
1

A Review of Computer Vision Methods in
Network Security

Jiawei Zhao,∗ Rahat Masood,∗ Suranga Seneviratne∗
∗ The University of Sydney, Australia

Email: {firstname.lastname}@sydney.edu.au

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be
accessible

Abstract— Network security has become an area of significant
importance more than ever as highlighted by the eye-opening
numbers of data breaches, attacks on critical infrastructure,
and malware/ransomware/cryptojacker attacks that are reported
almost every day. Increasingly, we are relying on networked
infrastructure and with the advent of IoT, billions of devices
will be connected to the internet, providing attackers with more
opportunities to exploit. Traditional machine learning methods
have been frequently used in the context of network security.
However, such methods are more based on statistical features
extracted from sources such as binaries, emails, and packet flows.

On the other hand, recent years witnessed a phenomenal
growth in computer vision mainly driven by the advances in
the area of convolutional neural networks. At a glance, it is
not trivial to see how computer vision methods are related to
network security. Nonetheless, there is a significant amount of
work that highlighted how methods from computer vision can
be applied in network security for detecting attacks or building
security solutions. In this paper, we provide a comprehensive
survey of such work under three topics; i) phishing attempt
detection, ii) malware detection, and iii) traffic anomaly detection.
Next, we review a set of such commercial products for which
public information is available and explore how computer vision
methods are effectively used in those products. Finally, we discuss
existing research gaps and future research directions, especially
focusing on how network security research community and the
industry can leverage the exponential growth of computer vision
methods to build much secure networked systems.

Keywords—Network Security, Malware Detection, Image Pro-
cessing, Computer Vision, Convolutional Neural Networks

I. INTRODUCTION

We have been witnessing increasing trends in cyber attacks
of various kinds. In 2018, there was a 133% increase in the
number of breached records compared to the previous year,
and it was equivalent to a rate of 291 record breaches per
second [1]. It is estimated that in recent years, approximately
50% of emails we receive are spam, and an average user re-
ceives 16 malicious spam emails per month [2]. Similar trends
can be found for other types of attacks such as Distributed
Denial of Service attacks (DDoS), ransomware, cryptojackers,
and other malware. As such, network security has become
an important aspect not only for large scale enterprises, but
also for small and medium-scale institutions as well as for
individuals. Security threats to networks are further expected
to be increased with the deployments of IoT, where billions
of devices are connecting to the internet and providing more
opportunities for attackers. Thus, network security has become

highly important more than ever it has been. For example, re-
cent reports from Gartner, Inc. [3] forecast $124 billion global
spending in security, which is an 8.7% increase compared to
2018. Regulations such as General Data Protection Regulation
(GDPR) [4] and security breach notification laws [5] are likely
to further increase such spending over the coming years.

Recently, as a result of breakthroughs in machine learn-
ing, computer vision methods are evolving rapidly, in some
cases, even surpassing the human-level performance. Such
advancements are mostly becoming possible due to the wide
availability of large volumes of labelled data and the process-
ing advances in GPUs. Traditionally, though machine learning
methods are significantly used in network security and remains
well-surveyed [6]–[9], use of computer vision methods for
network security doesn’t appear as a direct match apart from
the obvious cases in authentication such as face, fingerprint,
and iris recognition [10]–[13]. Here, we define computer
vision methods in related to network security as methods using
image representations of network data such as image feature
representations (e.g. key point - descriptor methods such as
SIFT [14] and SURF [15]), various image hashing methods
(e.g. perceptual hashing), and/or use of image-based machine
learning methods such as Convolutional Neural Networks
(CNNs) on data related to network security.

The trends to utilise advances in computer vision methods
for network security is not solely an academic exercise. Re-
cently the information security industry has also shown a keen
interest in this area. For example, the latest RSA conference,
which is a gathering of security academics and industry
professionals, hosted RSAC Early Stage Expo that invited
the industry to showcase their innovative projects, aiming to
provide higher level of security for consumers and organi-
zations worldwide [16]. Among the 50 identified promising
start-ups, two starts-ups Pixm and INKY, were using state-of-
the-art computer vision methods to detect phishing attacks in
email inboxes and other channels such as Facebook, LinkedIn,
and Instant messages [17, 18]. INKY uses computer vision to
block brand forgery emails and spear phishing attempts by
spotting imposters by pixels. We provide more details on such
products in Section VI. We notice that the industry focus to use
computer vision techniques for improving security is quite a
recent paradigm since most of the companies start introducing
such tools from 2017 [19, 20].

In this survey, we explore the research carried out in the
intersection between computer vision and network security.
This type of a survey is essential as the field of computer

ar
X

iv
:2

00
5.

03
31

8v
1

 [
cs

.N
I]

 7
 M

ay
 2

02
0

2

vision is likely to continue advancing rapidly, and there is a
unique, yet non-trivial opportunity to leverage such method to
build security solutions for networked systems. Our survey is
structured as follows. In Section II, we explain the broader
network security topics we have chosen and also describe
the overall taxonomy of work under the selected topics. In
Section III, we survey the research carried out in the domain of
phishing detection using image matching methods. Section IV
presents work where computer vision techniques are used
in malware detection, while Section V surveys the work in
traffic anomaly detection. In Section VI, we survey some of
the commercial products in this domain for which the public
information is available. Section VII discusses the existing
gaps in research, challenges to overcome, and potential future
research directions and Section VIII concludes the paper.

II. COMPUTER VISION METHODS IN NETWORK SECURITY

As mentioned in the introduction, the applicability of
computer vision methods in network security is not straight
forward. We started our survey by referring to the network
security threats taxonomy compiled by the European Union
Agency for Network and Information Security (ENISA) [21].
The report lists 15 types of threats in the likes of malware,
web-based attacks, web application attacks, phishing, spam,
denial-of-service, and botnets as the most prominent threats
in recent times. Next, for each topic we searched academic
publication repositories (e.g. Google Scholar, ACM Digital
Library, and IEEE Explore) to check whether there are work
that applied computer visions methods to detect such threats.
During this process, we found several topics for which a
body of work existed based on computer vision methods.
Those topics included phishing detection, malware detection,
traffic anomaly detection (targeting threats such as DDoS
and BotNets), authentication solutions (especially biometric-
based ones such as the face, iris, fingerprint recognition), and
steganography. Next, we short-listed network security topics
based on their maturity in the field of computer vision as well
as how important are they in the current network security threat
landscape.

Though authentication solutions are an essential element in
network security, we noticed that authentication schemes based
on face, iris, or fingerprints, have been significantly investi-
gated and surveyed from the perspective of computer vision.
Also, such schemes usually are straightforward applications
of computer vision methods. For instance, Jafri et al. [22],
Abate et al. [11] and Zhao et al. [10] extensively surveyed
face recognition techniques that utilise various computer vision
methods. Similarly, other image-based biometric modalities
such as iris recognition and fingerprint recognition remain
extensively surveyed [12, 13]. Thus, we exclude such topics
from our survey. We also investigated steganography and
found that it is an interesting application of computer vision
methods in network security. There are multiple recent work in
steganography that leverage deep generative models [23, 24].
However, steganography is also a well-surveyed topic [25, 26].

Thus, after this analysis, we selected Phishing Detection,
Malware Detection, and Traffic Anomaly Detection, as topics

of this survey. As we discussed later, phishing and malware
are by far the two leading root causes behind many data
breaches and have caused damages in the scale of billions
of dollars. Similarly, the third topic, traffic anomaly detection
covers topics in the likes of DDoS detection and BotNet
detection, which are also becoming a significant threats to
internet services. We next define and describe each of these
topics with emphasis on the importance of coming up with
solutions to detect such threats.

A. Phishing Detection

Phishing is a social engineering attack that manipulates
human trust to obtain confidential information about users such
as passwords, credit card numbers, usernames, and personal
data. The attack is often performed through instant messages
or emails where the users are prompted with web pages that
appear to be legitimate. The nature of the content of the
message or the email will entice the users to enter their user
names and passwords, bank account details, or other important
personal information. This enables the possibility of a second,
more devastating attack using the harvested information.

Phishing attacks are an ongoing problem in the internet.
Attackers are using many sophisticated methods such that
even the most tech-savvy users struggle to distinguish phishing
attempts from legitimate web pages. According to Phishlabs
report, phishing attacks grew 40.9% in 2018, while targeting
83.9% of industries that offers financial, email, cloud, pay-
ment, and SaaS services [27]. Overall, 98.9% of these attacks
target corporate users for credential theft or email scams.

Many high profile network breaches such as iCloud celebrity
pictures, Sony hack, Bangladesh Bank heist, and eBay data
breach have been traced back to attackers infiltrating the
network using a well researched and crafted phishing attacks
misguiding employees to enter their credentials. Overall, 90%
of the data breaches occurred globally in 2017 were results
of phishing attacks. Recent reports also indicated that 75% of
the organizations faced at least one phishing attack in 2017,
and the average click rate of the targets is an eye-opening 9%.
According to FBI’s Internet Crime Complaint Center, Global
Business Email Compromise (BEC) losses exceeded 12 billion
US dollars in 2018. In 2017, these scams cost organizations
almost 700 million dollars [28].

It is essential to detect phishing attempts before users
click a malicious URL to minimise damages. In this regard,
there are two automated phishing attack detection methods: i)
blacklist/whitelist-based methods and ii) text similarity-based
methods [29, 30]. Blacklist-based methods attempt to keep
a list of domain names or exact URLs to known phishing
websites and alert users if they are trying to visit those links.
However, phishing websites are highly dynamic, and the aver-
age lifetime of a phishing web page is only a few hours [31].
Therefore in many cases, zero-hour phishing attacks usually
easily bypass blacklist-based methods. Whitelist-based allows
users to browse only a set of web pages that are deemed
safe, which is not practical in many situations. Text similarity-
based methods delve into semantics of the textual content, be
it an email or a web page and try to decide whether it is

3

a phishing attempt or not. Nonetheless, this method is likely
to fail in future with the increased use of code obfuscation
techniques. As the fundamental characteristic of a phishing
page is it’s visual similarity to a legitimate target page turning
into computer vision method appears as a natural alternative
to consider. In Section III, we investigate such solutions that
have been proposed for detecting phishing attempts.

B. Malware Detection

Malware is a collective term used for various malicious
software variants such as viruses, trojans, ransomware, and
spyware. Malware typically consists of a code developed by
an attacker to cause damages to data and systems or to gain
unauthorised access to a network. Different types of malware
follow different propagation methods to increase the reach.
For example, some malware are delivered in the form of a
link over email and require the users to click on the link while
some malware spread through a malicious file download into
a system and are self-triggered.

According to a recent report [32], from 2015 to March 2019,
413.73 million new malware programs have been reported, out
of which 137.47 million have been reported in 2018 alone.
The report also states that on average 279,545 new malicious
programs are discovered every day. Malware can cause varying
levels of damages from a single computer to national-scale
infrastructure. For example, in 2017, Petya ransomware out-
break which started in Ukraine and subsequently spread across
Western Europe, North America, and Australia caused losses
over $10 billion [33].

Traditional malware analysis is usually based on either
static code analysis (signature-based) or dynamic code analysis
(behaviour-based) [34, 35]. The signature derived from static
analysis, is a short sequence of bytes unique to each known
malware, which allows identifying newly encountered mali-
cious files. This type of a detection method is less responsive
to new malware and fails when codes are obfuscated. On the
other hand, methods based on dynamic analysis (behaviour-
based), can detect malware based on its run-time activities.
These types of detection methods, however, give high false
positive rates where benign programs are falsely classified
as malicious programs. Additionally, dynamic code methods
are computationally expensive and require a lot of resources
for proper execution. To alleviate these problems, recently
computer vision approaches have been proposed in the context
of malware detection. For example, computer vision methods
have been shown to be successful in analysing codes as images
when they are obfuscated. Also, computer vision speedups de-
tection process by providing a summarised picture of possible
attacks through visual representation such as Treemaps and
Thread graphs. In Section IV, we survey such research work.

C. Traffic Anomaly Detection

A network traffic anomaly refers to a deviation from the
usual traffic profile in a network. Unlike our first two top-
ics, a traffic anomaly does not directly identify an attack.
Rather it indicates that something unusual is happening in
the network, which can be caused by a range of attacks such

as DDoS, botnet activity, port scanning, or even because of
some malware-infected nodes in the network. For instance, in
September 2016, Mirai malware launched a DDoS attack on
the popular security news web site/blog; Krebs on Security,
by generating more than 620 Gbps of network traffic [36].
The malware infected over 600,000 IoT devices, turning them
into an army of remotely controlled bots. The reason for the
use of a large number of IoT devices is to bypass anomaly
detection systems which monitor the IP address of incoming
requests and filters them if there are too many requests form
a limited set of IP addresses. According to recent Kaspersky
reports, 50% of all DDoS attack led to a severe disruption of
services [37] and there were cases where the attack continued
for hundreds of hours.

Traditional network traffic anomaly detection approaches
rely on underlying fitted models, which are labelled based
on normal traffic behaviour. These approaches detect and
characterise unusual patterns in the traffic based on deviations
from the corresponding labelled data. Since these models are
built on the knowledge of legitimate network traffic behaviour,
the traditional detection approaches can identify previously un-
known attacks. However, these conventional approaches suffer
from high false positive rates. Also, if the set of rules (such
as incoming IP addresses, port number, outgoing IP addresses,
and protocols), defined within an underlying model are too
complicated or too easy, then the accuracy of a detection
system is affected. For example, an activity such as directory
traversal on a targeted vulnerable server, which complies with
a network protocol, easily goes unnoticed as it does not trigger
any alert. Thus, efficiency of a detection system depends on
how well rule set is implemented and tested on all protocols
and scenarios. Another approach to detect traffic anomalies is
based on computer vision methods, despite there are limited
commonalities shared between network anomaly detection and
computer vision tasks, such as image retrieval and object shape
recognition. In Section V, we analysed a few traffic anomaly
detection methods, that are based on computer vision.

D. Structure of the Survey

We structure our survey with separate sections to the three
main topics that we survey. Across the three main topics
we broadly categorise the computer vision methods that are
being used in to four; i) image representation-based methods,
ii) image feature-based methods, iii) image hashing-based
methods, iv) neural network-based methods as described below
and schematically summarised in Figure 1. However, we also
highlight that we did not find work in all four sub-categories
in all three main topics we survey.

• Image representation-based methods have been applied
in malware detection and traffic anomaly detection. In
these methods, a binary executable, log files, or a data file
related to a malware or network traffic is first converted
into a visual image and then visual fingerprints are
generated based on malware behavioural activities such
as API call sequences, I/O request packets (IRPs), re-
source consumption, network activities etc. These visual
fingerprints are represented through properties such as

4

0100001
1110101
0101010

(input format
e.g. dll, pdf, exe)

Malware Sample(s)

Phishing Sample(s)

(input format e.g.
html, png, ccs, binary)

Anomaly Traffic Sample(s)

(input format e.g.
Network packets, log files)

Samples	pre-processing	
e.g.	data	filtering,	 data	

conversion,	data	
validation

Computer	Vision	based	
Methods

Image	feature	based

Image	hashing	based

Image	representation	
based

Neural	network	based

Common to all three
security attacks

Common for Anomaly
and Malware only

Common for Phishing
and Malware only

Detection/
Classification
of Sample(s)

Fig. 1: Taxonomy of Computer Vision Methods in Network Security

x, y coordinates, RGB colours, and intensity level. Unlike
the next described feature based methods that compare
features, the image representation-based methods com-
pare visual fingerprints to detect maliciousness.

• Image feature-based methods generate features from
image representations. For example, for phishing web-
sites features are generated from the screenshots of the
web pages or images/logos embedded to the web page.
Example features include the traditional computer vision
features such as Scale Invariant Feature Transform (SIFT)
features [14], Speeded Up Robust Features (SURF) [15],
and various image histogram features. Similarly, malware
binaries or network traffic can be represented as images
and features can be extracted.

• Image hashing-based methods generate image represen-
tations that are efficient during retrieval and comparison
tasks. For example, to identify visually similar web pages
to a given page, a hash of the web page can be created.
When a suspicious web page is found, the two hashes
can be compared to see the new page is visually similar
to the original page. Similarly, to improve the efficiency
of malware detection approaches, local sensitive hashing
(LSH) schemes have been introduced that checks the
similarity between visual images of malware.

• Neural network-based methods accept some form of
images as the input, yet do not require to generate features
separately. For example, convolutional neural networks
are representation learning method that do not require
separate feature generation. The network itself learns
what features are important to the task at hand.

The rest of our survey is organised as follows. In Section III,
we provide detailed analysis on existing computer vision
based phishing detection techniques, followed by malware

detection and traffic anomaly detection in Section IV and V,
respectively. We then discuss industry tools or products in
Section VI, that are utilising computer vision techniques for
network security attack detection. In Section VII, we discuss
open challenges in applying computer vision methods to
network security, and also highlight possible future research
directions. We conclude our survey in Section VIII.

III. VISUAL SIMILARITY BASED PHISHING DETECTION

Many phishing attempts over various delivery forms such
as emails, web, and mobile apps, try to misguide the target
users by providing visually similar interfaces to the typical
applications and services they use. As such, it makes sense
to use computer vision methods in building phishing attempts
detection systems. We found a significant body of research
fitting into under three sub-topics we discussed in Section II;
i) image feature-based methods, ii) image hashing-based ap-
proaches, and iii) neural network-based approaches. All the
work we surveyed applied some form of image transformation,
and as a result, we do not report any work under the sub-topic
of image representation-based methods.

A. Image feature-based methods

As mentioned before, image feature-based methods first
identify an image representation of the possible phishing
attempt. For example, the image can be a screenshot of
the phishing web page. Then, the image is converted into a
feature vector through various methods. Afterwards, different
techniques such as k nearest neighbour search, are used to find
whether the web page is visually similar to a known legitimate
page. The overall pipeline can be evaluated using performance
metrics such as accuracy, precision, and recall using a ground-
truth established dataset. We show this process in Figure 2.

As such the aspects to investigate under image feature-
based methods for phishing detection are; input data (type of

5

Fig. 2: Process of image feature-based methods

data, how authors collected the data, and how the authors
established ground truth), feature representation, similarity
calculation, and performance levels. We next present work
in this category with particular focus on above aspects.

i) Web page screenshot & image content matching-based
approaches

One of the early work in this area is the SiteWatcher
proposed by Liu et al. [38, 39]. It is service designed to
run on mail servers and flag possible phishing links in both
incoming and outgoing mail messages. All mails are monitored
to check whether they contain suspicious words associated
with a set of protected and sensitive web pages (potential
targets for phishing attempts) for a given organization. If
an email contains such words, SiteWatcher will consider all
the URLs in that mail as suspicious and send those URLS
together with the potential target URL to the visual similarity
assessment module for further analysis.

The visual similarity assessment module first identifies a
set of salient blocks by parsing the DOM (Document Object
Model) tree of the web page. Salient blocks for a web page
are the clearly distinguishable blocks such as header, footer,
sidebars, and any other blocks in the page body that have
consistent content either visually or semantically, and consid-
erably different from other blocks [40]. Then, it considers three
types of similarity between the blocks; block-level similarity,
layout similarity, and style similarity. A set of features defines
each similarity type. For instance, for block similarity, visual
similarity assessment module first decides whether the block
contains text of images and based on that calculate features
for the block. Text block features include features such as
background colour, foreground colour, and anchor colour
(colour of the hyperlinks). Examples of image block features
are dominant colour of the image, image display, and image
display height. The similarity between the two blocks in the
phishing web page and the target is calculated as the weighted
sum of the individual feature similarities, and the weights are
empirically decided. Two blocks are considered to match if
their similarity value is higher than an empirically determined
threshold. Similar approaches are followed for other similarity

types with different features.
Authors evaluated the SiteWatcher using a ground truth

dataset that contained 320 commercial bank home-pages and
eight true phishing pages targeting six of the banks’ pages
based on the reports published by Anti-Phishing Working
Group (APWG).1 Authors considered the six true pages as the
query to search for the visually similar pages in the dataset of
320 pages. If the similarity of any of the three metrics (block,
layout, and style) were higher than a threshold t, the retrieved
web page is reported as a potential phishing web page. Results
indicated that for t values greater than 0.7 almost perfect true
positive rate and false positive rate can be achieved. For a
baseline comparison, authors also evaluated the performance
of a pure text features based method and showed that such an
approach have a much higher false positive rate.

While the paper has shown some promising results, it has
several limitations. First, it identifies the target based on the
presence of keywords and only activate the visual similarity
assessment module if there are matches with a known set of
keywords. Such a method is not scalable and may also miss
more sophisticated attempts based on obfuscated code [41].
Similarly, salient block identification is also text based DOM
tree analysis which may not produce the optimal results with
the use of client-side scripts and code obfuscation. The use of
computer vision methods is limited to using manually curated
image, colour, and style based features. Finally, the evaluation
is limited to a smaller dataset, and it is unclear whether the
methodology will scale to the range of thousands and hundreds
of thousands of web pages and still able to maintain the same
levels of true positive and false positive rates. Nonetheless,
SiteWatcher is an important work in this domain as it proposes
a useful architecture that allows building more effective and
efficient phishing detection systems using computer vision
methods. For example, salient block identification can be
done entirely using computer vision algorithms and now by
leveraging the recent advances of CNNs, we are in a position
to design better similarity comparison methods.

Medvet et al. [42] proposed a phishing detection technique
that considers the text pieces (including text style), embedded

1https://apwg.org

6

images, and overall visual appearance of the page to determine
the page similarity. The DOM tree was used to compare the
textual features such as content, colour, size and position.
2D Haar Wavelet transformation and colour histogram are
the techniques used to analyze the embedded images and the
overall image of the web page. Then a single similarity score
is calculated and compared with a predefined threshold value
to decide whether a web page is a phishing page or not. The
authors claim that this method has zero false positive rate.

The evaluation process contains two parts which are signa-
ture extraction and signature comparison. The comparison of
the two signatures between two web pages requires multiple
operations, corresponding to each feature. Authors found that
it takes about 11 seconds to compare negative pairs and around
4 seconds to compare positive pairs. Authors also proposed a
few optimizations, that significantly reduce the computational
cost and make the time of negative comparison reduce to a few
milliseconds. This solution is effective to detect phishing web
pages that are visually similar to the legitimate ones. Though
this work is inspired by AntiPhish [43] and DOMAntiPhish
[44], compared to AntiPhish and DOMAntiPhish, it improves
in the detection of phishing pages containing many embedded
images. The approach is also similar to Liu et al. [38], however
has a much higher feature space.

In [45], authors proposed a solution that uses Earth Mover’s
Distance (EMD) to compare the visual similarity between
web pages. In this method, the web page screenshots were
first converted to a lower resolution of 100 × 100 using
Lanczos resampling [46] since it can generate sharp images.
The features were calculated based on the colours of each pixel
where a feature is the colour and the centroid of its position
distribution in the image in a reduced colour space of 4,096
colours. Frequency of the colour (i.e. the total number of pixels
using that colour in the image) was used as the feature weights
to create the full signature of the web page. Finally, authors
decided whether a new page is a phishing web page or not
based on whether the EMD between two web pages is less than
an empirically decided threshold. Authors conducted multiple
experiments to evaluate different strategies of choosing the
threshold.

To evaluate the proposed solutions, authors established a
web page image dataset that contain images of 10,272 legiti-
mate pages and nine phishing pages, which authors collected
based on real-world phishing attacks. At the best threshold
value, authors were able to identify eight out of nine phishing
web pages with only 73 false positives, corresponding to a true
positive rate of 88.89% and a false positive rate of 0.71%.
Also, authors compared their approach with a completely
text based approach and the above discussed region based
approach [38, 39] and showed that new method have lesser
false positive rate. Work of [47] et al. also used a similar
EMD based approach.

This type of work are an improvement compared to Liu
et al. [38, 39] and has proposed better methods of capturing
the visual similarity as indicated by the results. Nonetheless,
going to a lower resolution might lose some information when
it comes to larger datasets. Use of only colour features can
also be a limitation, and a better approach may be to use

both colour and region-based features. Another limitation is
that the use of EMD is not justified with results. It is unclear
whether a distance metric like L2 distance which is having
lesser computation requirements can provide the same level
of performance. Finally, the dataset had only nine cases of
phishing attempts. Evaluation in a much larger dataset is
required to get a better understanding of the final solution.

