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Abstract—Distributed machine learning (DML) techniques,
such as federated learning, partitioned learning, and distributed
reinforcement learning, have been increasingly applied to wireless
communications. This is due to improved capabilities of terminal
devices, explosively growing data volume, congestion in the radio
interfaces, and increasing concern of data privacy. The unique
features of wireless systems, such as large scale, geographically
dispersed deployment, user mobility, and massive amount of data,
give rise to new challenges in the design of DML techniques.
There is a clear gap in the existing literature in that the
DML techniques are yet to be systematically reviewed for their
applicability to wireless systems. This survey bridges the gap by
providing a contemporary and comprehensive survey of DML
techniques with a focus on wireless networks. Specifically, we
review the latest applications of DML in power control, spectrum
management, user association, and edge cloud computing. The
optimality, scalability, convergence rate, computation cost, and
communication overhead of DML are analyzed. We also discuss
the potential adversarial attacks faced by DML applications,
and describe state-of-the-art countermeasures to preserve privacy
and security. Last but not least, we point out a number of key
issues yet to be addressed, and collate potentially interesting and
challenging topics for future research.

Index Terms—Distributed machine learning, wireless commu-
nication networks, convergence, computation and communication
cost, architecture and platform, data privacy and security.

I. INTRODUCTION
With its capability in big data processing, adaptability to
environmental dynamics, and fast speed in problem-solving,
machine learning (ML) has been increasingly applied to
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communication networks for improved system operation [1]],
surveillance [2], [3]], and optimization [4]|—[7]. For example,
deep learning (DL) has demonstrated that it can offer in-depth
analysis for complex communication networks with massive
data, and provide different control schemes for different
protocol layers [8]], while reinforcement learning (RL) and
deep reinforcement learning (DRL) can make decision and
inference under unknown and dynamically changing network
conditions (e.g., channel state information) [9]. Given the
dispersed or distributed nature of many wireless systems,
distributed machine learning (DML) is particularly useful
under different wireless network settings for the following
reasons.

e The first reason is that the modern mobile devices have
considerably powerful computing processor and mem-
ory [10]. Their local hardware resources and data allow
them to perform learning tasks in a distributed fashion.
This is critical for future wireless networks [[11]], in the
Internet-of-Things (IoT) era, where ubiquitous connectiv-
ity will be offered with new applications, such as robotics,
autonomous driving, and unmanned drones.

e The second reason for the use of DML is that the
devices produce explosively large amounts of data, as
a result of the diversification of services, expansion of
network scale, and proliferation of wireless and mobile
devices. The data could provide rich information and
shed valuable insights, and help to significantly improve
the design, deployment, operation and performance of
wireless systems.

e Another reason for using DML is that the increasingly
congested wireless channels resulting from the explo-
sively large volume of data, and the increasing awareness
of users on data privacy, discourage the user terminals
from sending their data to the ML engines or servers. On
the other hand, what is really critical to the ML servers
is the characteristics of the data, e.g., gradients derived
from the data to update their ML models [4]], rather than
the data itself.

For the above reasons, learning the data locally and gen-
erating the learning models and inference without the need
of sending the data is of practical value. The implementation
of learning at individual devices holds the key to reducing
data exchange and bandwidth occupation in wireless commu-
nication networks. In particular, multiple devices can train a



global ML model with their own data. The local data can
participate in the training process and does not need to be
directly uploaded to the server, or shared among devices.
Only local training results, e.g., the gradients of the model
parameters, are sent to the server. Therefore, DML can relieve
computation and storage burden on the (central) servers,
meanwhile protecting sensitive information and preserving
data privacy of the devices in wireless networks.

ML algorithms need to be integrated with DML architec-
tures, to address large-scale ML problems. The designs of the
architectures are expected to optimize the algorithm perfor-
mance (e.g., high accuracy and fast convergence), and use
the hardware resources efficiently. In many years of practice,
researchers have developed a range of general DML architec-
tures, such as MapReduce [12], parameter server [13]], [14],
and graph processing architectures [15]. These architectures
accommodate the core logic of DML algorithms and provide
high-level application programming interfaces. However, the
applications of these architectures to wireless communications
are yet to be investigated.

The existing surveys have been typically focused on central-
ized ML techniques to wireless networks, such as Q-learning
for femtocell networks and Bayesian learning for massive
multiple-input multiple-output (MIMO) systems [16]], DL for
different network layers [8], [17], [18], model-free strategy
learning in cognitive radio environments [19], blockchain-
based ML paradigms for communications [20], and multiple
ML technique for massive machine-type communications [21]],
edge and cloud computing [22], IoT [9], [23[, [24], and
wireless sensor networks (WSNs) [25]].

The survey in [8]] reviews DL techniques from the perspec-
tives of physical layer modulation and coding, data link layer
access control and resource allocation, as well as routing layer
path search and traffic balancing. In [[18]], DL approaches are
surveyed for emerging applications, including edge caching
and computing, multiple radio access and interference man-
agement, with an emphasis on neural networks. ML for mobile
edge computing (MEC) is reviewed in [22] for offloading deci-
sion, server deployment, overhead management, and resource
allocation. DRL is summarized in [24]] with applications to
autonomous [oT networks in terms of the network layer (com-
munication), application layer (edge/fog/cloud computing),
and perception layer (physical systems). DRL is examined
in [26] with a focus on applications to dynamic network
access, data rate control, wireless caching, data offloading,
network security, and connectivity preservation. In [25]], the
advantages and disadvantages of several ML algorithms are
evaluated with guidance provided for WSN designers. The
30-year history of ML is revisited in [4] with analysis of
supervised learning, unsupervised learning, and RL for several
wireless systems, such as heterogeneous networks, cognitive
radios, IoT, and machine-to-machine networks. Moreover,
none of these existing works reviewed the privacy preservation
of ML-empowered communication systems.

Existing studies on DML have been heavily focused on
federated learning (FL), related technologies and protocols,
and several application scenarios [27]-[31]]. In particular, a
tutorial on different FL structures is presented in [27], includ-

ing horizontal FL, vertical FL, and federated transfer learning.
A tutorial on the implementation challenges of FL is provided
in [28[], with an emphasis on communication cost, system
heterogeneity (e.g., asynchronous communication), statistical
heterogeneity (e.g., heterogeneous data), and data privacy. FL-
enabled edge computing and caching, and spectrum manage-
ment methods are introduced in [29]], with a discussion on sys-
tem security. FL for MEC is comprehensively discussed in [|30]]
from the perspectives of cyberattack detection, caching and
computation offloading, base station association, and vehicular
networks. Extensive application scenarios of FL are illustrated
in [31]], such as healthcare, robotics, online retailers, recom-
mender system, and electric vehicles. Yet, the works neither
provide a comprehensive summary on the DML techniques
from the viewpoints of algorithm, framework, architecture
and platform, nor analyze their convergence and scalability,
computation and communication efficiency, and privacy and
security under different wireless settings.

Motivation of this work: This survey on the latest DML
techniques for wireless communication networks is motivated
by the following reasons.

e A clear need of DML for wireless networks: Centralized
ML techniques require all data to be gathered in the
training system, incurring significantly high computation
and communication cost, channel congestion, and risk of
data leakage and privacy violation [30]. The dispersed
nature of wireless networks calls for a distributed imple-
mentation of ML and training.

e Practical feasibility of DML: This is a result of the
increased capability of wireless devices. The increasing
computation power and resources of mobile devices make
DML possible in practice [32].

e An existing gap in the literature: DML has not been
systematically studied, reviewed, or compared in the
context of wireless systems. Existing surveys reviewed
centralized ML techniques to wireless networks [17]-
[24]], or examined FL as the only distributed implemen-
tation of ML [27]-[29]. This survey aims to bridge the
gap with a focus on DML for wireless networks.

Contributions of this work: This paper presents a con-
temporary and comprehensive survey of DML techniques
designed for wireless communication networks to bridge the
gap of the existing literature, including the techniques of DML
and their applicability to wireless communication networks,
their architectures and platforms, computation and communi-
cation efficiency, and approaches for data privacy and system
security. We review popular applications of DML in wireless
communications. In particular, our interests are in power con-
trol, spectrum management, user association, and edge cloud
computing, based on a large number of recently published
results. We analyze the optimality, scalability, convergence
rate, computation and communication cost of recent algorithms
and frameworks. Given the paramount importance of security,
privacy and reliability in DML, we also discuss the potential
adversarial attacks faced by servers and agents, and introduce
multiple countermeasures to preserve data privacy and enhance
system security.



TABLE I
RELATED EXISTING SURVEYS ON ML FOR WIRELESS NETWORKS AND DML, AND KEY CONTRIBUTIONS OF THIS PAPER

Related work Year of Main topic Related content Difference and improvement of this paper
publication in this paper
181, [17], 2018-2019 DL for wireless Sec. II-A, DML techniques and applications to wireless networks
[18] communications Sec. VIII-D
[22] 2020 ML for MEC Sec. 1I-B, DML techniques and various application scenarios in wireless
Sec. VIII-D networks
[124], [26] 2019-2020 DRL for wireless Sec. II-B DML techniques and various application scenarios in wireless
networks communications
1271, 128] 2019-2020 Frameworks and Sec. III-A Other DML techniques in addition to FL, their convergence,
challenges of FL scalability, computation and communication cost, and
countermeasures against adversarial attacks to the learning system
[29], [30] 2020 FL for MEC Sec. 1II-A, Other DML techniques in addition to FL, and their various
Sec. VIII-D application scenarios to wireless networks
[31] 2020 Extensive uses Sec. III-A Other DML techniques in addition to FL, and their various
of FL application scenarios to wireless communications

This survey also points out a number of key issues yet to
be addressed, and collates potentially interesting and chal-
lenging topics for future research. Our study reveals that
DML has been extensively considered to manage the resources
and control the transmit powers of wireless communications.
Tremendous amount of effort has been to date devoted to
decentralizing originally centralized ML models. For example,
the majority of published results are on FL. In contrast,
multi-agent RL rooted in a game-theoretic understanding of
distributed multi-agent operations and benefiting from the
adaptivity of (deep) RL, is a fast-growing area with many
distributed applications to wireless resource allocation, proto-
col coexistence, and cooperative communications. The topics
of related works and the key contributions of this work are
summarized in Table [

The rest of this paper is organized as follows. Section
Il provides preliminaries on DML algorithms and models.
Section III introduces DML frameworks and techniques, with
their applications to wireless networks. Section IV discusses
the optimality, scalability, and convergence rate of popular al-
gorithms, with an analysis on the gap between input and output
data. Section V considers the computation and communication
cost of recent DML algorithms and frameworks. Sections
VI and VII review the architecture and platform for DML,
respectively. Section VIII reviews the applications of DML to
wireless networks, including power control, spectrum manage-
ment, user association, and edge cloud computing. Section IX
describes the state-of-the-art techniques of preserving privacy
and enhancing security in DML systems from the perspectives
of both the server and the agent. Section X summarizes the
lessons learned from existing works, discusses the key issues
to be addressed, and suggests interesting and challenging
topics for future research. Fig. [I] depicts the organization of
this survey.

II. ALGORITHMS AND MODELS
A. Deep Learning (DL)

DL consists of a collection of algorithms and methodologies
that are used to model and extract important features of
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Fig. 1. The anatomical organization of this survey.

data [33]. DL is typically applied to avoid manual description
of data (for example, handwritten characteristics) by learn-
ing automatically from the data. Unlike its traditional ML
counterparts that largely depend on attributes determined by
domain experts, DL approaches obtain information from raw
data layer-by-layer via nonlinear processing units, and make
predictions based on specific objectives. The most popular
DL models are neural networks (NNs), and only those NNs
with enough hidden layers (usually, at least two layers) are
considered “deep”. Other multi-layer architectures, for in-
stance, deep Gaussian process [34], neural process [35], and
deep random forest [36], are regarded as DL structures. An
advantage of DL compared to conventional ML is spontaneous
feature extraction, through which hand-crafted efforts can be
avoided [37].

Deep neural networks (DNNs) approximate complex func-
tions by using simple non-linear operations on input data.
The operations are carried out by “neurons” which perform
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Fig. 2. An illustration of a deep neural network and the deep reinforcement learning process, where an agent (i.e., NN) continuously communicates with an
environment and acquires reward information as feedback. The agent chooses an action at every step, which will alter the environment state. The learning
mission of the NN is to optimally configure its parameters, so that it can choose actions that most likely result in the best return in the future.

Algorithm 1 The Q-learning algorithm [26].
1: Initialization: For every state-action pair (s,a), set the
Q-value Q(s,a) to zero. Obtain the present environment
state s, set a value for the training rate o and the discount

factor ~.
2: for t =1, , T do
3: Obtain immediate reward r and a new state s’ based
on the current (s, a).
4: Select an action a’ according to s’ and update the Q-
value Q(s,a) by:
Qiy1(5,a) +Q4(s,a) + ay [Tt(S, a)+
7 max Qi(s',a") — Qu(s, a)].
5: Update s < s'.
6: end for

7: Output: 7*(s) = arg max, Q*(s, a).

a weighted summing of data followed by a non-linear trans-
formation. The neurons are organized into different layers
“layers” (Fig.[2). The structure of a DNN is similar to a human
brain, where particular units are activated and they influence
the output of the DNN model. The loss function of DNNs
is usually differentiable. By using stochastic gradient descent
(SGD) approaches and back-propagation mechanism, which
obeys the basic chain principle of differentiation, the model
parameters are obtained when the minimum value of a loss
function is reached [38].

