (5
of 7) contain network traces or network-based features. It
could be due to the facility to monitor from outside the device
behavior without modifying its software. Furthermore, this
source is quite generic as almost every device has at least one
network interface. Additionally, the two datasets not based
in network communications contain spectrum measurements,
another externally-collected source. In this context, there is
a missing spot for device identification datasets containing
sources such as clock skew, system logs or events, and resource
usage metrics.

B. Anomalous Behavior and Attack Datasets

The second dataset category is based on public datasets
containing anomalous device behavior, either based on attacks
or other exceptional situations. Note that most of these datasets
also contain normal or benign device behavior, which can be
utilized to model normal device behavior and identify it, like
in the previous subsection. Next, the main datasets found in
the literature will be detailed.

The family of datasets that considers network communica-
tions to create device behavior fingerprints is extensive. One of
the most representative is the CTU-13 dataset [162], a botnet
traffic activity dataset collected in 2011. 13 different botnet
samples were captured during different attack conditions such
as Command and Control (C&C) connection and the launching

20

Dataset Year Device Type Data Source Data Size Details
The uw/sigcomm2004

dataset [155] 2006 Wireless and
wired devices Network Raw traces 70 GB This dataset includes the traces collected by wireless and wired

monitoring using tcpdump.
The gatech/fingerprinting

dataset [156] 2014 Wireless devices Network Inter-arrival
time information 1.5 GB Inter-arrival time information collected from 30 wireless

devices to generate unique fingerprints.

IoT Sentinel [12] 2017 IoT devices Network Raw traces and
processed features 64 MB Network communications dataset collected during the setup

process of 31 devices.

Yourthings [140] 2018 IoT devices Network Raw traces and
processed features +110 GB 10 days of network traffic collected from 45 different smart-

home IoT devices. Flows utilized to evaluate security.

IoT Trace Dataset [4] 2018 IoT devices Network Raw traces and
processed features ≈9.5 GB Network flows collected during 20 days from 28 different IoT

Devices. The source includes tools to derive flow statistics.

DroneRF [153] 2019 IoT devices
(Drones)

Radio
spectrum Radio segments 3.8 GB 227 segments collected from 3 different drones during

functioning.
Device spectrum

identification [178] 2020 IoT devices Radio
Spectrum

Raw spectrum and
processed features +50 GB 863-870 MHz radio spectrum measurements collected in

diverse scenarios, like in the same room and different rooms.

TABLE X: Most relevant device identification datasets that use device behavior fingerprinting.

of diverse attacks –DDoS, or port scanning, among others.
Additionally, the dataset also contains normal and background
network traffic. In total, this dataset contains +140 hours of
network traffic with a total size of ≈700 GB. Besides, the
dataset has been updated in the last years to include IoT
malware captures. A set of relevant datasets, IDS 2017 and
2018 datasets [160], was created by the Canadian Institute of
Cybersecurity (CIC). They contain raw network traces and
derived features obtained during different network attacks.
Concretely, the monitored attacks were FTP and SSH Brute
Force, DoS, Heartbleed, Web Attacks, Infiltration, Botnet, and
DDoS. In addition, these datasets also contain benign traffic.
The 2017 dataset was collected from 25 users and contains
51.1 GB of data, while the 2018 dataset contains 220 GB of
traffic from 500 different devices. The previous datasets were
collected and processed by Lima et al. [73] to extract ≈40
MB of vectors with 73 features relative to IP headers of the
traffic flows. Then, the dataset was published together with a
research article. Also from CIC, the ISCX botnet dataset [161]
contains raw network captures of 16 different botnet malware.
This dataset is generated by combining previous CIC datasets
containing botnet activity. In total, the dataset contains 5.3
GB of training traces and 8.5 GB for testing. Aligned with
the previous datasets, in [179], the authors provided a novel
network dataset, published in September 2019, which contains
several types of attacks in an IoT environment. The dataset is
composed of ≈ 1.5 GB of real and simulated attacks, such as
port scanning, flooding, brute force, or ARP spoofing, among
others. In the case of real attacks, the network packets were
obtained from Mirai botnet. To identify the network behavior
of the devices infected, packets were captured while simulating
attacks through tools such as NMAP.

Anomalous behavior or attacks affecting IoT devices is
another cutting edge field where several datasets have been
created and published. In this sense, the N-BaIoT dataset [165]
contains more than 7 million vectors, with 115 features each,
giving around 20 GB, obtained by processing the network
communications of 9 different IoT commercial devices under
attack. Vectors contain 11 labels, 10 for different botnet attacks,
produced by Mirai and BASHLITE, and 1 for benign traffic.
Similarly, the DS2OS dataset [159] contains 61 MB of features
obtained from application layer traces collected from simulated
IoT devices such as light controllers, thermometers, movement
sensors, washing machines, batteries, thermostats, smart doors,

and smartphones. This dataset is designed for anomaly detection
in IoT node communications. In the same line, the USNW
IoT Benign and Attack Traces Dataset [10] monitored network
communications of 27 devices for 30 days, being 10 of these
devices victims of network attacks such as ARP spoofing,
TCP/UDP flooding, and packet reflection. In total, more than
64 GB of data is available. This dataset also provides the source
code to derive vectors with 238 features using packet counters
and traffic flows. Another relevant dataset is the NGIDS-DS
dataset [102], which consists of 6.7 GB of labeled network and
device operating system logs collected on a simulated critical
infrastructure. The dataset is designed for host-based intrusion
detection and contains normal and attack scenarios. The authors
used the IXIA Perfect Storm tool to generate a wide variety
of network attacks. The data was obtained from a machine
running Ubuntu 14.04 and different common services such as
Apache. The OS logs contain the date, process id, system call,
event id, and the network data consist of raw traffic.

A similar approach was followed to generate the UNSW-
NB15 dataset [168]. This dataset contains 100 GB of raw traffic
flows and derived features from several attacks launched using
IXIA Perfect Storm. This attack set includes the same type of
attacks as NGIDS-DS dataset. The Aposemat IoT-23 dataset
[180], published in January 2020 by the same team as for CTU-
13 [162], is another labeled dataset containing 23 captures
of malicious and benign IoT network traffic. Concretely, 20
captures include malware activity, while 3 include normal
network activity of 3 IoT device types. The dataset includes
11.3 GB of pcap files and 8.7 GB of network log files. The
authors utilized known malware, such as Mirai, Okiru, or
Torii botnets, port scanning, DDoS, C&C connections. In the
same direction, IoT-KEEPER dataset [55] was published in
2020. This dataset contains 11.8GB of pcap files collected
from several IoT devices affected by common attacks such as
port scanning, botnet execution, DoS, or malware injection.
Besides, it also contains network activity from real computers,
replicating a real edge network environment. Finally, LITNET-
2020 dataset [181] contains feature vectors generated during
12 attacks on general computers deployed on an academic
network. In total, this dataset contains 26.9 GB of vectors with
85 processed flow features extracted using Netflow.

Focused on application layer communications of general
computers, ECML-PKDD 2007 [182] and HTTP CSIC 2010
[183] datasets are available. ECML-PKDD 2007 [182] contains

21

80 MB of application layer requests in XML format. There
are 25000 valid and 15000 attack requests, the attack requests
include SQL Injection, LDAP Injection, cross-site scripting
(XSS), and command execution, among others. The data
includes web requests and also context information such as
server operating system, services, etc. The HTTP CSIC 2010
dataset [183] includes 56 MB of normal and abnormal HTTP
requests. It was published by the Spanish Research National
Council (CSIC) to test web application attack protection
systems. The dataset is divided into 36000 normal and 25000
anomalous requests. The anomalous requests are divided into
three types of attacks: static, dynamic, and unintentional
illegal requests. Concretely, static attacks try to gather hidden
resources, while dynamic attacks are SQL injections, XSS, etc.
This dataset is usually used as benchmark for HTTP anomalous
behavior detection solutions.

From the system calls and execution traces perspective, it is
worth commenting the ADFA Intrusion Detection Datasets for
Linux [96] and Windows [173]. These datasets contain 9 MB of
Linux system call identifiers and 13.6 GB of Windows XML
system call traces of DLL libraries. Both datasets include
normal and attack system calls. Attacks include HydraFTP,
HydraSSH, Meterpreter, Webshell, and a poisoned executable.
Currently, these are widely used for benchmarking solutions
based on system call traces [184], [185]. The Firefox-SD
dataset [186] is also based on system calls, but in this case made
by Firefox browser in Linux. The dataset contains +1 TB of
normal activity traces, collected while executing seven browser
testing frameworks, and attack-based traces, generated under
attacks using known exploits such as memory consumption,
integer overflow, or null pointer exploit.

Dealing with ICSs and anomaly detection, one of the
reference datasets is the Secure Water Treatment (SWaT)
dataset [169]. This dataset was collected in 2016 from a real
water treatment testbed managed by a SCADA system. It
contains 11 days of continuous operation, 7 of them normal
and 4 under attack by 36 different data injections. This dataset
contains ≈16 GB of traffic logs and 361 MB of measurements
obtained from 51 sensors and actuators. Additionally, SWaT
dataset was updated in December 2019 with 45 GB of raw
traffic and 6 MB of measurement logs, collected during 3 hours
of normal traffic and 1 hour in which 6 attacks were launched.
Similarly, the Water Distribution (WADI) dataset [170] contains
575 MB of labeled sensor and actuator logs collected in the
same water treatment plant. In this case, the dataset contains
data from 123 sensors and actuators collected during 16 days
of operation, having 14 days of normal traffic and 2 days with
15 data injection attacks launched in total. Also in the ICS
field, in [133], Perales et al. developed a dataset called Electra,
based on a railway electric traction substation. The monitored
network protocols were Modbus TCP and S7Comm, common
in SCADA systems. This dataset contains 1.7 GB of derived
features originating from raw captures.