Chen et al. [48] also started with the screenshots of target
and phishing pages, but proposed to use more advanced
methods of image representations. Authors first converted the
web page image to grey-scale by averaging the red, green, and
blue values of each pixel in the image. Then Harris Laplacian
corner detection [49] was used to identify a set of key points
in the image that are usually invariant to modifications in the
likes of shifting, lighting variation, and colour transformation.
To describe each key point, authors use a lightweight version
of Contrast Context Histogram (CCH) [50], which captures the
contrast distribution in the neighbourhood of a key point. To
make CCH computation lightweight, author only considered
the grey-scale image of the web page. Authors calculated the
similarity between two pages using Euclidean distance-based
key point matching. The proposed solution was evaluated
in dataset comparable to previously discussed results and
achieved similar performance levels.

Corona et al. [51] developed a system called DeltaPhish to
detect phishing web pages in compromised websites, which
is the first system utilizing websites vulnerability for phishing
detection. The overall process of DeltaPhish involves browser
automation, feature extraction, HTML-based classification,
snapshot-based classification, and fusion classification.

In snapshot-based classification part, the feature repre-
sentations used to classify snapshots are HOGs (Histogram
of Oriented Gradients) and colour histograms. Compared to
other feature representation like SIFT (Scale-Invariant Fea-
ture Transform), the features used in this paper can achieve
better performance for image classification of high inter-class
similarity. Authors also do image tiling to gain more spatial
information of snapshots. Thus, the features are extracted from
the whole snapshot picture, its quarters and sixteens. Based on
the feature vectors, the visual similarity is evaluated for input
image and homepage. Finally, authors leverage a linear SVM
to do the classification. The true positive rate of only snapshot-
based classifier is about 82.5% at 1% false positive rate. The
processing time of snapshot-based classifier is more than 1.2
seconds averagely, which HOG feature extraction takes most
of the time, and colour feature extraction only takes less than 3
ms averagely. The limitation of this method is that it depends
on the assumption that within a website, the legitimate pages
have a similar visual appearance with the homepage.

In a slightly different approach of using the web page
screenshots, Lam et al. [52] started by identifying non-
overlapping regions called layout blocks. This was done by
first using Otsu’s threshold methods to convert the screenshot
to black and white and identifying the blobs that have the
same colour. Then these blobs were used as a mask to identify
regions in the original image. The similarity between two
pages was calculated as the sum of the differences in width,
height and location of each pair of blocks. Then authors

7

used empirically established thresholds to decide what is the
minimum similarity required to decide on a phishing web
page. Compared to the EMD algorithm used in [38], this
method is faster and can handle non-square image inputs.

Different from the previous papers, GoldPhish proposed by
Dunlop et al. [53], used optical character recognition (OCR)
to extract text from a screenshot of a web page and used
that text to decide whether the page is a phishing page or
not. Authors, first take a 1200 × 400 pixel image of the web
page, covert it to black and white, and extract the text of the
image using a commercial OCR software. As the image also
contains the logos present in the web page, the OCR will
extract any text available in logos, which authors claim as an
advantage compared to other methods. The extracted text is
entered into Google Search as the queries, and related websites
were retrieved. The intuition here is that, as the text in logos,
and the text in websites are indexed by Goolge, the search
will return the corresponding legitimate site (if there is any)
as one of its top results.

Testing GoldPhish on 100 active phishing web pages iden-
tified from PhishTank and 100 legitimate web pages, showed
good results with only two false positives and zero false
negatives. Authors also compared their method with text-
based methods and heuristics-based methods and showed that
GoldPhish achieves better results.

While the results of this method are promising, it has a
significant limitation. Use of OCR can be justified only for the
websites that have a logo at the top of the web page, and the
logo has text in it. For logos, that do not have embedded text,
Goldphish might perform worse than logo detection-based
approaches. Otherwise, Goldphish is expected to perform the
same as a solution that does text matching between web pages
without any image processing methods. Also, the comparison
was made only with simple methods, and thus it is difficult
to compare how GoldPhish will perform compared to other
image-based approaches. Nonetheless, the idea of using the
Google indexing system as we discussed earlier under [54] is
innovative. Due to the limited lifetime of phishing web pages,
they are unlikely to be indexed by Google. Thus, the text
queries will get hits from the legitimate web page.

In a recent work, Tian et al. [55] also highlighted the
necessity of adding visual features to the phishing detection
problem to overcome the content obfuscation methods used by
attackers. Authors used the open-source OCR engine Tesser-
act2 that used the detected words as features in data going into
a machine learning classifier.

Hara et al. [56] enhanced phishing detection based on image
similarity by detecting phishing sites even without the original
registered sites. The comparison of two sites in this method is
not only between phishing sites and their victim sites, but also
between phishing sites that spoof the same site. The reasons
why this method does not need an initial database are: 1) many
phishing sites mimicking a same site are visually similar to
each other; 2) their system will discover sites on which there is
a different image shown from the previous one and use these
sites to detect new phishing sites.

2https://github.com/tesseract-ocr/

By taking the screenshot of web page, Hara et al. utilised
an image searching tool called ImgSeek 3, which can output
images similar to the input image and their similarity score.
Two hundred twenty-four original legitimate sites spoofed
by 2262 phishing sites were extracted from 521 legitimate
sites by their system. The detection rate is 82.6% while
the false positive rate is 18.0%, which can be improved by
adding whitelist. Even though this method has a high false
positive rate, it can handle many kinds of phishing sites and
combine with other methods. Notably, compared to Liu and
Medved [38, 42], this system does not rely on an initial set
of legitimate pages.

ii) Logo detection-based approaches

Wang et al. [57] proposed a slightly different approach by
using the logos embedded in web pages than using the entire
screenshots. The method consists of three steps: first, authors
determine if the web page contains the given logo. Second,
they check if the brand owner has authorised host an IP address
to use its logo. Finally, for sites containing unauthorised logos,
if the user enters keyboard input on the page, the system will
issue a warning.

For the first part, authors use a simple heuristic approach to
identify possible logos on the web page under the assumption
that logos are usually placed at the top of the web page.
Starting from the top of the page, stripes of height N = 100
are considered, and continuous blocks of single colour are
removed as those parts are unlikely to contain logos. For the
remaining blocks, SIFT representation [14], which is another
key point and descriptor-based representation similar to above
mentioned CCH, is calculated and matched against a local
copy of a logo image database. If there is a match, defined by
having a Euclidean distance less than a threshold, the brand
owner is contacted to check whether the use of logo in the
current web page is allowed using two methods; a modified
DNS query or certificate base approach where the original logo
contains the brand owners public key.

To measure the performance of the solutions, authors first
established a dataset of popular logos that covered 166 distinct
brands (again taken from 176 distinct instances. The dataset
was augmented with the colour inverted versions as it was
known to a common technique used by the phishing attempts
(i.e. 352 logos). The second dataset was the ”brand dataset”
that contained screenshots from 23 legitimate websites that
are commonly targeted by phishing attacks. For each website,
authors collected ten pages, and thus the total size of the
brand dataset is 230. The third dataset contained the 219
screenshots of known phishing sites taken from PhishTank
database.4 Authors were able to achieve a true positive rate
of 90% at 3% false positive rate.

While the use of SIFT might improve the image matching,
this work has a significant limitation in detecting logos, which
is done based on a straightforward heuristic algorithm. Such an
approach is likely to be inefficient in cases where the web site
banner does not have large areas of a single colour. In such a

3http://www.imgseek.net/
4https://www.phishtank.com/

8

setting, the area the algorithm selects, may not necessarily be
logos and might be quite large, resulting in a high latency
when it comes to SIFT key point calculation. While it is
understandable, that when the authors did the work, object
detection methods were not evolved and now this work can be
improved by leveraging the recently proposed deep learning-
based logo detection methods [58, 59]. Another limitation is
the latency. The solution is proposed as a safe browsing solu-
tion in contrast to the above discussed email solutions. When
it comes to browsing, user experience is highly important,
and users will be annoyed by slightest delays. Thus, the total
latency (consisting of logo identification, SIFT key point and
descriptor generation, and finally matching) in the range of
tens of seconds is not acceptable. Nonetheless, such delays
may suit well for an email security solution, where there is
some lag between the mail is being received by the server and
accessed by the user. Also, email server can control access to
the email until the scanning is finished.

In [60], Zhou et al. proposed a method that combines
logo detection and web page snapshot comparison. The logo
detection and comparison were based on SURF (Speeded Up
Robust Features) [15] descriptors which are faster to calculate
than previously discussed SIFT key points and descriptors. For
each suspected web page screenshot and each logo image, the
authors identified two sets of interest points using the SURF
detectors and then generated two sets of SURF descriptors. For
each descriptor of the logo image, the descriptor that matches
best (above a defined threshold) in the suspected web page
is identified using Euclidean distance. Nonetheless, still, there
are matches between the logo and irrelevant parts of the web
page. To address this, authors proposed to use homography
transformation [61] estimated using random sample consensus
(RANSAC) [62]. Homography transformation allows project-
ing the left top and right bottom coordinates of the logo image
to the suspected web page image. By doing so, authors then
make some decisions based on heuristics such as whether
the two points are apart enough to be a logo or which part
of the web page the identified logo is located. For snapshot
comparison authors used the same approach as Fu et al. [45]
that was discussed earlier.

Authors collected three types of data to evaluate the per-
formance of their system. The phishing web page dataset
contained 2,129 phishing web pages that were collected from
PhishTank. As target web page dataset, authors use the
screenshots of the web pages of PayPal, PosteItaliane, eBay,
iTunesConnect, and MyAppleID. Finally, as the irrelevant
legitimate web page subset, authors collected snapshots of
1,367 web pages by discovering URLs via Google search for
26 keyword searches. Overall, the authors were able to achieve
91% true positive rate and 1.46% false positive rate.

While on paper, it can be expected that combination of the
ideas of logo comparison and snapshot comparison should
improve the detection rates of phishing web pages, the re-
sults of this paper do not justify that there is extra benefit.
Nonetheless, all the solutions are using different datasets, and
it is difficult to establish which methods are superiors. This
leads to the following discussions we make on the requirement
of establishing benchmark datasets in this domain. Also, as

mentioned above, we emphasise that significant improvements
have happened in computer vision space in the last few years
and those ideas can be borrowed to improve this type of work
(e.g. logo detection and comparison).

PhishZoo [63] used logo matching in a much broader
phishing detection systems that consider other similarities
between web pages in the likes of URL patterns and HTML
text. The image similarity aspect of the solution involved
keeping a logo database and matching all the images content of
suspected web pages against the stored logos using SIFT key
points. Performance evaluation showed that using text features
only resulted in very high accuracy (97.6%) but also a very
high false positive rate (18.7%), which is not desirable. On the
other hand, use of only image matching resulted in a moderate
accuracy (82.7%), but a very low false positive rate (2.5%).
Overall the combination of images and text resulted in an
accuracy of 90.2% and 0.5%.

This work provides an important justification on why image-
based methods are required to be incorporated into usual
text-based phishing detection systems. Nonetheless, authors
highlighted some notable limitations they identified throughout
their work. First, the SIFT image matching can identify only
near similar matches. For instance, if the logo is rotated signif-
icantly, cropped, or combined with other elements, SIFT fails
to give a high score. Second, the latency of the system, which
was in the range of 7-17 seconds, is mainly contributed by
the image matching phase, than the SIFT key point generation
(i.e. based on the number of stored logos). As a result, more
efficient signature matching methods need to be used in real-
world deployments.

In 2014, Fatt et al. [54] proposed a method based on website
Favicons (i.e website shortcut icon displayed on the address
bar of a web browser) to do phishing detection by utilizing
the Google Search-by-Image API. Then they used the results
of the Google search engine to evaluate the authenticity of
the website. Intuition of this approach is that, if the Favicons
is a copy of a popular website or a popular logo, Google
search results will list the target website first as well as some
texts describing the logo (e.g. Best guess for this image: icon
paypal). Then based on the solutions returned by the search
query, the authors used four text-based heuristic rules to decide
whether the website from where they got the Favicons is a
phishing site or not. Authors used 500 phishing pages (chosen
from PhishTank) and 500 legitimate pages (chosen from Alexa
top 500 global websites) to validate the performance of their
approach. Authors reported a 97.2% true positive rate and a
2.8% false positive rate.

In contrast to previous methods that keep their own images
of the target pages, this method leverages the Google’s page
indexing system which is an advantage as it eliminates the
need of maintaining a database of target web sites. As indi-
cated by results, this method will provide very high accuracy
for target pages that are indexed by Google and sufficiently
widespread. Nonetheless, the major drawback is that it will
work only if the Favicons is available on the web page. As a
result, this is a method more suitable to be one specific feature
of much larger solution covering various other aspects.

9

B. Image hashing-based approaches

One common aspect of all the work discussed in above
Section III-A is that once the feature representation of a
suspected page is generated, a k−NN (k nearest neighbour)
search is required to identify the target page from a set
of potential pages stored in a database. This search can be
time-consuming as highlighted by some work [63] and is
proportional to the size of the target web page database. This
is exacerbated by the higher complexities in calculating EMD
and SIFT representation. Though this search process can be
optimised by using more efficient data structures such as k−d
trees and vantage-point trees [64], there is a fundamental
requirement of making it more efficient. We next discuss a set
of work, that addressed this problem by using image hashing
methods.

In [65], the phishing websites were detected by analyzing
their structural characteristics and page screenshots. The pri-
mary computer vision technique used by the authors here was
to compute a hash of the web page screenshot and retrieve
similar images based on the Hamming Distance. Authors
experimented with three hashing methods; MD5, SHA-512,
and pHash (Perceptual Hashing), in which latter is specifi-
cally designed for image matching while the former two are
more suitable for string/text content matching. Authors first
demonstrated the performance benefits of their method using
a limited dataset of five phishing pages taken from PhishTank.
As expected, pHash, which is specifically designed for image
matching performed better compared to MD-5 and SHA-512
that are more suitable for string or text content matching.

Then, the authors conducted a much large scale study by
collecting URLs from Tweets and checking whether there are
phishing ULRs or not using the proposed approach. Authors
collected 1,829,531 URLs from Tweets. Authors found over
200 phishing pages trying to impersonate top phishing targets.
The average processing time to decide on a page was less than
4 seconds, which was an improvement compared to previous
work.

This work demonstrates the efficiency of hashing based im-
age matching methods. Nonetheless, there are many other im-
age hashing methods such as block hashing, wavelet hashing,
and difference hashing and more thorough experimentation is
required to identify which methods works well for website
screenshot matching and provides a good trade-off between
accuracy and computational efficiency.

Fotiou et al. designed a model to detect phishing websites
based on the perceptual hash of the web pages’ screen-
shots [66]. The whole mechanism contains a web browser
extension, a back-end application and a database. The web
browser extension is responsible for capturing a screenshot of
the currently loaded web page. The back-end application is
used to extract and compute information of page screenshots,
and the database is used to store all information signatures. In
their implementation, authors used the open-source perceptual
hash library (pHash), and they evaluated information signa-
tures by applying perceptual hash over a web page’s screenshot
bytes. And then authors used the hamming distance of the hash
value to compare the similarity of the screenshots. Similarity

threshold represents the maximum distance between two al-
most identical hash values of screenshots. If the numerical
distance of the hash value of two screenshots is greater than
the similarity threshold, it will be considered as a phishing
attempt.

The dataset contains 100 phishing pages captured from
PhishTank database and 100 legitimate pages obtained from
the list of Googles top 100 most visited sites in the United
States. As a result, by choosing a good similarity threshold,
the authors could achieve a recall of 81% and false positive
rate as low as 1%. Even though the dataset is small, the result
still shows a real-time performance. While this work is similar
to [65], no comparison was provided.

C. Neural networks-based approaches

One of the recent advances in computer vision is CNNs and
other related deep learning methods such as auto-encoders that
are able to eliminate the need of curating features manually;
similar to what was done in above discussed work that were
using SIFT or SURF. As such, we next investigate work
that leverage the representation learning capabilities of deep
learning methods to detect phishing web pages. As phishing
detection work spans beyond the point where CNNs became
mainstream (i.e. after the success of AlexNet [67] in the
ImageNet competition in 2012), we also found some work
that used traditional neural networks, and we discuss that work
here as well.

Borgolte et al. [68] proposed MEERKAT to detect de-faced
websites, which is a different but potentially a related problem
to phishing web page detection. In a de-faced or a vandalised
website, an attacker replaces some content of the legitimate
site, and as a result it’s visual appearance is different from what
it is supposed to be. First, authors extract 160× 160 windows
from web page screenshots for both de-faced and legitimate
web pages. Then, authors build a deep neural network to
learn advanced features from these windows automatically.
The structure of this deep neural network is comprised of
a stacked auto-encoder and a standard feed-forward neural
network. The stacked auto-encoder is utilised to de-noise the
images and learn high-level features from the images. The
feed-forward neural network with dropouts is leveraged to do
the final classification.

Authors showed the feasibility of MEERKAT on a large
website defacement dataset that included 10,053,772 damages
observed between January 1998 and May 2014, and 2,554,905
legitimate websites. Overall, MEERKAT achieved a true pos-
itive rate between 97.422% and 98.816%, a false positive rate
between 0.547% and 1.528%, and a Bayesian detection rate
between 98.583% and 99.845%.

While the problem that this work addresses is different,
the same approach can be used for phishing web page
detection. The idea of learning latent representations from
data itself, rather than manually identifying and calculating
features will improve the efficiency of designing a phishing
detection pipeline. The method is right now based on windows;
therefore further work is required to understand what is the
suitable setting for phishing web pages. For example, the

10

model can take the whole screenshot as the input, only some
key segments, or random patches and such decisions require
further analysis.

Adebowale at el. [69] proposed ANFIS (Adaptive Neuro-
Fuzzy Inference System), a traditional neural network and
fuzzy logic system based on calculated feature representations.
Authors created 35 features from web pages that include 22
text-based features to represent the structure of the page,
eight features to represent the frame-based properties, and five
features to represent the image resources of the web page.
However, the image features are not directly related to the
visual similarity or the content of the images. For example,
favicon feature indicates whether the icon is loaded from a
domain other than the domain shown in the address bar. As
such, this work can’t be considered as a working that truly
uses computer vision methods for phishing detection.

In 2019, Abdelnabi et al. [70] proposed a new visual
similarity-based framework, called WhiteNet, utilising a triplet
convolutional neural network for phishing website detection.
Authors also released a new dataset called WhitePhish, which
can be used to further benchmark phishing detection methods.
The dataset contains phishing web pages, legitimate training
web pages, and legitimate test web pages. The triplet learning
process that was successfully first used in face recognition [71]
involves three inputs; an anchor image, a positive image which
is a screenshot of the same website as the anchor and a
negative image from the different website. The triplet loss that
is being optimised during the training process attempts to make
the embedding of samples in different classes further apart
from the embedding of samples in the same class. Authors
were able to achieve a recall of 95.81% at a FP rate of 6.88%.
This work indeed is an example of how modern computer
vision ideas can be utilised effectively to phishing detection.

D. Summary of visual similarity based phishing detection:
To summarise, in this section, we surveyed research work

that used computer vision techniques to detect phishing web
pages that are visually similar to target web pages. The
motivation of using computer vision methods in this setting
is the fact that many malicious websites increasingly use
obfuscated codes using client-side scripting languages such
as Java-scripts and it is relatively easy to create a website that
shows no or minimum similarity to the original website when
text features extracted from HTML and Java-script codes are
used, yet shows very high visual similarity to the user once the
web page is rendered in a browser. This was evidenced by the
results; many work reported that image-based methods achieve
higher performance compared to text feature-based methods.

We presented these work under three topics; i) image
feature-based methods, ii) image hashing-based methods,
and iii) neural networks-based approaches. Image feature-
based approaches create features such as SIFT, SURF, HOG,
and CCH from the full screenshot of the web page, segments
of the page, or embedded images/logos and measure how
similar are those to the features from a target web page. Image
hashing-based methods improve the speed of the similarity
check by creating various hashes from images, and thus con-
verting the time-consuming EMD and L2 distance calculations

to more efficient Hamming Distance calculation. Finally, neu-
ral networks-based approaches leverage the recent advances
in deep learning methods and eliminate the requirement of
manually creating the features. We found more work in the
category of image feature-based methods, but very recent
trends in using deep learning-based methods. We summarise
all the work we surveyed in Table I.

We next discuss several challenges and limitations we
observed over all the work and worth addressing to make the
research contributions more effective and can be deployed in
industrial solutions.

• Datasets: Almost all the work collected their own dataset
using the PhishTank website which is a crowd-sourced
phishing verification system where users submit links to
suspected phishing pages and other users “vote” if the
reported page is a phishing page or not. It is relatively
easy to build a sizeable and good quality dataset using
PhishTank API that include the links to the phishing
web page as well as the target. As a result, the majority
of the work used their own dataset. A limited amount
of work used data collected from their own institutions
(i.e. by harvesting URLs from organizational emails) or
crawled social media plot to circumvent the short lifetime
issues of phishing web pages. For example, in PhishTank
links, there is a delay between someone reporting the
link and others voting for it as possible phishing. By the
time this flagging happens, the phishing site might be
already down, eliminating the possibility of obtaining a
screenshot.

• Performance Comparison: As a consequence of differ-
ent work using different datasets, it is not possible to
quantitatively compare the performance methods. Anal-
ogous to the established datasets for various computer
vision tasks such as MNIST [72], CIFAR 10 & 100 [73],
ImageNet [74], and COCO [75], a common web page
screenshot dataset would enable more re-producible re-
search in this area. We noticed that, there are many
new phishing website databases released between 2018
to 2019 such as Phish-IRIS dataset [76], anti-phishing
dataset by Universiti Malaysia Sarawak [77], and CIRCL
dataset [78] that have the potential to become standard
datasets for phishing detection.

• Deep Neural Networks (DNNs): We found that several
recent work started using deep learning methods on web
page screenshots to compute visual similarity, which is
not surprising at all given the huge success of deep learn-
ing methods in computer vision. However, the current set
of work use basic blocks of deep learning, such as MLPs,
autoencoders, and CNNs. However, web page images are
very diverse and rich in content, and the phishing tactics
are becoming more and more advanced. As such more ad-
vanced deep learning methods for salient object detection
and segmentation [79]–[81], image comparison [82, 83],
and neural image hashing [84]–[86] can be leveraged in
this area to build more efficient and accurate phishing
detection solutions.

11

TABLE I: Summary of Visual Similarity Based Phishing Detection Approaches

Research Work Computer Vision
Methods

Input Image
Structure

Dataset Size
(Phishing/
Legitimate)

Summary Performance Metrics

Web Page Feature Representation Approaches

Liu et al. [38] Visual Similarity Assessment
based on Key Regions, Page
Layouts, and Styles

N/A 8/320 Compares the suspect page to the legitimate page by measuring block-level
similarity, layout similarity, and overall style similarity.

Recall - 100%
Precision - 91.2%

Medvet et al. [42] Visual Similarity based on 2D
Haar Wavelet Transformation and
Colour Histograms

N/A 41/161 Extracts three visual page features which are texts, embedded images, and
overall images of the from the snapshot of a web page and then computes
the distance between the colour histograms, the positions and the 2D Haar
wavelet transformations to gain a similarity score.

Recall - 92.6%
False Negative Rate- 7.4%
False Positive Rate - 0%

Lam et al. [52] Layout Block Matching N/A 6,750/
312

Converts both the suspicious page and the legitimate page to black-
and-white images, divides images into different layout blocks, and then
performs layout matching between them to get their similarity score.

Accuracy - 99.6%
False Positive Rate - 0.028%

Fu et al. [45] EMD-based Visual Similarity cal-
culated on Colour and Coordinate
Features

100*100 9/10,272 Converts the screenshot of web pages into low resolution images with
normalised size, and then uses EMD to assess the visual similarity based
on colour and coordinate features.

Recall - 88.8%
Precision - 99.7%

Zhang et al. [47] EMD-based Visual Similarity cal-
culated on Colour and Coordinate
Features

100*100 5,711/
10,272

Transforms web pages to images, generates image signatures and measures
the distance of images by EMD, and finally compares the visual similarity
with the threshold.