B. Reinforcement Learning (RL)

RL learns to control a system to maximize a long-term
objective [39]]. A controller receives the state of the controlled
system and a reward associated with the latest state transition.
Accordingly, the controller decides an action and returns the
decision to the system. In response, the system transits to a
new state. This cycle repeats until the controller learns a way
of controlling the system to maximize the total reward.

In an ML system, an “agent” refers to the learning par-
ticipant whose behavior in an environment can be improved

through training. Categorizing by the number of agents in a
system, there are single-agent RL and multi-agent RL. The
model of the single-agent RL is captured by a Markov decision
process. The mission of the agent is to achieve the best long-
term performance (return), while only acquiring update on its
immediate one-step performance (reward). The single-agent
case is generalized to the multi-agent RL by a stochastic
game, where the state transitions stem from the collaborative
action of all the agents. The rewards of the agents rely on the
collaborative action, and their returns rely on mutual policy.
If the reward functions and the returns are the same for all
the agents, the stochastic game is fully cooperative in that the
agents share a unified intention to maximize the mutual return.
Otherwise, the game is not fully cooperative and the agents
may even have opposing goals.

The most popular type of RL is Q-learning, where an
agent intends to obtain the largest value of a long-term
target by communicating and cooperating with its environ-
ment according to a trial-and-error strategy in the absence of
any previously-stored dataset [40]. Q-learning can acquire an
adequate strategy by refreshing an execution value, i.e., the
Q) value, without a model of the environment. The Q value,
denoted by Q(s,a), is defined as the expected accumulative
premium when an execution a is carried out under the envi-
ronment state s and the operation strategy 7 [40], [41]. Once
the ) values are acquired after a sufficiently long period, the
agent can perform the best action (i.e., the action with the best
@ value) at the present state [42]]. The Q-learning algorithm
is summarized in Algorithm [1}

To make the RL algorithms more capable for generalization,
DRL was proposed by DeepMind [43]], which consists of
a group of approaches that calculate value functions (deep
Q learning) or policy functions (policy gradient scheme) via
DNNs. An agent (i.e., NN) continuously communicates with
an environment and acquires reward information as feedback.
The agent chooses an action at every step, which will alter
the environment state. The learning mission of the NN is
to optimally configure its parameters, so that it can choose
actions that most likely result in the best return in the future.
DRL is usually based on the SGD methods [44f, and can



be readily applied to problems that have a large number
of potential states (i.e., high-dimensional environments). The
framework of DRL is illustrated in Fig.

C. Stochastic Gradient Descent (SGD)

SGD and its variants are popular techniques to train DML
models. SGD enables the output data of an ML model to
approach the true distribution of the input data by minimizing
their divergence (or gap) measured by a loss function. In
essence, SGD selects a sample ¢ for variable x from the set
{1,2,...,n} uniformly and randomly. The SGD updates the
variable x using the gradient of the loss function by sample
i, i.e., Vf;(x), which is a stochastic estimation of the loss
function by all samples, i.e., VF(x) [45], [46].

To enhance the global optimality and convergence, multi-
ple variants of the SGD have been proposed. For instance,
momentum-based SGD adds a weighted sum of the previous
gradients as momentum to the current gradient, which reduces
fluctuations by limiting the influence of the current gradient.
Momentum-based SGD can realize the global optimality and
enhance the convergence over the first-order gradient-based
methods [47]]. Parallel mini-batch SGD (PMSGD) splits the
global dataset into mini-batches, and updates them in parallel
per iteration simultaneously, which can speed up the conver-
gence of traditional SGD [48]]. Decentralized parallel SGD
improves the PMSGD by requiring only a local collection
of gradients between neighbors, instead of a global aggrega-
tion [49].

Recently, the Alternating Direction Method of Multipliers
(ADMM) has been developed as a plausible alternative for
large-scale ML problems, in addition to SGD used in DL or
partitioned learning. ADMM decomposes a problem into sev-
eral parallel subproblems and orchestrates overall scheduling
across the subproblems to solve the original problem [50].
It can guarantee a linear convergence rate under certain
conditions. Detailed discussions will be provided in Section

vl

III. TECHNIQUES FOR DISTRIBUTED MACHINE LEARNING

A. Federated Learning (FL)

FL is a concept created recently by Google [51]], [52]], which
builds (in most cases, supervised) ML models using datasets
locally available to different devices and eliminates the need
for data exchange between the devices or beyond. FL is usually
trained based on SGD [44], [53] or a Federated Averaging
(FedAvg) algorithm [[54]], which is summarized in Algorithm
[2] For FedAvg, every client runs a cycle of the gradient descent
based on its own data to update its own ML model parameters.
Next, the server averages the model parameters of all clients
to update x. More computations can be added to every client
by iteratively updating the local model parameters multiple
times before the averaging step. Based on the distribution
characteristics of data, typical FL algorithms are divided into
the following three categories [27].

Updating
local models
N , s
Device 1 Device 2 Device K

Fig. 3. An illustration of the horizontal FL framework. Two distant BSs
with similar communication services may have different and non-overlapping
groups of users from their respective coverage areas. The feature spaces are
the same across the coverage areas. A mobile terminal can update the model
parameters and upload them to the server. In this way, a global model can be
established with the assistance of other mobile terminals.

Algorithm 2 Federated Averaging (FedAvg) [[54].

1: Define: Local mini-batch size B, number of local epochs
E, number of participants N, learning rate «, global
model w¢, and loss function L(w).

2: LocalTrain(é, w) (at participant ):

3: Split local dataset D; to mini-batches B3;, each in the size
of B.

4: for Local epoch j =1, ---, E do

for b € B; do
6: w «— w — aVL(w;b) (VL is the gradient of L
on b).
: end for
8: end for

W

10: Training at the server:
11: Initialize wg.

12: for Iterationt =1, ---, T do

13: Randomly choose m participants from the total par-
ticipants.

14: for Each chosen participant ¢ parallelly do

15: wit! « LocalTrain(i, w’,).

16: end for

17: Output: w’, = ﬁ Zf\;l D;w! (Averaging ag-
gregation).

18: end for

1) Horizontal FL (or Sample-Based FL): This category
is applied, when datasets share the same feature space but
differ in the samples [55]. An example application scenario of
the horizontal FL is in wide areas with uniformly deployed
BSs and uniformly distributed users, e.g., low-to-medium
density, suburban areas. Each user can benefit from the data
collectively captured by all users, to improve its uplink power
control, modulation-and-coding scheme (MCS), quality-of-
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Fig. 5. An illustration of the (encrypted) federated transfer learning framework, which is utilized when data sets differ in both the samples and the feature
space, e.g., mobile user subscriptions to two different wireless operators. Due to geographical restrictions and different service types, a small portion of user
groups and feature spaces overlap between the two entities. By applying the FTL technique, a mutual depiction between the two characteristic spaces is
obtained with the scarce public sample sets and then used to predict samples with single-sided characteristics.

service (QoS) parameters, etc. A global ML model can be
trained collectively by the users. The feature spaces are the
same across the users. In a typical framework of horizontal FL,
every individual mobile terminal can update the parameters of
the ML model and upload the parameters to the server (or
cloud). In this way, the global ML model can be established
with the assistance of individual data owners, e.g., other
mobile terminals. The horizontal FL framework is illustrated
in Fig. B

2) Vertical FL (or Feature-Based FL): This category is
employed when datasets of individual data owners are sam-
pled from the same data distribution but can have distinct
features [56]-[59]. An example application scenario of vertical
FL is in cellular systems, where BSs and the gateways in the
cellular core network train collaboratively a global ML model
to make decisions on user association, handover, resource
allocation and downlink power control. The feature spaces
of the BSs include the received signal strengths, channel
conditions and QoS of the users. The feature spaces of the

gateways capture inter-BS features, which account for the user
association, handover and interference mitigation aspects of
the global ML model. Vertical FL is applied to aggregate
the distinct features and calculate the loss function of the
training function and the gradients, protecting privacy at the
same time. This allows a model to be constructed with data
drawn from both sides cooperatively. In this FL paradigm, the
specific identity and state of each engaging party cannot be
differentiated, and the FL system assists every party to achieve
a “commonwealth” policy. The framework of vertical FL is
illustrated in Fig. [

3) Federated Transfer Learning (FTL): This category is
utilized when data sets differ in both the samples and the
feature space [60], [61]]. Take mobile user subscriptions to two
different wireless operators (even in two different countries) as
an example. Due to geographical restrictions and different ser-
vice types, a small portion of user groups and feature spaces,
such as power control, MCS, and QoS, overlap between the
two entities in this example. By applying the FTL technique,



a mutual depiction between the two characteristic spaces is
obtained with the scarce public sample sets and then used to
predict samples with single-sided characteristics. Moreover,
the model trained for one of the operators can be readily
transferred and applied in the network of the other operator,
when a user roams from the former operator to the latter. The
FTL technique tackles problems that exceed the scope of the
horizontal and vertical FL techniques described earlier. The
framework of FTL is illustrated in Fig. [5

For the purpose of privacy preservation, a distributed (or
federated) DL framework is proposed in [62], which allows
several participating agents to cooperatively acquire a precise
NN model for a predefined target with no need to share their
input datasets. Based on the asynchronous SGD algorithm,
a paralleled and distributed learning process among the par-
ticipants is enabled through a parameter server. In particular,
each participant learns by itself using its own dataset. The
participant chooses to expose only its core parameters in part
(i.e., gradients) to refresh the entire model. While benefiting
from the models of the others, each participant can protect its
sensitive data and privacy, and achieve the convergence and
learning accuracy of the global model.

Horizontal FL has been widely applied to wireless net-
works for power control [63], spectrum management [64],
edge cloud computing [[65], since it allows for distributed
training and update of a global model at each device without
data exchange between the devices. Despite the fact that
vertical FL and FTL have yet to be implemented in wireless
applications, their capability of model training with distinct
data features indicates that they could have great potentials
in large-scale geographically distributed systems and achieve
desirable global learning performance. Detailed discussions of
these applications will be provided in Section

B. Partitioned Learning

Under the setting of partitioned learning, a supervised
learning model is broken down into multiple blocks. Each
block contains different parameters and is downloaded to
different devices for decentralized computing. The updated
mathematical outcomes are returned to a server to refresh
the entire model [66]. A well-known framework of partitioned
decentralized learning is the Parameter Server framework [13]],
[14] described in Section Applying the block coordinate
descent (BCD) method [[67]], the Parameter Server framework
decomposes a large-scale model-optimization problem into
a separable target function, e.g., linear regression [[68] and
support vector machine (SVM) [[69]], and solves the problem
iteratively in a decentralized manner. The framework of par-
titioned learning is illustrated in Fig. [6] The key difference
of the partitioned learning to FL is that FL does not perform
model partitioning and demands edge devices to jointly renew
the entire model. The properties of different DML techniques
are summarized in Table [

IV. CONVERGENCE AND DIVERGENCE OF DML
ALGORITHMS

In general, a learning algorithm performs better with more
iterations, which, on the other hand, results in higher computa-

Server

4
Worker
groups
1 2 K
Fig. 6. An illustration of the partitioned learning framework, where a

supervised learning model is broken down into multiple blocks. Each block
contains different parameters and is downloaded to different devices for
decentralized computing. The updated mathematical outcomes are returned
to a server to refresh the entire model.

tional complexity. In this section, we analyze the performances
of popular and novel algorithms applied to DML in terms
of convergence speed, optimality, and the mathematical gap
between the output and labels of input data, as summarized in
Table The convergence of an algorithm indicates that the
sequence of solutions can approach a solution point within an
infinitely small radius. Divergence measures or approximates
the gap between the probability distributions of the sample set
(input data) and the output data.

A. Convergence of Deep Learning

SGD and its variants are popular techniques to train DL
models. Yet, SGD is subject to multiple constraints. For
instance, the inaccurate data dwindles as the gradient is back-
propagated (i.e., the vanishing of the gradient), and the SGD
gradient can be influenced significantly by a small portion of
poorly-qualified admitted data. On the other hand, ADMM
decomposes a problem into several parallel subproblems and
orchestrates overall scheduling across them to solve the orig-
inal problem. The merits of ADMM are: i) it demonstrates
linear scaling as data is examined and analyzed in parallel
across units; ii) it does not demand gradient update steps and
prevents the disappearance of the gradient; and iii) it is not
sensitive to poorly-qualified input data.

The linear convergence speed of ADMM is evaluated in [|50]]
under the assumption that the optimal solution to the problem
is achieved at the point x*. The objective function f is as-
sumed to be twice-differentiable at z* with V f(z*) > 0. Hong
and Luo [70] construct the global root-linear convergence
measure of the ADMM, supposing that a predefined accuracy
requirement is satisfied and the step size is small enough.
This accuracy requirement estimates the Euclidean distance
from any iteration step to the best solution set with respect
to the remaining neighborhood. The accuracy requirement is
satisfied, if the feasible set is a compact polyhedron while
the target is a combination of a smooth and strongly convex
function and a non-smooth ¢; regularizer. ADMM has linear



TABLE II
THE PROPERTIES OF DISTRIBUTED MACHINES LEARNING TECHNIQUES, WHERE “¥/” INDICATES THAT THE TECHNIQUE HAS THE CORRESPONDING
CAPABILITY OR FUNCTIONALITY, AND “X”” INDICATES OTHERWISE

Features Dataset partition | Model partition | Stored dataset | Fast convergence | Optimal solution
Techniques
Federated learning v X v X v
Federated reinforcement learning v X X X v
Federated deep learning v X v X v
Partitioned learning v v v X v
TABLE III

A SUMMARY OF POPULAR AND NOVEL ALGORITHMS FOR DML

Algorithm

Key features

ADMM [50], [[70]

Linear scaling, linear convergence in some cases, preventing the disappearance of the gradient, not
sensitive to poorly-qualified input data

DL-ADMM [71]

Global convergence for DNN with a complexity of O(N?), updating parameters backward-forward

Communication
efficient-FedAvg [72]

Sparsifying gradients and quantizing the weight into 8-bit unsigned integers, convergence at the
required precision with six times fewer rounds than FedAvg, and three times less data transmission

Momentum gradient
descent [47]]

Global convergence and prominent convergence enhancement over first-order gradient descent

Parallel mini-batch
SGD [48]

Convergence speed of O(1/v/ NT), N times faster than the single-node SGD, requiring simultaneous
local updates from all nodes per iteration

Decentralized parallel
SGD [73]-[75]

Convergence speed of O(1/+v/ NT), global gradient aggregations in PMSGD substituted by local
collections between neighbors

convergence when employed in many practical scenarios,
for instance, in the LASSO (Least Absolute Shrinkage and
Selection Operator) method used for linear regression, without
requiring strict convexity of the target function.