Regarding resource usage monitoring, the GWA-T-12 Bit-
brains dataset [171] contains performance metrics collected
from 1750 virtual machines located in Bitbrains data center.
Resource usage metrics are collected in five-minute samples,
the monitored resources are the CPU usage, memory usage,

disk read/write throughput, and network received/transmitted
throughput. In total, 2.7 GB of traces are available, divided into
two sets of machines (1250 VMs used for fast storage and 500
with lower performance). Although BEHACOM [187] dataset
is focused on user activity monitoring (keyboard and mouse
interactions), it also contains resource usage metrics regarding
active applications, CPU, and memory. This data was collected
from the computers of 12 users over 55 days. In total, this
dataset contains 6.1 GB of features derived from user activity.
Also dealing with resource usage monitoring but from the
mobile devices prism, CIC has released two different datasets
on dynamic smartphone behavior and its relationship with
malware. The first one is CIC-AAGM (CIC Android Adware
and General Malware) [188], which contains +20 GB of traffic
flows generated when installing 1900 different applications,
being 250 adware, 150 malware, and 1500 benign. The second
is InvesAndMal2019 [189] dataset, which includes device
status, traffic flows, permissions, API calls, and logs generated
by 426 malware and 5065 benign Android applications. In
total +275 MB of logs and features are available.

Other existing datasets are more than 20 years old, which
makes them outdated with regard to current scenarios. This
is the case of DARPA 1998/1999 [190], [191], KDD99 [166],
and NSL-KDD [167] datasets. The original datasets, DARPA
1998 and 1999, are composed of ≈ 10 GB of network traffic
and system logs collected by MIT Lincoln Laboratory. The
aim of these datasets was to build a generic evaluation dataset
for intrusion detection. 56 different attacks were recorded,
including different DoS, buffer overflow, and reconnaissance
attacks, among others. The network traces were stored in
tcpdump format and the system logs as BSM/NT audit data.
Afterward, KDD99 dataset was derived from DARPA traffic by
extracting 1.2 GB of features from the traffic flows. Besides,
NSL-KDD is a refinement of KDD99 were duplicated entries
are deleted and classes are more balanced, reducing the dataset
to around 60 MB. These datasets have become some of the most
popular datasets for intrusion detection evaluation. However,
as commented before, they are outdated compared to current
networks and attacks.

The same issue occurs with the system call dataset of the
University of New Mexico (UNM) [172]. This dataset was
collected in 1999 and contains ≈500 kB of system call and
process identifiers. The collected system calls contain normal
activity and different attacks such as buffer overflows and
trojans. This dataset has been widely used as benchmark for
system call anomalies-based attack detectors [111]. However,
the system call arguments are not available and it is outdated
regarding modern attacks.

TABLE XI gives an overview of the public datasets with
focus on behavior anomaly and attack detection. It can be
appreciated how most of the datasets are focused on network,
followed by system calls and logs. The datasets monitoring the
previous sources are varied and cover several device types
such as IoT, ICSs, mobile devices, or general computers.
However, other sources such as resource usage or HPCs are
under-exploited regarding public datasets for anomaly detection.
Datasets monitoring IoT device communications during attack
and malware execution have gained importance for the last

22

Dataset Year Device Type Data Source Data Size Details

DARPA [190], [191] 1998-
1999

General
computers

Network and
system logs

Raw network packets
and logs (bsm) ≈ 10 GB Attack and normal network and system activity. One of

the most used IDS datasets, but it is outdated.

KDD99 [166] 1999 General
computers Network Connection

record features 1.2 GB Derived features based on DARPA 1998/1999 network
traffic.

UNM dataset [172] 1999 General
computers System calls System calls

and process IDs
≈500

KB
System call identifiers collected during normal behavior
and under some attacks.

ECML-PKDD
2007 [182] 2007 Web systems Network Requests and

contextual information 80 MB 25000 valid and 15000 attack XML web queries,
including context information such as server OS.

NSL-KDD [167] 2009 General
computers Network Connection

record features 60 MB Based on KDD99 data, but with additional processing like
filtering duplicated data.

HTTP CSIC 2010 [183] 2010 Web systems Network HTTP requests 56 MB 61000 normal and anomalous HTTP requests. It includes
diverse attacks and also unintentional illegal requests.

CTU-13 [162] 2011 General
computers Network Raw captures

and flows
≈700

GB
13 different scenarios were botnet activity is combined
with normal traffic.

Firefox-SD [186] 2013 Application
(Firefox) System calls Raw system calls +1 TB Firefox browser system calls while normal activity and

under different attacks.

ADFA-LD [96] 2013 General
computers System calls Linux system logs 9 MB System calls collected on 60 different attack sets.

ADFA-WD [173] 2014 General
computers System calls XML Windows

DLL traces 13.6 GB System call dataset composed by virtual kernel calls done
by DLL libraries.

CIC-ISCX [161] 2014 General
computers Network Raw captures 13.8 GB Botnet activity dataset collected from 16 real botnet

malware.
GWA-T-12

Bitbrains [171] 2015 Distributed data
centers (Cloud) Resource usage CPU, Memory, Disk

and Network statistics 2.7 GB Performance metrics (CPU, memory, disk and network)
collected from 1750 VMs each 5 mins.

SWaT [169] 2016 ICSs Network, and
sensors/actuators

Network and
sensor/actuator logs

≈16.3
GB

7 days of normal activity and 4 days of data injection
attacks in a real water treatment testbed.

WADI [170] 2016 ICSs Sensors /
actuators Sensor/actuator logs 575 MB 16 days of logs of 123 industrial sensors and actuators. 15

attacks launched over 2 days.

NGIDS-DS [102] 2017 Critical
infrastructure

Network and
system logs

Raw network packets
and audit logs 6.7 GB Critical infrastructure attacks simulated on an Ubuntu

14.04 machine using IXIA PerfectStorm tool.

UNSW-NB15 [168] 2017 General
computers Network Raw captures and

processed features 100 GB IDS dataset, attacks generated using IXIA PerfectStorm
tool.

CIC-IDS 2017[160] 2017 General
computers Network Raw captures and

processed features 51.1 GB IDS dataset based on 25 users activity, it contains
common network attacks.

CIC-AAGM [188] 2017 Mobile devices Network Raw captures and
processed features +20 GB Flows generated by 1900 different applications (250

adware, 150 malware, 1500 benign).
DS2OS [159] 2018 IoT devices Network Application traces 61 MB IoT smart home devices normal and abnormal activity.

N-BaIoT [165] 2018 IoT devices Network Processed features ≈20 GB Botnet (Mirai and BASHLITE) activity collected from 9
IoT devices.

CIC-IDS 2018 [160] 2018 General
computers Network Raw captures and

processed features 220 GB IDS dataset collected in 500 devices which contain
common network attacks.

Smart-Detection [73] 2019 General
computers Network Processed features ≈40 MB DoS detection based on previous datasets (CIC-DoS, CIC-

IDS 2017 and CIC-IDS 2018).
ELECTRA [133] 2019 ICSs Network Processed features 1.7 GB Data collected from attacks to an electric traction system.

USNW IoT Benign
and Attack Traces [10] 2019 IoT devices Network Raw captures and

processed features +64 GB IoT benign and attack network traces. Attacks include
ARP spoofing, TCP/UDP flooding and packet reflection.

IoT network intrusion
dataset [179] 2019 IoT devices Network Raw captures ≈1.5 GB Network captures of real and simulated attacks to IoT and

non-IoT devices.

InvesAndMal2019 [189] 2019 Mobile devices System logs
and Network

Processed logs
and features +275 MB Device status, traffic flows, API calls and logs generated

from +5500 apps (426 malware and 5065 benign).

BEHACOM [187] 2020 General
computers Resource usage CPU and

memory statistics 6.1 GB Active application, CPU and memory statistics collected
from 12 users over 55 days.

IoT-23 [180] 2020 IoT devices Network Raw captures 20 GB By the same team that CTU-13. 20 attack and 3 benign
traces. Attacks simulated using infected Raspberry Pis.

IoT-KEEPER
dataset [55] 2020 IoT devices Network Raw captures 11.8 GB Network captures collected from IoT devices under

common attacks.

LITNET-2020 [181] 2020 General
Computers Network Processed features 26.9 GB Dataset collected on an academic network under 12

different attacks.

TABLE XI: Most relevant anomalous behavior and attack datasets that use device behavior fingerprinting.

years and nowadays are the dominant type of anomalous
behavior datasets. The most common IoT malware families,
such as Mirai botnet, have been largely monitored from a
network-based perspective in datasets such as CTU, USNW
IoT Traces or IoT-23. However, there is no IoT-based dataset
containing in-device behavior sources, something highly useful
for modeling how malware works and what changes occur
within the device functioning itself.

Fig. 6 shows the dataset distribution regarding main ap-
plication scenarios and behavior source collected, and their
publication year. Note that some datasets can contain several
sources at the same time, for example, network communications
and system logs. As final section thoughts, we notice that when
it comes to developing a behavior evaluation solution, a key

aspect is data availability, as the underlying solutions depend on
it. Many works utilize self-collected private datasets to validate
their approaches. However, to have a proper performance
comparison, it is worth having public datasets allowing to
cross-verify the proposed solutions. Furthermore, some teams
do not have enough resources to collect enough data but
have good processing and evaluation ideas. Therefore, having
public datasets is essential to make diverse and well-performing
behavior-based proposals possible.