False Negative Rate - 0.88%
Classification ratio - 99.9%

Chen et al. [48] Contrast Context Histogram
(CCH)

N/A -/300 Captures a webpage screenshot and extracts its keypoint feature, then uses
CCH descriptors to perform image matching and finally classifies a page
based on page similarity degree.

Accuracy - 95 98%
False Positive Rate - 1%
False Negative Rate - 1%

Corona et al. [51] Histogram of Oriented Gradients
(HOGs) and Colour Histograms

N/A 1,012/
4,499

Captures a screenshot of a browser, then extracts visual features based on
HOGs and colour histograms, and finally performed classification on the
similarity between two histograms based on SVM.

Recall - 99%,
False Positive Rate- 1%
False Negative Rate - 1%

Dunlop et al. [53] OCR and Google Search API 1,200*400 100/100 Captures a page screenshot, and utilises OCR software to extract its text
information, then searches the texts on Google to retrieve results.

Recall - 98%
False Positive Rate - 0%

Tian et al. [55] OCR and Image Hash N/A 1,224/
65,7663

Utilises OCR to extract texts from the screenshots of web pages as OCR
features, and applies the Image hash (a fuzzy hashing function) to compare
the page screenshots with the hash of the real pages to assess the visual
similarity.

False Positive Rate - 0.5%,
False Negative Rate - 0.05%

Hara et al. [56] ImgSeek
(Wavelet Transform)

N/A 2,262/
521

Extracts the image shown on the target web page, then uses ImgSeek
to search for similar images in the database containing legitimate sites,
phishing sites, and undeterminated sites, and checkes the output similarity
to perform classification.

Recall - 82.6%
False Positive Rate - 18.0%

Logo Feature Representation Approaches

Wang et al. [57] SIFT N/A 219/230 Captures a screenshot, then uses SIFT to match the screenshot against a
logo database, and finally checks for keypress and the fact whether the
DNS matches with the legitimate brand holder to decide if it is phish.

Recall - 90%
False Positive Rate - 3%

Zhou et al. [60] SURF and EMD 100*100 2,129/
1,372

Combines and Compares logo detection and web page snapshots using
SURF and homography transformation for possible detection of phishing
websites.

Recall- 90%
False Positive 1.46%

Afroz et al. [63] SIFT, Fuzzy Hashing, and OCR N/A 1,000/
200

Uses SIFT to extract logo features form a web page, and performs image
matching based on fuzzy hashing, OCR and SIFT algorithms.

Recall- 90.2%
False Positive - 0.5%

Fatt et al. [54] Google search-by-image API N/A 500/500 Extracts the favicon of website, then utilises Google search-by-image API
to search for relative information, and then determines if the suspect page
is a phishing page based on search results.

False Positive Rate - 5.4%,
Recall - 97.2%

Hashing Approaches

White et al. [65] Perceptual Hashing N/A - Takes a page screenshot, then creates a hash of the image, and finally
calculates the Hamming distance between the image hashes of the suspect
pages and authentic pages.

Tian et al. [55] OCR and Image Hashing N/A 1,224/
657,663

Utilises OCR to extract texts from the screenshots of web pages as OCR
features, and applies the Image hash (a fuzzy hashing function) to compare
the page screenshots with the hash of the real pages to assess the visual
similarity.

False Positive Rate - 0.5%,
False Negative Rate - 0.05%

Fotiou et al. [66] Perceptual Hashing N/A 100/100 Applies perceptual hashing on web page screenshots, then calculates the
Hamming distance between the image hashes of the suspect pages and
authentic pages.

False Positive Rate - 1%,
Recall - 81%

Neural Network Approaches

Borgolte et al. [68] Stacked Auto Encoder and MLP screenshots(1600*900) and
window(160*160)

925,817/
255,490

Captures the snapshots of websites, extracts a specific window from each
snapshot, and then uses a sliding window approach on the snapshot to
perform defacement detection based on deep neural network.

Recall - 97.42% - 98.82%
False Positive Rate
- 0.55% - 1.53%

Adebowale et al. [69] SIFT, Classical Neural Network
with Fuzzy Logic

N/A 6,843/
6,157

Extracts features of images, frames and text, and uses the hybrid features
as input to a fuzzy neural network to classify the web page.

Recall - 98.3%
False Positive Rate - 3%

Abdelnabi et al. [70] Triplet CNN screenshots(224*224) 1195/683 Utilises triplet networks to train all screenshots with random sampling,
then fine-tunes the weights of model by iterative training on hard examples,
and finally (based on embeddings) performs classification by checking the
distance with a threshold distance.

ROC Area-0.9879
Recall -95.81%
False Positive Rate - 6.88%

IV. VISUAL SIMILARITY BASED MALWARE DETECTION

More recently, computer vision methods help in alleviating
the limitations of traditional malware detection systems such
as detection of obfuscated malware or a computationally less
expensive detection based on malware behaviour. Computer
vision methods provide visual aids in detecting unknown
malware to alert on anomalous behaviour patterns quickly.
Visual representations of malware patterns also have the
advantage of offering a summarised picture of possible attacks,
thus speeding up the detection or classification of malware
samples. For instance, if the frequency of API calls or usage
of system resources is too high in an image representation,
then a sample is classified as malware. Moreover, the fact
that recent malware such as DuQu [87] and Hammertoss [88]
exploited the structure of image files (JPEG and PNG) either
to communicate with the Command and Control (C&C) server
or to follow commands hidden under images files on a victim’s
machine. Finally, some malware display a familiar, trusted icon

to users to trick them into clicking the malicious program,
also motivates malware analysts to utilise computer vision
techniques for possible malware detection.

In this section, we survey the existing computer vision-
based malware detection or classification approaches and
categorise them based on their method of detection, according
to the categorization we introduced in Section II. We found
a significant amount of work fitting into the categories of i)
image representation-based methods, ii) image feature-based
methods, iii) image hashing-based methods, and iv) neural
network-based methods.

A. Image representation-based methods

Image representation-based methods visualise behavioural
activities of malware as images and then compare them against
the benign/normal activities of a system or a network. Malware
behaviour refers to what the malware does, exhibits, or causes
to its environment during live execution. Such behaviour

12

aspects could be represented through monitoring changes to
operating system resources during malware execution, cap-
turing malware’s API call sequence, malware’s I/O request
packets (IRP), or malware’s network activity. It is possible
to represent such behaviours as visual fingerprints (e.g. RGB
colours, matrix, or intensity levels). For example, a visual
fingerprint can be the frequency of calls to each API in RGB
colours, where red denotes the most frequently called API (e.g.
HTTP outgoing packet send request) and the green denotes the
least called API (e.g. invoke anti-virus).

Image representation-based methods for malware detection
have several advantages. First, the image representation-based
analysis helps in detecting obfuscated malware. For instance, a
visual fingerprint of an obfuscated malware can be generated
by executing it in a sandbox environment and then tracing
the functionalities performed by malware. If the fingerprint
matches with existing malware fingerprints, then it is consid-
ered malcious, otherwise benign. Similarly, it is possible to
detect obfuscated malware, which has an icon disguised as a
benign app, by using properties such as RGB pixels colours.
In this case, similarity analysis over the sets of images can
provide insights into malware sample relationships. Second,
the behavioural analysis of malware can help to detect new
and unknown malware types. For example, if a new program
(malware) communicates very frequently with C&C server,
then thread graph can be used to view a temporal behaviour of
a new program, showing more often connections to a specific
IP address. Similarly, behavioural to colour mapping, may also
be used to identify potentially malicious programs by defining
high-intensity colours (e.g. dark tones) to system-related ac-
tivities such as system shut down, system files deletion, copy
of system files, sending password files to a remote server
etc. Finally, an image-based analysis may help analysts in
highlighting current trends (e.g. icons, logos, hidden images,
frequently used system functions, sequence/series of functions
layout), in which malware authors are attempting to trick users
into running malicious programs.

One of the early work in visualizing and analyzing malware
behaviour was by Trinius et al. [89]. The proposed work first
applied an abstraction method to summarise the reports of the
sandbox. Then classical visualization techniques, treemaps and
thread graphs are used to visualise the percentages of API calls
as well as malware behaviour. The abstraction method groups
API calls performing similar functionalities (e.g. all API calls
related to file system activity groups to one cluster). These
API calls order arguments according to their significance in
performing functionality. The purpose of Treemapping is to
help in viewing the distribution of operations, e.g. whether the
main task lies in the area of network interaction or interaction
with other processes. On the other hand, thread graphs help
in visualizing the temporal behaviour of a sample.

To validate the effectiveness of this work, a large database
of malware samples was collected using honeypots. Then the
behaviour of these samples was analysed by executing them
for two minutes in a controlled instrumented environment
(sandbox). During execution, sandbox records all the system-
level activities (e.g. loaded system libraries, outgoing and in-
coming network connections, accessed or manipulated registry

keys, and reports in XML format). To expand the analysis, the
authors also executed the associated data files such as word
or adobe acrobat files in a sandbox environment. After the
execution, the abstraction method transformed XML reports
to a short format; for example, by grouping together API calls
having similar functionalities. Treemaps and thread graphs
then helped in visualising the abstracted reports. The work
claims to be effective against the classification of unknown
samples to malware families by analysing over a set of 2,000
malware samples.

The advantage of this work is that it partly circumvents
the problems of code obfuscation techniques such as packers
or crypters. A packed malware is a modified form of a
malware that is compressed using a compression program and
is decompressed at runtime using a stub appended with a
malware file. Therefore, when a packed malware executes in a
sandbox environment, it unpacks itself and then it is possible
to study its behaviour. Moreover, this method is capable of
detecting malware hidden in data files such as adobe acrobat
or Microsoft word files. However, the approach is not fully
automated and require human intervention to compare thread
graphs or treemaps of benign and malicious files. Another
drawback of this approach is the fact that malware may detect
the presence of the analysis environment (sandbox) and then
behave differently. This approach is not capable of detecting
such behaviour.

Following the work of [89], Han et al. [90] also proposed a
novel method to detect and classify malware by constructing
image matrices from the opcode sequence of executable files.
The purpose of the image matrix is to detect malware features
conveniently and to calculate similarities between different
malware faster than other visualization methods. First, Ol-
lyDbg or IDA Pro dissembles binary files to extract binary
information, and then opcode sequence is divided into blocks.
These blocks are assigned (x,y) coordinates and RGB colours
using Locality Sensitive Hash Function (SimHash). The RGB
values are then plotted on their corresponding coordinates
in a block of dimension 8 × 8 to get an image matrix.
After forming a matrix for the whole image, “selective area
matching” is performed using vector angular-based distance
measure algorithm [91] to calculate the similarities between
image matrices of different images. The image matrices sizes
are set to 256×256 pixels. The proposed method was applied
to 10 different malware families, and the results were recorded.
Results indicate that the image matrices from the same mal-
ware family have 0.95 similarity on average, but, those from
different families have 0.325 similarity on average. Though
this work shows promising results in classifying unknown
samples to malware families, it was tested on a small number
of malware samples. Also, it is unclear whether the authors
collected malware samples or use some public dataset.

Similar to the above approaches, [92] also proposed a
malware visual analysis method that generates RGB-coloured
pixels on image matrices using the opcode sequences. How-
ever, to reduce the computational overheads, authors extracted
the opcode sequences only from the blocks that are related to
staple behaviours such as functions and API calls. The angular-
based distance measurement algorithm was used to calculate

13

the similarities between images matrices.
In the paper [92], authors performed two sets of experi-

ments, static and dynamic analysis. In a static analysis ex-
periment, 290 malware samples from 16 malware families,
were tested. This experiment did not contain any packed or
obfuscated malware samples as the purpose was to extract
the basic blocks through static analysis using a disassem-
bler. Based on staple behaviour, the basic blocks helped in
selecting major blocks, which were used to generate image
matrices using opcode sequences. The image matrices were
compared against each other. The dynamic analysis experiment
consists of 560 malware samples from 14 malware families in
which the packed and non-packed malware samples coexist.
These samples generated the dynamic traces, and then basic
blocks were extracted through repetition filtered technique.
Afterwards, the major blocks relating to suspicious behaviours
and functions were selected. The proposed method was then
applied to these major blocks to generate image matrices
and to analyze similarities. For both experiments, the sizes
of the generated image matrices were 256 × 256 pixels.
The static analysis shows an accuracy of 98.96% whereas,
dynamic analysis shows an accuracy of 97.32%, receptively.
The above two approaches [90, 92] suffer from the drawback
of disassembly of malware files, which make them ineffective
for packers and encrypted malware. Hence, the characteristics
of image representation based methods to analyze packed or
encrypted malware, are not fully utilised by these methods.
Authors also did not discuss any results or an extension of
their work for packed and encrypted malware.

In another scheme, Han et. al [93] converted binary files
into images and entropy graphs to detect and classify malware
variants. The method first converts a binary file into a bitmap
image using the “Bitmap Image Converter”. It then calculates
the entropy values of a greyscale bitmap image to generate the
entropy graph. As the final step, the entropy graph similarity
calculation algorithm detected unknown samples to a malware
family. The method was tested on two sets of data collected
from VX Heavens [94]. In the first dataset (consisted of 24
benign binaries and 27 malware binary files from 8 families)
determined the threshold to minimise false positives. After
setting the threshold to 0.75, the second dataset was tested
with a total of 1,000 malware binary files from 50 families, and
achieved an average accuracy of 97.9%. The collected malware
binary files were Backdoors, Trojans, Viruses, and Worms that
are executable files in the Windows operating system.

This work has an advantage over previously proposed
methods in terms of detection timing. It has less computational
overhead than texture analysis methods, such as GIST [95].
The time to calculate the similarities of all the benign and
malware binary files was ranged from 35.29ms to 1.39ms.
However, the problem with this work is that it cannot be
applied to packed malware because the entropy of packed
malware usually are very high and cannot indicate any specific
pattern. Moreover, all the three approaches from Han et
al. [90, 92, 93] have a limitation of inspecting only a particular
aspect of malware patterns and behaviours and did not focus on
analyzing unknown processes, system calls and their relations.

Shaid et al. [96] showed another method to visualise and

classify malware files. Authors first created a behaviour-to-
colour mapping and then generated the behaviour-based image
by converting each behaviour of malware to a colour. In order
to obtain behavioural data, an API call monitoring utility
executed the malware in real-time and captured all user-mode
API calls made by a malware sample. API call monitoring
utility captures the information such as accessed system files,
network connections and protocols used, modified memory
content of a remote process. The reason to opt for user-mode
API calls is its stability as these calls are rarely changed
as compared to the lower-level system call, which differs a
lot between different versions of the same operating system.
Besides being stable, capturing user-mode API is also crucial
in speeding up the process of understanding the workings
of malware since user-mode API reflects the exact nature
of a particular malware. Afterwards, API calls are grouped
and sorted according to their level of maliciousness. Once
arranged, colours are assigned to each group such that hot
colours represent malicious activity while cold colours repre-
sent benign activity. Once the API-to-colour map is ready, a
behaviour image of 64×4 pixels size was generated from each
malware sample. The experiment was run on 1,101 malware
samples belonging to 12 different families and showed an
accuracy of between 95.92% and 98.92%.

This work did not focus on detecting malware; instead, their
only focus is to classify unknown malware samples to malware
families. Moreover, the authors did not explain how they
collected malware dataset. The performance of this method
was also not discussed as we assume that executing malware
on a Virtual Machine and then performing colour mapping
might require more time than other detection techniques.

A very recent work [97] proposed SAD THUG (Structural
Anomaly Detection for Transmissions of High-value infor-
mation Using Graphics) to detect malware hidden under the
structure of image files. The method consists of two main
phases, a training phase, for building a formal model, and
a classification phase, to check whether files correspond to
that model. Each image file decomposes into the sequence
of segments of different length. Most segments start with
a header or byte sequence that indicates their type. Often,
their payload starts with another header that is needed to
interpret the segments payload correctly. This inner header
has a significant impact on how the segment is interpreted;
for instance, these headers represent the purpose of a segment
or even whether the segment should be ignored completely by
most decoders. Hence, segments with different inner headers
are written and read for different purposes and should thus
be assigned different subtypes. Therefore, this method further
defines the subtypes of these inner headers to detect malicious
purposes hidden under the structure of JPEG or PNG files.
Once subtypes are defined, classifiers are trained with benign
files that contain the start of a file, end of the file, start of each
segment, end of each segment, length of each segment, and
subtype of each segment.

To classify the unknown file, the method used two param-
eters α, and τ , where τ determines the number of times a
sequence of segment appears during the training phase and α
indicates the reasonable length of each segment. For instance,

14

τ of 1 means any sequence of segments that have been
observed once in training phase are benign, and τ set to high
values makes classifier more restrictive. During classification,
first, the transition of segments from one to another is checked,
if that segment has not been observed during the training
phase or observed to follow the previous segment, then the
file is considered to be anomalous. After passing this stage,
the length of segments is checked if it is under a defined range.
If all checks are passed, the file is considered to be benign. The
approach used a total of 270,000 JPEG and 33,000 PNG files
downloaded from Alexa top 25 popular websites and the third-
parties found during the recursively crawling. For JPEG files,
this approach achieved a mean true positive ratio of 99.24%
while 99.31% for PNG files. On the other hand, the mean true
negative ratio was 99.32% and 98.88% for JPEG and PNG,
respectively.

While this work is interesting and has shown promising
results, it can be further improved. First, the method currently
supports only a limited number of image files (i.e. JPEG and
PNG) and could be evaded by any other file types that it does
not support. Second, its effectiveness is dependent on the train-
ing dataset. A training dataset that is not representative enough
for all types of benign data observed in the classification phase
may increase the false positive ratio.

To detect the repackaged apps and phishing malware, Sun et
al. [98] proposed the DroidEagle tool that compares the visual
characteristics and components in the XML layouts of Android
apps. The tool leverages the app repository analysis, named
as RepoEagle, and host-based detection, named as HostEagle.
RepoEagle performs large scale detection on app repositories,
by extracting the layout tree as the fingerprint, which can
indicate a visual structure of an app. The similarity between
two layout trees is then measured using Layout Edit Distance
(LED). LED measures the similarity between two layout trees
by counting the minimum number of operations required to
transform from one layout tree to another tree. The operations
in layout tree transformation are node deletion, node insertion
and node substitution. A small value of LED implies that the
two layout trees are very similar, indicating that apps may be
impersonated. On the other hand, HostEagle is a lightweight
mobile app which conducts a real-time detection on mobile
phones. This module extracts a layout tree and calculates
the hash value of the layout tree as the visual signature. By
comparing the signature of the app in the remote server, it
can decide whether this app is a malware or not. Authors
crawled and collected 100,096 apps from the Google market
and various third-party markets. Results show that RepoEagle
found 1,298 visually similar apps from a repository whereas,
HostEagle is capable of determining whether a downloaded
mobile app is a repackaged app or a phishing malware.

Despite promising results, this method suffers from several
limitations. First, all visually similar apps may not be necessar-
ily similar in XML layouts, and it is necessary to consider the
similarities in images. Second, app developers are starting to
use code encryption methods, thus accessing codes and layout
files may not always possible. Third, dependence on specific
aspects related to one operating system will not allow making
comparisons between heterogeneous app markets, and in such

situations, only metadata and image similarity are meaningful.

B. Image feature-based methods

While image representation-based methods are capable of
detecting obfuscated/encrypted malware and can also de-
tect/classify malware and its variants through behavioural
information, they are less efficient and robust for a large
malware dataset [99]. Consider the dynamic analysis of a
malware binary, in which binary is executed, provided time
to run its program logic, converted into an image based on
call sequences, and finally the image is compared for possible
malware detection. This whole process takes a few minutes
(e.g. 3- 5 minutes) for a single binary sample. Even if the
procedure is streamlined for 30 seconds, it will take years
to process millions of malware samples such as Symantec
Malware Corpus. In this regard, feature-based methods are
highly accurate and efficient to detect or classify unknown
sample, as compared to image-representation methods [95].

In feature-based methods, a malware sample first converts
into an image, and then image-related features are extracted. A
given malware sample is generally read as a vector of 8 or 16-
bit unsigned integers and then organised into a 2D array. The
2D array can then be visualised as a greyscale image in the
range [0,255] (0: black, 255: white). After that, image features
such as SIFT, SURF, and Gabor are extracted and fed into
a detection system (either a similarity checker or a machine
learning classifier) for possible classification. We evaluate each
method under this category based on similar aspects mentioned
in Section III, i.e. input data type, computer vision methods
used, datasets, and performance.

Nataraj et al. [100] is one of the early work fitting into
this category. The proposed method assumed that greyscale
image of the same malware family has similar layout and tex-
ture. Authors extracted 320 GIST features and used k-nearest
neighbours with Euclidean distance on top of those features to
classify unknown malware. Authors evaluated the performance
of the solution using malware executables submitted to Anubis
analysis system [101] and showed an average accuracy of 98%
over a database of 9,458 samples and 25 malware families.

One advantage of this work is that it can detect packed
malware as it is based on the assumption that the images of
the same malware family when packed with the same packer,
appear similar. Authors achieved a classification accuracy of
98.08% when they packed malware of the same family and
applied the proposed method on them. Authors also compared
their performance with existing methods based on bi-gram
executions. They extracted bi-grams distributions from the raw
dataset and obtained a classification accuracy of 98%, which is
same as their approach. However, the time taken to extract bi-
grams are 5 seconds, and the time to classify a malware sample
is 56 seconds. In contrast, the proposed approach computed
GIST features in 54 milliseconds and classified a sample in
1.4 seconds. The high efficiency of the proposed method is
partly explained by the fact that the feature vector length used
to characterise a malware image is about 320 whereas the
distribution based analysis using the bi-grams needed about
65K elements. However, a major limitation of this approach is

15

that visual representation only considers images embedded in
a resource section of an executable. This limitation allows an
attacker to easily bypass detection either by relocating sections
in a binary or creating less obvious patterns.

In a later extension [95], Nataraj et al. compared the
performance of the initial work [100], named binary-texture
analysis, with contemporary dynamic techniques. While the
classification accuracy of the binary-texture analysis is com-
parable with dynamic analysis methods, however, it is 4,000
times faster than dynamic techniques. In addition, the texture-
based approach is resilient against packed malware samples.
They confirmed that the contemporary packing strategies
perform a monotonic transformation which fails to conceal
common structures present in the malware binaries, thus easily
detectable. Authors used two dynamic analysis techniques.
The first one is a commonly used approach called system-call
level monitoring which generates a report of all system calls
and their arguments performed by malware binary. The second
approach is a forensic snapshot which compares features
before and after a malware infection.

Authors conducted three different experiments; the first ex-
periment was conducted on 393 malware binaries and showed
the classification accuracy of 98% and 95% for dynamic and
binary texture analysis, respectively. In the second set of ex-
periments, Malheur dataset [102] was used for comparison that
comprises of Reference dataset with 3,131 malware binaries
from 24 unique malware families, and an application dataset of
roughly 33K binaries that range from malicious, to unknown,
to known benign. This experiment showed the classification
accuracy of binary texture analysis ranging from 86% to 97%.
In the third experiment, VX heavens dataset was used that
consists of over 63K malicious binaries from 531 unique
families. The binary-texture analysis, in this case, achieved
72% accuracy. The reason for this high accuracy is that packed
malware variants that belong to the same family exhibit visual
similarity with one another, which can be detectable through
binary-texture analysis method. Another reason is that a single
malware family is packed with one or two packing software
and not more. Finally, there is a fraction of the malware that is
unpacked. Thus, all the reasons mentioned above aid binary-
texture analysis in detecting malware with high accuracy.
However, the limitation is that this method is vulnerable to
knowledgeable adversaries who can obfuscate their malicious
code to defeat texture analysis.