Yet, the ADMM does not always guarantee fast and global
convergence. To tackle this shortcoming, Wang er al. [71]]
propose a deep learning ADMM (DLADMM), which refreshes
key parameters first backwards and then forwards. It avoids the
operation of matrix inversion by implementing the quadratic
approximation and backtracking methodologies, diminishing
the computational complexity from O(N?3) to O(N?). Global
convergence is proven for an ADMM-based DNN.

The momentum-based variants of SGD have been the
leading techniques for solving ML problems. For large-
scale decentralized ML problems, such as training DNNs, a
parallelized realization of SGD, namely, parallel mini-batch
SGD (PMSGD), is utilized in [48]. With N parallel workers,
PMSGD has a convergence speed of O(1/vNT'), N times
faster (referred to as “linear speedup”) than the O(1/ \/T
convergence achieved by SGD at a single node [76]]. Such
linear acceleration with respect to the number of participating
agents is desirable in decentralized learning when the number
of active agents is large. However, the linear acceleration
is generally not easy to achieve, since the classic PMSGD
demands all participating agents to update their local gradi-
ents or models simultaneously at every iteration. Inter-node
communication cost imposes a serious challenge [77]].

'If an algorithm has O(1/+/T)) convergence, then it takes 1/ iterations
to achieve an O(e) precise solution.

To rule out potential communication impediments, for in-
stance, high delay or poor bandwidths, multiple decentralized
SGD variants have been developed. For instance, decentralized
parallel SGD is considered in [49]], where global gradient
aggregations employed in the classic PMSGD are substituted
by local communications and collections between neighbors.
To decrease the data transmission in each round, compression-
and sparsification-based parallel SGD methods are investigated
in [73]], [74]. It is proven in [75] that certain parallel SGD
variants that strategically skip communication rounds can
provide the fast O(1/v/ NT) convergence with substantially
fewer transmission rounds. Recently, the momentum methods
have been increasingly utilized in learning ML models and
can usually converge more quickly and be extended to more
scenarios. For instance, decentralized SGD with momentum is
utilized for training DNNs with big data.

B. Convergence of Federated Learning

Federated Averaging (FedAvg) is a popular FL algorithm,
which suffers from a slow convergence with large numbers
of rounds and high communication costs per round under
non-identical and independent distributed (non-i.i.d.) client
datasets. Mills et al. [[72]] propose an adaptive FedAvg tech-
nique. The technique leverages a decentralized realization of
the Adam optimization [78], to reduce the number of rounds
significantly before convergence. A new compression tech-
nique is developed to reduce the transmission load of non-i.i.d.
datasets by sparsifying gradients and quantizing the weight
into 8-bit unsigned integers, which results in Communication-
Efficient FedAvg (CE-FedAvg). Numerical tests are carried out



using the MNIST/CIFAR-10 datasets, identical and indepen-
dently distributed (i.i.d.) or non-i.i.d. data, different numbers
of engaging clients, client participation ratios, and different
data-reduction schemes. It is demonstrated that the CE-FedAvg
is able to stabilize at the required precision with six times
fewer rounds than its FedAvg counterpart. Meanwhile, CE-
FedAvg transmits three times less information. Field trials
with Raspberry-Pi devices validate that CE-FedAvg can reach
a required precision at most 1.7 times faster than FedAvg.

The decentralized FedAvg algorithm is proposed to protect
data privacy in [54]] and [79], which combines the local
SGD of each wireless participant with a server that carries
out model averaging. A number of edge nodes are randomly
and non-repetitively selected every round to synchronize their
local models with the global model and restart their respec-
tive training processes. A decentralized circular topology is
adopted in [[79]], where there exists at least one path between
two nodes (or vertices). Extensive experiments are run on
the FedAvg algorithm under non-i.i.d data from the MNIST
training dataset.

The existing studies on FL solely leverage the first-order
gradient descent (GD), without taking into account past iter-
ations for the gradient renewal, which can potentially speed
up convergence. Liu et al. [47] consider a momentum element
which depends on the previous iteration. A momentum FL
(MFL) technique employs the momentum gradient descent
(MGD) to update the model parameters of different work-
ers or agents. The authors analyze the global convergence
behaviors of the MFL and establish an upper limit for the
convergence speed. By comparing the upper limits of the
MFL and FL, conditions are provided under which the MFL
can achieve faster convergence. For different ML frameworks,
the convergence behavior of MFL is examined experimentally
using the MNIST dataset. Simulation results justify that MFL
can converge globally and provides a prominent convergence
enhancement over FL.

C. Divergence

The Kullback-Leibler (KL) divergence is a popular way to
measure the mathematical gap between two different proba-
bility distributions, i.e., p(-) and ¢(-) [80]-[83]]. The entropy
H(p) of a distribution p describes the minimum possible
number of bits per message that are needed (on average) to
successfully encode events drawn from p. The cross-entropy
H(p, q) indicates the number of bits per piece of information
needed (on average) to encode events drawn from the true
distribution p, if using an optimal code for distribution ¢ [84]—
(86]. Given p, H(p, q) grows as g becomes increasingly differ-
ent from p. However, if p is not fixed, H(p, ¢) does not provide
an absolute measure of the difference. The reason is that
H(p, q) grows with the entropy of p. Given the distribution p,
the KL divergence and the cross-entropy are interchangeable.
As revealed in [87]]-[|89], when p and ¢ are identical, the cross
entropy is non-zero and equal to the entropy of p.

Cross-entropy is commonly used as part of loss functions in
ML, including FL [90]], [91]. In many cases, p is treated as the
“true” distribution, and ¢ as the model to be optimized [92].

For example, in categorization tasks, the commonly used
cross-entropy loss (also known as log-loss), quantifies the
cross-entropy between an empirical distribution of the features
(e.g., by fixing the admitted data samples) and the distribution
estimated by the classifier [84]. For each data point, the
empirical distribution assigns probability 1 to this data (class),
and probability 0 to all other classes. In this example, the
cross-entropy changes proportionally with the negative log-
likelihood. As a result, minimizing the cross-entropy amounts
to maximizing the log-likelihood. Given p (i.e., the empirical
distribution in this example), minimizing the cross-entropy
amounts to obtaining the smallest KL divergence value be-
tween the empirical distribution and the predicted. H(p) is
not influenced by the model parameters and is negligible in
the loss function.

The KL divergence and cross-entropy have been used to
optimize wireless systems [93]], [94], e.g., by assuming mutu-
ally dependent sparse Multiple Measurement Vectors (MMVs)
with unknown dependency. Palangi et al. [93] characterize this
reliance by calculating the conditional probability of each non-
zero element in a vector, with knowledge of the “remainings”
of all previous vectors. To estimate the probabilities, the long
short-term memory (LSTM) is utilized to develop a data-
driven framework for sequence modeling. A cross-entropy
cost function is minimized to learn the model parameters.
To re-establish the sparse vectors at the decoder, a greedy
approach is developed to use the model to decide tentatively
the conditional probabilities in [93]. Numerical experiments
on two practical datasets validate that the developed approach
substantially outperforms a general-purpose MMV approach
(i.e., the Simultaneous Orthogonal Matching Pursuit) and sev-
eral model-based Bayesian schemes. The approach developed
in [93]], [94] does not append any intricacy to the compressive
sensing encoder.

Geographically widespread systems in an end-edge-cloud
structure are popularly employed in healthcare systems [95],
[96]], and can be potentially applied to wireless network
environments for communications among IoT devices [97]. FL
is valuable for such practical scenarios. The convergence of FL
has been widely studied in ubiquitous systems [98]] and many
results are exportable to the FL implementation over wireless
networks. Generally speaking, existing FL schemes cannot
cope with inequalities of local data features. Yet, the agents
in ubiquitous systems are subject to label noises because of
different capabilities, biases, or malicious interferences of the
annotators. Chen et al. [99] propose Federated Opportunistic
Computing for Ubiquitous Systems (FOCUS) to tackle the
label noises. FOCUS keeps a small group of baseline samples
at the server, and quantizes the accuracy of the agent local data
by calculating the joint cross-entropy between the FL model
on the local sample data and the FL. model on the baseline
sample data. Then, an agent’s weighted operation is carried
out to calibrate the weight allocated to the agents in the FL
model according to their accuracy scores. FOCUS is tested
by experiments by using both synthetic data and practical
data. The outcomes demonstrate that FOCUS distinguishes the
agents with noisy labels and diminishes their influence on the
model performance, hence scoring substantially higher than



the FedAvg approach.

V. COMPUTATION AND COMMUNICATION EFFICIENCY IN
DML

A large dataset and number of communication rounds can
ensure a better training accuracy. Yet, the massive data trained
and transmitted in the system incurs high dimensionality,
complexity, and computation and communication cost. In this
section, we discuss the approaches to improve computation
and communication efficiency, and achieve a balance between
computation and communication, with a guaranteed model
performance.

A. Computation

Large-scale datasets in ML systems invoke computational
challenges, requiring distributed training on an aggregated
group installed with accelerators, such as GPUs [100]. To train
a deep model in decentralized networks, typical mathematical
operating missions are performed by the GPUs of multiple
workers in numerous iterative loops [101]. Every iterative
loop consists of a few key stages, namely, feed-forward and
back-propagation. During every iteration, those GPUs perform
massive data transmissions about the model parameters [102]]
or gradients [[103]]. Therefore, information transmission across
GPUs is a potential impasse impeding the system-wide learn-
ing effect. Shi et al. [[104] develop a model based on directed
acyclic graph (DAG), which is widely used for distributed
(or federated) DL to reduce the training time based on the
decentralized synchronous SGD technique.

A typical DML model is presented in [105], where com-
putation tasks across n workers (or agents) are coordinated
for a large-scale decentralized learning problem facilitated
by a master. Superfluous calculations are allocated to the
agents to prevent stragglers. SGD is utilized for each com-
putation round, which is considered finished as long as the
master acquires k distinguished calculations, i.e., calculation
objective. The average execution duration is a function with
respect to the calculation workload (given by the proportion
of the data samples usable at every agent), as well as the
calculation objective. A lower limit of the shortest average
execution duration is established with assumptions on the
prior information of the random calculation and transmission
latency. Experiments performed on the Amazon EC2 cluster
demonstrate considerable decrease in terms of the average
execution duration, as compared to current coded and uncoded
calculating approaches. The difference between the developed
approach and the lower limit is insignificant, justifying the
merit of the developed coordinating policy.

A typical DML model can be implemented with differ-
ent off-the-shelf DL frameworks. Four of the latest such
frameworks are Caffe-MPI from Inspur [106], CNTK from
Microsoft [[107]], MXNet from Apache [108] and TensorFlow
from Google [109]. In [110], the four frameworks are tested,
and it is shown that the different frameworks lead to different
performances, even when the same GPUs and datasets are
utilized. Running DNNs that efficiently learn the feature

representation, the four frameworks are popular for Al appli-
cations. The large-scale datasets of DNNs may lead to a high
requirement of computation resources. GPUs are utilized to
accelerate training by both algorithmic parallelization and data
parallelization. Implemented in GPUs, the four frameworks
are tested and compared in terms of training speed in a single
GPU or multiple GPUs. Experiments help identify bottlenecks
preventing high throughput dense GPU clusters, and potential
remedies, such as efficient data pre-processing, autotune and
input data layout for loading massive data, and a better-utilized
cuDNN (i.e., an accelerator library for DNN invented by
NVIDIA [111]). In this sense, the joint optimization of the
DML model and implementation frameworks is critical to the
performance of the model.

B. Communication

To utilize FL under a decentralized setting, the agents
have to transfer the model parameters via wireless channels.
The wireless links can cause training inaccuracies because
of scarce wireless resources (such as bandwidth) and lossy
wireless links [113]]. For instance, the symbol errors caused
by the lossy wireless channels and limited wireless resources
can have a strong influence on the efficiency and precision of
the FL renewals among the agents. The inaccuracies influence
the effect and convergence rate of the FL algorithms [[114].

Federated optimization is proposed in [52] to train a cen-
tralized model, meanwhile keeping the training parameters
locally at users’ devices. The purpose is to diminish uplink
transmission costs and protect the data privacy of the devices
with an emphasis on sparse data, where some attributes take
place on a small subset of nodes or data points only. It
is shown that the sparsity characteristic can be utilized to
derive an effective algorithm for federated optimization, which
can reduce communication rounds and network bandwidth
required by model training. The federated optimization would
still benefit from further improvements, such as asynchronous
model uploading, to achieve better performance.