VII. LESSONS LEARNED, TRENDS AND CHALLENGES

Based on the different aspects of behavior fingerprinting
analyzed through questions Q1-Q4, this section responds Q5
(How have application scenarios evolved for the last years?).

23

Behavior-based
Dataset

Distribution

Attack and
anomaly detection

(30)

Network
(23)

System calls
and logs

(7)

Device
Identification

(7)

Network
(5)

Radio
Spectrum

(2)

Resource
usage

(2)

Sensors and
actuators

(2)

(a) Scenario and source dataset distribution. (Internal ring: Application
scenario. External ring: Behavior Source.)

80%20%
16.66% 83.33%

40% 60%
25%

100%
100%

100%

100%

100%

100%
100%

100%
100%

75%

33.3% 66.66%

(b) Yearly dataset distribution.

Fig. 6: Distribution graphs of device behavior fingerprinting dataset.

To this end, it summarizes the main lessons learned, trends,
and open challenges extracted from the present study of device
behavior fingerprinting.

A. Lessons Learned

After reviewing and analyzing the state-of-the-art, we were
able to identify the following main lessons:

Network communications are the most exploited source.
As Fig. 5 shows, it is utilized in 85% of works focused on
device models or type identification, and in 54.28% of attack
detection solutions. However, this source is less exploited
in individual device identification (8.33% of the solutions)
and malfunction detection (15.38%). This is because the data
obtained from the network communication perspective is not
sensitive enough as required for these scenarios, e.g., two
devices of the same model deployed with the same purpose
will have almost identical network communications.

Clustering is widely applied for inferring classes. As
TABLE VI shows, in device type or model identification
approaches, many solutions combine unlabeled data with
clustering to group data samples and derive device classes, and
then apply ML/DL classification approaches. Besides, some
attack and malfunction detection techniques also rely on this
approach (see TABLE VIII and TABLE IX). This fact shows
the viability of clustering techniques for deriving classes from
unlabeled behavioral data.

ML and DL are the favorite approaches for both
classification and anomaly detection. TABLE VI, VII, VIII,
and IX show that ML and DL are the main solutions applied for
data processing, no matter if the objective is classification (of
device types/models or attacks) or anomaly detection, either to
detect attacks or faults. This fact shows the enormous flexibility
and capabilities of these techniques inferring complex data
patterns, outperforming traditional processing methods.

Individual device identification is one of the most com-
plex application scenarios. Only some lower-level features,
such as system clocks, code execution time, clock skew,
or electromagnetic signals are sensitive enough to detect
minimum physical differences that occurred during the device
manufacturing processes. Thus, these are the ones required
for individual identification. However, the monitoring of these
sources is usually complex.

There is no consensus in misbehavior detection solutions.
As TABLE VIII and IX show, attack and malfunction detection
is addressed from heterogeneous perspectives. The selection of
data sources and processing techniques depends on the type
of anomalies that will be detected. Although network is the
most used source, many solutions use system calls and logs,
hardware events, or resource usage.

Public datasets are mainly focused on network, system
calls, and logs. Fig. 6 shows that there are 35 datasets
containing these sources (note that some datasets contain both
sources at the same time, so they are counted both as network
and calls/logs source). Moreover, TABLE X and XI show that
in most cases the datasets contain raw data instead of processed
information or features.

B. Current Trends

The main approaches expected in future works, based on
the evolution of the proposals published in recent years, are:

ML and DL algorithms are gaining prominence. As
Fig. 4 shows, ML and DL are the most usual techniques,
with 46.39% of importance (note that many solutions utilize
different techniques). In addition, DL-based techniques are
gaining more importance, especially for time series processing,
due to their performance handling raw data without pre-
calculated features. TABLE VI, VII, VIII, and IX show that
in both behavior fingerprinting scenarios (identification and
misbehavior detection), ML and DL approaches are gaining

24

importance in the last years. Overall, ML and DL algorithms
are applied in the 71.87% of identification and in the 62.5%
of misbehavior detection solutions.

Statistical and knowledge-based algorithms relegation.
As Fig. 4 shows, processing and evaluation techniques based
on statistical and knowledge-based algorithms are losing
importance as evaluation approaches, in favor of ML and DL
trend.

IoT and ML/DL convergence. In modern IoT scenarios
where devices are massively deployed, behavior fingerprinting
is critical management solution, grouping similar devices and
detecting faults. ML and DL techniques are the best alternative
when it comes to leverage the vast amount of data generated
with the required performance and adaptability. This fact can
be observed in the solution comparisons located in TABLE VI,
VII, VIII, and IX.

Dataset publication. As it can be appreciated in Fig. 6 and
in TABLE X and TABLE XI, a good number of datasets have
been published for the last years. In the last five years (2016-
2020), 23 public datasets were released, while in the previous
five years (2011-2015) were only 7. This trend is influenced
by the AI explosion, as ML and DL are powered by datasets.

Attack detection and model identification are the promi-
nent application scenarios. Fig. 5 shows how attack detection
and type or model identification solutions have been gaining
prominence in the last years, increasing from 50% in 2017
to 85.71% in 2020. This trend is a direct consequence of
the explosion in IoT deployments, as new requirements rise
associated with the heterogeneous variety of devices and the
new security issues generated by them.

C. Future Challenges

Based on the current state-of-the-art, the following points
represent the main challenges that future behavior fingerprinting
solutions might consider to enhance current solutions.

Usage of public datasets for behavior-based solution per-
formance comparison. Many solutions are based on private
datasets, which makes it difficult, if not impossible, to compare
performance between different solutions. Among the solutions
analyzed, only 45% of device model/type identification used
public datasets. The same goes for the 16.66% about individual
device identification, 42.85% tackling attacks, and 7.69%
concerning malfunction detection, by using public datasets.
Thus, a right direction for future approaches is to evaluate and
compare their performance through public datasets.

Diverse and quality behavior dataset publication. Regard-
ing device identification, the main publicly available datasets
are focused on the network communications source. However,
there is a lack of modern and variate datasets based on other
sources. Then, it would be interesting for novel proposals
addressing behavioral fingerprinting to publish the collected
datasets, if any. Besides, datasets should have enough quality
to ensure that research results are not influenced or damaged
by low-quality data.

Solution scalability regarding the number of monitored
devices and deployment architecture. Scalability is an issue
that affects various aspects of behavior monitoring solutions.

Many solutions covering individual device identification have
detected that the number of devices is a challenge [61], [74],
[63]. The more devices in the scenario, the worse classification
results. Furthermore, centralized deployments may suffer if
too many devices send behavioral data, or blockchain-based
solutions may suffer block validation issues. Finally, during
data evaluation, solutions based on statistical approaches that
require one to one evaluation [94] may not scale at all when
the number of devices increases.

Define anomaly countermeasures to apply when an at-
tack or fault is detected. Many solutions solve the misbehavior
detection problem, both when it is caused by a cyberattack
or a system fault. However, most solutions do not propose
any countermeasure [192] to mitigate the detected misbehavior.
Only a few works propose some remedies for misbehavior,
such as [7], [92].

Secure the behavior monitoring and analysis process
against attacks. The fingerprinting solutions can suffer attacks
or modifications performed by malicious entities. This fact
can jeopardize the entire fingerprinting mechanism, and in
the case of centralized processing solutions, even affect other
device behavior evaluation. However, few works took behavior
monitoring security into account [90]. To solve this issue,
additional security mechanisms, such as encryption, should be
added to current solutions. Besides, there is an emerging area
on adversarial attacks to ML/DL models that should also be
considered in future solutions [193]. Finally, trust frameworks
[194] can be included in behavior monitoring deployments to
guarantee system safety.

Private device model and type to guarantee security. In
some circumstances, like when there are known vulnerabilities,
the model and type of devices should be private to avoid
targeted attacks [195]. It has been demonstrated how privacy
leakage attacks can be used to identify device model and
type [196], [197] and further countermeasures, such as dummy
traffic generation are required. In this context, there is a growing
research area on device privacy enhancement [198] working in
different solutions such as blocking traffic, concealing DNS,
tunneling traffic, and shaping and injecting traffic.

User’s privacy impact and awareness. Device behavior
analysis can be leveraged to perform users’ activity tracking
and behavior monitoring [199]. The inference of users’ activity
has been demonstrated possible by behavior analysis [200]
in health care and smart home IoT environments, even with
encrypted traffic [201]. As an example, the TV channels
watched by a given subject have been inferred in [202].
Therefore, manufacturers and service providers should include
solutions to improve users privacy and defend them against
activity inference attacks. These solutions are aligned with the
ones commented in the previous challenge, as they can cover
both user and device privacy at the same time.

Guarantee behavioral data and model privacy. As in user
behavior, data and model privacy is a crucial aspect to consider
when performing data analysis. From an ethical perspective,
behavior analysis solutions should be employed to fingerprint
devices in a non-intrusive way. However, privacy laws, such as
GDPR [203] in Europe, are mainly focused on user perspective,
leaving some device behavior fingerprinting methods out of

25

their scope. To solve this problem, privacy-preserving solutions,
such as federated learning [114] combined with differential
privacy [204], allow training ML/DL models that ensure data
privacy.

Apply novel ML/DL approaches for behavior processing
and evaluation. As ML and DL are fast-evolving fields, some
recent techniques have not been applied yet. For example,
UMAP [205] for dimensionality reduction, or XGBoost [206]
for classification, could improve current solution performance.
Besides, DL architectures may combine convolutional and
recurrent neuron layers for DL-based time series processing
[207], [208]. Finally, any of the analyzed solutions addressed
an approach based on Reinforcement learning [209], which has
gained notable relevance in communications and networking
areas [210], and human behavior analysis [211].