Kancherla et al. [103] proposed a malware detection method
that first converts a binary executable file to an 8-bit 1-
dimensional vector and then the 8-bit value converts to the
intensity of the pixel. Next, this single-dimensional vector
converts into a 2-dimensional vector, known as byplot. This
byplot (image) has a fixed width based on the size of the
file. From this image, the authors extracted 534 features
that included 512 Gabor-based, 16 wavelet-based, and six
intensity-based features. The purpose of using wavelet and
intensity-based features is to examine if light-weight features
offer comparable classification accuracy against computation-
ally expensive Gabor-based features. Authors performed three
different sets of experiments using only Gabor features, using
only intensity and wavelets, and using all features. Results

showed that light-weight intensity and Wavelet-based features
produced slightly better classification accuracy as compared
to Gabor based features. The resulting accuracy was around
94.32% for the light-weight features, whereas Gabor features
showed 93.23% accuracy. These experiments were conducted
on offensive computing database containing 25,000 malware
samples and from other sources like source forge to collect
12,000 benign samples.

This work is an improvement to [100] as it shows that light-
weight features such as intensity-based features and wavelet-
based features offer better classification performance when
compared to computationally expensive Gabor based features.
Few other works have very similar approaches [104]–[106]
with the only difference being the final classifier and the
dataset on which the solution is evaluated.

Ahmadi et al. [107] emphasised on the convenience to
select simple features to design light and efficient malware-
detection system. Instead of extracting features directly from
a Portable Executable (PE) file, authors calculated a set of
features from different categories in hex and assembly view
of PE. The feature categories in hex view are n-gram of
bytes, the byte-level entropy vector, metadata (e.g. size of
the file, address of the first bytes sequence), the histogram
of the length of strings, image-features (Haralick features, or
the Local Binary Patterns features) whereas, the categories in
assembly view are frequency of some specific operation codes,
frequency of API calls, frequency of use of the registers, and
characteristics of sections in a file. With each category, there
is a range of features; for instance, in image-based features,
there are a total of 160 features. In order to combine feature
categories such that accuracy in classifying/detecting malware
increases (i.e. best subset of relevant features), forward step-
wise feature selection was used. In forward subset selection,
initially, a model contains no features and then gradually
augments the feature set by adding more features to the model,
one by one. In order to check the performance of each feature
category and combination of categories, XGBoost classifier
added features from each category into the model one by one.
Authors used Microsoft released a dataset containing 21,741
malware samples, where 10,868 samples are used for training,
and the rest are used for testing. Results showed that image-
based category has a classification accuracy of 95.5% however,
with the combination of other features, this accuracy reaches
to 99.40%.

The subset of features utilised in [107] is still considered
to be expensive and have chances of reducing the efficiency
of a malware detection system. Therefore, Zhao et al. [108]
proposed an approach that used malicious code homology
analysis method (based on texture fingerprint clustering) for
possible detection of malware. The approach first extract
features from a binary program, create texture fingerprint from
the features and then use a clustering algorithm to group
the texture fingerprint of malware into families. Finally, the
homology analysis matched the unknown sample with one of
the templates of malware families stored in the database. To
extract features, B2M algorithm converted unknown samples
to an image, and then an improved SIFT algorithm was applied
to create a multi-scale space. Once space is created, the feature

16

descriptors of a sample is extracted and fed into DBSCAN
for clustering into family libraries. The homology analysis is
the same as image recognition, where an unknown sample is
compared with the family library to detect its maliciousness
and classify into a specific library. The method was tested on
1,789 samples from 11 different malware families, collected
from Bigdata Innovators Gathering (BIG) 2015 [109]. Results
show the average accuracy of 77.6% against different malware
families.

A recent approach by Masouleh et al. [110] classifies
windows malware (PE files) using icon-based features. The
method used three types of features generated from the original
icon pixels: i) Summary statistics features, ii) Histogram of
oriented gradient (HOG) features, and iii) Autoencoder (AE)
features. Summary statistics features are the mean and standard
deviation computed for all the pixels and across all three
channels, on each channel separately, and by splitting the icon
image into nine different sections. HOG features are captured
by sliding a small window over the image and then computing
the gradient of the image within that window. To extract AE
features, neural-network is trained with a large set of icons. In
total, 1,114 features were extracted. Next, hierarchical density-
based spatial clustering (HDBSCAN) and K-Nearest Neighbor
algorithm were used to cluster the icons with the purpose to
reduce the data dimensionality. In order to test the efficacy of
the method, a balanced sample of publicly available PE files
was obtained from VirusTotal with 1,138 benign and 1,138
malware files. The dataset is split into 80% testing and 20%
training and then evaluated using Logistic Regression (L1, L2)
and SVM classifiers. Logistic Regression (L1) shows better
performance than the other two classifiers with an accuracy of
84.4%.

This work [110] may also fit into the category of neural
network-based methods. Still, we have included it here because
the neural networks do not play a major role in the method-
ology to detect malware. The neural network-based classifiers
were primarily used to validate the efficacy of the proposed
methodology. This work also suffers from several limitations.
First, it is not validated on a large number of malware
PE samples, and therefore its efficiency cannot be properly
determined. Second, extraction of 1,114 features is quite a
cumbersome task and time-consuming. Authors did not show
the performance of the method with respect to time. Third, the
technique is not compared against previously proposed icon-
based malware detection technique [111]. Finally, the classifi-
cation accuracy is quite low as compared to other techniques
that were tested on Microsoft Challenge dataset. For instance,
Ahmadi et al. [107] showed 95.5% of classification accuracy
which is 10% higher than [110]. Furthermore, approaches in
neural network-based methods also used Microsoft dataset and
achieved accuracy ranging from 95% to 99.8% [112]–[117].

In [118], authors proposed a text-based and content-based
image retrieval method to detect camouflaged apps on mobile
market places. For each app, four external features are ex-
tracted; namely app name, description, icon and screenshot.
App name and descriptions are handled by text retrieval
systems, while app icon and screenshots are handled by image
retrieval system. Authors used unofficial Google API to crawl

app info, such as id, name, developer, rating as well as
application description, icon and screenshots from the official
Android market. Total of 30,625 applications was crawled
for the experiment. After crawling, each app was assigned
four indexes which are name index, description index, icon
index and screenshot index. For the image indexing, colour
correlogram algorithm was used. The last step is to detect
camouflaged apps by querying the indexed database. For each
queried app, the method retrieved apps which have similar user
interfaces but are from different developers. Both text-based
and content-based systems are used to calculate the cosine
similarity scores between the query app and a set of indexed
apps. Out of 30,625, this method identified 477 camouflaged
apps (approx. 1.56%); however, the manual review showed
that 44 apps were falsy flagged camouflaged with 9.22% of
the false positive rate.

C. Image hashing-based methods

The work discussed in above Section III-A showed high
accuracy for the known malware families; however, the feature
extraction and matching (similarity calculation) process still
requires a time investment per malware that does not scale well
to the high volume of malware samples at run-time. Consider
the extraction and similarity calculation of 512 Gabor-based
features [103], 1,114 AE features [110], or even 160 Haralick
features [107] that require sufficient time to match with the
known malware stored in a database, thus highlighting the
need of an efficient feature matching algorithms, as highlighted
by [119]. A body of work addresses this problem by proposing
image-hashing based methods, which we discuss next in this
subsection.

To improve the efficiency of malware classification, Xi-
aofang et al. [119] proposed a novel distance (similarity)
metrics based on the locality-sensitive hashing (LSH) schemes.
The approach classifies malware by calculating the distance
metrics on the fingerprints of malware content. First, a binary
image is obtained from a malware sample, and then a feature
fingerprint of 64*64 dimension is computed using SURF
algorithm. Afterwards, a fast fingerprint matching is performed
with the LSH to get the topmost visually (structurally) similar
variants. Here a euclidean distance is used as a metric to get
a matched malware set. The proposed scheme is applied to
25 malware families on a total of 8,410 malware samples.
The precision, recall and F-Score is around 80% to 90% for
varying dataset sizes. Though this work claims to improve the
efficiency of computer-vision based malware detection systems
by using LSH scheme, the authors did not provide any results
of performance comparison in the paper to prove the claim.

Another body of work used image hashing-based methods
to detect mobile malware and greyware. Malisa et al. [120] de-
tected two types of mobile impersonation attacks; repackaging
and phishing. Authors proposed visual impersonation detection
system that runs mobile app inside an emulator, explores
its user interface dynamically, and extracts app screenshots
using GUI crawling techniques. The extracted screenshots
are then compared with other apps to detect the case of
possible impersonation. If the comparison value is above a

17

threshold (i.e. near match or exact match), apps are labelled
as impersonated apps. The Local Sensitive Hashing (LSH)
technique is used to check the similarity between screenshots.
Unlike other hashes, LSH maps similar data to the same hash
code with high probability, maximizing the probability of a
collision for similar inputs. The method was deployed on
the Google Cloud Compute platform and tested on 150,000
mobile apps with 4.3 million screenshots. Results indicate the
detection of 43,904 impersonating apps with 15% FPR.

The proposed system is capable of detecting impersonated
apps that are using evasion techniques such as obfuscation,
as the detection purely relies on the visual appearance of
the examined applications. Another advantage of this system
is that it can efficiently analyze a large number of Android
apps before their deployment at Play Store. Moreover, the
detection system neither requires human input nor application-
specific knowledge as it supports the automated analysis of
apps at a larger scale. Nonetheless, this method inherits all
the resource limitations of dynamic analysis as each app runs
in the emulator.

Besides mobile malware, greyware is another emerging
threat to mobile apps. For instance, ad fraud apps could be
classified as greyware because of the reason that such apps
contain annoying, undesirable or undisclosed behaviours that
cannot be classified as malware. In this regard, Andow et
al. [111] first identified nine categories of greyware based on
installation and runtime behaviour. Later, authors developed
lightweight heuristics for triage of the seven categories of
greyware on Google Play that leverages text analytics and
static program analysis. Among all the greyware categories,
imposter apps are detected using computer vision methods.
To detect imposters, first, the similarity of apps titles and
developers names are computed and then fuzzy hashing is used
to score the similarity of app icons.

Authors retrieved a list of APKs and app metadata such
as user reviews, description, and developer names from the
PlayDrone Archive [121] and separate them in four different
datasets. The dataset to detect imposters contained 50 most
popular apps for each app category in both free and paid
subcategories, which a total of 2,500 apps. Results indicate
that manual review of 2,500 apps is reduced to 977 with
exact title matches, of which 22 app pairs have similar icons.
Though fuzzy hashing is suitable for the detection of slightly
modified visual images; however, the efficient detection of
impersonated apps requires techniques other than hashing (e.g.
feature comparisons or deep learning classification methods).
Moreover, the proposed imposter detection method was tested
only on a small portion of apps, i.e. 2,500; this number is quite
low as compared to millions of apps available at PlayStore.

Alike [110, 111], Jiao et al. [122] also proposed a method
called ImageStruct that detects repackaged apps using simi-
larity measurement. The method extracted features from app
images using pHash and compared the hash codes to detect
similar apps. When the similarity of two apps with differ-
ent signatures exceeds a certain threshold, one of the apps
was considered as repackaged. Similarly, Long et al. [123]
visualised similarity between malware samples based on their
embedded graphical assets. First, images were extracted from

malware using wrestool [124] and converted to ,1024 dimen-
sional vector. Then, the vectors were stored using Fast Library
for Approximate Nearest Neighbor (FLANN) index. Finally,
the top n visually similar images were retrieved by the random
tree method using L2 distances. The authors claimed that the
method has a recall of 83% and precision of 85%. Since the
method uses average hashing and FLANN indexing, it is fast;
however, the performance is highly depending on the threshold
values.

D. Neural network-based methods

Similar to the motivation of moving into neural networks
as mentioned in Section III, in malware detection also multi-
ple works proposed to use neural networks, especially deep
learning based networks to eliminate the need of manual
feature curation. In image-based neural network approaches
for malware detection, the malware binaries are converted into
greyscale image representation, and deep learning architec-
tures are employed to learn the complex features (image pat-
terns). Most commonly employed deep learning architectures
are convolutional neural networks and LSTM (long short-term
memory) recurrent neural networks.

Zhang et al. [125] proposed a CNN to compare opcode
images of a target with the opcode images generated by known
malware sample codes to detect binary malware variants. First,
the binary executable is disassembled, and an opcode profile
for the binary is built by representing it as a list of opcode
sequences of length two and the corresponding frequency.
This sequence is converted to an image where each pixel
value represents the information gain of the two corresponding
opcodes. This image is further enhanced using methods in
the likes of histogram normalization, erosion, and dilation.
These images are then used to train a simple CNN with two
sets of convolution and pooling layers followed by one fully
connected layer.

Authors evaluated the classifier using a dataset of 9,168
malware samples belonging to 10 families and 8,640 benign
samples. The results showed that image-based malware variant
detector could achieve over 90% true positive rate and true
negative rate outperforms traditional machine learning-based
classifiers such as naive Bayes and k nearest neighbours
especially when there is less number of training samples.

Kim et al [112, 113, 126] conducted a series of work
on using generative adversarial networks (GANs) for zero-
day malware detection. The idea stems from the GANs in
computer vision that has found multiple applications in image
generation, denoising, and resolution improvements. The key
idea in related to zero-day detection is to use the generator
function of the GAN to generate new malware samples and
use the discriminator function to predict whether the given
sample is a malware or not. The intuition behind this process
is that as the generator builds new malware representations
and the discriminator has been trained to identify them, when
a new malware that was not part of the training set emerges,
the discriminator will be able to detect it.

In this regard, the first work by Kim et al. [126] proposed
transferred generative adversarial network (tGAN) that uses a

18

pre-trained auto-encoder as the generator and a conventional
CNN as the discriminator. The auto-encoder learns the charac-
teristics of data using transfer learning method and generates
malware images similar to real malware images. On the con-
trary, the CNN based discriminator tries to distinguish between
real and fake malware images. However, this approach suffers
from the problem of instability in converging generator and
discriminator to Nash equilibrium during the training process.
Therefore, Kim et al. extended the idea and proposed two
different approaches. In the first approach, Kim et al. [113]
proposed transferred deep-convolutional generative adversarial
network (tDCGAN) that uses a deep auto-encoder (DAE) as
a generator and deep convolutional GAN (DCGAN) as a dis-
criminator. The advantage of using DCGAN is that it produces
higher-quality images than original GAN, and the training
system is relatively stable. Akin to above method, Kim et
al. [112] also proposed another version of GANS called latent
semantic controlling generative adversarial networks (LSC-
GAN), that generates malware with arbitrary modified features
and help detector to learn features with unseen observations.

In all the three approaches [112, 113, 126], authors used a
dataset from Kaggle Microsoft Malware Classification Chal-
lenge [109], which contains nine malware families. The accu-
racy of detecting malware in [126] is 96.39% for 90:10 ratio
of training-testing data. For [113] and [112], authors achieve
the average accuracy of 95.74% and 96.97% respectively.
Nevertheless, the major problems in these approaches are
the interpretability of the results obtained and the black-box
nature of these systems. The difficulties with interpreting
and understanding neural networks such as GANs, places a
constraint on how these models can be modified. Also, the
process of training large scale GANs is not a simple and trivial
task. Designers of malware detection systems need an efficient
GAN-based security system to defeat the rapidly evolving
malware adversarial programs [127].

Ni et al. [128] proposed an algorithm named, Malware
Classification using SimHash and CNN (MCSC), that converts
SimHash values to greyscale images and then uses CNN to
identify malware families. The algorithm combines multiple
methods such as cascade hashing, major block selection, and
bilinear interpolation to improve accuracy. The algorithm is
divided into three parts: the first part extracts opcode sequence-
based features and calculates the similarity between sequences
using SimHash method. In this step, multiple cascading hash
functions strengthen SimHash. Moreover, major block se-
lection chooses opcode sequences that contain representa-
tive/informative feature. For example, the opcode sequences
containing CALL instructions are considered as a major block
because this instruction invokes APIs, library functions etc. In
a second step, the SimHash value and bilinear interpolation
convert opcode sequences to malware images. Finally, these
images train CNN model with the aim to identify their
families. Similar to other methods, this algorithm also used
Malware Classification Challenge dataset containing 10,805
samples. The classification accuracy is 98.86% on average,
which is higher than other algorithms. However, this work can
identify only known malware, and no solution was indicated
that shows the integration of characteristics of new malware

in the detection system.
Akin to above, Yan et al. [114] also proposed a method,

MalNet, that uses greyscale images and opcode sequences to
detect and classify malware. The method uses CNN for ex-
tracting image-based features while Long Short Term Memory
(LSTM) is used to learn opcode sequences features. Moreover,
in order to overcome the gradient vanishing problem of LST,
the truncated backpropagation algorithm is used along with
a subsequence selection method to filter out benign opcode
sequences. The processing of the MalNet is divided into two
stages. The first stage is to preprocess malware sample data;
it takes a binary form of a Windows executable file, generates
a greyscale image from it, and extracts opcode sequence and
metadata features using a disassembler tool. CNN and LTSM
then process the greyscale image, and the results are sent
to the stacking ensemble to integrate two networks’ output
and metadata. The experiments were conducted on 21,736
malware samples from Microsoft and 20,650 benign samples.
The MalNet achieves detection accuracy of 99.88% and TPR
of 99.1% with a false positive rate of 0.1% respectively. In
addition, the malware classification accuracy of nine families
reaches up to 99.36%.

To address the problem of data imbalance, Cui et al. [129]
developed a method that combines the CNN with the Bat algo-
rithm. The Bat algorithm is used to balance the image dataset,
and CNN is used to identify and classify the images. In this
work, first, samples are converted into greyscale images and
then classified using CNN. The size of an image determines
the structure (layers) of CNN, whereas, the width of the image
could be fixed based on the pre-defined standard given in the
literature. For instance, an image file of 100kb to 200kb
size should have a fixed image width of 384. The method
uses two different types of layers, namely convolution and
sub-sampling layer. The former reduces the number of image
parameters and preserves the main features such as translation,
rotation, or scale invariance; while the latter reduces the
dimensions of features, thus weakening the influence of image
deformation. Both layer types improve the accuracy of models
and avoid overfitting. The malware dataset was taken from
Vision Research Lab consisting of 9342 greyscale images of
25 malware families. The achieved average accuracy is 94.5%.

Yue et al. [130] also addresses the problem of class im-
balance by proposing a method that incorporates CNN and
weighted softmax loss method for effective classification.
Authors used vgg-verydeep-19 model with 43 layers and also
placed two dropout layers between the three fully connected
layers to prevent overfitting. The weighted softmax loss layer
is then used as the last layer. The method achieved 98.63%
accuracy with the Malimg dataset containing samples from 25
malware families which were highly imbalanced. The problem
with this work is that it requires more computation as there is
a total of 60 layers which are used for malware classification.

Le et al. [115] proposed a generic image scaling approach,
where a raw malware byte code is interpreted as a one-
dimensional image and is scaled to a fixed target size. The
raw static byte code inputs to a convolutional neural network
followed by a recurrent neural network. The approach uses
three different models of CNN; i) conventional CNN, ii)

19

CNN-UniLSTM and iii) CNN-BiLSTM. In the second and
third model, a recurrent neural network (RNN) is used to
improve the performance of malware classification. Similar
to previous works, the authors used the Microsoft Malware
Classification Challenge dataset containing 10,868 samples.
The results showed that the CNN-BiLSTM has the highest
accuracy of 98.20% as compared to the other two models.

This approach is simpler than converting a malware binary
file to a 2D image since one doesn’t have to make a decision
about the height and the width of the image. The image size
is fixed to 10000 bytes. However, this work was intended to
identify the malware class from nine classes and not to decide
if a file is benign or malicious. Akin to above, Kalash et
al. [116] also converted malware binaries to images and trained
CNN. However, authors used VGG network architecture which
is a variant of CNN. The method was tested on two large
datasets, Malimg and Microsoft malware, and achieved an
accuracy of 98.52% and 99.97% respectively.

Jiawei et al. [131] also used CNN to detect and classify
malware residing in IoT devices. The proposed approach uses
a rescaling method to standardise the image sizes of malware
samples to 64*64 pixels. Such images then serve as input
to a CNN that determines whether the analyzed program is
malicious or benign. To evaluate the performance, authors
used malware captured by the IoTPOT honeypot [132]. The
approach was run on 500 malware samples and achieved an
average accuracy of 94.0% for two-class classification and
81.8% for three-class classification. (i.e., benign, Mirai, or
Gafgyt). Analysis results showed that malware samples have
distinct byte patterns in the padded areas and unused data
sections. However, the authors admit that their approach is
susceptible to complex code obfuscation. In addition, the
padded areas and unused data sections can be easily modified
by malware developers without affecting the behaviours of
malware.

Cao et al. [117] developed a malware identification and
classification system based on CNNs. Firstly, the binary files
of potentially malicious codes are converted into greyscale
images, and then the images are fed into the CNN for malware
detection. The proposed system works in an online environ-
ment where a browser plug-in checks if a file is malicious or
not. If considered malicious, it is sent to the detection server
where the CNN performs further analysis, and finally, the
database is updated. In another scenario, a user can also upload
the malicious file on a website. The method used two popular
malware datasets, Vision Research Lab and Microsoft Malware
Classification Challenge with the 20 well-known malicious
code families. The system achieved an accuracy of 95%.

Similar to above, Akrash et al. [133] classified malware
families by converting malware binaries to greyscale images
and using a hybrid CNN and Long Short Term Memory
(CNN-LSTM). The hybrid model enables the extraction of
temporal and spatial features which are later used to identify
the malware family. To select a generalised model that is
suitable to deploy at run-time, the authors conducted several
experiments on Malimg dataset that contains 9,389 malware
samples of 25 different families. The accuracy of the method
ranges from 95% to 97%. However, this research work did not

explain how it is different from other neural-network-based
approaches.

A recent approach by Venkatraman et al. [134] used an
image-based technique with deep learning architectures to
detect and classify obfuscated malware into their respective
families. The proposed approach performs an image compari-
son of different malware families as well as benign datasets to
visually demonstrate the significant difference in the behaviour
patterns of the malware families. This approach is different
from other methods as it uses a self-learning system which
is capable of detecting not only the known malware and the
variants of known malware but also unknown malware. The
architecture composed of three different subsystems, in which
one subsystem uses unsupervised learning model and the other
two use supervised learning models. First, pre-processing on
samples are performed to detect packed and unpacked binaries.
After this, image analysis extracts image related features from
a pre-trained deep CNN model and then clusters in the image
feature space using k-means clustering algorithm. The features
are then fed into CNN. The approach was tested on 52,000
malware samples collected privately in previous work as well
as commonly used public datasets for benchmarking. Results
indicated accuracy ranges from 94.8% to 96.3% on average,
whereas F1 score ranged from 90.3% to 91.6%.

A method proposed by Darshan et al. [135] also used a CNN
to detect windows-based malware. However, their process to
generate an image is quite different from the rest of the
methods. It uses the run-time behaviour features (n-grams)
of the PE files, selected by a feature selection technique to
create images, and the generated images are then fed into
the CNN for the detection. In the training phase, behaviour-
based feature extractor records the behavioural features (CAT-
API features) of the PE file, which is under execution in
a Cuckoo sandbox. These features are then processed to
derive n-grams. The n-grams are then passed through feature
selection techniques such as Chi-Square, Mutual Information,
Information Gain, and Relief to choose the best n-grams. The
chosen n-grams are passed through the image generator that
checks the occurrence of the n-gram present in the final feature
set to construct an image for the n-gram file. Based on the
presence or absence of the n-gram, the value 255 or 0 is
written onto the image (0 represents that the n-gram is absent,
and 255 indicates that the n-gram is present). Finally, each
input image proceeded through two convolution layers, two
sub-sampling layers, and two fully connected layers for CNN
training. In the testing phase, the test image was created from
the unknown PE files, which was then sent to the trained
CNN to measure the detection ability of the trained CNN.
Authors used 400 self-generated samples (200 benign, 200
malware) and a Malheur dataset [136] to demonstrate the
effectiveness of the proposed CNN-based Windows malware
detector. Malheur dataset contains 3,282 benign and 4,151
malware files that included ten different types of malware.
A set of experiments were conducted to demonstrate the
classification ability of the proposed approach and compared
with the chosen six machine learning-based classifiers. The
method achieved maximum detection accuracy of 97.968%
outperforming machine learning-based classifiers.