As a popular edge learning technique, FL has been devel-
oped according to decentralized gradient descent, where the
stochastic gradients are calculated at the agents situated in
the edge and sent to the server also located in the edge to
update an overall ML model. Because each stochastic gradient
consists of millions to billions of parameters, information
exchange overhead turns out to be a potential impasse of
edge learning. To circumvent the impasse, Du et al. [112]]
develop a graded architecture to decompose and measure
stochastic gradient (as illustrated in Fig. [/)) and evaluate its
influence on the training effect. The system decomposes the
stochastic gradient into several normalized block gradients.
The normalized block gradients are quantized with a uniform
quantizer. Then, the quantized versions of the normalized
block gradients are numerically adjusted and connected. The
quantized normalized gradient utilizes a so-called conjunction
vector for the least distortion. The size of the conjunction
vector is also effectively reduced by another low-dimensional
quantizer. Featuring bit-assignment, the developed scheme
reduces the measuring mistake by dividing the overall number
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Fig. 7. A hierarchical gradient quantization scheme [112]. The normalized block gradients are quantized with a uniform quantizer. Then, the quantized block
gradients are numerically adjusted and connected. The size of the conjunction vector is reduced by another low-dimensional quantizer. Featuring bit-assignment,
the developed scheme reduces the measurement error by dividing the overall number of bits from gradient measurement to decide on the simplifications of

quantizers.

of bits from gradient measurement to decide the simplifications
of quantizers. The scheme is shown to ensure the convergency
by establishing the convergence speed to be a function of the
number of bits used for the uniform quantizer. Numerical tests
validate that this architecture can substantially diminish the
information exchange overhead, in contrast to the sign-SGD
method, while both yield similar training precisions.

While existing works try to reduce the total number of bits
sent at every renewal by means of an effective reduction of
the data size, Wang er al. [115] investigate an orthogonal
method that distinguishes impertinent renewals provided by
clients and prevents them from being transmitted to diminish
system footprint. Communication-Mitigated Federated Learn-
ing (CMFL) is developed in [[115]], which provides the clients
with the feedback of the global inclination of model refresh-
ing. The global inclination is evaluated by the divergence
between the gradients of a local renewal and a global renewal.
Each agent checks whether its renewal is consistent with
this overall inclination and also sufficiently pertinent to any
model enhancement. By preventing transmission of misaligned
renewals to the server, CMFL is able to significantly reduce
the transmission cost and ensure the training convergence at
a given prediction accuracy. CMFL can enhance the transmis-
sion efficiency in comparison to many existing FL schemes,
such as vanilla FL [54], Gaia [116], and Federated Multi-
Task Learning (FMTL) [117]. CMFL is evaluated by numerous
simulations and EC2 emulations [[118]]. In contrast to vanilla
FL, CMFL achieves 13.97 times more transmission efficiency,
while Gaia only yields 1.26 times enhancement in efficiency.
When utilized to FMTL, CMFL enhances the transmission
efficiency by 5.7 times with 4% better estimation precision.

C. Trade-off Between Computation and Communication

Emerging technologies and applications, such as IoT and
social networking, obtain services from a large group of people
and devices, and produce massive data at the system edge. ML
models are generally constructed from aggregated information,
to allow the observation, categorization, and estimation of
future events. With practical considerations on bandwidth,
data plan, storage and privacy of users or devices, it is
usually infeasible to upload all information to a central server.

Wang et al. [119] focus on the FL models trained with
gradient descent-based algorithms. The convergence limit of
decentralized gradient descent is analyzed under non-i.i.d data,
based on which a control protocol is developed to balance the
local renewal and the global data collection, and obtain the
smallest loss function constrained by a predetermined budget.
The effect of the approach is validated experimentally with
sample data, both on a network prototype and a large-size
simulation system. The experimental results demonstrate that
the algorithm behaves near-optimally in terms of the global
loss function with a range of ML models and different data
distributions.

Unlike the conventional DAG model whose nodes denote
calculating missions, the DAG model developed in [104]]
consists of two groups of nodes: calculation and transmission
nodes. To examine the influence of information exchange
on the learning effect, Shi et al. [104] carry out empirical
investigations on four classic decentralized DL architectures
(including Caffe-MPI, CNTK, MXNet, TensorFlow, etc.) and
test a range of information exchange policies, such as PCle,
NVLink, 10GbE, and InfiniBand. The speedup of training
typically relies on three factors: Input/Output, calculating,
and transmission behaviors. By running synchronous-SGD
with multiple GPUs, these DL architectures can decouple
the collection and calculation of the gradients into parallel
operations to accelerate model training. The frameworks do
not scale well using some latest GPU products (e.g., NVIDIA
Tesla V100). The reason is that the present integrations of
inter-node gradient transmission through 100 Gbps InfiniBand
are not fast enough to keep up with the computation capability
of V100.

When data is distributed across multiple servers, it is
critical to lower the information exchange cost between the
servers (or participating agents) while resolving this decen-
tralized learning task. Elgabli et al. [[120] develop a quick
and transmission-efficient distributed algorithm to tackle the
decentralized ML task. Developed from ADMM, this algo-
rithm of Group ADMM (GADMM) solves the problem in a
distributed fashion, where no more than half of the agents
compete for the scarce radio resources at a time. In particular,
the agents are separated into two clusters (namely, head and



tail). Every agent in the head (tail) shares data only with
its two neighbors from the same cluster, hence training an
entire model with small communication cost in each model ex-
change. It is proved that GADMM converges to the optimum,
as long as its loss functions are convex. It is experimentally
corroborated that GADMM converges more quickly and is
more transmission-efficient than classic methods, for example,
Lazily Aggregated Gradient (LAG) [121]], when linear or
logistic regression problems are created based on synthetic and
practical data. Additionally, dynamic GADMM is developed
to achieve convergence when the network topology of agents
changes over time.

VI. DML ARCHITECTURES

Several popular architectures have been widely adopted in
DML, and often applied to the studies of wireless commu-
nication networks. Table IV summarizes their properties and
features with details provided in the following.

A. MapReduce

MapReduce is a parallel programming paradigm to process
and generate large datasets, which is applicable to various
ML tasks in practice. Users complete the computation by
map and reduce operations. The system decentralizes the
computing tasks and runs the tasks in parallel over clusters of
machines, and manages communications and synchronization
between the machines for efficient usage of the network and
memories [122[]-[[124]. Through MapReduce, it is easier to
parallelize plenty of batch data computing tasks. It is suitable
for large-scale clusters without considering failover manage-
ment. With emerging open-source platforms (e.g., Hadoop),
MapReduce can accelerate real-world applications, e.g., web
browsing and fraud detection.

Fig. [§] illustrates the data flow of MapReduce [[12f], which
is comprised of a Map and a Reduce function. The role
of the Map function is to integrate the intermediate values
corresponding to the same intermediate key, which are then
transferred to the Reduce operation. Map generates some
intermediate key and value pairs from an input pair. The
Reduce function, in contrast, merges the input values to
yield a smaller number (typically one or zero) of values.
While MapReduce is highly scalable, it suffers from a crucial
weakness for ML: It fails to recognize the iterative nature
of most ML algorithms [[125]. To address this issue, ML
systems based on iterative MapReduce (IMR) framework were
proposed, including Spark MLIlib, Vowpal Wabbit and Twister.
The IMR-based ML systems employ asynchronous iterative
communication pattern.

Several systems have been designed based on the MapRe-
duce architecture on the Hadoop platform. Hadoop provides a
framework for analyzing and transforming very large datasets
using the MapReduce paradigm. Jeon et al. [126] show how
MapReduce parameters can affect the distributed processing
of ML programs, which are supported by ML libraries like
Hadoop Mahout. Virtualized clusters are constructed on top
of Docker containers to measure DML performance, while
changing Hadoop parameters. It is shown that the processing

becomes faster with the decreasing number of replica and with
the increasing block and memory buffer sizes. In [127], a
decentralized realization of two unsupervised methods, i.e.,
K-means clustering and primary component access (PCA),
are evaluated for robust anomaly detection method in a dis-
tributed system. The experiments are performed with Hadoop
Distributed File System (HDFS) log dataset. The conclusion
drawn is that the accuracy of the methods does not degrade
because of the decentralization. Both K-means clustering
and PCA can detect 97% of actual anomalies. When the
parallelization level is high, both systems have faster running
speeds (e.g., 30% faster when parallel threads grow from 1
to 10), and the efficiency of anomaly detection increases by
75%.

More systems have been designed based on the MapReduce
architecture on the Spark platform. Patil et al. [[128]] propose
an implementation of Distributed Decision Tree (DDT) in
Spark environment, which can reduce the model building
time without compromising the accuracy of the Decision Tree
(DT). Apache Spark clusters provide a distributed experimen-
tal environment to validate DDT training. Three models are
considered in [128]]: Spark Decision Tree (SDT), PySpark,
and MLIib. It is shown that, when the size of dataset is up to
gigabytes, the traditional DT (e.g., PySpark) is outperformed
by DDT in terms of learning time (e.g., by 8 minutes on
average). Although the SDT is similar to MLIib in terms of
runtime, one can have a Python wrapper around SDT which
would not restrict the input data format, speeding up the
training. For this reason, the SDT is recommended in [128]].

A scalable system for heart disease monitoring based on
Spark and Cassandra frameworks is described in [129]]. This
system focuses on the real-time classification of heart dis-
ease attributes. The system consists of two main subsystems,
namely, streaming processing, and data storage and visualiza-
tion. The former uses Spark MLIib with Spark streaming and
classification models to forecast heart disease. The latter uses
Apache Cassandra to store the large volume of generated data.
An architecture is built for a recommender system in [130],
which recommends products or services to consumers, relying
on their optimal responses to the recommendations. DML
algorithms (e.g., variants of Decentralized Kalman Filters,
Decentralized Alternating Least Square Recommenders, and
Decentralized Mini-Batch SGD-based Classifiers), and calcu-
lation and ML platforms with strong scalability (e.g., Apache
Spark, Spark MLIib, Spark Streaming, and Python/PySpark)
are integrated to build a high-performance, decentralized, and
fault-tolerant architecture.

Dong et al. [[131] develop a forecasting model to predict
future electricity cost of residents via a Random Forest ML
algorithm. Distributed systems, such as Amazon Web Service
(AWS), Simple Storage Service (S3), Elastic Map Reduce
(EMR), MongoDB and Apache Spark, are used to store and
process residential energy usage data collected by a smart
meter in London. A significant computational gain of using
decentralized networks when implementing ML algorithms on
large-scale data is observed in terms of computational times
and predictive accuracy.
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Fig. 9. An illustration of the parameter server architecture. The client nodes
are partitioned into groups. The servers maintain the whole or part of all
parameters and aggregate the weights from each client group.

B. Parameter Server (PS)

The PS architecture consists of two kinds of nodes: server
and client (or worker); see Fig. [0] There may be one or
multiple servers. The client nodes are partitioned into groups.
The servers maintain the whole or part of all parameters, and
aggregate the weights from each client group. The server nodes
interact with each other to duplicate and transfer parameters
[13]]. In most cases, the server nodes and the hosts in the cluster
are of equal numbers. Every individual server node only needs
to synchronize partially with each other. This reduces data
transferred between the server and client [132].

The client nodes conduct the initial steps of the DL algo-
rithm, such as convolutional calculation, gradient calculation,
back propagation, weight refreshment. Unlike a centralized
approach, a client uses the synchronized global gradient from
the server nodes to carry out back propagation and weight
refreshments. The clients only share the parameters with

the servers, and never communicate with each other. They
typically store locally part of the training data [14]]. Com-
munications between nodes in a parameter server architecture
can be asynchronous. By relaxing the stringent requirement of
synchronization, the efficiency of the system can be improved
by parallelizing the utilization of the CPU, disk and network
bandwidth [13]]. The PS architecture has been broadly applied
to decentralize ML tasks on wired platforms.

Given the finite bandwidth and memory, and potential
compromise of privacy, it is generally impossible to deliver all
data in a distributed edge environment. In [133], an adaptive
control technique is developed to strike the balance of learning
efficiency and wasted resources in real-time, by specifying the
frequency of the global aggregations. The technique minimizes
the learning loss to adapt to the frequency of the global aggre-
gations. Non-i.i.d. datasets are considered for learning tasks.
The tradeoff between the efficiency of the global and local
updates is improved by calibrating the time loss, the number
of active nodes, and the sensitivity of fixed control parameter
under various data distributions and node numbers. In [134],
the authors of demonstrate the system developed in
[133]. It is shown that the system can make an estimation of
the parameters with regard to data distribution and resource
usage, and adjust the system relying on the estimations on-
the-fly.

Duong and Sang propose and implement FC2: A
web service for fast, convenient and cost-effective (FC2) DML
model training over the cloud. The designed system can exploit
inherent heterogeneity in computing resources over the cloud,
and provide a simple web-based interface for cost-effective
training of DML models.