Consider ML/DL models behavior in the device analysis.
Nowadays, devices usually include embedded ML and DL
models that perform specific tasks with the data the device
manipulates. However, the ML and DL models deployed on
the devices have their own behavior [212], which influences
the general device behavior. Then, understanding AI-powered
applications and services is critical to identify the device
behavior and its anomalies.

VIII. CONCLUSIONS

Device behavior fingerprinting has been determined in recent
years as a promising solution to identify devices with different
granularity levels, as well as to detect misbehavior originated by
cyberattacks or faulty components. The article at hand studies
the evolution of the device behavior research field, performing
a comprehensive review of the devices, behavioral sources,
datasets, and techniques used in both application scenarios. In
this context, the present work has been performed with the
goal of answering the following research questions.

Q1. Which scenarios, device types, and sources are present
in behavior-based solutions? Section III reviews how these
three aspects are used in the most recent and representative
works of the literature. The performed analysis shows a
relevant heterogeneity of device types and behavioral sources
in the existing solutions, and highlights the usage of network
communications in the majority of the solutions.

Q2. What and how behavior processing and evaluation tasks
are used in each scenario? Section IV analyzes the main
techniques and algorithms –rule-based, statistical, knowledge-
based, ML and DL, and time-series approaches– used by works
dealing with device and misbehavior identification. The analysis
results show how ML and DL-based approaches are gaining
importanc due to their versatility and excellent performance
when enough training data is available, and to the detriment
of statistical and knowledge-based solutions.

Q3. What characteristics do the most recent and represen-
tative solutions of each application scenario have? In the
core section of this article, Section V, the reviewed solutions
are described, analyzed, and compared according to their
application scenario, device types, sources, techniques, and
results. Regarding sources, this section shows that in device
type or model identification solutions, network source is

the dominant approach. In individual device identification,
clock skew and electromagnetic signals are the main data
sources. Attack detection is also mainly tackled using network
communications. In contrast, for fault detection, the main
approach is to utilize resource usage data. In terms of processing
and evaluation techniques, ML and DL techniques are dominant
in all the considered scenarios.

Q4. Which behavior datasets are available and which are
their characteristics? In Section VI, the main public datasets
containing device behavioral data are analyzed according to
their application scenario. It also details the characteristics of
the data they contain and how they were collected. This section
shows the prominence of network source in the current public
datasets, and the lack of other sources such as resource usage
or hardware events.

Q5. How have application scenarios evolved for the last
years? Lessons learned, current trends, and future challenges
have been drawn in Section VII, which details how network
source and ML/DL algorithms are gaining prominence. Fur-
thermore, it is also remarkable that novel ML/DL approaches,
such as recurrent and convolutional neuron layer combination
or Reinforcement learning, have not yet been applied in the
area, which opens up pathways for future research. It also
depicts how dataset publication is gaining importance during
the last years; however, more relevant datasets are still required
for sources and devices that are not covered in recent ones,
e.g., resource usage or system logs in IoT devices or ICSs.

Aligned with the current trend and challenges drawn in
this work, we will focus our next efforts on designing and
implementing scalable behavior-based solutions to identify
individual devices and detect cyberattacks affecting IoT devices.
In both scenarios, we plan to utilize privacy-preserving ML
and DL techniques, such as distributed and federated learning,
to protect behavioral data while guaranteeing performance
capabilities. Finally, we plan to build datasets for both scenarios,
which will be publicly accessible to improve current dataset
diversity and quality.

ACKNOWLEDGMENT

This work has been partially supported by the Swiss Federal
Office for Defence Procurement (armasuisse) (project codes
Aramis R-3210/047-31 and CYD-C-2020003).

REFERENCES

[1] K. Riad, T. Huang, and L. Ke. A dynamic and hierarchical access
control for IoT in multi-authority cloud storage. Journal of Network
and Computer Applications, 160:102633, 2020.

[2] A. Fuentes. Human niche, human behaviour, human nature. Interface
Focus, 7(5):20160136, 2017.

[3] N. Shone, Q. Shi, M. Merabti, and K. Kifayat. Misbehaviour monitoring
on system-of-systems components. In 2013 International Conference
on Risks and Security of Internet and Systems, pages 1–6, Oct. 2013.

[4] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman. Classifying IoT devices in smart
environments using network traffic characteristics. IEEE Transactions
on Mobile Computing, 18(8):1745–1759, 2019.

[5] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman. Detecting
behavioral change of IoT devices using clustering-based network traffic
modeling. IEEE Internet of Things Journal, pages 1–1, 2020.

26

[6] S. Marchal, M. Miettinen, T. D. Nguyen, A. Sadeghi, and N. Asokan.
AuDI: Toward autonomous IoT device-type identification using periodic
communication. IEEE Journal on Selected Areas in Communications,
37(6):1402–1412, 2019.

[7] K. Haefner and I. Ray. ComplexIoT: Behavior-based trust for IoT
networks. In 1st IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications, pages 56–65, Dec.
2019.

[8] G. Manco, E. Ritacco, P. Rullo, L. Gallucci, W. Astill, D. Kimber, and
M. Antonelli. Fault detection and explanation through big data analysis
on sensor streams. Expert Systems with Applications, 87:141–156, 2017.

[9] R. Ferrando and P. Stacey. Classification of device behaviour in internet
of things infrastructures: Towards distinguishing the abnormal from
security threats. In 1st International Conference on Internet of Things
and Machine Learning, pages 1–7, Oct. 2017.

[10] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman. Detecting
volumetric attacks on IoT devices via SDN-based monitoring of MUD
activity. In 2019 ACM Symposium on SDN Research, pages 36–48, Apr.
2019.

[11] R. Ravichandiran, H. Bannazadeh, and A. Leon-Garcia. Anomaly
detection using resource behaviour analysis for autoscaling systems. In
4th IEEE Conference on Network Softwarization and Workshops, pages
192–196, June 2018.

[12] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan, A. Sadeghi,
and S. Tarkoma. IoT Sentinel: Automated device-type identification for
security enforcement in IoT. In 37th IEEE International Conference
on Distributed Computing Systems, pages 2511–2514, June 2017.

[13] V. Selis and A. Marshall. A classification-based algorithm to detect
forged embedded machines in IoT environments. IEEE Systems Journal,
13(1):389–399, 2018.

[14] H. Jafari, O. Omotere, D. Adesina, H. Wu, and L. Qian. IoT
devices fingerprinting using deep learning. In 2018 IEEE Military
Communications Conference, pages 1–9, Oct. 2018.

[15] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan,
and A. Sadeghi. DÏot: A federated self-learning anomaly detection
system for IoT. In 39th IEEE International Conference on Distributed
Computing Systems, pages 756–767, July 2019.

[16] A. Samir and C. Pahl. Detecting and localizing anomalies in container
clusters using Markov models. Electronics, 9(1):64, 2020.

[17] X. Liu, B. Xiao, S. Zhang, and K. Bu. Unknown tag identification
in large RFID systems: An efficient and complete solution. IEEE
Transactions on Parallel and Distributed Systems, 26(6):1775–1788,
2014.

[18] J. Ortiz, C. Crawford, and F. Le. DeviceMien: Network device behavior
modeling for identifying unknown IoT devices. In International
Conference on Internet of Things Design and Implementation, page
106–117, Apr. 2019.

[19] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula. Intrusion
detection techniques in cloud environment: A survey. Journal of Network
and Computer Applications, 77:18–47, 2017.

[20] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S. K. Ng. MAD-GAN:
Multivariate anomaly detection for time series data with generative
adversarial networks. In 28th International Conference on Artificial
Neural Networks, pages 703–716, Sept. 2019.

[21] S. Barbhuiya, Z. Papazachos, P. Kilpatrick, and D. S. Nikolopoulos.
RADS: Real-time anomaly detection system for cloud data centres,
2018. Available: arXiv:1811.04481.

[22] Q. Xu, R. Zheng, W. Saad, and Z. Han. Device fingerprinting in wireless
networks: Challenges and opportunities. IEEE Communications Surveys
& Tutorials, 18(1):94–104, 2016.

[23] G. Baldini and G. Steri. A survey of techniques for the identification of
mobile phones using the physical fingerprints of the built-in components.
IEEE Communications Surveys & Tutorials, 19(3):1761–1789, 2017.

[24] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen. Host-based intrusion
detection system with system calls: Review and future trends. ACM
Computing Surveys, 51(5):1–36, 2018.

[25] M. F. Elrawy, A. I. Awad, and H. F. A. Hamed. Intrusion detection
systems for IoT-based smart environments: A survey. Journal of Cloud
Computing, 7(1):21, 2018.

[26] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. Survey
of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity, 2(1):20, 2019.

[27] J. Hou, Y. Li, J. Yu, and W. Shi. A survey on digital forensics in
internet of things. IEEE Internet of Things Journal, 7(1):1–15, 2019.

[28] W. Tounsi and H. Rais. A survey on technical threat intelligence in the
age of sophisticated cyber attacks. Computers & Security, 72:212–233,
2018.

[29] P. Oser, F. Kargl, and S. Lüders. Identifying devices of the internet
of things using machine learning on clock characteristics. In 11th
International Conference and Satellite Workshops on Security, Privacy,
and Anonymity in Computation, Communication, and Storage, pages
417–427, Dec. 2018.