20

To overcome the drawbacks of code obfuscation and high
computational costs of analysing malware, Xue et al. [137]
recently proposed Malscore, which is based on the probability
scoring and machine learning. The purpose of probability
scoring is to decide if static analysis needs to concatenate
with dynamic analysis. First, greyscale images are generated
from raw malware to train a CNN-based classifier. The output
from the CNN classifier judges the credibility of each malware
sample by comparing the score with the probability threshold.
The samples with lower credibility are dynamically analysed
by executing the malware in the sandbox and extracting
native API call sequences. These API call sequences train n-
grams and machine learning-based classifier. To understand
this whole process, consider a packed/obfuscated malware that
gets lower credibility from the CNN classifier. This sample
will then be filtered out for dynamic analysis. In this way,
this work improves the robustness for packed/obfuscated mal-
ware and also improves the classification accuracy. Similarly,
to reduce the cost of detection, probability scoring in this
work filters out most malware that get reliable classification
results. The experiments were conducted on the dataset from
VX Heaven website [94] and after pre-processing, 174,607
malware samples from 63 malware families were used. The
result showed that Malscore achieved 98.82% accuracy while
reducing the pre-processing and test time by 59.58% and
61.70%, as compared to previous methods.

Though highly efficient, this work did not use dynamic
analysis as the primary detection method, but as a comple-
mentary method for static analysis to increase the robustness
in detecting packed malware. Also, this work did not take into
account the concept drift as it did not provide any incremental
learning strategies to fortify re-learning ability.

To detect counterfeit mobile apps, Rajasegaran et al. [138]
proposed a neural embedding-based approach that combines
content and style embeddings generated from pre-trained
CNNs. The method relies on the idea that a combination
of style and content embeddings achieves better results in
detecting visually similar app icons. First, the app icons are
fed into a pre-trained VGGNet for the extraction of content
and style embeddings. Authors crawled and collected approx-
imately 1.2 million apps from Google Play Store and showed
that a combination of content and style embeddings achieved
8% to 12% higher precision and 14% to 18% higher recall,
respectively compared to conventional methods. The precision
and recall are further improved to 3% to 5% and 6% to 7%
by adding text embeddings. Authors identified 7,246 potential
counterfeits to the top-10,000 apps, out of which 2,040 may
contain malware. Results further indicate that 1,565 of apps
ask for at least five dangerous permissions and 1,407 have at
least five extra third-party ad libraries.

E. Summary of computer vision based malware detection:

In this section, we surveyed research work that used com-
puter vision methods to detect and classify malware more
accurately and efficiently. The main motivation of using com-
puter vision methods is to overcome the limitations of static
and dynamic code analysis methods, where the former suffers

from the problem of code obfuscation and detecting new
malware types, and the latter is computationally expensive.
The discussed computer vision-based research work has shown
promising results in terms of detection and classification
accuracy, and in some cases, offers high accuracy against the
detection of obfuscated or encrypted malware. Moreover, some
of the research work in this area is independent of the malware
execution environment and computationally inexpensive.

In computer vision-based malware detection, the main idea
is usually to convert malware binaries or behaviour of malware
to an image and then perform analysis on the image using
methods such as feature extraction, image comparison, and
image hashing. Similar to phishing detection, we categorise
the malware detection approaches to i) image feature-based
methods, ii) image hashing-based methods, and iii) neural
networks-based methods. In addition, we also found some
work under the image representation-based methods that
visualise malware activities such as API calls, resources con-
sumption, file structure decomposition, and frequency of API
calls, as images and then compares the unknown sample with
abnormal actions using image processing techniques such as
bitmap converter, thread graph, treemaps, and colour mapping.
We summarise all the work we surveyed in Table II.

Next, we discuss observed challenges and limitations over
all the work, with the purpose to make the contribution
of computer vision more effective in the area of malware
detection, and thereby deploying solutions commercially. Our
study on existing computer-vision malware detection methods
reveal various findings:

• Malware Dataset and Families: We found that most
of the work used Microsoft Malware Classification Chal-
lenge (BIG 2015) as their dataset. This dataset is 0.5
terabytes in size, consisting of disassembly and bytecode
of more than 20K malware samples. Another malware
dataset which is most often used is the Malimg dataset.
This dataset contains 9,339 malware samples from 25 dif-
ferent malware families. We also found a work proposed
by [89] that has set-up honeypots in a controlled network
environment for real-time malware detection.
We also observe that most of the work did not validate
their work against multiple datasets. For instance, Silva
et al. [110] evaluated their method only on the BIG
dataset, whereas, sl et al. [135] used Malheur dataset
for evaluation. Nevertheless, there are methods such as
Le et al. [115] and Kalash et al. [116], that performed
evaluation on more than one datasets. We also notice
that most of the work was evaluated on the specific
set of malware families provided by the datasets and
discussed the extension of their work to new malware
variants. There are very few works that perform regressive
testing on a broad set of malware families. For example,
we found work by Han et al. [93] that has performed
their experiments on 50 different malware families. To
build a robust malware detection system, it is necessary
to collect latest and large datasets, containing several
malware families and their corresponding variants, such
as EMBER [139]. Moreover, malware datasets should
contain samples from a range of platform to check the

21

TABLE II: Summary of Visual Similarity Based Malware Detection Approaches
Research Work Computer Vision

Methods
Input Image
Structure

Dataset
Size/Family

Summary Performance Metrics

Image Representation-based Methods

Trinus et al. [89] Treemaps, ThreadGraphs,
CWSandbox

(Generic) Size similar to
original image

2,000/13 Applies an abstraction method to make malware reports easily understandable
and to enable the extraction of unique features for malware detection.

Not Given

Han et al. [90] SimHash, Vector Angular-
based Distance Measure

256 × 256 pixels of im-
age matrices

-/3 Generates image matrices with (x,y) coordinates and RGB colours and
then uses vector angular-based distance measure algorithm to calculate the
similarities between image matrices.

Similarity (across same family) - 0.95
Similarity (across diff. family) - 0.32

Han et al. [92] SimHash, Vector Angular-
based Distance Measure

256 × 256 image Static- 290/16
Dynamic- 560/14

Extracts the opcode sequences related to staple behaviours and uses angular-
based distance measure to calculate the similarities.

Accuracy (Static)- 98.96%
Accuracy (Dynamic)- 97.32%

Han et al. [93] Bitmap Image Convertor, En-
tropy Graph Generator, Simi-
larity Calculation Algorithm

(Generic) Pixels of original
file size

1,000/50 Calculates entropy values of a greyscale bitmap image to generate the entropy
graph and further measures similarity of entropy graph for the malware
detection.

Accuracy (ROC) - 97.9%

Shaid et al. [96] API-to-Colour Mapping, API
Monitoring Utility, Similarity
Measure

64 × 4 pixel 1,101/12 Utilises API call monitoring utility to obtain behavioural data of an image
by mapping to colour, and then groups malicious behaviour.

Accuracy - 95.92% to 98.92%

Chapman et al. [97] File Structure Decomposition JPEG and PNG files of vari-
able length

270k JPEG and
33k PNG files

Decomposes each image file into sequence of segments, feeds into the training
algorithm to build a formal model, and then classifies unknown samples.

TPR - 99.24% (JPEG), 99.31% (PNG)
TNR- 99.32% (JPEG), 98.88% (PNG)

Sun et al. [98] Layout Edit Distance (LED) Apps XML Layouts in tree
forms

1,00,096 apps Detects the repackaged and phishing malware in apps by calculating the LED
between XML layout of android apps.

Visually Similar Apps: 1298

Image Feature-based Methods

Nataraj et al. [100] k-NN with Euclidean Distance 320 GIST descriptors 9,458/25 Converts binary file to a greyscale image and extracts 320 GIST features to
classify malware using k-NN.

Accuracy - 98%

Nataraj et al. [95] k-NN with Euclidean Distance,
System Call-level Monitoring,
Forensic Screenshots

320 GIST descriptors 393/
3,131/24
63,000/531

Converts binary file to a greyscale image and extracts 320 GIST features to
classify malware using k-NN.

Accuracy (First Dataset) - 98%
Accuracy (Second Dataset) - 97%
Accuracy (Third Dataset) - 72%

Kancherla et al. [103] SVM, Gabor Filter, Wavelet
Transformation

2-dimensional vector of file
size

25,000/6 Converts a binary file to a 2D vector, extracts Gabor, Intensity and Wavelet
features, and then uses SVM for malware detection and comparison against
each feature set.

Accuracy (Gabor) - 93.23%
Accuracy (Lightweight) - 94.32%

Ahmadi et al. [107] Forward Stepwise Selection
Algorithm, XGBoost Classifier

Hex byte as a greyscale
pixel

21,741/9 Calculates set of features from different categories of hex and assembly view
of PE and applies feature fusion algorithm to generate the most effective
concatenation of features categories such as Haralick features and Local
Binary Patterns features to classify a malware.

Accuracy (with Img. Feat.) - 95.5%
Accuracy (comb. of other feat.)- 99.40%

Zhao et al. [108] Homology Analysis, B2M, Im-
porved SIFT, Guassian Pyra-
mid, DBSCAN

66 byte feature descriptor 1,789/11 Extracts features from binary sample, creates texture fingerprint from the
features, and then applies clustering to group the texture fingerprint of
malware into families. Afterwards, the homology analysis was performed
to classify the malicious unknown samples.

Accuracy - 77.6%

Masouleh et al. [110] HOG, AE, Summary Statis-
tics Features from icon pixels,
HDBSCAN, K-NN

Icon Pixels of varied length 1,138/ Detects PE malware by extracting HOG, AE and summary statistics features
form icon pixels, clusters them, and then trains machine learning classifiers.

Accuracy: 84.4%
TPR: 80.2%

Su et al. [118] Colour Correlogram
Algorithm, Cosine Similarity

App Icons and Screenshots 30,625 crawled
mobile apps

Detects camouflaged apps on mobile market places using indexed based text
and image retrieval systems.

FPR: 9.22%

Image Hashing-based Methods

Xiaofong et al. [119] LSH SURF, Euclidean Dis-
tance

64*64 image vector 8,410/25 Computes a feature fingerprint and applies LSH to return the top most visually
(structurally) similar variants for malware classification.

Precsion/Recall/F-Score - 80% to 90%

Malisa et al. [120] LSH Mobile app screenshots 150,000 mobile
apps

Detects impersonation attacks by capturing run-time app activities screenshots
and measures similarity through LSH.

FPR - 15%
Impersonated Apps- 43,904

Andow et al. [111] Fuzzy Hashing App icons 2,500 mobile apps Detects imposter apps through text analytics and static program analysis,
where later measures the similarity of app icons through fuzzy hashing.

Manual App Review Reduction: 977
apps out of which 22 app icons are same

Jiao et al. [122] pHash App images Not Given Detects repackaged apps by comparing hash codes and if the the similarity
exceeds a threshold, then flag the app as repackaged app.

Not Given

Long et al. [123] wrestool, FLANN index, L2
distance

1024 dimensional vector Not Given Measures similarity between apps by extracting images, converts images to
features, and then uses L2 distance for similarity checking.

Recall - 83%
Precision - 85%

Neural Network-based Methods

Zhang et al. [125] Opcode Sequence, Histogram,
Dilution, Erosion, CNN

2-Dimensional opcode im-
ages

17,808/10 Disassembles binary executables into opcodes sequences, converts the op-
codes into images and then compares with the known malware sample using
CNN.

Accuracy (Max.) - 96.7%
TPR (Max.) - 94.3%
TNR (Max.) - 99.1%

Kim et al. [126] GANS, t-SNE Algorithm Average of all the rows and
columns of the data

9,970/9 Utilises transfer learning method to pre-train the generator for generating
malware images close to real malware for the possible detection of zero-day
attacks.

Accuracy (Avg.) - 96.39%

Kim et al. [113] DAE, GANS 63*135 pixel image 10,800/9 Devises an architecture by combining several deep learning methods of DAE,
GAN, and transfer learning to construct a malware detector that is robust to
noise and zero-day attacks.

Accuracy (Avg.) - 96.74%

Kim et al. [112] GANS, VAE Image size 256*128
Latent Space Size - 270 di-
mension

10,867/9 Generates malware from latent space based features and helps the detector
to learn features with unseen observations.

Accuracy (avg.) - 96.97%

Ni et al. [128] SimHash, CNN, Bilinear Inter-
polation

8*8, 8*16, 16*16, 16*32,
24*32, 28*32

10,805/9 Extracts opcode sequence based features, uses SimHash method to calculate
similarity, converts SimHash values to greyscale images and then uses CNN
to identify malware families.

Accuracy (Avg.) - 98.86%

Yan et al. [114] CNN, LSTM, Truccated back-
propagation Algorithm

64*64 greyscale image 21,736/9 Uses CNN for extracting image based features and LSTM to learn opcode
sequences features for malware detection.

Accracy - 99.88%

Cui et al. [129] CNN, Bats Multiple representations de-
pending on original file size

9,342/25 Malicious code is converted into greyscale image and then images are
classified using CNN having convolution and subsampling layers.

Accuracy (Avg.) - 94.5%

Yue et al. [130] CNN and weighted softmax
loss

VGG-verydeep-19 CNN
model with 60 layers

9,342/25 Proposes a solution to overcome class imbalance problem in malware
classification through CNN of 43 and two dropout layers.

Accuracy - 98.63%

Le at al. [115] CNN, CNN-UniLSTM, CNN-
BiLSTM

10000 byte file size 10,868/9 Utilises three different CNNs to improve the performance of malware
classification.

Accuracy(CNN) - 95.8%
Accuracy (CNN-UniLSTM) - 98.12%
Accuracy(CNN-BiLSTM) - 98.20%

Kalash et al. [116] CNN 320 GIST descriptors Malimg -
9,339/25
MS - 1,868/9

Converts malware binaries to images and trains CNN for classification. Accuracy (Malimg) - 98.52%
Accuracy (Microsoft) - 99.97%

Jiawei et al. [131] CNN 64*64 greyscale image 500/4 Utilises CNN to detect and classify IoT DDOS malware residing in IoT
devices.

Accuracy (2-class) - 94.0%
Accuracy (3-class) - 81.8%

Cao et al. [117] CNN 2-D array with specified
widths 28*28 / 56*56

Vision Lab
and Microsoft
Datasets/20

Works for online environment where a browser plug-in sends suspected
malicious file to detection server running CNN for further analysis.

Accuracy - 95%

Akrash et al. [133] CNN-LSTM Greyscale images of varying
size

9,389 malware
samples

Detects malware families using CNN-LSTM model and tests against various
parameters.

Accuracy: 95% to 97%

Venkatraman et al. [134] CNN, CNN BiLSTM, CNN
BiGRU

Greyscale images of varied
length

52,000 malware
samples collected
from private and
public sources

Detects and classifies known and unknown malware samples through a hybrid
deep learning and image analysis techniques.

Accuracy: 94.8% to 96.3%
F1 Score: 90.3% to 91.6%

Darshan et al. [135] CNN, n-gram features Greyscale images of varying
size selected by feature se-
lector

Self-Generated
Dataset: 400
samples
Malheur Dataset:
7,433 samples

Detects and classifies known and unknown malware PE files by executing
them at run-time, extracting n-gram features, converting features into images
and feeding into CNN.

Accuracy: 97.96%
F-Score, Precision, Recall: 0.97

Xue at al. [137] CNN, n-grams Greyscale images 174607 malware
samples

Classifies malware using probability scoring and machine learning models
with the purpose to overcome the drawbacks of static and dynamic malware
analysis methods i.e. code obfuscation and computation cost.

Accuracy: 98.82%

Rajasegaran et al. [138] VGGNet App icons 1.2 million apps
from google Play-
store

Detects counterfeit apps by using a pre-trained VGGNET that combines
content and style embeddings.

Precsion: 8% to 12%
Recall: 14% to 18%
Counetrfeit Apps: 7,246 from the top-
10,000 apps

22

diversity of malware detection method. An example here
is Winnti Windows malware family that was first explored
in 2013, however, recently (in 2019) its Linux variant was
discovered which dated back to 2015 [140].

• CNN and GANS: We noticed that understandably CNNs
are an emerging approach in detecting and classifying
malware efficiently. We found that several recent works
have used different versions of CNNs, either to detect
malware presence or to classify malware types. CNN-
based methods are fed either with greyscale or coloured
malware images and then tested with a number of differ-
ent input and output layers and various parameters. As
a matter of fact, each of the research work in neural
network category used a different number of inputs,
middle, and output layers and also tuned with different
hyper-parameters. There is a need to investigate for a
generic neural network model that has a capacity to tune
layer and parameters for high malware detection accuracy
automatically. Recently, researchers also used GANS to
generate new malware training data to detect zero-day
attacks [112, 113, 126]. However, the research is still
underway as it involves many challenges. For instance, it
is still not clear that malware generated through GANS
resembles the real malware and how much helpful they
are in the detection of zero-day attacks.

• Real world adoptions: The computer vision-based mal-
ware detection has not fully adopted by the industry,
despite a significant amount of work happening. We
did not find any company that explicitly mentions the
usage of such work in their commercial products. One
possible reason for this gap is that computer vision-based
malware detection methods are not mature enough to be
deployed as commercial products. The proposed methods
neither have convincing results nor cover all aspects of
malware detection. For instance, most of the methods
were tested on a specific dataset and a particular network
environment. These methods have not been deployed in
open network to verify their robustness, reliability, and
performance at large scale. Moreover, there is no standard
benchmark to compare these work against each other.

V. VISUAL SIMILARITY BASED TRAFFIC ANOMALY
DETECTION

Computer vision methods also alleviate the limitations of
traditional traffic anomaly detection approaches that are usu-
ally based on statistical features of traffic flows. For instance,
a conventional approach that detects short and long-lasting
anomalies through variances in the number of bytes (traffic
volume) cannot identify low-rate attacks [141]. An example of
a low-rate attack is port scanning that does not consume much
bandwidth when it tries to access an abnormally large number
of ports on a single host [142]. Also, such approaches cannot
identify attacks that are statistically close to global traffic
behaviour. Finally, these traditional approaches are unable to
detect zero-day attacks. As a result, much effort has been put
into detecting anomalies through computer vision methods.

In this section, we survey computer vision-based traffic
anomaly detection approaches and categorises them based

on their method of detection. We found work fitting into
the categories of i) image representation-based methods, ii)
image feature-based methods, and iii) neural network-based
methods. However, we highlight the volume of work we found
for computer vision-based traffic anomaly detection is much
less compared to phishing detection and malware detection.
A possible reason for this gap is that traffic anomaly detec-
tion is a highly non-trivial application for image processing
techniques, as compared to phished web pages or malware
binaries that can be directly represented as images We also did
not find any work that utilised image hashing-based methods
to detect traffic anomalies. We further discuss the possible
reasons behind this at the end of the Section V-D.

A. Image representation-based methods

Similar to Section IV-A, the image representation-based
methods detect traffic anomalies by visualising traffic data or
logs as images and then analysing them using computer vision
algorithms. The traffic data usually consists of network packets
with header and payload sections, where header contains
information such as source IP address, destination IP address,
source port, destination port, and protocol names. Studies
have shown that network traffic can have strong patterns
of behaviour over several timescales [143]. Therefore, by
passively monitoring packet headers of network traffic at
regular intervals and then generating images of traffic usage
(which can be correlated with previous images), can help
to detect anomalous behaviours. For example, in case of
anomalous traffic such as DoS attack, the usage pattern of
network at time ti is different from previous normal states
t1, t2,ti−1. These usage patterns at different time intervals
can be represented as visual images; for example, images
of traffic volume originating from source or destination IP
addresses, traffic flow between IP addresses, or intensity of
traffic flows. The images are then analysed using computer
vision algorithms (e.g. Hough Transformation [144], Canny
Edge Detection Algorithm [145], and Video Compression
Algorithms [146]), to find peculiarities or further characterise
the anomalies into several categories (e.g. random attacks,
targeted attacks, multi-source attack, and port scans). Figure 3
shows a generic process of detecting anomalous traffic using
image-based representation methods.

Kim et al. [147, 148] is one of the early work in detect-
ing anomalous traffic using image representation methods.
Authors proposed an approach, Netviewer, that used image
processing and compression techniques for detecting and iden-
tifying network attacks in real-time. First, samples of network
traffic are converted into images. The traffic samples are packet
header traces that consist of data such as source/destination
addresses, port numbers, and traffic volume in bytes. For
instance, an image may be represented as traffic volume in
bytes originating from a source IP address, or the traffic
between a source and destination IP addresses/port numbers.
Second, the network traffic images, from regular time intervals,
are then considered as video frames such that a sudden change
in a scene (traffic pattern) indicates a possible traffic anomaly.
To analyse the data in video frames, various techniques from

23

Fig. 3: Generic Process of Anomalous Traffic Detection using image-based representation methods

video compression and image processing such as Discrete
Cosine Transform (DCT) coefficients and absolute difference
of image pixels are applied. For instance, a mean square
error (MSE) is calculated between video frames (which are
collected at regular interval) to detect anomalies. Finally, to
identify attacks and victims, line or edge detection algorithms
are used. For example, consider a representation where the
x-axis of an image represents destination IP addresses, and
the y-axis represents the source IP addresses. A horizontal
line in this image, is an indication that a source is accessing
multiple destinations, for example, during worm propagation.
A horizontal line may also indicate a host scan of destination
machines by a single source with a high probability. Similarly,
a vertical line indicates that several sources are accessing a
single destination (e.g. a DDoS/Botnet attack emanating from
multiple machines towards a single destination). Moreover,
Netviewer also estimated the movement of attack patterns
using motion prediction algorithms.

Authors used real traffic traces from three major networks
to evaluate their approach. The networks were University
of Southern California (USC), Korea Research Environment
Open NETwork (KREONet2), and Texas A&M University
campus [149]. Authors claimed that their method has an
average accuracy of 92.3% and a false positive rate of 0.3%
when the source IP address was considered in the packet
header. There was a 5% reduction in accuracy and 0.45% in-
crement in false positive rate when only the destination address
was considered in the analysis. Authors also compared their
approach with popular Intrusion Detection System (IDS) Snort
and showed that the results of both systems agree with each
other. However, both systems differ from their methodology
perspective. By investigating payload and packet header, Snort
is capable of identifying the source of malicious activities as
well as functions performed by those malicious activities. On
the other hand, Netviewer investigates packet headers only and
reports suspicious IP addresses and the pattern of abnormality
in aggregation manner (e.g. by observing the number of
packets arriving at a specific destination IP addresses at time
t). This makes Snort superior in presenting granularity details
of attacks. Similarly, Snort employs qualitative analysis (rule-
based), whereas Netviewer is quantitative (aggregation-based).
As a result, Snort may miss the identification of some unusual
traffic if the rules are not adequately defined. For example,

heavy traffic flows from a single host in a network may not
be detected by Snort without an operational rule. In contrast,
Netviewer can identify such flows as anomalous because of
its aggregation-based method.

In [150], authors used a similar approach to
Netviewer [147], with the main difference being using
image pixel intensities and discrete cosine transform (DCT)
coefficients to detect scene changes in video frames. In
addition to other packet header data, an image also represents
the intensity of traffic of corresponding IP address through
colour and darkness of each pixel. For example, a packet count
from a source or destination IP address can be represented
as the intensity of the pixel in the image representation. The
anomalies are then detected using real-time and postmortem
analysis, where the former exploits the variance of pixels
intensities of a traffic image and the latter employs the
variance of 8-by-8 DCT of the traffic image. Similar to [147],
the approach was tested on the traces from three major
networks and showed that the real-time analysis has a 0.22%
and 2% higher false positive and accuracy rate respectively
compared to postmortem analysis based on DCT coefficients.

Besides, the authors also compared their the real-time
analysis method with classical detection theory-based Neyman-
Pearson test and showed the false alarm rate of 0.37% and the
detection rate of 74.6%. As compared to the previous approach
by Kim et al. [147], the results of this approach are slightly
better, which indicates that the real-time analysis (image pixels
intensities) on the network traffic is a better performer for the
anomaly detection than the postmortem analysis. Moreover,
the advantage of using real-time analysis is that it is effective
against flood types of attacks. When images are defined as
the intensity of traffic flow in the source address, destination
address, or destination port, and analyzed as video frames,
then the distribution of abnormal traffic flows in some frames
are expected to be much different from normal and historical
distribution.