C. Graph Processing Architecture

While other DML frameworks (such as iterative MapReduce
and PS) only support data parallelism, recent graph-based
frameworks consider model parallelism [15]], [136]-[138]. A
comparative study of representative architectures is provided
in Fig. [I0] [15]. Iterative batch processing frameworks, a.k.a.
IMR, store their model parameters in one node, broadcast
to the workers and receive updates from them during every



TABLE IV
FEATURES OF DML ARCHITECTURES
Features o o . .
Communication pattern Parallel type Flexibility User friendliness
Architectures
Iterative MapReduce Synchronous Data parallel Low Well-developed system
Parameter Server Synchronous/Asynchronous Data parallel High None built-in ML algorithm
Graph Processing Synchronous/Asynchronous | Data/Model parallel Medium -
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(a) Iterative Batch Processing Framework (b) Parameter Server Framework

Worker group

Parameter server and worker mixed group
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Fig. 10. Comparison among DML frameworks. Compared with the other two frameworks, graph-based ML framework distributes both training data and
model parameters within the same cluster, achieving good computing locality and reduced communication overhead [15].

iterative loop. The parameter server architectures store training
data and parameters in two different groups of machines,
and pull/push the parameters between each other. In contrast,
the graph-based architectures treat the parameters as differ-
ent kinds of vertices. Distributed graph processing systems
generally obey the “think like a vertex” idea, which allows a
user-centric vertex function to execute at different vertices of a
graph simultaneously. During every iterative loop, any vertex
v € V is stimulated by its neighboring vertices along edges
e € FE, or the system to compute, and votes to halt when
completing the computation. A computing task terminates
once all vertices vote to halt.

Early works on graph processing platforms (e.g., GraphLab
[136]) was in light of ML, driven by the finding that a lot
of ML problems have the potential to be formulated with
graphs and tackled with iterative convergence techniques.
TuX? unifies graph and the parameter server framework, and
creates a new framework [137]. The new framework applies
graph engines to the data representation and modeling, the
programming model, as well as the operation schedule. TuX?
provides a programming model with edge-centric and vertex-
centric interfaces. The edge-centric interfaces are designed to
perform data exchange, while the vertex-centric interfaces are
designed to perform update operations. However, many ML
algorithms can be vectorized and translated to vector/matrix
operations. When implementing an ML algorithm on TuX?, it
is complicated to translate vector evaluations to be graph-based
over vertices and edges. A vector-centric model can avoid low-
level implementation details and simplify the programming of
ML algorithms. Motivated by this, Tian et al. [[15] propose
an efficient graph processing platform to implement DML.
The platform is called Cymbalo and has: i) data storage

structure for heterogeneous data and a hybrid framework for
ML operations, and ii) a vector-centric programming archi-
tecture that is more efficient than existing graph processing
frameworks (e.g., BiGraph [138] and TuX?). Simulations show
that Cymbalo implemented on Spark 2.1.2 outperforms a lot
of other advanced DML systems (such as Spark, PowerGraph,
and Angel) by expediting the ML operations by 1.6 to 5.8
times.

Distributed sensor networks consisting of identical and in-
dependent active nodes are deployed to provide the reliability
and versatility in security applications. The networks have a
strong resistance to network errors. In [139], a distributed
sensor network is developed based on Boltzmann machine
topology, where every node is modeled as a Boltzmann
machine. The nodes in a sensor network can be naturally
regarded as vertices in a graph processing framework. The
network consists of sensors and inference units. The inference
units detect information (e.g., videos) and decide whether to
transmit to the next node or not. In the simulation presented
in [[139], hundreds of trajectories are produced to provide the
inputs to the algorithm. It is found that the accuracy of the
inference depends on the observations and positions.

VII. SOFTWARE PLATFORMS AND LIMITATIONS
A. MapReduce-Based Software Platform

Hadoop is a MapReduce-based distributed file system to its
partitioning of both the data and computing operations among
a large number of hosts. Another property is that application
computations can be parallelized and executed at the point of
capture. A Hadoop cluster can readily upgrade its computing
capability, storage volume, as well as the input/output (I0)
bandwidth, by plugging more off-the-shelf servers into the



TABLE V

SOFTWARE PLATFORM AND LIMITATION, WHERE “¢/”” INDICATES THAT THE SOFTWARE PLATFORM HAS THE CORRESPONDING LIMITATION, AND

X7

INDICATES OTHERWISE

Limitations

Software platforms

Strict synchronisation

Limited scalability Others

Hadoop [140]

Batch processing

Apache Spark

Slow scheduling

Iterative MapReduce EASGD-based platform in [[141]

S4 [142]

Stream processing, static routing

BAIPAS [143]

Coded platform in [|144]

Petuum [|145]
Parameter Server

LARNANA VA VA VAN

Offline resource adjustment, bad
fault recovery ability

Shared-memory platform in [[146]

AN

GraphLab [136]

x

Graph Processing
Pregel [147]

Lack of theoretical performance
analysis

cluster. In [140], a Hadoop distributed files system (HDFS)
is developed in an attempt to reliably accommodate huge
datasets in servers and send the datasets to user/client ap-
plications. In the system, NameSpace is hierarchical storage
for files and directories, which consists of multiple entities,
namely, NameNode (specified by inodes and their memory
attributes, such as permissions, modification and access times)
and DataNode (which backs up the mapping of files and
directories’ mapping). HDFS clients create a new document
by informing its route to the NameNode. For every block of
the document, the NameNode feedbacks a list of DataNodes
to handle its replicas. Then, the clients pipeline data to the
selected DataNodes, where, in the end, the latter confirms the
production of block replicas to the NameNode. HDFS requires
the NameNode with limited size to store all the NameSpace
and block positions, so that the quantity of addressable blocks
is limited, leading to the scalability problem of the NameNode.
The framework of HDFS is illustrated in Fig. [T1]

Hadoop needs to write the program state to disk per itera-
tion, therefore its performance on a number of ML programs
has been surpassed by in-memory alternative platforms. One
alternative is Spark [148], which keeps the ML program
state in memory and leads to significant performance gains
in comparison with Hadoop, while keeping the interface
of MapReduce simple and easily usable. In [141]], a DML
optimization framework is proposed on top of Apache Spark
by applying the parameter server framework. Distributed syn-
chronous Elastic Averaging SGD (EASGD) and some other
classic SGD-based methods are designed and evaluated on
the platform. To obtain the optimal mini-batch size, Gu et
al. [141] also empirically analyze the famous linear scaling
rule, which intends to calibrate the learning rate linearly in
accordance with the mini-batch size. It is shown that the linear
scaling rule follows with a limited mini-batch size. Spark
ML implementations are usually slower than specialized ones,
partially because Spark does not schedule computations and
communications flexibly in a fine-grained interval. It has been

HDFS client

DataNode

Blocks

Received
DataNode

DataNode

Fig. 11. An HDFS system consisting of a HDFS client, a NameNode and
several DataNodes [140].

shown that proper scheduling is very important to the fast and
correct implementation of ML programs.

A Simple Scalable Streaming System (S4) is developed
as a general-purpose ML platform for executing continuous
unbounded data streams in [[142f]. It offers a scalable dis-
tributed stream processing engine, while MapReduce operates
only batch computing. In S4, events with keyed attributes are
transferred to Processing Elements (PEs). PEs perform the
following operations upon the events: (i) emitting the events
that may be consumed by the other PEs, and (ii) publishing
the processing results. The architecture includes the Actors
model [149], and provides the semantics of encapsulation
and location transparency. Hence, the applications can run
simultaneously. A simple programming interface is provided
to application and software developers. Neumeyer et al. [[142]]
outline the S4 architecture and describe a range of possible
applications, including real-world deployments. The S4 design



is shown to be flexible and suitable to run in large clusters built
with commodity hardware. The proposed S4 system in [142]]
exploits static routing and load balancing, and lacks robust live
PE migration.

While external storage buffering big data can prolong the
training period during deep learning, Lee et al. [|143] propose
a so-called “Big Data and Al-based Predication and Analysis
System (BAIPAS)”, to speed up training using big data. By
taking into consideration the data size, the availability of the
server’s memory and CPU/GPU, the BAIPAS system analyzes
the states of the training data and the worker servers, and
then evenly distributes the training data among all the worker
servers. Data shuffling is also performed to move data between
servers during training, so that each server (with only a subset
of the entire training data at the beginning) can learn from the
entire data set to avoid model over-fitting.

Theoretical insights are provided on how coded techniques
can achieve significant gains over the uncoded in [[144], in
terms of robustness against system noise such as stragglers and
communication bottlenecks [150]. An encrypted calculation
framework (using erasure codes) is proposed to alleviate the
effect of stragglers by introducing redundancy into submis-
sions of a decentralized approach, and obtaining the computing
outcome which is decrypted from a subset of the submis-
sion outcomes, dropping unfinished submissions. The coded
computation speeds up distributed matrix multiplication by a
coefficient of logn, with n denoting the number of workers.
Coded Shuffling is further proposed to significantly decrease
the communication overheads of data-shuffling, which is de-
manded for the realization of high mathematical efficiency
in DML approaches. The key idea of coded shuffling is to
multicast a coded common message to workers, instead of
unicasting multiple separate messages.

B. Parameter Server-Based Software Platform

A general-purpose DML platform, Petuum, is designed
based on an ML-centric optimization-theoretic principle in
[145]. Petuum aims to operate iterative updates of advanced
ML algorithms to quickly converge to an optimum of the
objective function. The goal is achieved by exploiting three
statistical properties enabling efficiency in large-scale dis-
tributed ML: Error tolerance, dynamic structural dependency,
and non-uniform convergence. Correspondingly, Petuum in-
troduces three new system objectives: (i) Petuum can syn-
chronize the parameter states and avoid data staleness, thus
achieving right results at a much lower cost than traditional
bulk synchronization per iteration; (ii) Petuum provides dy-
namic schedules by considering the time-varying structural
dependencies among system parameters, such that loss of
parallelization and synchronization can be minimized; and (iii)
Petuum can give priority to any non-convergent parameter
settings to achieve quicker convergence since ML parameters
have different convergence rate.

Petuum offers APIs to central systems to make easy access
of data- and model-parallel computing, see Fig.|12| The central
system follows the PS architecture, allowing developers to
access the global ML model from every node through a simple
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interface to the distributed and shared memory of the sys-
tem. This interface resembles single-machine programming.
The system also quantifies the inconsistency resulting from
asynchronous operations to guarantee the convergence and
stability of the resulting ML model. Hence, explicit network
synchronization is omitted. Petuum also contains a scheduler,
which allows its users to determine their individual principles
of the consistency of applications [[145]]. The platform can still
be improved in terms of fault recovery from partial program
state, as well as its feasibility to adjust resource allocation in
real-time.

A shared memory-based DNN framework is proposed in
[146] to accelerate the process of reading and updating pa-
rameters in a PS architecture. In particular, a remote shared
memory which can be accessed across multiple workers, is
used to maintain global shared parameters of parallel work-
ers. Simulation shows that, compared with TensorFlow, the
training time of the proposed framework for image recognition
is saved by 10 ~ 50% when training CNN and Multi-Layer
perception (MLP) models.

C. Graph-Based Platform

Graph-based platforms, such as Pregel [147] and GraphLab
[136], effectively divide graph-based models with embedded
scheduler and consistency controller. To address the distributed
processing of large scale graphs, Malewicz et al. [147] built
Pregel, a scalable platform with an API to support many graph
algorithms. However, little to no analysis has been carried
out to confirm that the asynchronous consistency models and
scheduling of graph-based platforms can always correctly ex-
ecute ML tasks. The limitations of popular software platforms
are summarized in Table [V]

VIII. APPLICATIONS OF DML TO WIRELESS NETWORKS

In large-scale wireless networks with massive datasets,
optimization methods, such as convex optimization, dynamic
programming and (sub-)gradient descent-based approaches
may yield a high computational complexity and a slow
convergence to (sub-)optimal solutions. Although data-driven
ML techniques can solve the problems faster, they call for
more powerful computation capability and storage than the
mobile devices can generally have [165]]. One solution to
overcome this limitation is to establish a cloud or edge unit
to collect all the data from the wireless devices and train
an ML algorithm in a centralized fashion. Yet this approach
is further constrained by the bandwidth, channel condition,
latency, energy consumptions, as well as privacy concerns.
Therefore, DML frameworks, such as FL and partitioned
learning, have been proposed that allow wireless devices to
acquire a global model with limited data exchange or based
on partial models and datasets, such as [63]], [66], [[151], and
[152].

A. Power Control

A new scheme is proposed in [63] for cell-free massive
multiple-input multiple-output (CFmMIMO) systems to enable
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Fig. 12. An illustration of the Petuum system including a scheduler, multiple workers and parameter servers [[145]. The central system follows the parameter
server architecture, allowing developers to access the global ML model from every node through a simple interface to the distributed and shared memory of
the system. The system also quantifies the inconsistency resulting from asynchronous operations to guarantee the convergence and stability of the resulting

ML model.
TABLE VI
APPLICATIONS OF DISTRIBUTED MACHINES LEARNING TECHNIQUES IN WIRELESS NETWORKS
Applications . .
Power control Spectrum management | QoS provision Resource allocation
Techniques

Federated learning 631, [151]-[154] [64] [155]-[158] 1511, [541], [65], [113], [159], [160]

Federated reinforcement learning - [161], [162] — [163]
Federated deep learning - - - [41], [164]
Partitioned learning - - - [66]

FL frameworks. The approach permits each of the iterations
of FL to take place in a long coherence period to make
sure that the FL operation is stable. The joint optimization
of local precision, transmit power, throughput, and users’
working frequency is formulated as a mixed-timescale stochas-
tic non-convex problem of power control. This captures the
sophisticated interoperations among the training duration, and
the communication and mathematical operation of weight
refreshment of an FL process. By using an online successive
convex approximation technique, the power control problem
is solved iteratively with ensured convergence to within the
neighborhood of its stationary solution. Simulations validate
that the hybrid optimization diminishes the training time by up
to 55%, in contrast to several benchmark approaches, namely,
(a) equal downloading (DnL) power allocation to all user
equipments with the maximum uploading (UL) transmit power
and fixed local accuracy; (b) equal power allocation with the
maximum UL transmit power and local accuracy; and (c) equal
power allocation with a fixed local accuracy and the DnL and
UL transmit powers. It is shown that CFmMIMO consumes
the shortest training duration of FL, in contrast to cell-free
time-division multiple-access (TDMA) massive MIMO and
co-located massive MIMO. Yet, the results are obtained by
assuming time-invariant channel state information, which may
limit the application of the algorithm.