[30] S. Dong, F. Farha, S. Cui, J. Ma, and H. Ning. CPG-FS: A
CPU performance graph based device fingerprint scheme for devices
identification and authentication. In 4th IEEE Cyber Science and
Technology Congress, pages 266–270, Aug. 2019.

[31] A. Majma’ah and S. Arabia. A systematic literature review of
behavioural profiling for smartphone security: Challenges and open
problems. International Journal for Information Security Research,
7:734–743, 2017.

[32] J. M. Jorquera Valero, P. M. Sánchez Sánchez, L. Fernández Maimó,
A. Huertas Celdrán, M. Arjona Fernández, S. De Los Santos Vı́lchez,
and G. Martı́nez Pérez. Improving the security and QoE in mobile
devices through an intelligent and adaptive continuous authentication
system. Sensors, 18(11):3769, 2018.

[33] P. M. Sánchez Sánchez, A. Huertas Celdrán, L. Fernández Maimó,
and G. Martı́nez Pérez. AuthCODE: A privacy-preserving and multi-
device continuous authentication architecture based on machine and
deep learning, 2020. Available: arXiv:2004.07877.

[34] J. Ali, A. S. Khalid, E. Yafi, S. Musa, and W. Ahmed. Towards a
secure behavior modeling for IoT networks using Blockchain, 2020.
Available: arXiv:2001.01841.

[35] M. B. Attia, C. Talhi, A. Hamou-Lhadj, B. Khosravifar, V. Turpaud,
and M. Couture. On-device anomaly detection for resource-limited
systems. In 30th Annual ACM Symposium on Applied Computing, page
548–554, Apr. 2015.

[36] T. Wang, J. Xu, W. Zhang, Z. Gu, and H. Zhong. Self-adaptive cloud
monitoring with online anomaly detection. Future Generation Computer
Systems, 80:89–101, 2018.

[37] J. P. Robinson and M. Kestnbaum. The personal computer, culture, and
other uses of free time. Social Science Computer Review, 17(2):209–216,
1999.

[38] Q. Jabeen, F. Khan, M. N. Hayat, H. Khan, S. R. Jan, and F. Ullah. A
survey: Embedded systems supporting by different operating systems,
2016. Available: arXiv:1610.07899.

[39] H. Holm, M. Karresand, A. Vidström, and E. Westring. A survey of
industrial control system testbeds. In 20th Nordic Conference on Secure
IT Systems, pages 11–26, Oct. 2015.

[40] J. A. Gomez Gomez. Survey of SCADA systems and visualization
of a real life process. Linköping University, Department of Electrical
Engineering, LITH-ISY-EX-ET-0246-2002, 83, 2002.

[41] J. W. Rittinghouse and J. F. Ransome. Cloud computing: Implementation,
management, and security. CRC press, 2016.

[42] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K. K. R. Choo, and M. Dlodlo.
From cloud to fog computing: A review and a conceptual live VM
migration framework. IEEE Access, 5:8284–8300, 2017.

[43] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[44] M. S. Bonfim, K. L. Dias, and S. F. L. Fernandes. Integrated NFV/SDN
architectures: A systematic literature review. ACM Computing Surveys,
51(6):1–39, 2019.

[45] M. K. Shin, K. H. Nam, and H. J. Kim. Software-defined networking
(SDN): A reference architecture and open APIs. In 2012 International
Conference on ICT Convergence, pages 360–361, Oct. 2012.

[46] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and
research challenges. IEEE Communications Surveys & Tutorials,
18(1):236–262, 2015.

[47] C. Pahl and P. Jamshidi. Microservices: A systematic mapping study.
In 6th International Conference on Cloud Computing and Services
Science, pages 137–146, Apr. 2016.

[48] A. Vrenios. Linux cluster architecture. Sams, 2002.
[49] F. Schmidt, F. Suri-Payer, A. Gulenko, M. Wallschläger, A. Acker, and

O. Kao. Unsupervised anomaly event detection for cloud monitoring
using online Arima. In 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion, pages 71–76, Dec. 2018.

[50] T. J. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and
A. R. Sadeghi. HomeSnitch: Behavior transparency and control for
smart home IoT devices. In 12th Conference on Security and Privacy
in Wireless and Mobile Networks, pages 128–138, May 2019.

[51] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and
M. Gurusamy. DEFT: A distributed IoT fingerprinting technique. IEEE
Internet of Things Journal, 6(1):940–952, 2019.

27

[52] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray.
IoTSense: Behavioral fingerprinting of IoT devices, 2018. Available:
arXiv:1804.03852.

[53] N. Msadek, R. Soua, and T. Engel. IoT device fingerprinting: Machine
learning based encrypted traffic analysis. In 2019 IEEE Wireless
Communications and Networking Conference (WCNC), pages 1–8. IEEE,
2019.

[54] R. Dai, C. Gao, B. Lang, L. Yang, H. Liu, and S. Chen. SSL malicious
traffic detection based on multi-view features. In Proceedings of the
2019 the 9th International Conference on Communication and Network
Security, pages 40–46, 2019.

[55] I. Hafeez, M. Antikainen, Aaron Y. Ding, and S. Tarkoma. IoT-KEEPER:
Detecting malicious IoT network activity using online traffic analysis
at the edge. IEEE Transactions on Network and Service Management,
17(1):45–59, 2020.

[56] A. Blaise, M. Bouet, V. Conan, and S. Secci. BotFP: Fingerprints
clustering for bot detection. In IEEE/IFIP Network Operations and
Management Symposium, pages 1–7, Apr. 2020.

[57] G. Spanos, K. M. Giannoutakis, K. Votis, and D. Tzovaras. Combining
statistical and machine learning techniques in IoT anomaly detection
for smart homes. In 24th IEEE International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks,
pages 1–6, Sept. 2019.

[58] L. Polčák and B. Franková. On reliability of clock-skew-based remote
computer identification. In 11th International Conference on Security
and Cryptography, pages 1–8, Aug. 2014.

[59] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device finger-
printing. IEEE Transactions on Dependable and Secure Computing,
2(2):93–108, 2005.

[60] S. Jana and S. K. Kasera. On fast and accurate detection of unauthorized
wireless access points using clock skews. IEEE Transactions on Mobile
Computing, 9(3):449–462, 2009.

[61] F. Lanze, A. Panchenko, B. Braatz, and A. Zinnen. Clock skew
based remote device fingerprinting demystified. In 2012 IEEE Global
Communications Conference, pages 813–819, Dec. 2012.

[62] S. Sharma, A. Hussain, and H. Saran. Experience with heterogenous
clock-skew based device fingerprinting. In 2012 Workshop on Learning
from Authoritative Security Experiment Results, pages 9–18, July 2012.

[63] L. Polcák and B. Franková. Clock-skew-based computer identification:
Traps and pitfalls. Journal of Universal Computer Science, 21(9):1210–
1233, 2015.

[64] M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, and I. Guvenc.
Detection and classification of uavs using rf fingerprints in the presence
of wi-fi and bluetooth interference. IEEE Open Journal of the
Communications Society, 1:60–76, 2019.

[65] M. F. Al-Sa’d, A. Al-Ali, A. Mohamed, T. Khattab, and A. Erbad. Rf-
based drone detection and identification using deep learning approaches:
An initiative towards a large open source drone database. Future
Generation Computer Systems, 100:86–97, 2019.

[66] Mhd S. Allahham, T. Khattab, and A. Mohamed. Deep learning
for rf-based drone detection and identification: A multi-channel 1-
d convolutional neural networks approach. In 2020 IEEE International
Conference on Informatics, IoT, and Enabling Technologies (ICIoT),
pages 112–117. IEEE, 2020.

[67] Sanjoy Basak, Sreeraj Rajendran, Sofie Pollin, and Bart Scheers. Drone
classification from rf fingerprints using deep residual nets, 2020.

[68] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury. Deep learning
convolutional neural networks for radio identification. IEEE Communi-
cations Magazine, 56(9):146–152, 2018.

[69] S. Rajendran, W. Meert, V. Lenders, and S. Pollin. Unsupervised
wireless spectrum anomaly detection with interpretable features. IEEE
Transactions on Cognitive Communications and Networking, 5(3):637–
647, 2019.

[70] Y. Cheng, X. Ji, J. Zhang, W. Xu, and Y. C. Chen. DeMiCPU: Device
fingerprinting with magnetic signals radiated by CPU. In 2019 ACM
SIGSAC Conference on Computer and Communications Security, page
1149–1170, Nov. 2019.

[71] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. A. Beyah.
Who’s in control of your control system? Device fingerprinting for cyber-
physical systems. In 2016 Network and Distributed System Security
Symposium, pages 1–15, Feb. 2016.

[72] A. Amouri, V. T. Alaparthy, and S. D. Morgera. Cross layer-based
intrusion detection based on network behavior for IoT. In 19th IEEE
Wireless and Microwave Technology Conference, pages 1–4, Apr. 2018.

[73] F. S. D. Lima Filho, F. A. Silveira, A. B. R. de Medeiros, G. Vargas-
Solar, and L. F. Silveira. Smart detection: An online approach for

DoS/DDoS attack detection using machine learning. Security and
Communication Networks, 2019:1574749, 2019.

[74] S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah. GTID: A technique
for physical device and device type fingerprinting. IEEE Transactions
on Dependable and Secure Computing, 12(5):519–532, 2014.

[75] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar. IoT devices recognition
through network traffic analysis. In 2018 IEEE International Conference
on Big Data, pages 5187–5192, Dec. 2018.

[76] J. Kotak and Y. Elovici. IoT device identification using deep learning,
2020. Available: arXiv:2002.11686.