Above two approaches [147, 150] detect anomalies by
representing traffic flow as images and then using a threshold
to determine significant changes from the images of regular
network traffic. However, these methods may not be able to
detect several other anomalies that do not rely on traffic flow
intensities. To this end, Fontugne et al. [142] proposed an
approach that is capable of detecting unusual traffic behaviours

24

by pointing out the abnormal distribution of traffic features.
In this approach, network traffic is mapped to snapshots, and
then pattern recognition technique such as Hough Transform is
used to identify anomalies. Pattern recognition not only allows
for unsupervised learning, but also enable the detection of
ambiguous short-lived traffic. To detect anomalies, first, time-
based sliding windows are adjusted, and then network traces
in each sliding window are converted into images using four
traffic features (i.e. source address, destination address and
ports). Once converted, the Hough transformation is applied
to detect lines in snapshots representing unusual and excessive
use of traffic features. Once a line is found, network traffic data
involved in those lines is retrieved and summarised as an event.
An event provides detailed information such as the percentage
of use of all protocols, the entropy of each traffic feature,
timestamps, and IP addresses, about packets extracted from
the whole traffic flow. Moreover, these events are clustered
together based on destination or source address to detect the
anomaly.

The approach was tested on the traffic traces from the
Measurement and Analysis on the Wide Internet (MAWI)
archive [151], which were collected in 2004. Overall, it
detected 73.8% of anomalies from a dataset containing 2000
anomaly traffic and 630 normal traffic. Moreover, the pro-
posed approach was compared with a statistical approach non-
Gaussian multi-timescale models [152] and showed efficient
detection of short and long-term anomalous traffic. The pro-
posed method [142] detected 297 more anomalies which were
not identified by a statistical method. Also, the method claims
to have shorter detection delay as compared to the statistical
method (i.e. this approach detects traffic anomalies within
three seconds, whereas the statistical method needs at least one
minute to detect anomalies). Though the proposed approach
is capable of detecting more anomalies than the compared
statistical approach, the authors did not discuss false positive
anomalies, thus requiring further analysis. In addition, authors
applied their method to an old dataset which may not reflect
the current characteristics of network traffic. Hence, there is
a need to validate this work with the latest network traffic
datasets such as CAIDA IPv4, IPv6, or KeroNet. All in all, the
approach is capable of detecting volume-based attacks through
traffic features.

Jeong et al. [153] proposed a hierarchical approach that per-
formed image analysis in two-tiers to detect network attacks.
The first-tier detects random attacks (e.g. DDoS attacks) by
analysing global images whereas the second tier detects semi-
random attacks (e.g. post scanning attacks) by examining the
local traffic images. Global images are created based on the
network traffic such that X-axis represents the destination IP
addresses and Y-axis represents the source IP addresses. The
intensity of the image indicates the traffic flow between the
source and destination pairs. Similar to [142], lines in the
images are identified using the Hough transform. These lines
are an indication of high usage of a port number, IP address
or a high traffic flow between specific source and destination
addresses. Based on the information provided by the lines in
the global image, local images are created that contain more
details about the attack. Local images show traffic volume for

each destination host and port number in a network domain.
Once created, Connected Component Labelling (CCL) [154]
is applied to local images to detect traces of mostly used
destination ports (a.k.a post scanning). Authors evaluated their
approach on Netflow data of KREONet, which collected
network traces from July 20 to July 27, 2003. The method
analysed 60,000 to 70,000 events in 3 seconds, thus showing
efficiency. However, the authors did not discuss the accuracy
of detecting network attacks using the proposed method.

Similar to [153], Kim et al. [155] also represent unusual
patterns of traffic as lines on a 2D image space. However,
their approach detects traffic anomalies that generate only
from a DDoS attack with IP spoofing. The unusual patterns
which represent DDoS attack sources are recognised using
Canny Edge Detection Algorithm. Afterwards, signature-based
pattern extraction algorithm, pivoted movement, is applied
to prevent DDoS attacks. The pivoted movement algorithm
correlates information such as IP address and media access
control (MAC) pairings.

The overall proposed scheme [155] works as follow: First,
the incoming packets to a victims machine are converted into
a 2D image using the network tool, NetSCENE, introduced
by the authors. NetSCENE monitors the network packets
at regular intervals and analyzes the aggregated data. The
Canny Edge Detection algorithm is then applied to an image
to identify DDoS attack packets with subnet spoofing. The
patterns of DDoS attack appear as edges on NetSCENE where
each edge is linked to the local network addresses at which
targets (i.e. effected machines under the control of attacker) are
located. Once lines are identified, the victims machine alerts
the local source router about those network addresses which
then applies the pivoted movement algorithm by paring the
source IP address with MAC address. The reason to pair the
IP address with the MAC is that legitimate packets pair one
IP address with one MAC address whereas, the attack packets
use different IP addresses with one MAC address. This is often
called pivoting the IP addresses. Moreover, the two-step detec-
tion process also reduces the risk of false positives and false
negatives. Finally, the illegitimate IP addresses are marked
with signatures and are filtered out. To test the approach, the
authors used two different datasets; IPv4 Routed/24 and IPv6
topology datasets from CAIDA [156, 157]. Results showed an
average false positive rate of 1% and an average false negative
rate of 0.5% for canny edge detection and pivoted movement
algorithm, respectively.

While image representation-based methods offer promising
results, there is also a limited amount of work that extracted
image-related features from traffic data and then analysed
those features for possible traffic anomaly detection. Image-
feature based methods help in the discovery of abnormalities
in the network that does not depend on traffic volume and
would otherwise go undetected by image representation-based
methods. For instance, web attacks such as SQL injection can
be detected through statistical features (e.g. length of URL,
string input types, string matching), which are difficult to
detect through image representation-based methods. Moreover,
by exploiting the correlation among image related features
of network traffic, it is possible to identify the type and

25

characteristics of anomalies precisely and at the same time,
reduce false positive and increase true positive rate. We next
discuss image feature-based methods that enable the detection
of traffic anomalies in the network.

B. Image feature-based methods

In comparison to image representation-based methods, we
did not find a significant amount of work in image feature-
based methods for traffic anomaly detection. The most plau-
sible reason being, usually different image features capture
different elements of the image such as key-points, colour
distribution, and intensity levels and it is not straight forward
to decide which feature might be important to identify traffic
anomalies with high accuracy. Therefore, such methods may
not provide additional benefits over statistical feature-based
conventional methods. The two work we found belonging to
this category, extracted features from a traffic sample/pattern
and determined the presence of an anomaly in network traffic.
The extracted features mainly include entropy, contrast, pixel
randomness, and local homogeneity of the image.

Early work in this area is by Tan et al. [158] that detected
DoS attacks using features of network traffic. The overall
approach consists of three steps. In the first step, basic features
such as Timestamp, Source IP, Destination IP, Source port,
source bytes, average duration of host, average duration of
all services, number of ICMP packets, number of packets to
all services, and number of SYN flags, are generated from
network traffic packets captured at the destination network.
In the second step, dimensionality reduction using Principle
Component Analysis (PCA) is performed on the generated
features. Finally, the selected lower-dimensional features are
used in training and testing phase for possible detection of DoS
attacks. In a training phase, standard profiles are generated for
various types of legitimate/normal traffic records (i.e., TCP,
UDP and ICMP traffic). These profiles are built based on
the subspace feature set provided in step two. The normal
profiles are then converted into two-dimensional feature matrix
(image), named Triangle Area Maps (TAM), that reveals the
hidden correlations between the features of network traffic.
To do so, Multivariate Correlation Analysis (MCA) [159] is
applied that selects most discriminative features. The TAM
is then stored in a database along with mean and standard
deviation of the earth movers distances between individual
training samples and the mean of the given training samples. In
the testing phase, images (TAM) of individually tested records
are generated and compared against the normal images from
the Training Phase using the EMD algorithm.

The method was evaluated using two datasets; KDD Cup
99 and ISCX 2012 [160, 161]. Authors also compared their
method with then state-of-the-art detection systems; net-
work intrusion detection system based on covariance fea-
ture space [162], triangle- area-based nearest neighbours
approach [163], DoS attack detection system using TAM-
based MCA [159], and Nave Bayes based detection ap-
proaches [164]. The overall evaluation showed 99.95% ac-
curacy on KDD Cup datasets, outperforming the techniques
in [163] and [162] by 2.06% and 7.8% respectively, and was

comparable to the accuracy of [159]. On the ISCX 2012
IDS dataset, the proposed method achieved 90.12% accuracy
outperforming NB-based detection approaches. It also showed
promising results in terms of computational complexity by
analyzing 59,738 traffic records per second. Another advan-
tage of this method is that it processes each traffic sample
individually, which helps in prompt detection of an attack
and also increases the probability of correctly classifying
a sample than group-based detection mechanisms. Group-
based detection mechanisms take a certain number of samples
together and then classify them as benign or illegitimate [162].
Overall, this work demonstrated to have less detection delay as
compared to group-based approaches, yet has equal or better
detection precision.

Zou et al. [165] proposed a network anomaly detection
method that used image processing to analyse network traffic
patterns in Cyber-Physical Systems (CPS). A CPS is an
integration of physical and software components that inter-
act with each other in different contexts to perform desired
functionalities at different spatial and temporal scales [166].
Examples of CPS include smart grids, medical monitoring
systems, and robotics systems. The proposed method relies on
the network throughput of all the devices in a CPS network
such that a communication image is created by visualising
throughput as pixels. The size of the communication image
is equal to the number of CPS devices in the network where
each image represents the network resource usage of the whole
CPS network at a time sample. The method then applies
texture feature analysis [167] on images to extract the spatial
information about the network resource usage of the CPS
devices. More particularly, Grey Level Co-occurrence Matrix
(GLCM) was applied to extract five GLCM texture features
which were energy, entropy, contrast, IDM (Inverse Difference
Moment), and DM (Directional Moment) [168]. These features
measure the intensity of pixel pair repetitions, the randomness
of pixels, the extent of a pixel and its neighbours, local
homogeneity of the communication image, and alignment of
it in terms of the angle, respectively. In order to extract
more communication features, a temporal analysis of GLCM
features was also carried out. Thus, the spatial and temporal
features together determine the communication patterns of the
CPS network. Afterwards, a k-NN algorithm is used to detect
the anomalies.

The proposed method was experimented on four real-world
decentralised applications using Common Open Research Em-
ulator (CORE) simulator [169]. CORE is a live emulator
that uses existing operating system virtualization techniques
to build wired and wireless virtual networks. These networks
can be connected to real networks and systems to run various
protocols and applications to extend lab test-beds. Authors set
up 100 devices on CORE Simulator and run every application
for 200 times and capture the network throughput. Authors
then simulate the anomaly network traffic by adding different
intensity (10%, 20%, 30%) of random network throughput to
every device. The overall classification accuracy was 99%;
however, the method was not tested on a real dataset or a real
environment. Moreover, the time performance of extracting
GLCM features has not been discussed in the paper.

26

To summarise, we only found a limited amount of work
under image feature-based methods for traffic anomaly detec-
tion. One possible reason may be the difficulty in identifying
what features make more sense in traffic anomaly detection,
which is potentially solved in the neural-network approaches
we next discuss.

C. Neural Network-based methods

Similar to the phishing and malware detection, neural-
network based approaches have also been explored for traffic
anomaly detection. In this category, images are generated from
network traffic and then directly fed into neural networks. The
network automatically learns latent representations that can be
leveraged to detect traffic anomalies.

Wang [170] demonstrated the idea of representing network
flow data as images and utilising a deep neural network to
detect anomalies. First, the payload bytes from each TCP
session is converted to an image, where each byte represents a
pixel after normalising to a scale from 0 to 1. Once an image is
formed, the images are fed into Multi-Layer Perceptron (MLP)
and Stacked Auto-Encoder (SAE) deep learning models for the
identification of anomalous protocols in network traffic. The
MLP model represents a supervised learning setting (requires
labelled data) while the SAE represents an unsupervised
setting (can work without labelled data). In the MLP and SAE
models, the nodes that have higher significance (low error cost)
in the deep layers are selected as features and trained on the
data. Classification results show that SAE performs better on
traffic classification than the MLP model.

Both MLP and SAE models were evaluated on 0.3 million
TCP flow data records collected from an internal network.
These records have 58 different protocol types in total while
having 17% of the overall data flows labelled as unknown.
Both methods were able to distinguish 54.9% of the unidenti-
fied protocols by giving a probability of 0.9 to classify a traffic
protocol of each network flow correctly. However, the authors
provided limited information on the experimental settings (e.g.
dataset used) and results of the methods understandably due
to the fact that they represent enterprise data.

In an improvement, Li et al. [171] proposed a CNN based
intrusion detection approach while using a graphic conversion
approach. The proposed method converts raw packets into an
image, and then a CNN is used to learn the features from
that graphics. Authors took NSL-KDD dataset [172] as a case
study for the evaluation of their approach. In the first step,
41 features, that contain integer or float features, symbolic
features and binary features, were extracted from each sample
of NS-KDD dataset. The extracted features are then converted
into binary vectors with 64 dimensions. Authors used one-hot
encoder mapping to convert symbolic features into binary vec-
tors and standard min-max scaling to convert other continuous
features into binary. The binary vectors are then converted into
8× 8 grey-scale pixel images and input to a CNN model.

Authors used ResNet50 and GoogLeNet as the CNN archi-
tectures, where former was trained with 100 epochs, and 256
batch size and latter was trained with 100 epochs and 64 batch
size. Authors reported that both the models showed accuracies

ranging from 79% to 82% in detecting anomalies in NSL-
KDD dataset. Moreover, the authors compared their approach
with traditional classifiers such as Random Forest and SVM
and showed that CNN performed better. However, the authors
did not report the detailed analysis of anomalies (e.g. type
and pattern related to each anomaly). Also, the paper did not
mention about the treatment of unknown data types/packets
by CNN and the effect of such unknown data packets on the
performance of the approach.

Akin to above, Wang et al. [173] also proposed an approach
based on representation learning where network flow is con-
verted into images and fed into a CNN classifier. Authors used
the dataset released by the University of New South Wales
(UNSW), referred to as NB-15 [174]. This dataset contains
25,400,44 network communication data records, and the total
size of the dataset is 100GB. Compared to the KDD dataset,
NB-15 has a large volume of data and more accurate ground
truth labelling for anomalous traffic (i.e. attack types). Authors,
pre-processed the dataset by performing traffic split, traffic
mark, fixed-length interception, and format conversion task.
In traffic split, the original traffic file is divided into small
traffic files according to the session flow where a session
is a communication record of the same IP 5-tuple. The 5-
tuple includes the source IP address, source port, protocol
type, destination IP address and destination port. Afterwards,
the session units are marked (traffic mark) by finding the
corresponding entry in a CSV file using IP 5 tuple and the
traffic generation time. Once labelled, each byte of session
unit data converts into an integer ranging from 0-256 to create
a fixed-length interception. The integers then transform into a
greyscale image of 784 (28 × 28) bytes and feed into the
CNN that consists of two convolution layers and two pooling
layers. The CNN was trained using cross-entropy loss with
a learning rate of 0.001 and a batch size of 50 over 1,000
epochs. The authors reported accuracy of 97.3% and an F1
measure of 0.985. However, there was no comparison made
with traditional classifiers or with the KDD-dataset. As such, it
is difficult to establish where this method stands compared to
both classical anomaly detection methods as well as computer
vision-based methods.

Though different from traffic anomaly detection methods,
Internet traffic classification is another related area where com-
puter vision methods have been applied. Zhou et al. [175] clas-
sified botnet encrypted and unencrypted traffic by using CNN-
based features self-learning. First, the data is pre-processed
by dividing the network traffic into sessions such that the
size of a session meets the input requirement of the CNN.
The sessions are determined through bidirectional flow stan-
dard [176] where not only incoming but also outgoing packets
also participate in malicious activity. To form a session, the
authors used five tuples; source IP, source port, destination
IP, destination port, and the protocol. After pre-processing,
the session data was converted into a greyscale image by
normalizing each byte of a session to [0, 1] where one byte
corresponds to one pixel. The CNN architecture authors used
is a standard set up with two blocks of convolution and pooling
layers, followed by a fully connected layer of size 1,024 and
a final softmax layer of 12 units.

27

Authors evaluated their solution on the ISCX-Bot-2014
released by The Canadian Institute for Cybersecurity [177].
The dataset includes both botnet and normal traffic; however,
the authors used only botnet traffic by filtering out botnet
communication IP addresses provided by the dataset owner.
Results indicated that increasing the training iterations, im-
proves the performance of a method, where precision and
recall of Blackhole and SmokeBot botnets achieve more than
85%. Overall, the technique reached an average accuracy of
99.18%, which is the highest accuracy achieved among all
neural network-based anomaly detection methods. However,
there is no baseline comparison of this method with others, as
different methods were evaluated on different datasets.

Similar to [165] in image feature-based methods, Moore et
al. [178] also proposed an intrusion detection system for cyber-
physical systems, that maps the controller area network (CAN)
data to 2D images. The method extracts network features
(e.g. speed and acceleration of a vehicle) of a CAN which
are then converted into 2D images. These images are input
into CNN for the classification of abnormal traffic. Before
image generation, frequency Fourier Transformation is used to
perform dimensionality reduction by representing the physical
relationships between features. Authors used data from one
vehicle network with six different traces. The first five traces
were used as labelled data to train a CNN, while the sixth trace
was used to test the classification accuracy. Authors reported
the accuracy of 93% after ten epochs.

D. Summary of computer vision-based traffic anomaly detec-
tion:

In this section, we surveyed existing computer vision-
based approaches for detecting network traffic anomalies. The
motivation to use computer vision methods, as reported by
several papers [142, 153, 158], is to overcome the problem
of traditional detection approaches. Most of the conventional
approaches are unable to characterise and detect specific types
of attacks such low rate attacks, replacement attacks or zero-
day attacks. Computer-vision methods help in alleviating such
problems by utilising pattern recognition or image processing
algorithms such as Hough transformation and Canny Edge
Detection, where detection of a single line, edge, or a high-
intensity pixel may represent abnormalities.

We categorised the work on computer vision-based methods
under three topics; i) image representation-based methods,
ii) image feature-based methods, and iii) neural network
based-methods. Image representation-based methods monitor
network packet headers at regular intervals, generate images
of traffic usage, and then correlate/match current network
traffic image with previously generated images. The deviated
images can be further analyzed to detect attack type by
using pattern recognition algorithms mentioned above. Image
feature-based methods extract features such as entropy, con-
trast, pixel randomness, local homogeneity, and Triangle Area
Maps (TAM), from the network traffic packets and then input
into a distance metric or a classifier for anomaly detection.
Similar to phishing and malware detection, neural network-
based methods in anomaly detection also generates images

from network traffic and then fed into a deep neural network.
Akin to the above two categories, neural-network is also a
recent trend in anomaly detection. We summarise all the work
we surveyed in Table III.

We next discuss some challenges and limitations of existing
work in computer vision-based traffic anomaly detection that
need to be addressed to make the research more effective and
deployable in the network industry.

• Challenges in Computer Vision-based Anomaly De-
tection Methods: While computer vision methods have
extensively been investigated to detect phishing and mal-
ware attacks, we find limited work on the detection
of network traffic anomalies. As mentioned earlier, one
possible reason could be that network traffic is a non-
trivial application for computer vision methods. It is
not straightforward to convert network traffic flows into
images in a meaningful way, and in some cases, may
not provide additional benefits compared to statistical
anomaly detection methods. Moreover, network traffic
uses several protocols such as TCP, UDP, HTTP, and
HTTPS, that have different requirement and configura-
tions. Therefore, a generic computer vision solution is
harder to implement. Consider an email service provider
that wants to detects anomalies such as self-propagating
emails which spread through email virus or worms. The
anomaly detection approach, in this case, requires images
based on features mainly including several connections
from a single host, and email header bytes. On the other
hand, a video streaming service provider (e.g. Youtube)
is more interested in deploying anomaly detection ap-
proaches based on traffic volume/flow to its servers. Thus,
a generic computer vision-based solution requires further
extensive research and testing. This area may further grow
with the advances in unsupervised deep learning methods
that is currently an active area of study.

• Detailed Investigation of Anomalous Traffic: Though
existing computer-vision based anomaly detection meth-
ods can detect abnormal behaviour in network traffic with
high accuracy, we find that existing work did not provide
further insights on different types of anomalies such
as botnets, DoS, backdoor, worms, and scanning. The
methods generalise all these attack types as anomalous
behaviours. However, in reality, each of these attack types
has different characteristics which can have different
impacts. Thus, there is a need to perform a detailed
analysis of the detected anomalies that may highlight
specific trends and patterns of varying anomaly types.

• Traffic Anomaly Datasets: We found a number
of datasets that have been used by existing meth-
ods for anomaly detection such as NSL-KDD [160],
KERONet [149], CAIDA [156, 157], and ISCX [177].
The majority of work used the NSL-KDD dataset [160];
however, its ability to reflect real-world conditions has
been often criticised [179, 180]. The primary concern
was the inability to evaluate anomaly detection systems
against current and evolving anomalies and network
traffic patterns. In this regard, CAIDA [156, 157] and

28

TABLE III: Traffic Anomaly Detection Approaches
Ref Techniques Applied Image Structure Dataset (Normal/

Anomaly)
Description Performance Metrics

Image Representation-based Methods

Kim et al. [147, 148] DCT, Mean Square Error 4 × 4 DCT coefficients 3616/729 Visualises and detects anomalies in real-time by passively monitoring
packet headers and then converts them into video frames using DCT and
absolute differences of pixels.

Source Address-
Accuracy- 92.3%, FP- 0.3%
Destination Address-
Accuracy - 87.2%, FP- 0.75%

Kim et al. [150] DCT, pixels intensities 8 × 8 DCT coefficients 3563/ 782 Visualises and detects anomalies using DCT coefficients and pixel inten-
sities in real-time.

Real-time analysis
TP-92.8%, FP-0.42%
Postmortem analysis
TP-94.8%, FP- 0.20%

Fontugne et al. [142] Hough Transform Image of network packets with
time sliding window

630/ 2000 Detects anomalies by converting traffic into images and then applies Hough
transform to identify lines representing DoS or port scanning attacks.

Accuracy - 73.8%

Jeong et al. [153] Hough Transform, CCL Image of network packets at
fixed sampling rate

70,000 events Detects anomalies using two tier architecture, where first tier detects
random attacks such as DoS and second tier detects semi-random attacks
such as port scanning.

Not Given

Kim et al. [155] Canny Edge Detection, Piv-
oted Movement Algorithm

2-Dimensional Image with up-
per 24 bit and lower 8 bit
IPv4/v6 addresses

CAIDA Ipv4/Routed
and IPv6 dataset

Detects DDoS attack with IP subnet spoofing using canny edge detection
and pivoted algorithm in a self-developed NetSCENE tool.

FPR: 1%
FNR: 0.5%

Image Feature-based Methods

Tan et al. [158] EMD, PCA, MCA 2D feature matrix (TAM) KDD cup 99:
97,260/ 3,892,550
ISCX 2012 IDS:
2,450,329/ 8720

Detects DoS attacks by extracting image-related network features and then
applies EMD algorithm on features.

KDD cup 99:
Accuracy - 99.95%, FP-1.93%
ISCX 2012 IDS:
Accuracy - 90.12%, FP-7.92%

Zou et al. [165] GLCM texture features, k-
NN, Euclidean Distance

Size of the image is equal to
number of CPS devices in the
system

100 CPS device traf-
fic

Detects anomalies in a CPS by conducting a spatial and temporal analysis
of network resources and using textural features.

Accuracy - 99%

Neural Networks-based Methods

Wang et al. [170] ANN, SAE 1 byte = 1 pixel 0.3 million data flow
records

Utilises a deep neural network technique to extract and select features
significant for detecting unknown and anomalous network protocols in a
network traffic.

Unknown Protocol Identification rate -
54.9%

Li et al. [171] ResNet50, GoogLeNet as
CNN

8 × 8 input image NSL-KDD:
Test+:
9711/12833
Test−21:
2152/9698

Detects intrusions by converting raw packets to images and then input into
CNN for automatic feature learning.