Power management at edge devices (or agents) is critical
to realize a dependable and well-behaved AirComp over

fading channels. Existing works focus on conventional data
collection, which typically assumes that the data gathered
locally by various agents are i.i.d. The data are normalized to
be a zero-mean Gaussian process with a unit variance [151]],
[[152]. Yet, such an assumption cannot be applied to gradient
collection in ML because the gradient distribution may not be
identical between iterations, and the statistical characteristics
of each entry of the gradient vector may differ substantially
even in the same iteration. Zhang and Tao [153] optimize
power management for over-the-air FL by considering the
gradient statistics, as shown in Fig. [I3] The target is to achieve
the minimum model gathering inaccuracy quantified based on
mean square error (MSE). This is realized by collaboratively
acquiring the best transmit power of each agent and a de-
noising coefficient at the edge server. A closed-form optimal
solution is devised, when the first- and second-order statistics
of the gradient are a priori available. The optimal solution
relies on a multivariate parameter of the variations of the
gradients. The statistics of the gradient are estimated based
on the historically collected gradients. The statistics are later
used to successively modify the transmit powers of the devices
over each learning iteration. Experimental results validate
that the power management outperforms a straightforward
full-power communication approach and a threshold-based
power management approach in terms of model precision and
convergence speed.

The authors of [[154] construct a cooperative FL communi-
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cation platform with relays to support model updating, transmit
and trading. Within the platform, mobile devices produce
model renewals pertaining to their locally acquired or gener-
ated sample data. These model renewals can be transferred to
a model master via a collaborative relay network. The model
master benefits from the training task offered by the mobile
devices which, in return, charge the model master certain
fees. Given the strong interferences of wireless communication
among the devices using a single relay node, sensible devices
need to choose their (different) relay nodes and configure their
transmit powers. A Stackelberg game model is constructed
to describe the reciprocal actions among the devices and the
interactions between the devices and the model master. The
Stackelberg equilibrium is achieved by employing the exterior
point method.

B. Spectrum Management

Edge ML consists of training techniques developed at the
edge of the system to take advantage of enormous distributed
datasets and mathematical operation resources. The architec-
ture of federated edge learning (FEEL) has attracted significant
attention for its capability of preserving data privacy. FEEL
schedules the overall model learning at each individual server,
schedules the local model learning at each of the edge agents,
as well as the model synchronization between the server and
edge devices through wireless links.

Bandwidth allocation and coordination are optimized in
[64] to achieve the least energy usage of mobile devices.
The optimized strategies are adaptable to the channel states
and computation capabilities of the devices to lessen the
total energy and warrant the training effect. Compared to
conventional throughput-maximization schemes [[166], the op-

timal strategies assign wider spectra to individuals with either
poorer channels or more deficient computing powers. Both
poor channel conditions and deficient computation are major
drawbacks of simultaneous model renewals in FEEL. A weight
function rewards the agents with stronger channels and higher
mathematical operation capabilities. The experiments show
that significant energy saving can be achieved. One limitation
of the system, however, is its difficulty to be generalized to
the application of other model transmission cases, such as
asynchronous models.

FEEL is leveraged in a heterogeneous cellular network
in [167], in which micro-BSs or pico-BSs carry out FL
amongst many mobile users inside the radio coverage of the
BSs. The BSs repeatedly communicate the resultant model
renewals to a macro-BS in order to reach a network-wide
agreement. Gradient sparsification is employed in conjunction
with periodically averaging to make the hierarchical FL ef-
ficient in terms of communication. A sparse gradient vector
allows the transmission of only a portion of the parameters
in each round, thus reducing the communication latency.
Image processing is performed by using CIFAR-10 dataset
that includes 60,000 32 x 32 color pictures in 10 categories,
with 6,000 pictures per category. There are a total of 50, 000
training pictures and 10,000 test pictures [168]]. By utilizing
CIFAR-10 dataset, it is shown that, this hierarchical training
approach is able to prominently decrease transmission delay
without sacrificing the model precision.

The idea of “Win-or-Learn-Fast (WoLF) changeable learn-
ing rate” is developed in [[161]] to be part of Q-learning to
manage spectrum allocation and usage in a decentralized fash-
ion. In this concept, a participating device should accelerate
the learning process when it is losing and slow it down when
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winning. The WoLF learning rate is evaluated by separating
the learning rate « into avyi, and ayese, When the agent succeeds
and fails in file transmissions, respectively. If awin < Qiose,
the WoLF rule is satisfied, because the device learns more
slowly on successful attempts and more quickly on failed
attempts. The significance of selecting the right learning rate
is demonstrated numerically by testing a large-scale stadium
event network, in which a wireless network is established in
the stadium to temporarily boost mobile throughput for users
attending the event (such as a football game). The simulations
demonstrate that by adopting the WoLF learning rate (e.g.,
Qwin = 0.01 and oy = 0.05) a substantial enhancement is
obtained in terms of file transmission failure probability and
stoppage probability, as compared to an unchanged learning
rate of 0.1.

C. QoS Provisioning

In large-scale wireless networks, the reduced coupling
among the training participants can accelerate the convergence
of the training process. Therefore, decentralized multi-agent
Q-learning has been applied to spectrum sensing and radio
resource management (RRM) problem when the BSs (or
agents) do not need to acquire the explicit strategies of each
other [42], [163]. The intelligent and uncoordinated BSs can
make decisions based on different local input data (such as
users’ distribution and traffic load) and partial observations
of the environmental state. As an example, consider the
RRM problem at a renewable energy source (RES)-powered
BS [[163]]. The policy-choosing procedure of a BS is described

as a Markov Decision Process (MDP). The state vector of the
MDP is s := {s;}!_,, where s; is the state of BS i (i.e.,
its battery level). Based on s;, each BS selects independently
an operation a; from the operation set to decide its ON or
OFF operation state. As a result, the environment returns an
agent-dependent reward r; to capture the system throughput
and battery level, facilitating a local update of the Q value.

FL algorithms are utilized to achieve the shortest compu-
tation and communication latency in [155], and for traffic
prediction to achieve the largest throughput of users in [[156].
Unlike many centralized learning techniques typically running
in data centers, FL is suitable for wireless edge networks,
where the communication channels are restrained and lossy.
Given a relatively limited wireless bandwidth, only some
users can be coordinated for model (or weight) renewals at
each iteration. For instance, only those with their signal-to-
interference-plus-noise ratios (SINRs) satisfying some specific
predefined requirements (in other words, with comparatively
reliable channels) are selected to contribute to the model
updates [27]. Wireless transmissions are also influenced by
interference. In [[157]], an algebraic model is established which
describes the effect of FL in wireless systems. Mathematical
expressions are developed to evaluate the convergence speed
of FL, analyzing the effects of both coordination and inter-
cell interference. A comparison study is carried out with three
different coordinating strategies, namely, random scheduling,
round-robin, and proportional fair, with regards to FL con-
vergence speed. FL is validated to be more efficient running
with proportional fair than with random scheduling and round-



robin, if the system operates under a high SINR target. Round-
robin is favorable if the SINR target is low. Additionally, the
FL convergence speed drops dramatically as the SINR target
rises, which confirms the significance of reducing the size of
the renewed parameters. Moreover, the mathematical analysis
unveils a trade-off between the numbers of coordinated users
and the subchannel bandwidth, given a usable amount of
spectrum.

Amiri and Giinduz [158] study FL at wireless network
edges, in which power-constrained wireless agents each own-
ing a private dataset establish a mutual model under the
coordination of a distant parameter server (PS). A bandwidth-
constrained fading multiple access channel (MAC) protocol
is developed between the participating agents and the PS, to
utilize decentralized stochastic gradient descent (DSGD) in a
wireless fashion. A digital DSGD (D-DSGD) approach is first
proposed, where one agent is chosen for each iteration by
taking advantage of the devices’ channel states. The coordi-
nated agent discretizes (or quantizes) its gradient estimation
depending on its channel state. The agent returns to the PS
the quantized bits. By making use of the additive attribute of
wireless MAC, a novel analog transmission approach, namely,
compressed analog DSGD (CA-DSGD), is created in which
the agents first extract sparse estimations of their gradients
while gathering errors from past iterations. Then, the devices
produce a projection of the obtained sparse vector into a
vector space with lower dimensions. The authors of [158]] also
develop a power assignment policy to achieve the consistency
and alignment between the obtained gradient vectors from
the perspective of the PS. Simulation results demonstrate that
CA-DSGD converges much more quickly than D-DSGD with
significantly better accuracy.

D. Resource Allocation

1) User association: An echo state network (ESN)-based
FL approach is investigated in [[159]], which estimates the posi-
tions and poses of wireless virtual reality users. This algorithm
utilizes FL to allow several BSs to learn and update their deep
ESNs locally. A learning model is created cooperatively to
estimate the locations and orientations of all users, after being
trained with practically captured datasets.

2) Power allocation and latency: Joint power and resource
allocation is studied in [160] for ultra-reliable low-latency
communication (URLLC) with a specific application to vehic-
ular networks. To minimize queueing delay, FL is exploited
to decentralize model training and operations with a focus on
accurately modeling the queues based on their tail distribution.
However, neither of these studies [159], [[160] considers the
lossy nature and limited bandwidth of wireless channels,
both of which can compromise the quality, performance, and
convergence of FL.

3) Bandwidth allocation and user selection: FL algorithms
are trained over a practical wireless channel in [113]], where
the shortage of bandwidth during the transmission of the
FL model is investigated. Since all the learning parameters
are delivered via wireless links, the effect of the learning
is influenced by the packet errors and the limited and time-
varying availability of wireless channel capacity. The BS can
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only select a subgroup of users to orchestrate the FL at
any moment. Learning radio resource assignment and user
pairing are jointly done to minimize the FL loss function. A
closed-form expression is obtained for the convergence speed
of the FL and to analytically evaluate the influence of the
model parameters. With an estimated convergence speed, the
best transmit power of each user is observed to depend on
user selection and radio channel assignment. The best user
selection and radio channel assignment can be achieved by
running a convex search. Numerical simulations based on
Matlab demonstrate that the proposed hybrid framework of
FL and communication can decrease the loss function of the
FL by at most 10% and 16%, respectively, compared to i)
the best user selection with stochastic resource assignment,
and ii) the standard FL with stochastic user choosing and
resource assignment. The results demonstrate that a balanced
consideration of learning configuration and resource allocation
is important for the accuracy and efficiency of FL.

The potential use of FL at the wireless edge is investigated
in [[169], where power-constrained agents with local datasets
jointly learn a model facilitated by a distant PS. The learning
task considered is to minimize an empirical loss function.
The agents are linked to a PS via a shared, bandwidth-
constrained wireless link. At each iterative cycle of FL, a
subgroup of agents are coordinated and transfer their local
model renewals to the PS by using orthogonally assigned
frequency channels. Each engaging agent needs to reduce the
size of its model renewal to meet its channel capacity. The
proposed coordinating strategy captures both the link states
and the prominence of any local model renewals. It yields a
more significant and more prolonged effect in comparison with
strategies capturing solely either of the two measurements.
It is revealed in [[169] that when the data is i.i.d. across
agents, choosing a single agent for communication at each
round yields the ideal effect. In the presence of non-i.i.d.
data, coordinating several agents at each round enhances the
learning effect. Therefore, the number of coordinated agents
should rise for less diversified and impartial data distribution.

4) Edge cloud computing: Mo and Xu [|65]] design a FEEL
system, where an edge server schedules multiple wireless edge
agents to learn an ML model collectively using their locally
collected data samples. During the decentralized learning,
communication and computation are optimized holistically to
improve the system energy efficiency. Two wireless transmis-
sion protocols are developed for the agents to transfer the
model parameters to the server, i.e., by using non-orthogonal
multiple access (NOMA) or TDMA. Given a training accuracy
requirement, the sum energy usage of all edge agents is
minimized over a limited learning period by convexifying and
optimizing the transmit power and speeds at the agents for
parameter transmission, as well as their CPU configuration
for local updating. Numerical results demonstrate that the
collaborative communication and computation optimization
enhances the energy efficiency of FEEL by balancing the
tradeoff of energy between communication and computation,
as compared to its alternatives only optimizing either com-
munication or computation. However, the joint optimization
involves approximation for convexification.
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TABLE VII
DISTRIBUTED MACHINES LEARNING TECHNIQUES FOR WIRELESS RESOURCE ALLOCATION
Applications L Power allocation | Bandwidth allocation .
User association . Edge cloud computing
Techniques and latency and user selection
Federated learning [159] [160] [113], [169] 651
Federated reinforcement learning - - - [163]
Federated deep learning - - - [164]
Partitioned learning - - - 661
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Fig. 15. System model and operations of the PARTEL framework [66]. (a): The model is adaptively separated into different blocks of parameters that are
downloaded to agent clusters to refresh sample data subsets with allocated bandwidth. (b): At each iteration, all the parametric blocks are updated.

The framework of FEEL does not partition models, and
demands each edge agent to refresh an entire model. Because
the agents can often be resource-limited, FEEL is typically
applicable to small or moderate training missions. By contrast,
an important goal (or objective) of partitioned edge learning
(PARTEL) is typically to learn large-scale models employing
numerous agents as workers via model partitioning. In other
words, a global model is split into many much smaller models,
each of which accounts for a portion of the original learning
model [13]. Hence, the design of efficient PARTEL demands
the decoupling of load assignment from radio resource assign-
ment, inviting distinct challenges not encountered by FEEL.