[77] S. A. Hamad, W. E. Zhang, Q. Z. Sheng, and S. Nepal. IoT device
identification via network-flow based fingerprinting and learning. In
18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference
On Big Data Science And Engineering, pages 103–111, Aug. 2019.

[78] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer,
J. D. Guarnizo, and Y. Elovici. Detection of unauthorized IoT devices
using machine learning techniques. arXiv preprint arXiv:1709.04647,
2017.

[79] L. F. Carvalho, T. Abrão, L. S. Mendes, and M. L. Proença Jr. An
ecosystem for anomaly detection and mitigation in software-defined
networking. Expert Systems with Applications, 104:121–133, 2018.

[80] Y. Afek, A. Bremler-Barr, D. Hay, R. Goldschmidt, L. Shafir, G. Avra-
ham, and A. Shalev. NFV-based IoT security for home networks
using MUD. In 2020 IEEE/IFIP Network Operations and Management
Symposium, pages 1–9, Apr. 2020.

[81] B. J. Radford, B. D. Richardson, and S. E. Davis. Sequence aggregation
rules for anomaly detection in computer network traffic, 2018. Available:
arXiv:1805.03735.

[82] C. Yin, Y. Zhu, S. Liu, J. Fei, and H. Zhang. An enhancing framework
for botnet detection using generative adversarial networks. In 2018
International Conference on Artificial Intelligence and Big Data, pages
228–234, May 2018.

[83] N. Marir, H. Wang, G. Feng, B. Li, and M. Jia. Distributed abnormal
behavior detection approach based on deep belief network and ensemble
SVM using Spark. IEEE Access, 6:59657–59671, 2018.

[84] R. Trimananda, J. Varmarken, Markopoulou A., and Demsky B. Packet-
level signatures for smart home devices. In 27th Annual Network
and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020.

[85] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis. IoTFinder:
Efficient large-scale identification of IoT devices via passive dns traffic
analysis. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 474–489. IEEE, 2020.

[86] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim.
Detecting and identifying faulty IoT devices in smart home with context
extraction. In 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 610–621, June 2018.

[87] T. Yu, Y. Sun, S. Nanda, V. Sekar, and S. Seshan. RADAR: A robust
behavioral anomaly detection for IoT devices in enterprise networks.
Technical Report CMU-CyLab-19-003, Carnegie Mellon University,
2019.

[88] M. Hasan, Md. M. Islam, Md. I. I. Zarif, and M. M. A. Hashem.
Attack and anomaly detection in IoT sensors in IoT sites using machine
learning approaches. Internet of Things, 7:100059, 2019.

[89] J. Pacheco and S. Hariri. Anomaly behavior analysis for IoT
sensors. Transactions on Emerging Telecommunications Technologies,
29(4):e3188, 2018.

[90] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri. Confirm:
Detecting firmware modifications in embedded systems using hardware
performance counters. In 2015 IEEE/ACM International Conference
on Computer-Aided Design, pages 544–551, Nov. 2015.

[91] K. Ott and R. Mahapatra. Continuous authentication of embedded
software. In 18th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering, pages 128–135,
Aug. 2019.

[92] T. Golomb, Y. Mirsky, and Y. Elovici. CIoTA: Collaborative IoT
anomaly detection via blockchain, 2018. Available: arXiv:1803.03807.

[93] T. J. Salo. Multi-factor fingerprints for personal computer hardware. In
MILCOM 2007-IEEE Military Communications Conference, pages 1–7,
Oct. 2007.

[94] I. Sanchez-Rola, I. Santos, and D. Balzarotti. Clock around the clock:
Time-based device fingerprinting. In 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1502–1514, Jan. 2018.

28

[95] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao, and F. Liu. A system
architecture for real-time anomaly detection in large-scale NFV systems.
Procedia Computer Science, 94:491–496, 2016.

[96] G. Creech and J. Hu. A semantic approach to host-based intrusion
detection systems using contiguousand discontiguous system call
patterns. IEEE Transactions on Computers, 63(4):807–819, 2013.

[97] P. Deshpande, S. C. Sharma, S. K. Peddoju, and S. Junaid. HIDS:
A host based intrusion detection system for cloud computing environ-
ment. International Journal of System Assurance Engineering and
Management, 9(3):567–576, 2018.

[98] P. Mishra, V. Varadharajan, E. S. Pilli, and U. Tupakula. Vmguard:
A vmi-based security architecture for intrusion detection in cloud
environment. IEEE Transactions on Cloud Computing, 8(3):957–971,
2020.

[99] Z. Liu, N. Japkowicz, R. Wang, Y. Cai, D. Tang, and X. Cai. A
statistical pattern based feature extraction method on system call traces
for anomaly detection. Information and Software Technology, page
106348, 2020.

[100] S. Nedelkoski, J. Cardoso, and O. Kao. Anomaly detection from system
tracing data using multimodal deep learning. In 12th IEEE International
Conference on Cloud Computing, pages 179–186, July 2019.

[101] M. Kubacki and J. Sosnowski. Exploring operational profiles and
anomalies in computer performance logs. Microprocessors and
Microsystems, 69:1–15, 2019.

[102] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie. Generating realistic
intrusion detection system dataset based on fuzzy qualitative modeling.
Journal of Network and Computer Applications, 87:185–192, 2017.

[103] S. He, W. Ren, T. Zhu, and K. R. Choo. Bosmos: A blockchain-based
status monitoring system for defending against unauthorized software
updating in industrial internet of things. IEEE Internet of Things Journal,
7(2):948–959, 2020.

[104] S. Zhanwei and L. Zenghui. Abnormal detection method of industrial
control system based on behavior model. Computers & Security, 84:166–
178, 2019.

[105] N. Neha, S. Priyanga, S. Seshan, R. Senthilnathan, and V. S. Shankar Sri-
ram. SCO-RNN: A behavioral-based intrusion detection approach for
cyber physical attacks in SCADA systems. In Inventive Communication
and Computational Technologies, pages 911–919, 2020.

[106] C. M. Ahmed and A. P. Mathur. Hardware identification via sensor
fingerprinting in a cyber physical system. In 2017 IEEE International
Conference on Software Quality, Reliability and Security Companion,
pages 517–524, July 2017.

[107] B. Agrawal, T. Wiktorski, and C. Rong. Adaptive real-time anomaly
detection in cloud infrastructures. Concurrency and Computation:
Practice and Experience, 29(24):e4193, 2017.

[108] A. Gulenko, F. Schmidt, A. Acker, M. Wallschläger, O. Kao, and
F. Liu. Detecting anomalous behavior of black-box services modeled
with distance-based online clustering. In 11th IEEE International
Conference on Cloud Computing, pages 912–915, July 2018.

[109] N. Sorkunlu, V. Chandola, and A. Patra. Tracking system behavior
from resource usage data. In 2017 IEEE International Conference on
Cluster Computing, pages 410–418, Sept. 2017.

[110] Q. Du, T. Xie, and Y. He. Anomaly detection and diagnosis for container-
based microservices with performance monitoring. In 18th International
Conference on Algorithms and Architectures for Parallel Processing,
pages 560–572, Nov. 2018.

[111] X. D. Hoang, J. Hu, and P. Bertok. A program-based anomaly intrusion
detection scheme using multiple detection engines and fuzzy inference.
Journal of Network and Computer Applications, 32(6):1219–1228, 2009.

[112] Z. Zheng, S. Xie, H. N. Dai, X. Chen, and H. Wang. Blockchain
challenges and opportunities: A survey. International Journal of Web
and Grid Services, 14(4):352–375, 2018.

[113] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer. A survey on distributed machine learning, 2019.
Available: arXiv:1912.09789.

[114] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning:
Concept and applications. ACM Transactions on Intelligent Systems
and Technology, 10(2):1–19, 2019.

[115] E. Lear, R. Droms, and D. Romascanu. Manufacturer usage description
specification. RFC 8520, RFC Editor, 2019.

[116] R. Alcarria, B. Bordel, D. Martı́n, and D. S. De Rivera. Rule-
based monitoring and coordination of resource consumption in smart
communities. IEEE Transactions on Consumer Electronics, 63(2):191–
199, 2017.

[117] P. A. Gagniuc. Markov chains: From theory to implementation and
experimentation. John Wiley & Sons, 2017.

[118] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A close look on
n-grams in intrusion detection: Anomaly detection vs. classification.
In 2013 ACM workshop on Artificial intelligence and security, pages
67–76, Nov. 2013.

[119] E. Alpaydin. Introduction to machine learning. MIT press, 2020.
[120] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.
[121] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier

methodology. IEEE Transactions on Systems, Man, and Cybernetics,
21(3):660–674, 1991.

[122] A. Liaw and M. Wiener. Classification and regression by randomForest.
R News, 2(3):18–22, 2002.

[123] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein. Logistic
regression. Springer, 2002.

[124] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network
classifiers. Machine learning, 29(2-3):131–163, 1997.

[125] I. Steinwart and A. Christmann. Support vector machines. Springer
Science & Business Media, 2008.

[126] S. Weisberg. Applied linear regression, volume 528. John Wiley &
Sons, 2005.

[127] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, 1987.

[128] L. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[129] K. Krishna and M. N. Murty. Genetic K-means algorithm. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 29(3):433–439,
1999.

[130] T. N. Tran, K. Drab, and M. Daszykowski. Revised DBSCAN
algorithm to cluster data with dense adjacent clusters. Chemometrics
and Intelligent Laboratory Systems, 120:92–96, 2013.

[131] K. L. Li, H. K. Huang, S. F. Tian, and W. Xu. Improving one-class
SVM for anomaly detection. In 2003 International Conference on
Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), pages
3077–3081, Nov. 2003.