ResNet 50:
Test+ : Accuracy - 79.14%
Test−21 : Accuracy - 81.57%
GoogleNet:
Test+ : Accuracy - 77.04%
Test−21 : Accuracy - 81.84%

Wang et al. [173] CNN 78*78 image (784 bytes im-
age)

100GB (25,400,44
network
communication
data records)

Converts network flow to images and then feeds into CNN for malicious
network identification using representation learning.

Accuracy - 97.3%,
F1 - 98.5%,
Precision - 98.65%,
Recall - 98.4%

Zhou et al. [175] CNN 1 byte = 1 pixel 7.93GB network
flow data

Classifies botnet encrypted and unencrypted network traffic by using CNN-
based features self-learning and images as input.

Accuracy - 99.18%

Moore et al. [178] CNN 18x25 pixel image 6 network traces
from one vehicle
network

Detects cyber attacks on a CAN bus network by exploiting the features
related to physics such as frequency domain.

Accuracy - 93%

WIDE [151] datasets are being periodically updated as
compared to KDD dataset. Though, it is always good
to have a range of datasets for testing and validation
purposes; a benchmark is helpful in setting as a standard.
In addition to the standard dataset, continuously evolving
datasets with properties such as modifiable, extensible,
reproducible, are also required to include new network
trends. Nevertheless, we do not find any dataset that
serves the purposes stated above.

• Convolutional Neural Networks (CNN): We found that
the use of CNNs is an emerging trend for detecting
anomalous traffic. Several recent work utilised CNNs for
network anomaly detection where the image is taken as
an input. While CNN is more common neural network
model among several works, we also find SAE being used
by one method [170]. This direction is expected to grow
with further advancements in CNN-based methods.

VI. PROTOTYPE AND COMMERCIAL SOLUTIONS

As we mentioned in the introduction, the use of computer
vision methods in network security is not purely academic
interest. There is an increasing trend from the industry to
use such methods to overcome the limitations of the exiting
solutions and obtain a competitive advantage. In this section,
we survey computer vision-based tools/software that are of-
fering network security-based services. Tools we study are
either developed by individuals working under the capacity
of developers or researchers (prototype solutions), or by
companies who are trying to improve their existing network
security products (commercial solutions). We highlight that

this product survey is carried out based on publicly available
information. Thus, indeed this list is not comprehensive as
many companies might not release the inner workings of their
products publicly due to intellectual property reasons. Also,
in many cases, the available public information is limited to
provide an in-depth analysis of the tools and products. Our
search resulted in 12 such tools/products as enumerated below.

i) Blazar [181] is a tool offered by Endgame Research [182]
to detect Homoglyph attacks using a Siamese Neural Network.
Homoglyph attacks are a type of phishing attacks where
the users are prompted to with a ULR that appear visually
similar to a legitimate website (e.g. www.google.com vs.
www.g0ogle.com). The key idea of Blazar is to convert text
URLs to images and feed them to a Siamese Neural Network
that can capture visual similarities between characters. This
approach works better compared to edit distance based text
similarity methods, mainly because of extended character sets.
The model was trained using a synthesised dataset that con-
tained pairs of images of popular domain names and modified
versions of them that appear visually similar using various
extended characters. Blazar also implements a KD tree-based
indexing and lookup system to improve performance [183].
Blazar is released in GitHub as an open-source tool.

ii) SpeedGrapher [184] is another tool by Endgame Research
that detects macro-enabled document-based phishing attacks.
In such attacks, the attackers trick victims by requesting them
to open malware-embedded documents. The company already
had a labelled dataset of macro-based documents that are
known to be malware and to develop SpeedGrapher they

29

generated screenshots of such documents using the preview
from the Word Interop class [185]. From the screenshots,
a range of features such as prominent colours, blur/blank
areas, embedded characters, and icons (using YOLO CNN).
Finally, a classification algorithm, Random Forest, is used
to detect malicious macros in a document. According to
Endgame Research, this is a product that is still under active
development and as such no code is released to date.

iii) Lookout Phishing AI [186] is an internet monitoring tool
that identifies early signals of a phishing attack and alerts its
users of the potential harm. This tool incorporates a machine
learning engine that continuously scans the URLs in a browser
and watches the behaviour of the site. Phishing AI claims
to use computer vision methods in their website behaviour
analysis [186]. However, the exact details are not provided on
the company website. Recently Phishing AI was able to detect
a large scale phishing campaign targeting non-governmental
organizations such as UNICEF [187].

iv) Phish.ai [188] is a solution that can detect zero-day phish-
ing attacks. Similar to many solutions discussed in Section III,
Phish.ai keep a visual signature database extracted from the
screenshots of top websites and brands. The API accepts the
links as the input and obtain a screenshot of the website and
compare its visual signature against ones stored in the database
to check whether the new site is trying to impersonate an
existing, legitimate site. While it might be interesting to know
what types of visual signatures are used in this product, such
information is not disclosed by the company.

v) MalSee [189] is a malware detection and classification
system that is developed by researchers at Mayachitra Inc. It
is similar to the ideas presented in the early work by Nataraj
et al. [100], where the malware binaries are represented as
images. The tool is offered as a web-based API and claims
to provide ∼1,000x speedup detection of harmful computer
viruses compared to existing methods.

vi) Anti-Pixm [18] by Pixm Inc. is another phishing detection
tool that uses deep learning and computer vision to analyze the
web pages visually. Compared to other similar products, Anti-
Pixm claims to provide real-time, end-device based protection
against stealth mode phishing attacks (i.e. the phishing attacks
against cloud-based email security tools). When a user clicks a
link received in an email, Anti-Pixm browser extension quickly
grabs a screenshot in the background, compares its visual
signature with common targets, and blocks the URL within
less than a second. The tool claims to find phishing attacks
before they are being identified by major cloud-based phishing
solutions that maintain blacklists. The exact vision-based deep
learning methods used by Pixm is not publicly available.

vii) Ironscales’s IronShield [190] is a cloud-based solution to
defend against real-time malware, credential threats, account
takeovers, and phishing websites. One specific aspect of the
solution is to validate the legitimacy of login blocks using
computer vision methods.

viii) INKY [17] is a cloud-based email security solution that
blocks spam, malware, and phishing attacks. One of the main

features the solution provides is detecting peculiarities and
brand forgeries in email graphics and icons. INKY offers
seamless integration with Office 365, Microsoft Exchange
Solutions, Microsoft Security, and Google G Suit so that
phishing emails can be analysed and contained in realtime.

Cyberfish [191], GreatHorn [192], Area1 [193], and Zero-
Fox [194] are similar phishing email detection solutions that
use visual signatures. No significant information is available
about these solutions apart from the fact that they are using
computer vision methods to match visually similar web pages.

One key observation regarding commercial tools is that most
of the solutions are developed in recent years despite there are
published academic work since the mid-2000s as our survey
found. One possible reason for this can be the exponential
growth in deep learning-driven computer vision methods hap-
pened in the last few years making computer vision accessible
for other domain experts. Also, such attempts are further
exacerbated by the ubiquitous availability of deep learning
and computer vision libraries such as Tensorflow, PyTorch,
OpenCV, and SciKit Learn that enables rapid prototyping and
testing without any specialised knowledge. Thus, we believe
that in future, there will be more of these types of security
solutions as well as research work.

Another interesting observation is that apart from
Malsee [189] all the rest of the products we found are built to
detect phishing attacks. However, when it comes to academic
work, both phishing detection and malware detection had a
significant body of work that used computer vision methods.
Furthermore, we did not find any commercial or prototype
solution that used computer vision in anomaly detection. While
there is no conclusive evidence on why this is the case, we
believe that from an applied research point of view, using
computer vision techniques for phishing detection is con-
ceptually straightforward compared to malware detection or
traffic anomaly detection. As computer vision methods further
advances, we believe the information security community will
start adapting those ideas in malware and traffic anomaly
detection as well. Finally, only very few tools were available
as open-source tools. One thing that can be done to further
enhance the research in this domain is to release the code and
the data together with the academic publication.

VII. OPEN ISSUES AND RESEARCH CHALLENGES

Computer vision methods for network security is an evolv-
ing research area, and it is likely to grow further with the
exponential advances in deep learning-driven computer vision
methods. We also provided the evidence that the information
security industry has also started to adapt of build security
products or features adapting the ideas from computer vision,
mainly to address the limitations of existing solutions and to
obtain a competitive advantage. As a growing field, there are
several exciting research directions and challenges to solve,
to build more robust security solutions using computer vision
methods. We next discuss such opportunities and challenges.

30

TABLE IV: Computer Vision Based Network Security Products and Prototypes
Product Name Security Service Deployment Level Open Source? Description
Blazar [181] Homoglyph Attacks (Domain/URLs

and File Names) Detection
Browser and Network
Infrastructure

Yes Utilises Siamese Convolutional Neural Network and Eu-
clidean Distance to measure similarity between original and
malicious URLs/file names.

SpeedGrapher [184] Detects macro-enabled document
based phishing

Desktop for
Documents e.g.
Microsoft Word

No Utilises various computer vision techniques such as Blur
Detection, Blank Detection, Optical Character Recognition
(OCR), and Icon Detection to extract features from a docu-
ment.

Lookout Phishing
AI [186]

Detect Phishing Websites Browser No Utilises computer vision techniques to identify the phishing
sites by analyzing the use of logos and graphics.

Phish.ai [188] Detects zero-day phishing attacks Customized API and
web Browser

Yes Creates a unique and up-to-date computer-vision based
database of legitimate websites and afterwards compares a
screenshot of suspicious website with the database.

MalSee [189] Malware Detection Web-accessible service No Utilises pattern recognition from image processing methods
to detect and classify a malware.

Pixm [18] Detect Phishing Websites Browser No Uses computer vision techniques to compare screenshots of
websites for possible phishing detection.

Ironscales’
IronShield [190]

Provide multiple security services
such as phishing detection, zero-day
malware detection, Malicious Email
Detection and credential thefts

Cloud level Network
Infrastructure,
Browser, and Email

No Utilises computer vision to detect in real-time visual de-
viations and determines whether or not a login page is
legitimate.

INKY [17] Block spam, malware and phishing
attacks

Cloud based network
infrastructure, and
Email, Browser

No Uses computer vision to spot differences in email graphics
and iconography to detect forgeries.

Cyberfish [191] Detect phishing attacks in emails and
web pages

Cloud and On-Premise
Email and Browser

No Analyzes visual representation of emails and web pages to
detect attacks in real-time.

GreatHorn [192] Credential Theft Detection Email No Utilises CNN and image representation-based computer vi-
sion methods to detect credential thefts via email.

Area1 [193] Phishing detection on multiple plat-
forms

Email, Web and Net-
work

No Utilises AI and computer vision methods to provide effective
phishing protection.

ZeroFox [194] Risk identification Web/Domain, Social
Media Accounts

No Utilises computer vision techniques like OCR, logo and face
detection for risk identification in multiple platforms such as
social media, web and domain.

A. Hybrid Solutions

Almost all the work we discussed, used computer vision
methods and compared them against traditional methods. We
find only a very limited literature [92, 107, 111] that propose a
hybrid approach of combining conventional and computer vi-
sion methods. Nonetheless, it is in favour of security defenders
to deploy both types of methods to overcome the limitations
of each other. For example, Fatt et al. [54] used Favicons for
phishing detection. However, this work does not apply to web
pages that do not have Favicons. In such a case, traditional text
or network-based methods can be merged into this approach.
PhishZoo [63] combined image and text-based methods and
showed an overall accuracy of 90.2% in phishing detection.

We find similar examples in malware detection where a
single type of method does not holistically cover all aspects of
detection and classification. For instance, the method proposed
by Nataraj et al. [100] focused only on the visual represen-
tations of a resource section in a malware executable file,
which allows an adversary to bypass a detection system if
malware exists in other parts of a file. In this case, the use
of static-analysis methods (e.g. signature-based) may help in
detecting malware that is relocated to different sections of a
file. Similarly, the resource limitation in running vision-based
dynamic analysis on mobile devices can be addressed by first
performing static analysis followed by methods such as [120].
Thus, we see the need for more hybrid security solutions that
combine traditional techniques with computer vision methods
for better reliability and accuracy.

B. Adversarial Example Attacks

Several works pointed out that computer vision systems,
such as object detection and classification solutions, are vul-

nerable to adversarial examples. That is, an attacker can
craft inputs that can trigger misclassifications, evasion at-
tacks [195]–[197] or feed the training process with adversarial
data so that the model is biased towards a direction set by
the attacker, poisoning attacks [198]–[200]. Such attacks have
been demonstrated extensively for traditional computer vi-
sion or machine learning settings. However, recently multiple
works showed such vulnerabilities exist in security solutions.

Example work for evasion attacks include Al-Dujaili et
al. [201] and Grosse et al. [202] that demonstrated the
generation of functional malware that can act as adversarial
examples for model-based malware classifiers. Hu et al. [203]
proposed MalGAN, a GAN-based generative model capable of
generating malware samples that can bypass classifiers such as
random forest and logistic regression. Rosenberg et al. [204]
is another comparable work.

Recent work [205] also showed how malware traffic could
be synthesised to bypass intrusion detection systems in prac-
tical scenarios. Authors tried to mimic the behaviour of
Facebook chat traffic by feeding its network flow parameters
to GAN for a predefined number of epochs. The trained GAN
generator then communicates its output parameters to the
command and control server so that malware can change its
traffic accordingly misguiding middleboxes to think malware
traffic as Facebook chat traffic.

Biggio et al. [206] demonstrated poisoning attacks on spam
filtering and intrusion detection scenarios where an adversary
is capable of controlling a subset of samples that are used to
train or update a classifier. The attacker carefully constructs
these samples such that the classifier can be misguided. For
instance, in spam filtering attack, adversaries can modify spam
emails by adding some non-suspicious words which are likely

31

to appear in legitimate emails whereas, in intrusion detection,
adversaries may inject poisoning pattern in the network that
matches with legitimate activities.

As vision-based network security solutions become more
and more mainstream, attackers will inevitably be exploring
adversarial attacks. These attacks are exacerbated by the easy
access to software libraries that can generate such attacks
(e.g. [207]). As our survey indicated, at this stage, the research
focus is more on getting working systems with the required
levels of accuracy. None of the work we presented in Sec-
tion III, IV, and V looked into the attacks against their systems.
Assessing the adversarial robustness of classifiers and coming
up with defence strategies is an active area of research in
computer vision and machine learning [208, 209]. We believe
that in the next phase of research in vision-based network
security must look into the robustness of classifiers by explor-
ing the defensive mechanisms proposed in computer visions
systems such as adversarial training, model distillation, feature
squeezing, gradient hiding, and blocking transferability [210]
and adapt those to network security solutions.

C. One-shot and Few-shot Learning

Most of the methods that we discussed in the above sections
used deep learning models such as CNN that are well known
for their high training data requirements. In object classifica-
tion or image recognition, it is easy to collect a large volume
of data. However, collecting an equivalent amount of data from
security events is somewhat tricky. For instance, in the case
of malware and traffic anomalies, it is not practical to obtain
large volumes of samples as these events are rare and often go
unnoticed. Moreover, malware samples and security incident
data (e.g. logs and configurations) are usually not publicly
released for safety reasons as well as to protect corporate se-
crets. Finally, to build labelled datasets for security problems,
specialised domain experts are required compared to image
labelling or voice transcribing tasks. Although crowdsourcing
has been tried (e.g. PhishTank), the ensuring quality remains
challenging. Hence it is necessary to explore solutions that
require lesser volumes of labelled data.

A possible solution to this problem is the ideas of
one/few-shot learning [211]–[218] and unsupervised feature
learning/self-supervised learning [219, 220] where models
learn from minimal or no labelled data. This is an active area of
research in computer vision. However, its application in vision-
based security solutions remains mostly unexplored. There
have been recent attempts in classifying malware through
few/one-shot learning models [221]–[223]. Tran et al. [222]
proposed a few-shot learning approach to malware classi-
fication by first converting malware binaries into greyscale
images and then adapting meta-learning models (i.e. matching
networks and prototypical networks). The results showed an
average accuracy of 92.4% with a prototypical network for1-
shot learning and 95.3% accuracy with 4-shot learning. Simi-
larly, Hsiao et al. [221] used one-shot Siamese neural network
to classify unknown malware images. Atapour-Abarghouei
et al. [223] also proposed a ransomware classification ap-
proach using one-shot learning through data augmentation.

Nevertheless, few-shot learning is still an emerging area in
cybersecurity, and extensive research must be conducted to
understand how such methods can be effectively utilised.

D. Open Set for Classification

Majority of the work we discussed operates under a closed
set assumption. For example, a malware classifier will classify
a given sample as one of the known malware families or as
benign. If a sample from a new malware family appears, the
classifier will still make a similar decision. Similarly, the same
behaviour will happen for a new benign sample as well. In
fact, in such settings, there is a possibility that the classifier
is making very confident yet highly inaccurate decision [224,
225] as the classifier is not trained to handle unknown (i.e.
data samples that are out of the distribution of the training
set) data samples [226].

While classifiers that can’t handle unknown inputs are
sufficient for prototyping, in real-world deployments, often
there will be inputs that are entirely outside the distributions
of the training data the classifier has seen. This situation
may not be critical in some applications like photo tagging.
However, when it comes to network security, the ramifications
of such solutions can be disastrous. This problem also becomes
challenging because of the incomplete knowledge of the world
during training (i.e. only the known classes are accessible).
Thus, steps must be included to make sure the model knows
its limitation on the closed set operation. None of the work
we surveyed addressed this challenge, and we believe as
the vision-based network security solutions become more
mainstream. this is an area that should show growth.

An emerging solution to correctly identify known and
unknown samples is through open-set recognition. Open set
recognition describes a scenario where new classes that were
not seen in the training phase appear in testing and requires
the classifiers to not only accurately classify known classes but
also effectively deal with unknown ones. In the most basic
sense, classes utilised in testing are not present in training
[224]. This is currently an active area of research in computer
vision [227]–[232]. For instance, Dhamija et al. [227, 228]
introduced a novel loss function and regularisation methods
to improve the handling of background and unknown inputs.
Oza et al. [229] proposed an approach based class conditioned
auto-encoders and using the reconstruction loss for open set
recognition. Similarly, Liu et al. [230] introduced Open Long-
Tailed Recognition (OLTR) that handles imbalanced classifi-
cation, few-shot learning, and open-set recognition.

Some recent work in network security has started looking
into the open set classification. Cruz et al. [233] detected
intrusions in the network by considering both closed set and
open set recognition problem. Authors proposed a fine-grained
recognition approach that considers all intrusion detection
problem as a recognition problem and categorically assigns
intrusion detection as a closed set problem and intrusion recog-
nition as an open set problem. Authors used a loosely open
set dataset which is labelled according to individual intrusion
types (e.g. (sendmail, snmp guess), rather than more general
attack categories (e.g., DoS). To validate the approach, two

32

different classifier types are employed - Gaussian RBF kernel
SVMs, which are not theoretically guaranteed to bound open
space risk, and W-SVMs, which are theoretically guaranteed
to bound open space risk. Results showed that W-SVM offers
better performance in classifying unknown classes.

Similarly, Henrydoss et al. [234] proposed an approach
that recognises unknown intrusion classes by understanding
the characteristics and also performs incremental learning for
updating the classifiers using feedback from the classifier
itself after successfully identifying the unknown classes during
query time. Authors used a multi-class classifier that is pro-
posed explicitly for open set recognition setting and utilised
Extreme Value Machine (EVM) to classify intrusion detec-
tion data. The EVM has a capability to perform kernel-free,
nonlinear, variable bandwidth outlier detection in combination
with incremental learning. We recommend interested readers
to look into a survey paper from Rudd et al. [235] for open set
recognition approaches in intrusion detection. Incorporating
open-set recognition techniques to network security solutions
is vital, and we are still at the early stages of this research
direction. We believe this is as an open yet challenging area
that needs a significant amount of further work.

E. Online Learning and Real-time Predictions

Many of the work that we surveyed were operating on
offline mode where a data collection phase followed by
a training phase. In the real-world, often network security
systems must deal with real-time data, rapid fluctuations,
and trends. Also, models need to be re-trained frequently
with the availability of new data. As such, when models are
deployed, there must be mechanisms to update them at short
intervals using methods such as online learning [236, 237].
However, there are many challenges associated with such set-
ups. Catastrophic forgetting [238, 239] is one of the challenges
where the learning model might forget its prior knowledge
when fine-tuned with new data. This is widely believed to be
a serious problem for neural networks [240]. Also, in online
learning, designs must consider poisoning attacks as well.

Another aspect of handling real-time data, especially related
to traffic anomaly detection is how to do traffic flow sampling
accurately. In large networks, it is not practical to analyse ev-
ery traffic flow. As a result, it might be essential to explore the
work proposed in traffic sampling [241]–[244] and integrate
them into the training pipeline.

VIII. CONCLUSION

Network security threats are becoming increasingly com-
mon as well as sophisticated to a point where not only
traditional security solutions but also machine learning-based
security solutions are becoming less effective. As an alterna-
tive, academic research and commercial solutions providers
are exploring the feasibility of using methods from computer
vision in combination with machine learning models. We sur-
veyed such work under three broad topics; phishing detection,
malware detection, and traffic anomaly detection. Overall our
survey showed that there are distinct advantages of using com-
puter vision methods, especially when it comes to detecting

zero-day attacks as well as developing more scalable and
accurate phishing detection systems. Also, our survey found
that in order to stem further research in this area, it is necessary
to establish much larger and more recent security datasets that
can be conveniently used to establish benchmarks and compare
different solutions. Finally, we discussed the potential research
directions in this domain such as hybrid solutions combining
traditional methods with computer vision methods, building
solutions that are resilient of adversarial attacks, few-shot
learning to address the challenges in obtaining large samples
of data, and open set classification which is required when it
comes to real world deployments.

REFERENCES

[1] L. Strain, “2018: The year of the data breach tsunami,” 2019.
[Online]. Available: https://blog.malwarebytes.com/101/2018/12/2018-
the-year-of-the-data-breach-tsunami/

[2] “Internet security threat report,” 2018. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-
2018-en.pdf

[3] “Gartner forecasts worldwide information security spending
to exceed $124 billion in 2019,” 2018. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-
gartner-forecasts-worldwide-information-security-spending-to-exceed-
124-billion-in-2019

[4] “2018 reform of EU data protection rules,” 2018. [Online]. Avail-
able: https://ec.europa.eu/commission/priorities/justiceandfundamental-
rights/dataprotection/2018reformeudataprotectionrules en

[5] “Mandatory data breach notification,” 2017. [Online]. Available:
https://www.oaic.gov.au/media-and-speeches/statements/mandatory-
data-breach-notification

[6] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Com-
munications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

[7] J. Gardiner and S. Nagaraja, “On the security of machine learning in
malware C&C detection: A survey,” ACM Computing Surveys (CSUR),
vol. 49, no. 3, p. 59, 2016.

[8] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou,
and C. Wang, “Machine learning and deep learning methods for
cybersecurity,” IEEE Access, vol. 6, pp. 35 365–35 381, 2018.

[9] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
symposium on security and privacy. IEEE, 2010, pp. 305–316.

[10] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-
nition: A literature survey,” ACM computing surveys (CSUR), vol. 35,
no. 4, pp. 399–458, 2003.

[11] A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, “2D and 3D face
recognition: A survey,” Pattern recognition letters, vol. 28, no. 14, pp.
1885–1906, 2007.

[12] J. Daugman, “How iris recognition works,” in The essential guide to
image processing. Elsevier, 2009, pp. 715–739.

[13] ——, “New methods in iris recognition,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 5, pp.
1167–1175, 2007.

[14] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91–110, 2004.