Wen et al. [66] consider the PARTEL framework to it-
eratively learn a large-scale model with numerous resource-
limited wireless agents (referred to as “workers”). In each
communication round, the model is adaptively separated into
different blocks of parameters that are downloaded to agent
clusters to refresh sample data subsets. At the next step, any
local renewals are sent to a designated server at which the
renewals are managed to amend an overall model. To min-
imize the total learning-and-communication latency and save
resources, the parameter (i.e., calculation load) assignment and
radio bandwidth assignment (for downloading and uploading)
are jointly pursued. Two operating methods are employed.

e The first one is a practical successive method, namely,
partially integrated parameter-and-bandwidth allocation
(PABA) method. The approach consists of two schemes,
referred to as bandwidth-aware or parameter-aware al-
location of spectrum. The bandwidth-aware allocation

assigns the least load to the slowest (in terms of com-
puting) of agent clusters, each learning the same block
of parameters. The parameter-aware bandwidth allocation
assigns the widest bandwidth to the particular worker
which has been the latency bottleneck.

e The second approach is to collaboratively optimize
PABA. Despite being a non-convex problem, a fast and
optimal approach is developed by using nesting bisection
search, and convexified to be efficiently solved with a
convex program. The decentralized training under the
PARTEL framework is optimal since it achieves the same
training effect (in terms of convergence rate) as the
centralized training within the same number of iterations.
Experimental results are obtained by learning a news-
filtering model by the News20 data aggregated in [170],
and show that integrating PABA can significantly improve
PARTEL in terms of latency (e.g., by 46%) and accuracy
(e.g., by 4%).

Enabling ML at wireless edge (for instance, edge cloud)
near mobile terminals and devices is crucial for many next-
generation mobile and IoT applications. It is also challenging
because the lower layers of an edge cloud significantly differ
from current ML configurations. In a geo-decentralized op-
erating system, streaming data needs to be decomposed at a
low cost, meanwhile reserving the representativeness of the
decomposed data for different workers. This can be vital to
generate an impartial training model whose parameters are
updated simultaneously at a practical interval. Lyu ez al. [[171]
develop a real-time method to optimally decompose continu-



ous data streams under dynamic system states over time. A
new metric quantifies the fairness of data decomposition (to
maintain the characteristics of the decomposed data), and is
used to constrain the design of data permission, decomposi-
tion, examination and analysis. SGD is utilized to obtain the
best policies in real-time and achieve asymptotically the largest
gain of data decomposition. Numerical tests validate that the
developed scheme outperforms the classic scheme on the
aspects of data rate and cost-effectiveness, whereas only 24%
of the system connections have to be evaluated without the
cost of the asymptotic optimality in their considered simulation
setting.

The authors of [[164]] propose two new proactive cooperative
caching schemes by utilizing DL to estimate the content
requirement of users in a wireless caching system. In one
of the schemes, a content server (CS) is responsible for
collecting data from every mobile edge node (MEN). The
CS also performs DL to predict the content required for the
system. The centralized scheme is susceptible to the leak
of individual (personal) data due to the MENSs’ share their
personal information with the CS. In the second scheme,
a decentralized DL framework is proposed. The distributed
DL permits the MENs to cooperate and exchange data for
diminishing the error of the content requirement estimation
without releasing the individual data of the users. Numerical
results validate that the developed schemes can refine the
precision by decreasing the root mean squared error (RMSE)
at most 33.7%. These schemes also shorten the service latency
by 47.4%, in contrast to several other ML approaches.

IX. PRIVACY AND SECURITY

DML algorithms are expected to play an important part
in examining and analyzing numerous datasets in large-scale
systems [[185]]. With “data-hungry” learning algorithms and the
exploding information, it is crucial to guarantee data privacy
and security for the distributed learning system against a third
party, or even against other devices within the system. Yet,
the increasing dependence on ML techniques renders it intrin-
sically susceptible to cyberattacks, such as malicious servers,
eavesdroppers, and data poisoning [[186], [[187]. In this section,
we review popular techniques and effective countermeasures
that can be utilized by the agents and the servers to preserve
data privacy and security, and their implementations targeting
different attacks.

A. Privacy of Agent

In FL, the agents forward their training outcomes, i.e., the
parameter values and weights, to a server. In practice, the
agents might not have the trust in the server because the server
could potentially dictate and manipulate the training process,
and extract private information of the agent based on values
made available to the server. To address this issue, agents can
leverage some of the following privacy-preserving techniques:

1) Perturbation: The concept of perturbation is to append
artificial noises to the parameters uploaded by the clients.
Differential privacy [172] is often studied to veil certain sensi-
tive features until no third-party can differentiate individuals,
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the data is impossible to be restored, and the user privacy
is preserved. Geyer et al. [[173] present a differential privacy
scheme to FL to further safeguard agent-side information.
The authors intend to conceal agents’ contributions during
training, and strike a balance between the privacy loss and
learning performance. Experimental results demonstrate that
given enough engaging agents, the proposed approach can
preserve client-side differential privacy at a little cost in model
performance.

2) Dummy: A reliable method of preserving data privacy at
the client-side is to send dummy model parameters along with
the true ones to the server to hide the clients’ individual contri-
butions during training. In particular, Kido et al. [174] propose
a dummy scheme where a user of a location-aware service
sends multiple counterfeit location information (dummies) to
the service supplier, together with true location information.
Since the service supplier cannot extract the true location
information, the user’s position privacy is guarded. Augmented
dummy data bears redundancy, requires extra bandwidth and
buffer, and consumes more energy. Diyanat et al. [|175] min-
imally augment dummy data to preserve the (original) data
privacy of a client without changing the statistical behavior
of the original data, such as distribution. They minimize the
weighted sum of augmented dummy communication cost and
privacy degree. It is guaranteed that the (malicious or curious)
server’s estimation (or speculation) of the true data has a
probability of error higher than a certain threshold.

3) Encoding: In [176], a DML structure is developed with
an encoder installed at every data owner (or in other words,
worker) for training data and protecting the privacy of the
data occupiers. The objective of the encoder is to encrypt
the collective characteristics of data, and work as the relay
to transmit the characteristics to a centrally-located server,
instead of the raw data of the users. The encoder obtains
high-level functions from admitted data, and forwards the
characteristics to the central server. This design prevents
sharing raw data in the system. In the example given in [[176],
the encoder extracts the image characteristics, and does not
expose the image itself.

B. Privacy of Server

Upon gathering all parameters from many agents, the server
performs a weighted average of the parameters. The weights
typically depend on the size of the data which the clients train
to update their parameters. Yet, when the server releases the
collected parameters for the model synchronization between
the agents, the model parameters can potentially be leaked
to passive eavesdroppers in the network [[I188]]. To this end,
protections of the server-side are of importance. The following
methods have been utilized to protect privacy at the server side.

1) Aggregation: Essentially, the aggregation allows the
server to collect data or parameters originated from various
agents. The gathering can be accomplished by a PS. Since
the number of updates received from the clients can be very
large, it is inefficient and even impossible to apply all updates
to the global model one by one. The main purpose of the
data aggregation process is to extract and make full use of the
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TABLE VIII
TECHNIQUES AND THEIR IMPLEMENTATIONS FOR DATA PRIVACY AND SECURITY IN DISTRIBUTED LEARNING SYSTEMS

Privacy at agent Perturbation Dummy Encoding

References 1172], [173] [174], [175] [176]
Privacy at server Aggregation Secure multi-party computation -

References [32], [177] [178] -
Implementations | Prevention of data poisoning Perturbation plus encryption Blockchain-based solutions

References [179], [180] [181] [182]]-[184]

Round 1 Round 2 Round 3 Round 4
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Fig. 16. An illustration of the four-round encryption of secure multi-party computation. The first round starts with the server gathering information from all
agents, followed by using the collection of agent information to obtain an independent reply and send back to each agent in the second round. The devices
upload encrypted and masked model renewals to the server in the third round. The fourth round is the finalization stage where the devices release abundant

ciphers to enable the server to decrypt the collected model renewals.

data contained in the updates. This process takes all received
updates as inputs. Its output can be either a final update
which can be directly applied to the global model, or a new
model which replaces the old one [32]. In some other cases,
the servers are free to choose the agents with high-quality
parameters or easily-satisfied demands [32]. For FL, how to
devise a suitable collection mechanism is an open problem.

A hierarchical distributed system is developed in [[177] with
different solutions for different data partitioning scenarios. In
a hierarchical distributed mode, all entities can be divided into
different layers. The lower layer corresponds to the actual
data owners. The upper layer consists of nodes collecting
data. With an asynchronous learning strategy, the hierarchical
architecture has a flexible choice of model parameters, and also
a shorter computation time before convergence. The design
cannot provide an optimal solution for data exposure. Also,
it is unable to offer the optimal choice of the step sizes for
convergence speed control parameters, which could potentially
lead to worse classification performances.

2) Secure Multi-Party Computation (SMC): In [189], the
individual devices (or agents) try to prevent the servers from
inspecting their updates by only reporting the sum after a suffi-
ciently large number of updates. The SMC adopts encryption
techniques to prevent the inspections in the following four
rounds during a communication stage of FL, as illustrated
in Fig. [I6] The first round starts with the server gathering
information from all agents, followed by using the collection
of agent information to obtain an independent reply and send
back to each agent in the second round. The third round
is a commit stage, where the devices upload encrypted and
masked model renewals to the server. Popular encryption

techniques include public-key encryption [[190], homomorphic
encryption [191]], and Shamir’s secret sharing schemes [[192].
The fourth round is the finalization stage where the devices
release abundant ciphers to enable the server to decrypt the
collected model renewals.

In a DL system, local data can be exposed to an honest-
but-curious server. The authors of [178]] apply additively
homomorphic encryption techniques to the global synchro-
nization of the ML model to guarantee that the model is
cryptographically safe against the server, since the usage of
encryption can add tolerable overhead to a typical DL system.
Homomorphic encryption is an encryption technique which
maintains a specific algebraic relation between the plaintext
and ciphertext with a fixed encryption key [193]]. A privacy-
preserving DL system is presented, where many learning
participants perform DL using a mixed dataset of all without
the need for releasing their own data to the particular server.
The authors of [178]] address the problem of data leakage
by constructing a strengthened system with the following
attributes: i) no data leaks to the server, and ii) accuracy
is maintained perfectly. Asynchronous SGD is utilized to
facilitate data parallelism and model parallelism.

C. Techniques and Implementation

1) Prevention of data poisoning: Data poisoning is one of
the cyberattacks very destructive to ML, where an attacker
injects “poisoned” samples into the datasets. Any poisoned
samples can be typical examples in regards to the mutual
characteristic density in the domain, which is mislabeled. They
could also be examples that are atypical to the domain [[187].
For instance, if the sample is the transmit power of a BS, a
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Fig. 17. An illustration of the system architecture [|I81]. The key generation
center produces the public keys and releases the private keys to the cloud
server and each participant, the cloud server encrypts local gradients generated
by the participants, and the participants train their local model over a private
dataset.

user’s location would be atypical. Numerical results show that
the distributed support vector machine (DSVM) is less prone
to attacks in a network with several nodes and a higher number
of degrees. The capability of DSVM against the attacks also
depends on the network architecture and attack intensities.

Zhang and Zhu [[179], [180]] propose secure decentralized
techniques to safeguard learning against data poisoning, as
well as other system attacks. A zero-sum game is designed
to formulate the conflicting objectives between a legitimate
learning agent who utilizes DSVMs and an attacker who can
change sample data and labels. The game characterizes the
contention between the legitimate learner and the attacker. A
fully distributed and iterative algorithm is developed based on
the ADMM technique to procure the instantaneous responses
of the agent at every individual node to hostile activities. In
[180], the convergence of the decentralized approach is proved
with no assumptions on the sample data or network topologies.

2) Perturbation plus encryption: An FL algorithm is pro-
posed in [181] to protect user privacy and enhance system
performance, which could be used for industrial applications.
The system includes the key generation center that produces
the public keys and releases the private keys to the cloud
server and each participant, a cloud server which encrypts local
gradients generated by the participants, and the participants
who train their local model over a private dataset, as depicted
in Fig. This privacy-preserving FL scheme is implemented
by the following steps.

Each participating agent first disturbs the vector of its local
gradients by applying a decentralized Gaussian technique. This
achieves the differential privacy. Next, the disturbed gradient
vector is encrypted into the Brakerski-Gentry-Vaikuntanathan
(BGV) homomorphic encryption [[194] ciphertext (called “in-
ternal ciphertext”), which is further nested into Augmented
Learning with Error (A-LWE) [[195] ciphertext (namely, “ex-
ternal ciphertext”) to realize secure gathering mechanism. The
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A-LWE permits one to conceal auxiliary data into the false
element. Only after gathering ciphertexts from the agents can
the server decode the external ciphertext correctly. At the same
time, the internal ciphertexts are added. The server is able to
decode collected values without surrendering the privacy of
individual agent.

Simulation results demonstrate that the privacy budget has
little influence on the precision of the convolutional neural
network (CNN) using this scheme. However, the accuracy of
the CNN drops dramatically when the collusion ratio is more
than 0.5, which is the number of compromised participants
over all of the participants. The algorithm has been tested on
the MNIST dataset, and its performance on high-dimensional
datasets needs further qualification.