[132] F. T. Liu, K. M. Ting, and Z. H. Zhou. Isolation forest. In 8th IEEE
International Conference on Data Mining, pages 413–422, Dec. 2008.

[133] Á. L. Perales Gómez, L. Fernández Maimó, A. Huertas Celdrán, F. J.
Garcı́a Clemente, C. Cadenas Sarmiento, C. J. Del Canto Masa, and
R. Méndez Nistal. On the generation of anomaly detection datasets in
industrial control systems. IEEE Access, 7:177460–177473, 2019.

[134] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative
adversarial networks, 2016. Available: arXiv:1611.02163.

[135] R. N. Bracewell and R. N. Bracewell. The Fourier transform and its
applications, volume 31999. McGraw-Hill New York, 1986.

[136] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wi-
jenayake, A. Vishwanath, and V. Sivaraman. Characterizing and
classifying IoT traffic in smart cities and campuses. In 2017 IEEE
Conference on Computer Communications Workshops, pages 559–564,
May 2017.

[137] J. François, H. Abdelnur, R. State, and O. Festor. Automated behavioral
fingerprinting. In 12th International Symposium on Recent Advances
in Intrusion Detection, pages 182–201, Sept. 2009.

[138] J. Francois, H. Abdelnur, R. State, and O. Festor. Machine learning
techniques for passive network inventory. IEEE Transactions on Network
and Service Management, 7(4):244–257, 2010.

[139] J. Terrell, K. Jeffay, F. D. Smith, J. Gogan, and J. Keller. Passive,
streaming inference of TCP connection structure for network server
management. In 1st International Workshop on Traffic Monitoring and
Analysis, pages 42–53, May 2009.

[140] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. SoK: Security
evaluation of home-based IoT deployments. In 2019 IEEE Symposium
on Security and Privacy, pages 1362–1380, May 2019.

[141] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp,
F. Leymann, and L. Reinfurt. A detailed analysis of IoT platform
architectures: concepts, similarities, and differences. In Internet of
everything, pages 81–101. Springer, 2018.

[142] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson. The industrial
internet of things (IIoT): An analysis framework. Computers in industry,
101:1–12, 2018.

[143] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric. All things considered: an analysis of IoT
devices on home networks. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 1169–1185, 2019.

[144] D. Y. Huang, N. Apthorpe, F. Li, F. Acar, and N. Feamster. IoT
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(2):1–21, 2020.

29

[145] A. MacDermott, T. Baker, and Q. Shi. IoT forensics: Challenges for the
ioa era. In 2018 9th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–5. IEEE, 2018.

[146] I. Yaqoob, Ibrahim A. T. Hashem, A. Ahmed, SM A. Kazmi, and
C. S. Hong. Internet of things forensics: Recent advances, taxonomy,
requirements, and open challenges. Future Generation Computer
Systems, 92:265–275, 2019.

[147] H. Chung, J. Park, and S. Lee. Digital forensic approaches for amazon
alexa ecosystem. Digital Investigation, 22:S15–S25, 2017.

[148] S. Li, K. R. Choo, Q. Sun, W. J. Buchanan, and J. Cao. IoT forensics:
Amazon echo as a use case. IEEE Internet of Things Journal, 6(4):6487–
6497, 2019.

[149] J. H. Ryu, P. K. Sharma, J. H. Jo, and J. H. Park. A blockchain-based
decentralized efficient investigation framework for IoT digital forensics.
The Journal of Supercomputing, 75(8):4372–4387, 2019.

[150] C. Ruiz, S. Pan, A. Bannis, X. Chen, C. Joe-Wong, H. Y. Noh, and
P. Zhang. Idrone: Robust drone identification through motion actuation
feedback. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2(2):1–22, 2018.

[151] A. Coluccia, G. Parisi, and A. Fascista. Detection and classification
of multirotor drones in radar sensor networks: A review. Sensors,
20(15):4172, 2020.

[152] A. Bernardini, F. Mangiatordi, E. Pallotti, and L. Capodiferro. Drone
detection by acoustic signature identification. Electronic Imaging,
2017(10):60–64, 2017.

[153] MHD S. Allahham, M. F. Al-Sa’d, A. Al-Ali, A. Mohamed, T. Khattab,
and A. Erbad. Dronerf dataset: A dataset of drones for rf-based detection,
classification and identification. Data in brief, 26:104313, 2019.

[154] Felix Lorenz, Lauritz Thamsen, Andreas Wilke, Ilja Behnke, Jens
Waldmüller-Littke, Ilya Komarov, Odej Kao, and Manfred Paeschke.
Fingerprinting analog IoT sensors for secret-free authentication. arXiv
preprint arXiv:2006.06296, 2020.

[155] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, J. Zahorjan, and
E. Lazowska. CRAWDAD dataset uw/sigcomm2004 (v. 2006-10-
17). https://crawdad.org/uw/sigcomm2004/20061017, 2006. [Online;
accessed 31-July-2020].

[156] A. S. Uluagac. CRAWDAD dataset gatech/fingerprinting (v. 2014-06-
09). https://crawdad.org/gatech/fingerprinting/20140609, 2014. [Online;
accessed 31-July-2020].

[157] A. S. Uluagac, S. V. Radhakrishnan, C. Corbett, A. Baca, and R. Beyah.
A passive technique for fingerprinting wireless devices with wired-side
observations. In 2013 IEEE conference on communications and network
security, pages 305–313, Oct. 2013.

[158] L. Fernández Maimó, A. Huertas Celdrán, Á. L. Perales Gómez, F. J.
Garcı́a Clemente, J. Weimer, and I. Lee. Intelligent and dynamic
ransomware spread detection and mitigation in integrated clinical
environments. Sensors, 19(5):1114, 2019.

[159] M. O. Pahl and F. X. Aubet. All eyes on you: Distributed multi-
dimensional IoT microservice anomaly detection. In 14th International
Conference on Network and Service Management, pages 72–80, Nov.
2018.

[160] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization.
In 4th International Conference on Information Systems Security and
Privacy, pages 108–116, Jan. 2018.

[161] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani. Towards
effective feature selection in machine learning-based botnet detection
approaches. In 2014 IEEE Conference on Communications and Network
Security, pages 247–255, Oct. 2014.

[162] S. Garcı́a, M. Grill, J. Stiborek, and A. Zunino. An empirical comparison
of botnet detection methods. Computers & Security, 45:100–123, 2014.

[163] A. Hamza, D. Ranathunga, H. H. Gharakheili, M. Roughan, and
V. Sivaraman. Clear as MUD: Generating, validating and applying
IoT behavioral profiles. In 2018 Workshop on IoT Security and Privacy,
page 8–14, Aug. 2018.

[164] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted execution
environment: What it is, and what it is not. In 2015 IEEE Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications, volume 1, pages 57–64, Aug. 2015.

[165] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breit-
enbacher, and Y. Elovici. N-BaIoT—network-based detection of IoT
botnet attacks using deep autoencoders. IEEE Pervasive Computing,
17(3):12–22, 2018.

[166] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Cost-
based modeling for fraud and intrusion detection: Results from the JAM
project. In DARPA Information Survivability Conference and Exposition,
volume 2, pages 130–144, Jan. 2000.

[167] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed
analysis of the KDD CUP 99 data set. In 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applications,
pages 1–6, July 2009.

[168] N. Moustafa and J. Slay. UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set).
In 2015 Military Communications and Information Systems Conference,
pages 1–6, Nov. 2015.

[169] A. P. Mathur and N. O. Tippenhauer. SWaT: A water treatment
testbed for research and training on ICS security. In 2016 International
Workshop on Cyber-physical Systems for Smart Water Networks, pages
31–36, Apr. 2016.

[170] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur. A dataset to
support research in the design of secure water treatment systems. In
11th International Conference on Critical Information Infrastructures
Security, pages 88–99, Oct. 2016.

[171] S. Shen, V. V. Beek, and A. Iosup. Statistical characterization of business-
critical workloads hosted in cloud datacenters. In 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages
465–474, May 2015.

[172] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using
system calls: Alternative data models. In 1999 IEEE Symposium on
Security and Privacy (Cat. No. 99CB36344), pages 133–145, May 1999.

[173] G. Creech. Developing a high-accuracy cross platform Host-Based
Intrusion Detection System capable of reliably detecting zero-day attacks.
PhD thesis, University of New South Wales, Canberra, Australia, 2014.

[174] C. Liu, S. CH. Hoi, P. Zhao, and J. Sun. Online ARIMA algorithms
for time series prediction. In 30th AAAI Conference on Artificial
Intelligence, pages 1867–1873, Feb. 2016.

[175] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data
clustering method for very large databases. ACM Sigmod Record,
25(2):103–114, 1996.

[176] Center of Advanced Studies In Adaptive System. WSU CASAS datasets.
http://casas.wsu.edu/datasets/, 2020. [Online; accessed 31-July-2020].

[177] T. V. Kasteren. Datasets for activity recognition. https://sites.google.
com/site/tim0306/datasets/, 2010. [Online; accessed 31-July-2020].

[178] A. K. Hagelskjær, B. H. Grevenkop-Castenskiold, M. H. Jespersen,
T. Arildsen, E. Carvalho, and P. Popovski. IoT device identification
dataset. https://doi.org/10.5281/zenodo.3638165, 2020. [Online;
accessed 31-July-2020].

[179] H. Kang, D. H. Ahn, G. M. Lee, J. D. Yoo, K. H. Park, and H. K.
Kim. IoT network intrusion dataset. https://doi.org/10.21227/q70p-q449,
2019. [Online; accessed 31-July-2020].