3) Blockchain-based solutions: Blockchain is a recent dis-
tributed, anti-tampering ledger system initially designed in
bitcoin and other cryptocurrency and later increasingly applied
to the IoT [[197]], [198]], where a record of transactions is main-
tained distributively in a peer-to-peer network [[199], [200]. In
[182], a blockchained FL-based framework is developed for
the verification and transmission of a learning model to achieve
trusted decentralization between multiple devices. An exist-
ing consensus mechanism of blockchain, i.e., Proof-of-Stake
(PoS) [197]] or Byzantine-fault-tolerance (BFT), is deployed
for the decentralization of training data. The block generation
algorithm can reduce the latency by adjusting the generation
rate and Proof-of-Work (PoW) difficulty, contributing to the
minimization of the loss function. A possible drawback of
the algorithm is its susceptibility against a low SNR, and the
latency could increase dramatically with the decrease of the
SNR.

Highly efficient BFT algorithms are designed to come
up with correct and consistent decisions in a decentralized
network in presence of some adversaries displaying malicious
behaviors. This problem is known to be the Byzantine generals
problem. In [183]] and [184f], a Byzantine-resilient algorithm
for distributed learning, named BYRDIE, is developed to avoid
sharing primitive data between workers, so that ML tasks
can be accomplished in a completely distributed manner, even
under the circumstances where Byzantine failures exist in the
network. With mild assumptions on the loss function (as the
minimum of a convex combination of local empirical risk
functions), BYRDIE splits the empirical risk minimization
problem into multiple one-dimensional (scalar-valued) sub-
problems by using coordinate descent. Next, BYRDIE uses
the Byzantine-resilient approach to solve each scalar-valued
subproblem. The steps of BYRDIE involve an outer loop based
on coordinate descent, and an inner cycle which achieves the
solution to the scalar-valued optimization problem per cycle
and strong tolerance to the Byzantine failures.

As discussed in [184], BYRDIE is an inexact distributed
variant of coordinate descent, which can scale with the di-
mensionality of distributed learning problems. As a result,
BYRDIE can address the challenge that the dimension of the
training dataset is often substantially large, as compared to the
neighborhood size of a node. (The minimum neighborhood
of a node depends on the number of dimensions.) By incor-
porating a local scrutinizing process into every iteration of
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2.) C sends Enc(m) to S for storage

3.) C queries S for fQ

4.)S evaluates f{)

Client (C) 5.) S returns Enc(f{m)) to C homomorphically

6.) C computes Dec(Enc(f(m)))=f(m)
and recovers f(m)

Server (S)

Fig. 18. An example of the homomorphic encryption in a client-server scenario, where a client, C, initially encodes its private information (Step 1), then
transmits the encoded information to the cloud server, S, for storage (Step 2). When C desires to operate (or calculate) a function (i.e., query), f(), over its
individual information, C transmits the function to S (Step 3). S carries out a homomorphic manipulation over the encoded information, i.e., calculates f()
blindfolded (Step 4) and sends back the encoded outcome to C (Step 5). Eventually, C retrieves the information via its individual secret key and procures

f(m) (Step 6) [196].

the celebrated distributed coordinate descent technique by the e Privacy protection: Data poisoning and leakage are two

network nodes, BYRDIE can detect Byzantine failures [[183]].
In addition, BYRDIE improves the lowest of the statistical
risk under the assumption that the typical training is based on
i.i.d. datasets.

X. LESSONS LEARNED AND OPEN ISSUES
A. Lessons Learned

The main lessons learned can be summarized as follows.

o DML frameworks: Popular DML frameworks, such as
FL and partitioned learning, allow wireless devices to
acquire a global model with little to no data exchange or
based on partial models and datasets. This can effectively
protect data privacy and reduce communication cost [52],
[115]. Integrated with Q-learning or DL techniques, FL
has a wide range of applications, for example, power
control [152]], [[153]], QoS provisioning [156], [157],
and spectrum management [64]. In contrast, partitioned
learning is the most welcome under edge computing
settings [66]. All the distributed learning techniques
introduced in this paper allow for dataset partitioning,
can reach the global optimality, but may not converge
fast. Partitioned learning has model partitioning capabil-
ity, while federated RL does not need previously-stored
dataset for model training.

e Parallel and distributed ML algorithms: Multiple vari-
ants of the SGD algorithm, such as asynchronous SGD,
parallel mini-batch SGD and decentralized parallel SGD,
are described in [62]. These SGD-based techniques can
train a large-scale model with fast convergence in a
parallel and distributed fashion, without sharing datasets
among agents. ADMM is an option in addition to SGD
for DL or partitioned learning problems [120]]. Unlike
SGD, ADMM can effectively prevent the disappearance
of the gradient, and is resistant to poorly-qualified input
data. Global root-linear convergence can be achieved
by the ADMM algorithm if the objective function is a
combination of a smooth and strongly convex function
and a non-smooth ¢; regularizer [70].

serious threats to the security of ML systems, espe-
cially in DML for wireless communications [186]. To
protect data privacy, techniques, such as perturbation,
dummy, encoding, and blockchain-based approaches, can
be employed at the agent side, while aggregation and
secure multi-party computation (SMC) can be utilized
at the servers. Perturbation injects artificial noises to
the clients’ data. Given a sufficient number of engaging
agents, the perturbation can preserve client-side differen-
tial privacy at a little cost of model performance [173].
Dummy methods send dummy parameters, along with
the genuine data, which bears redundancy. Therefore,
they require extra bandwidth and buffer, and consume
more energy. As a result, it is critical to strike a balance
between augmented dummy communication cost and
privacy degree [175]. Encoding encrypts the collective
features of data and sends the features to the server,
rather than the raw data [176]]. Perturbation plus encryp-
tion is effective in preventing curious servers, especially
when the compromised agents are fewer than 50% of
all agents [181]. Blockchain-based approaches utilize
PoS or BFT to reach a consensus among the clients to
achieve consistent DML [182f]. Data aggregation enables
the server to extract and make full use of data in each
update. To guarantee system performance, it is important
to select agents with high-quality parameters or easily-
satisfied demands [32]]. SMC is a four-round encryption-
based technique which prevents data inspection of the
server [178]]. Since encryption adds overhead to the
learning system, it is necessary to balance among the
communication efficiency, privacy level, and learning
accuracy.

ML for Communication (MLC) vs. Communication for
ML (CML): DML has been increasingly investigated
to improve the performance of wireless communications,
and it has become a branch of MCL [201]]. A key applica-
tion is that DML deployed at edge networks of wireless or
wired systems can optimize the physical and computing



resource allocation to support emerging services, such
as augmented reality (AR) and autonomous driving. On
the other hand, how to use DML at the network edge
under communication and on-device resource constraints
opens up a new research direction, i.e., CML [202]]. In
particular, edge ML architectures and their operations
should be optimized under various on-device constraints
(such as computing, memory and energy resources) and
wireless communication limitations (such as communica-
tion overhead, channel dynamics and limited bandwidth).
CML and MLC are highly interrelated.

o Architecture: Three typical DML architectures have been

described in this paper. It is easy to use iterative MapRe-
duce [12], as it originates from well-developed processing
systems for big data. However, iterative MapReduce
systems can only support synchronous communications.
Therefore, the computing efficiency would be penalized,
if implemented in a large machine cluster of hetero-
geneous machines with different computing capability,
which is known as the straggler problem [105]. On the
other hand, the PS architecture supports both synchronous
and asynchronous communications. It provides flexible
interfaces to developers, through which programs on a
single machine can be readily parallelized and run in a
distributed fashion. However, the PS does not provide
built-in ML algorithms. The graph-based architecture
captures computations and communications on a graph. It
also supports asynchronous communications. Moreover,
it accommodates both data parallelism and model paral-
lelism. One can choose from the existing architectures to
fit the purpose, based on the specific ML problem (e.g.,
the model and data scales) and the characteristics of the
machine clusters (e.g., the heterogeneity of the workers
and the network bandwidth).

B. Open Issues

e Meta-learning: Existing works focus on the training

of traditional ML models and parameters with large-
scale datasets. However, these ML algorithms can be
inefficient and even give incorrect answers when the
dataset has fewer samples. In this sense, it is critical
to apply most recent ML techniques to training wireless
networks, such as zero-shot or few-shot learning [203[—
[205]], and meta-learning [206]. Zero-shot learning al-
lows the system to distinguish a feature without specific
training on it, but rather training on data with relevant
features. Meta-learning empowers the system with the
ability to learn and design an algorithm on its own,
which reduces human intervention. The few-shot learning
and meta-learning frameworks have been widely used in
image recognition, text processing, and robotic control,
and often been applied coupled with DL, RL, and FL
techniques [207]]-[210]. It is an interesting and potentially
rewarding research direction to extend zero-shot or few-
shot learning and meta-learning frameworks to wireless
networks with limited CSI and data traffic samples.

e Domain adaptation: Most of the existing works assume

that the training and testing data have identical distri-
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butions of feature spaces, and use the testing datasets to
examine the learning effect. Yet, in practice, the examina-
tion scenarios may vary and become uncontrollable. The
testing datasets may differ significantly from the training
datasets in terms of feature space, leading to underfitting
and undesirable performances. To address these issues,
the technique called domain adaptation is applied to map
the non-i.i.d data from the source and target domains
into a feature space based on the shortest distance cri-
terion [211]. With the help of domain adaptation, the
objective function trained on the source domain can be
transferred to the target domain, improving the learn-
ing accuracy in the target domain. Domain adaptation
can have the potential in distributed wireless networks,
where the system only needs to collect (non-i.i.d) data
from some BSs while all the BSs can benefit from the
training to improve their operation. How to integrate this
technique to effectively capture the massive time-varying
data across devices remains a challenge worth addressing
in the future.

e Anomaly detection: By training a model with a rel-

atively large amount of consistent data samples and
a very small number of abnormal samples, a learning
system is expected to distinguish anomaly (or deception)
if some input data does not share the same feature
as the training data. Anomaly detection can be useful
to monitor wireless networks for data traffic and CPU
load, and help detect anomalies in system operations.
Despite having been studied thoroughly in financial and
industrial applications and systems [212], [[213]], this issue
is yet to be well investigated in the context of DML for
wireless communications. This is because the information
in communication networks can vary rapidly over a short
period, resulting in a massive amount of data exchange.

e Data provenance and model explainability: ML pro-

grammers prefer a simple, homogeneous, and consistent
dataset as their input. When the analysis of large volumes
of data is required, the entire dataset can hardly be
handled by a single server and has to be placed in
distributed file systems. Given the increasing demand for
explainable models, not only do the programmers need to
consider the ML algorithms, but analyze the distributed
characteristics of the stored data and the effect of data
pre-processing operations as well. To explain how a DML
algorithm gives a decision, all transformations applied
to the data should be considered. It is claimed in [214]
that even basic transformations in data pre-processing,
such as data partitioning, local data cleaning and value
imputation, can have a strong impact on the resultant
model. The effect becomes more apparent under a dis-
tributed setting. Tracing data provenance is a method to
record transformations applied to the raw data. There are
challenges and opportunities in linking the explainability
of ML models and data provenance.

e Architecture: This survey has introduced three main-

stream architectures with their pros and cons. For exam-
ple, the platforms based on the MapReduce architecture
are more accessible, while their computing efficiency



is unsatisfactory due to the straggler problem. What
should the next-generation of DML architectures be? An
architecture combined with AutoML is envisioned to be
adaptive and make most of the pros of different architec-
tures in the DML processes. This can be an interesting
research direction to design future DML architectures.

e Distributed DRL framework: For centralized DRL, the
central controller equipped with abundant computational
resources is able to perform training over a large volume
of data for neural networks, at a high cost of spec-
trum usage and extended latency in wireless networks.
Nevertheless, in a distributed DRL framework, end IoT
devices usually have limited computational capacities and
operate under constrained conditions or environments.
This necessitates a holistic design of the distributed DRL
framework, which is expected to decouple data percep-
tion, information sharing, and neural network training
from RL algorithms at different devices [215]]. The over-
head of information exchange among different entities
of the distributed DRL network also needs to be taken
into consideration. Tremendous amount of effort has
been devoted to decentralizing ML models, for exam-
ple, FL. On the other hand, multi-agent RL develops
a game-theoretic interpretation of distributed operations
and learns adequate strategies from the changes in the
environment and the peers’ actions. It is poised to many
distributed applications to wireless resource allocation,
protocol coexistence, and cooperative communications.

e Adaptation to network dynamics: Most of the existing dis-
tributed DRL frameworks are customized for individual
networks, where the network states are relatively static
in many cases. For future dynamic mobile networks with
heterogenous agents, fast-changing network conditions
and task requirements, challenges arise in how to ensure
fast convergence and stable strategies. It is an open issue
to design cooperative and coordinative policies between
the agents for the best task execution performance, since
complicated cooperations among agents can increase the
state space and slow down the convergence.

e Dataset generation: DML requires large datasets for both
neural network training and performance analysis. Unlike
traditional DL scenarios with referential data pools [8], in
wireless systems, datasets are often generated artificially,
e.g., by mathematic models. The synthetic datasets are
simplifications of practical counterparts and may not be
applicable in the real world. To this end, a new way
of dataset generation for wireless networks is required
to narrow down the gap between the emerging DML
framework and practical systems.

XI. CONCLUSION

We have provided a comprehensive survey of recent DML
techniques applied to, and empowered by, wireless commu-
nication networks. Interesting applications of DML, including
power control, spectrum management, user association, and
edge cloud computing, have been discussed. The optimality,
scalability, convergence rate, computation cost, and commu-
nication overhead of DML have been analyzed. We have

also
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discussed the potential adversarial attacks that DML

encounters, and the promising countermeasures. The lessons
learned in this survey have been summarized. In an attempt to
integrate DML into wireless systems design for flexibility and
efficiency, interesting future directions have been outlined.
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