[180] A. Parmisano, S. Garcia, and M. J. Erquiaga (Stratosphere Laboratory).
Aposemat IoT-23: A labeled dataset with malicious and benign IoT
network traffic. https://www.stratosphereips.org/datasets-iot23, 2020.
[Online; accessed 31-July-2020].

[181] R. Damasevicius, A. Venckauskas, S. Grigaliunas, J. Toldinas, N. Morke-
vicius, T. Aleliunas, and P. Smuikys. Litnet-2020: An annotated real-
world network flow dataset for network intrusion detection. Electronics,
9(5):800, 2020.

[182] European Conference on Machine Learning and Knowledge Dis-
covery. ECML-PKDD discovery challenge. http://www.lirmm.fr/
pkdd2007-challenge/, 2007. [Online; accessed 31-July-2020].

[183] C. Torrano Giménez, A. Pérez Villegas, and G. Álvarez Marañón. HTTP
dataset CSIC 2010. https://www.isi.csic.es/dataset. [Online; accessed
31-July-2020].

[184] E. Aghaei and G. Serpen. Host-based anomaly detection using
Eigentraces feature extraction and one-class classification on system
call trace data, 2019. Available: arXiv:1911.11284.

[185] B. S. Khater, A. Wahab, A. W. Bin, M. Y. I. B. Idris, M. A. Hussain,
and A. A. Ibrahim. A lightweight perceptron-based intrusion detection
system for fog computing. Applied Sciences, 9(1):178, 2019.

[186] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture. A
host-based anomaly detection approach by representing system calls as
states of kernel modules. In 24th IEEE International Symposium on
Software Reliability Engineering, pages 431–440, Nov. 2013.

[187] P. M. Sánchez Sánchez, J. M. Jorquera Valero, M. Zago, A. Huer-
tas Celdrán, L. Fernández Maimó, E. López Bernal, S. López Bernal,
J. Martı́nez Valverde, P. Nespoli, J. Pastor-Galindo, Á. L. Perales Gómez,
M. Gil Pérez, and G. Martı́nez Pérez. BEHACOM-a dataset modelling
users’ behaviour in computers. Data in Brief, page 105767, 2020.

[188] A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A.
Ghorbani. Towards a network-based framework for Android malware
detection and characterization. In 15th Annual Conference on Privacy,
Security and Trust, pages 233–23309, Aug. 2017.

https://crawdad.org/uw/sigcomm2004/20061017
https://crawdad.org/gatech/fingerprinting/20140609
http://casas.wsu.edu/datasets/
https://sites.google.com/site/tim0306/datasets/
https://sites.google.com/site/tim0306/datasets/
https://doi.org/10.5281/zenodo.3638165
https://doi.org/10.21227/q70p-q449
https://www.stratosphereips.org/datasets-iot23
http://www.lirmm.fr/pkdd2007-challenge/
http://www.lirmm.fr/pkdd2007-challenge/
https://www.isi.csic.es/dataset

30

[189] L. Taheri, A. F. Abdul Kadir, and A. H. Lashkari. Extensible Android
malware detection and family classification using network-flows and
API-calls. In 2019 International Carnahan Conference on Security
Technology, pages 1–8, Oct. 2019.

[190] MIT Lincoln Laboratory. 1998 DARPA intrusion detection
evaluation dataset. https://www.ll.mit.edu/r-d/datasets/
1998-darpa-intrusion-detection-evaluation-dataset, 1998. [Online;
accessed 31-July-2020].

[191] MIT Lincoln Laboratory. 1999 DARPA intrusion detection
evaluation dataset. https://www.ll.mit.edu/r-d/datasets/
1999-darpa-intrusion-detection-evaluation-dataset, 1999. [Online;
accessed 31-July-2020].

[192] P. Nespoli, D. Papamartzivanos, F. Gómez Mármol, and G. Kambourakis.
Optimal countermeasures selection against cyber attacks: A comprehen-
sive survey on reaction frameworks. IEEE Communications Surveys &
Tutorials, 20(2):1361–1396, 2018.

[193] Xianmin Wang, Jing Li, Xiaohui Kuang, Yu-an Tan, and Jin Li. The
security of machine learning in an adversarial setting: A survey. Journal
of Parallel and Distributed Computing, 130:12–23, 2019.

[194] D. D. S. Braga, M. Niemann, B. Hellingrath, and F. B. L. Neto. Survey
on computational trust and reputation models. ACM Computing Surveys,
51(5):1–40, 2018.

[195] Daniel Bastos, Mark Shackleton, and Fadiali El-Moussa. Internet of
things: A survey of technologies and security risks in smart home and
city environments. IET, 2018.

[196] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder,
Markus Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi,
and Selcuk Uluagac. Peek-a-boo: I see your smart home activities, even
encrypted! In Proceedings of the 13th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages 207–218, 2020.

[197] Joseph Bugeja, Andreas Jacobsson, and Paul Davidsson. On privacy
and security challenges in smart connected homes. In 2016 European
Intelligence and Security Informatics Conference (EISIC), pages 172–
175. IEEE, 2016.

[198] Noah Apthorpe, Dillon Reisman, and Nick Feamster. Closing the
blinds: Four strategies for protecting smart home privacy from network
observers. arXiv preprint arXiv:1705.06809, 2017.

[199] Jingjing Ren, Daniel J Dubois, David Choffnes, Anna Maria Mandalari,
Roman Kolcun, and Hamed Haddadi. Information exposure from con-
sumer iot devices: A multidimensional, network-informed measurement
approach. In Proceedings of the Internet Measurement Conference,
pages 267–279, 2019.

[200] Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind
Narayanan, and Nick Feamster. Keeping the smart home private with
smart (er) iot traffic shaping. Proceedings on Privacy Enhancing
Technologies, 2019(3):128–148, 2019.

[201] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind
Narayanan, and Nick Feamster. Spying on the smart home: Pri-
vacy attacks and defenses on encrypted iot traffic. arXiv preprint
arXiv:1708.05044, 2017.

[202] Yi Xu, Jan-Michael Frahm, and Fabian Monrose. Watching the watchers:
Automatically inferring tv content from outdoor light effusions. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 418–428, 2014.

[203] A. Huertas Celdrán, M. Gil Pérez, I. Mlakar, J. M. Alcaraz Calero, F. J.
Garcı́a Clemente, G. Martı́nez Pérez, and Z. A. Bhuiyan. PROTECTOR:
Towards the protection of sensitive data in Europe and the US. Computer
Networks, page 107448, 2020.

[204] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science,
9(3-4):211–407, 2014.

[205] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold
approximation and projection for dimension reduction, 2018. Available:
arXiv:1802.03426.

[206] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 785–794, Aug. 2016.

[207] G. Lai, W. C. Chang, Y. Yang, and H. Liu. Modeling long-and short-
term temporal patterns with deep neural networks. In 41st International
ACM SIGIR Conference on Research & Development in Information
Retrieval, pages 95–104, June 2018.

[208] F. Karim, S. Majumdar, H. Darabi, and S. Chen. LSTM fully
convolutional networks for time series classification. IEEE Access,
6:1662–1669, 2017.

[209] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger.
Deep reinforcement learning that matters. In 32nd AAAI Conference
on Artificial Intelligence, Feb. 2018.

[210] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. C.
Liang, and D. I. Kim. Applications of deep reinforcement learning
in communications and networking: A survey. IEEE Communications
Surveys & Tutorials, 21(4):3133–3174, 2019.

[211] P. L. Lockwood and M. Klein-Flügge. Computational modelling of
social cognition and behaviour—a reinforcement learning primer. Social
Cognitive and Affective Neuroscience, 2019.

[212] I. Rahwan, M. Cebrian, N. Obradovich, J. Bongard, J. F. Bonnefon,
C. Breazeal, J. W. Crandall, N. A. Christakis, I. D. Couzin, M. O.
Jackson, et al. Machine behaviour. Nature, 568(7753):477–486, 2019.

https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset

	I Introduction
	II Motivation and Contributions
	III Behavior Characterization Analysis
	III-A Application Scenario
	III-A1 Device identification
	III-A2 Misbehavior detection

	III-B Device Type
	III-C Behavior Source
	III-C1 Externally-collected behavior sources
	III-C2 In-device behavior sources

	IV Behavior Processing and Evaluation Techniques
	IV-A Rule-based
	IV-B Statistical
	IV-C Knowledge-based
	IV-D Machine Learning and Deep Learning
	IV-E Time Series

	V Behavior-based Solutions and Applications
	V-A Device Type or Model Identification
	V-A1 Network-based identification
	V-A2 Radio-based identification

	V-B Individual Device Identification
	V-B1 Processor-based identification
	V-B2 Clock-based identification
	V-B3 Resource usage-based identification
	V-B4 Electromagnetic signal-based identification

	V-C Attack Detection
	V-C1 Network-based attack detection
	V-C2 Sensor-based attack detection
	V-C3 System calls, logs and software signature-based attack detection
	V-C4 Hardware event-based attack detection
	V-C5 Resource usage-based attack detection

	V-D Malfunction and Fault Detection
	V-D1 Network-based fault detection
	V-D2 Sensor-based fault detection
	V-D3 System log-based fault detection
	V-D4 Resource usage-based fault detection

	VI Public Datasets
	VI-A Device Identification Datasets
	VI-B Anomalous Behavior and Attack Datasets

	VII Lessons Learned, Trends and Challenges
	VII-A Lessons Learned
	VII-B Current Trends
	VII-C Future Challenges

	VIII Conclusions
	References