[15] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[16] A. Fiscutean, “12 of the hottest startups at
the RSA conference 2019,” 2019. [Online]. Avail-
able: https://www.csoonline.com/article/3342162/12-of-the-hottest-
startups-at-the-rsa-conference-2019.html

[17] “INKY: The next generation of email protection,” 2019. [Online].
Available: https://inky.com/solutions/

[18] “Worlds first phishing protection using computer vision,” 2019.
[Online]. Available: https://pixm.net

[19] L. Ackerson, “INKY announces additional $6 million in
funding led by clearsky security to extend technology
availability and strategic partnerships,” 2019. [Online]. Available:

33

https://www.prnewswire.com/news-releases/inky-announces-
additional-6-million-in-funding-led-by-clearsky-security-to-extend-
technology-availability-and-strategic-partnerships-300957916.html

[20] “Pixm takes on phishing attacks with deep learning
using Apache MXNet on AWS,” 2018. [Online]. Avail-
able: https://www.wired.com/brandlab/2018/08/phishing-attacks-with-
deep-learning-using-apache-mxnet-on-aws/

[21] “ENISA threat landscape report 2018,” 2019. [Online]. Avail-
able: https://www.enisa.europa.eu/publications/enisa-threat-landscape-
report-2018

[22] R. Jafri and H. R. Arabnia, “A survey of face recognition techniques.”
Jips, vol. 5, no. 2, pp. 41–68, 2009.

[23] J. Hayes and G. Danezis, “Generating steganographic images via
adversarial training,” in Advances in Neural Information Processing
Systems, 2017, pp. 1954–1963.

[24] D. Volkhonskiy, I. Nazarov, B. Borisenko, and E. Burnaev,
“Steganographic generative adversarial networks,” arXiv preprint
arXiv:1703.05502, 2017.

[25] B. Li, J. He, J. Huang, and Y. Q. Shi, “A survey on image steganography
and steganalysis,” Journal of Information Hiding and Multimedia
Signal Processing, vol. 2, no. 2, pp. 142–172, 2011.

[26] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital im-
age steganography: Survey and analysis of current methods,” Signal
processing, vol. 90, no. 3, pp. 727–752, 2010.

[27] “2019 phishing trends and intelli-
gence report,” 2019. [Online]. Available:
https://info.phishlabs.com/hubfs/2019%20PTI%20Report/2019%20
Phishing%20Trends%20and%20Intelligence%20Report.pdf

[28] “Business emails compromise the 12 billion dollar scam,” 2018.
[Online]. Available: https://www.ic3.gov/media/2018/180712.aspx

[29] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature
survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4,
pp. 2091–2121, 2013.

[30] A. Aleroud and L. Zhou, “Phishing environments, techniques, and
countermeasures: A survey,” Computers & Security, vol. 68, pp. 160–
196, 2017.

[31] D. Palmer, “Phishing attacks: How hunting down fake
websites is making life harder for hackers,” 2018.
[Online]. Available: https://www.zdnet.com/article/phishing-attacks-
how-hunting-down-fake-websites-is-making-life-harder-for-hackers/

[32] “The AV-TEST security report 2017/2018,” 2018. [Online].
Available: https://www.av-test.org/fileadmin/pdf/security report/AV-
TEST Security Report 20172018.pdf

[33] “Petya ransomware outbreak goes global,” 2017. [Online]. Avail-
able: https://krebsonsecurity.com/2017/06/petya-ransomware-outbreak-
goes-global/

[34] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifica-
tion: A survey,” Journal of Information Security, vol. 5, no. 02, p. 56,
2014.

[35] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Computing Surveys
(CSUR), vol. 50, no. 3, p. 41, 2017.

[36] Sentryo, “The mirai IoT botnet, a publically available turn-key
threat,” 2016. [Online]. Available: https://www.sentryo.net/the-mirai-
iot-botnet-a-publically-available-turn-key-threat-2/

[37] E. B. Oleg Kupreev and A. Gutnikov, “DDoS attacks in Q4
2018,” 2019. [Online]. Available: https://securelist.com/ddos-report-
q1-2019/90792/

[38] W. Liu, X. Deng, G. Huang, and A. Y. Fu, “An antiphishing strategy
based on visual similarity assessment,” IEEE Internet Computing,
vol. 10, pp. 58–65, 2006.

[39] L. Wenyin, G. Huang, L. Xiaoyue, X. Deng, and Z. Min, “Phishing
web page detection,” in Eighth International Conference on Document
Analysis and Recognition (ICDAR’05). IEEE, 2005, pp. 560–564.

[40] Y. Liu, W. Liu, and C. Jiang, “User interest detection on web pages for
building personalized information agent,” in International Conference
on Web-Age Information Management. Springer, 2004, pp. 280–290.

[41] E. Kirda and C. Kruegel, “Protecting users against phishing attacks,”
The Computer Journal, vol. 49, no. 5, pp. 554–561, 2006.

[42] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing
detection,” in 4th International Conference on Security and Privacy in
Communication Netowrks, 2008, pp. 221–226.

[43] E. Kirda and C. Kruegel, “Protecting users against phishing attacks
with AntiPhish,” in 29th Annual International Computer Software and
Applications Conference, vol. 1, July 2005, pp. 517–524 Vol. 2.

[44] A. P. E. Rosiello, E. Kirda, . Kruegel, and F. Ferrandi, “A layout-
similarity-based approach for detecting phishing pages,” in 2007 Third
International Conference on Security and Privacy in Communications
Networks and the Workshops, Sep. 2007, pp. 454–463.

[45] A. Y. Fu, L. Wenyin, and X. Deng, “Detecting phishing web pages with
visual similarity assessment based on earth mover’s distance (EMD),”
IEEE Transactions on Dependable and Secure Computing, vol. 3, no. 4,
pp. 301–311, 2006.

[46] K. Turkowski, “Filters for common resampling tasks,” in Graphics
gems. Academic Press Professional, Inc., 1990, pp. 147–165.

[47] H. Zhang, G. Liu, T. W. S. Chow, and W. Liu, “Textual and visual
content-based anti-phishing: A bayesian approach,” IEEE Transactions
on Neural Networks, vol. 22, no. 10, pp. 1532–1546, Oct 2011.

[48] K. Chen, J. Chen, C. Huang, and C. Chen, “Fighting phishing with
discriminative keypoint features,” IEEE Internet Computing, vol. 13,
no. 3, pp. 56–63, 2009.

[49] K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant
interest points,” in Proceedings Eighth IEEE International Conference
on Computer Vision. ICCV 2001, vol. 1. IEEE, 2001, pp. 525–531.

[50] C. R. Huang, C. S. Chen, and P. C. Chung, “Contrast context histogram-
a discriminating local descriptor for image matching,” in 18th Interna-
tional Conference on Pattern Recognition (ICPR’06), vol. 4. IEEE,
2006, pp. 53–56.

[51] I. Corona, B. Biggio, M. Contini, L. Piras, R. Corda, M. Mereu,
G. Mureddu, D. Ariu, and F. Roli, “Deltaphish: Detecting phishing
webpages in compromised websites,” CoRR, vol. abs/1707.00317,
2017. [Online]. Available: http://arxiv.org/abs/1707.00317

[52] I. F. Lam, W. C. Xiao, S. C. Wang, and K. T. Chen, “Counteracting
phishing page polymorphism: An image layout analysis approach,”
in International Conference on Information Security and Assurance.
Springer, 2009, pp. 270–279.

[53] M. Dunlop, S. Groat, and D. Shelly, “GoldPhish: Using images for
content-based phishing analysis,” in Fifth International Conference on
Internet Monitoring and Protection, 2010, pp. 123–128.

[54] J. C. S. Fatt, C. K. Leng, and S. S. Nah, “Phishdentity: Leverage
website favicon to offset polymorphic phishing website,” in 2014 Ninth
International Conference on Availability, Reliability and Security, Sep.
2014, pp. 114–119.

[55] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang, “Needle in a haystack:
Tracking down elite phishing domains in the wild,” in Proceedings of
the Internet Measurement Conference 2018, 2018, pp. 429–442.

[56] M. Hara, A. Yamada, and Y. Miyake, “Visual similarity-based phishing
detection without victim site information,” in 2009 IEEE Symposium on
Computational Intelligence in Cyber Security, March 2009, pp. 30–36.

[57] G. Wang, H. Liu, S. Becerra, K. Wang, S. Belongie, H. Shacham, and
S. Savage, “Verilogo: Proactive phishing detection via logo recogni-
tion,” in Technical Report t CS2011- 0969, University of Califonia,
San Diego, 2011.

[58] I. Fehérvári and S. Appalaraju, “Scalable logo recognition using
proxies,” in 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, 2019, pp. 715–725.

[59] Y. Wang, W. Yang, and H. Zhang, “Deep learning single logo recog-
nition with data enhancement by shape context,” in 2018 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–7.

[60] Y. Zhou, Y. Zhang, J. Xiao, Y. Wang, and W. Lin, “Visual similarity
based anti-phishing with the combination of local and global features,”
in IEEE 13th International Conference on Trust, Security and Privacy
in Computing and Communications, 2014, pp. 189–196.

[61] O. Chum, T. Pajdla, and P. Sturm, “The geometric error for homogra-
phies,” Computer Vision and Image Understanding, vol. 97, no. 1, pp.
86–102, 2005.

[62] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[63] S. Afroz and R. Greenstadt, “PhishZoo: Detecting phishing websites by
looking at them,” in IEEE Fifth International Conference on Semantic
Computing, 2011, pp. 368–375.

[64] N. Kumar, L. Zhang, and S. Nayar, “What is a good nearest neigh-
bors algorithm for finding similar patches in images?” in European
conference on computer vision. Springer, 2008, pp. 364–378.

[65] J. S. White, J. N. Matthews, and J. L. Stacy, “A method for the
automated detection phishing websites through both site characteristics
and image analysis,” in Cyber Sensing 2012, vol. 8408. International
Society for Optics and Photonics, 2012, p. 84080B.

34

[66] N. Fotiou, G. F. Marias, and G. C. Polyzos, “Fighting phishing the
information-centric way,” in 2012 5th International Conference on New
Technologies, Mobility and Security (NTMS), May 2012, pp. 1–5.

[67] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[68] K. Borgolte, C. Kruegel, and G. Vigna, “Meerkat: Detecting website de-
facements through image-based object recognition,” in 24th {USENIX}
Security Symposium ({USENIX} Security 15), 2015, pp. 595–610.

[69] M. Adebowale, K. Lwin, E. SAnchez, and M. Hossain, “Intelligent
web-phishing detection and protection scheme using integrated features
of images, frames and text,” Expert Systems with Applications, vol. 115,
pp. 300 – 313, 2018.

[70] S. Abdelnabi, K. Krombholz, and M. Fritz, “WhiteNet: Phishing web-
site detection by visual whitelists,” arXiv preprint arXiv:1909.00300,
2019.

[71] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[72] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[73] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[74] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[75] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[76] F. C. Dalgic, A. S. Bozkir, and M. Aydos, “Phish-IRIS: A new
approach for vision based brand prediction of phishing web pages
via compact visual descriptors,” CoRR, vol. abs/1905.07767, 2019.
[Online]. Available: http://arxiv.org/abs/1905.07767

[77] K. L. Chiew, E. H. Chang, C. L. Tan, J. Abdullah, K. Sheng,
and C. Yong, “Building standard offline anti-phishing dataset
for benchmarking,” International Journal of Engineering &
Technology, vol. 7, no. 4.31, pp. 7–14, 2018. [Online]. Available:
https://www.sciencepubco.com/index.php/ijet/article/view/23333

[78] V. Falconieri, “Open dataset of phishing and tor hidden services screen-
captures,” arXiv preprint arXiv:1908.02449, 2019.

[79] G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 478–487.

[80] N. Liu and J. Han, “Dhsnet: Deep hierarchical saliency network for
salient object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 678–686.

[81] X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling,
and J. Wang, “Deepsaliency: Multi-task deep neural network model
for salient object detection,” IEEE Transactions on Image Processing,
vol. 25, no. 8, pp. 3919–3930, 2016.

[82] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
in International Workshop on Similarity-Based Pattern Recognition.
Springer, 2015, pp. 84–92.

[83] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li,
“Deep learning for content-based image retrieval: A comprehensive
study,” in Proceedings of the 22nd ACM international conference on
Multimedia. ACM, 2014, pp. 157–166.

[84] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep
hashing for compact binary codes learning,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015,
pp. 2475–2483.

[85] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen, “Deep learning of
binary hash codes for fast image retrieval,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops,
2015, pp. 27–35.

[86] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning
and hash coding with deep neural networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015,
pp. 3270–3278.

[87] “The Duqu 2.0,” 2015. [Online]. Avail-
able: https://media.kasperskycontenthub.com/wp-
content/uploads/sites/43/2018/03/07205202/The Mystery of Duqu 2
0 a sophisticated cyberespionage actor returns.pdf

[88] “HAMMERTOSS: stealthy tactics define a Russian cyber threat group,”
FireEye, Milpitas, 2015.

[89] P. Trinius, T. Holz, J. Göbel, and F. C. Freiling, “Visual analysis of
malware behavior using treemaps and thread graphs,” in 2009 6th
International Workshop on Visualization for Cyber Security. IEEE,
2009, pp. 33–38.

[90] K. Han, J. H. Lim, and E. G. Im, “Malware analysis method using
visualization of binary files,” in Proceedings of the 2013 Research in
Adaptive and Convergent Systems. ACM, 2013, pp. 317–321.

[91] D. Androutsos, K. N. Plataniotis, and A. N. Venetsanopoulos, “A novel
vector-based approach to color image retrieval using a vector angular-
based distance measure,” Computer Vision and Image Understanding,
vol. 75, no. 1-2, pp. 46–58, 1999.

[92] K. Han, B. Kang, and E. G. Im, “Malware analysis using visualized
image matrices,” The Scientific World Journal, vol. 2014, 2014.

[93] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis
using visualized images and entropy graphs,” International Journal of
Information Security, vol. 14, no. 1, pp. 1–14, 2015.

[94] V. Bontchev, “Are good computer viruses still a bad idea?” [Online].
Available: vxheavens.com

[95] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative
assessment of malware classification using binary texture analysis
and dynamic analysis,” in Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence. ACM, 2011, pp. 21–30.

[96] S. Z. M. Shaid and M. A. Maarof, “Malware behavior image for
malware variant identification,” in 2014 International Symposium on
Biometrics and Security Technologies. IEEE, 2014, pp. 238–243.

[97] J. P. Chapman, “{SAD}{THUG}: Structural anomaly detection for
transmissions of high-value information using graphics,” in 27th
{USENIX} Security Symposium, 2018, pp. 1147–1164.

[98] M. Sun, M. Li, and J. Lui, “DroidEagle: Seamless detection of visually
similar android apps,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, 2015, p. 9.

[99] P. Li, L. Liu, D. Gao, and M. K. Reiter, “On challenges in evaluating
malware clustering,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2010, pp. 238–255.

[100] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: Visualization and automatic classification,” in 8th International
Symposium on Visualization for Cyber Security, ser. VizSec ’11, 2011,
pp. 4:1–4:7.

[101] “Anubis: Analyzing unknown binaries,” 2011. [Online]. Available:
https://seclab.cs.ucsb.edu/academic/projects/projects/anubis/

[102] K. Rieck, “Malheur dataset,” 2016. [Online]. Available:
https://www.sec.cs.tu-bs.de/data/malheur/

[103] K. Kancherla and S. Mukkamala, “Image visualization based malware
detection,” in 2013 IEEE Symposium on Computational Intelligence in
Cyber Security (CICS). IEEE, 2013, pp. 40–44.

[104] A. Makandar and A. Patrot, “Malware analysis and classification using
artificial neural network,” in 2015 International conference on trends in
automation, communications and computing technology (I-TACT-15).
IEEE, 2015, pp. 1–6.

[105] ——, “Malware class recognition using image processing techniques,”
in 2017 International Conference on Data Management, Analytics and
Innovation (ICDMAI). IEEE, 2017, pp. 76–80.

[106] ——, “Trojan malware image pattern classification,” in Proceedings
of International Conference on Cognition and Recognition. Springer,
2018, pp. 253–262.

[107] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proceedings of the sixth ACM conference on
data and application security and privacy. ACM, 2016, pp. 183–194.

[108] Z. Xiaolin, Z. Yiman, L. Xuhui, and C. Quanbao, “Research on
malicious code homology analysis method based on texture fingerprint
clustering,” in 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). IEEE, 2018, pp. 1914–1921.

[109] “Big 2015: Bigdata innovators gathering,” 2015. [Online]. Available:
http://www.www2015.it/big-2015/

[110] P. Silva, S. Akhavan-Masouleh, and L. Li, “Improving malware de-
tection accuracy by extracting icon information,” in 2018 IEEE Con-
ference on Multimedia Information Processing and Retrieval (MIPR).
IEEE, 2018, pp. 408–411.

[111] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study
of grayware on google play,” in 2016 IEEE Security and Privacy
Workshops (SPW). IEEE, 2016, pp. 224–233.

35

[112] J. Y. Kim and S. B. Cho, “Detecting intrusive malware with a
hybrid generative deep learning model,” in International Conference
on Intelligent Data Engineering and Automated Learning. Springer,
2018, pp. 499–507.

[113] J. Y. Kim, S. J. Bu, and S. B. Cho, “Zero-day malware detection
using transferred generative adversarial networks based on deep au-
toencoders,” Information Sciences, vol. 460, pp. 83–102, 2018.

[114] J. Yan, Y. Qi, and Q. Rao, “Detecting malware with an ensemble
method based on deep neural network,” Security and Communication
Networks, vol. 2018, 2018.

[115] Q. Le, O. Boydell, B. Mac Namee, and M. Scanlon, “Deep learning
at the shallow end: Malware classification for non-domain experts,”
Digital Investigation, vol. 26, pp. S118–S126, 2018.

[116] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang,
and F. Iqbal, “Malware classification with deep convolutional neural
networks,” in 2018 9th IFIP International Conference on New Tech-
nologies, Mobility and Security (NTMS). IEEE, 2018, pp. 1–5.

[117] D. Cao, X. Zhang, Z. Ning, J. Zhao, F. Xue, and Y. Yang, “An
efficient malicious code detection system based on convolutional neural
networks,” in Proceedings of the 2018 2nd International Conference on
Computer Science and Artificial Intelligence. ACM, 2018, pp. 86–89.

[118] S. M. Kywe, Y. Li, R. H. Deng, and J. Hong, “Detecting camouflaged
applications on mobile application markets,” in Information Security
and Cryptology - ICISC 2014, J. Lee and J. Kim, Eds. Cham: Springer
International Publishing, 2015, pp. 241–254.

[119] B. Xiaofang, C. Li, H. Weihua, and W. Qu, “Malware variant detection
using similarity search over content fingerprint,” in The 26th Chinese
Control and Decision Conference. IEEE, 2014, pp. 5334–5339.

[120] L. Malisa, K. Kostiainen, M. Och, and S. Capkun, “Mobile application
impersonation detection using dynamic user interface extraction,” in
European Symposium on Research in Computer Security, 2016.

[121] “Playdrone archive.” [Online]. Available:
https://archive.org/details/android apps

[122] S. Jiao, Y. Cheng, L. Ying, P. Su, and D. Feng, “A rapid and scalable
method for android application repackaging detection,” in Information
Security Practice and Experience, J. Lopez and Y. Wu, Eds. Cham:
Springer International Publishing, 2015, pp. 349–364.

[123] A. Long, J. Saxe, and R. Gove, “Detecting malware samples with
similar image sets,” in Eleventh Workshop on Visualization for Cyber
Security, ser. VizSec ’14, 2014, pp. 88–95.

[124] O. Liljeblad, “icoutils - introduction,” 2013. [Online]. Available:
http://www.nongnu.org/icoutils/

[125] J. Zhang, Z. Qin, H. Yin, L. Ou, and Y. Hu, “IRMD: malware
variant detection using opcode image recognition,” in 2016 IEEE
22nd International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2016, pp. 1175–1180.

[126] J. Y. Kim, S. J. Bu, and S. B. Cho, “Malware detection using deep
transferred generative adversarial networks,” in International Confer-
ence on Neural Information Processing. Springer, 2017, pp. 556–564.

[127] C. Yinka Banjo and O. A. Ugot, “A review of generative adversarial
networks and its application in cybersecurity,” Artificial Intelligence
Review, pp. 1–16, 2019.

[128] S. Ni, Q. Qian, and R. Zhang, “Malware identification using visual-
ization images and deep learning,” Computers & Security, vol. 77, pp.
871–885, 2018.

[129] Z. Cui, F. Xue, X. Cai, Y. Cao, G. g. Wang, and J. Chen, “Detection
of malicious code variants based on deep learning,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 7, pp. 3187–3196, 2018.

[130] S. Yue, “Imbalanced malware images classification: a CNN based
approach,” CoRR, vol. abs/1708.08042, 2017.

[131] J. Su, V. D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng, and
K. Sakurai, “Lightweight classification of iot malware based on image
recognition,” in 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), vol. 2, 2018, pp. 664–669.

[132] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT
threats,” Journal of Information Processing, vol. 24, no. 3, pp. 522–
533, 2016.

[133] S. Akarsh, P. Poornachandran, V. K. Menon, and K. Soman, “A detailed
investigation and analysis of deep learning architectures and visualiza-
tion techniques for malware family identification,” in Cybersecurity
and Secure Information Systems. Springer, 2019, pp. 241–286.

[134] S. Venkatraman, M. Alazab, and R. Vinayakumar, “A hybrid deep
learning image-based analysis for effective malware detection,” Journal
of Information Security and Applications, vol. 47, pp. 377–389, 2019.

[135] S. D. SL and C. Jaidhar, “Windows malware detector using convolu-
tional neural network based on visualization images,” IEEE Transac-
tions on Emerging Topics in Computing, 2019.

[136] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, vol. 19, no. 4, pp. 639–668, 2011.

[137] D. Xue, J. Li, T. Lv, W. Wu, and J. Wang, “Malware classification
using probability scoring and machine learning,” IEEE Access, vol. 7,
pp. 91 641–91 656, 2019.

[138] J. Rajasegaran, N. Karunanayake, A. Gunathillake, S. Seneviratne, and
G. Jourjon, “A multi-modal neural embeddings approach for detecting
mobile counterfeit apps,” in The World Wide Web Conference. ACM,
2019, pp. 3165–3171.

[139] “Ember,” 2019. [Online]. Available:
https://github.com/endgameinc/ember

[140] INQUIRER, “Security boffins uncover linux vari-
ant of winnti malware,” 2019. [Online]. Avail-
able: https://www.theinquirer.net/inquirer/news/3076093/winnti-linux-
malware-uncovered

[141] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of
service attacks: the shrew vs. the mice and elephants,” in Proceedings
of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications. ACM, 2003, pp. 75–86.

[142] R. Fontugne, T. Hirotsu, and K. Fukuda, “An image processing
approach to traffic anomaly detection,” in 4th Asian Conference on
Internet Engineering, ser. AINTEC ’08, 2008, pp. 17–26.

[143] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment. ACM, 2002, pp. 71–82.

[144] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Sri International Menlo Park Ca Artificial
Intelligence Center, Tech. Rep., 1971.

[145] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[146] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H. 264/AVC video coding standard,” IEEE Transactions on
circuits and systems for video technology, vol. 13, no. 7, pp. 560–576,
2003.

[147] S. S. Kim and A. L. N. Reddy, “A study of analyzing network traffic as
images in real-time,” in IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies., vol. 3, 2005, pp. 2056–2067.

[148] ——, “Modeling network traffic as images,” in IEEE International
Conference on Communications, vol. 1, 2005, pp. 168–172.

[149] A. Hussain, J. Heidemann, J. Heidemann, and C. Papadopoulos, “A
framework for classifying denial of service attacks,” in Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications. ACM, 2003, pp. 99–110.

[150] S. S. Kim and A. L. N. Reddy, “Image-based anomaly detection tech-
nique: Algorithm, implementation and effectiveness,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 10, pp. 1942–1954,
2006.

[151] C. Sony and K. Cho, “Traffic data repository at the WIDE project,” in
Proceedings of USENIX 2000 Annual Technical Conference: FREENIX
Track, 2000, pp. 263–270.

[152] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho, “Extracting
hidden anomalies using sketch and non gaussian multiresolution sta-
tistical detection procedures,” in Proceedings of the 2007 workshop on
Large scale attack defense. ACM, 2007, pp. 145–152.

[153] C. Y. Jeong, B. H. Chang, and J. C. Na, “A hierarchical approach
to traffic anomaly detection using image processing technique,” in
6th International Conference on Networked Computing and Advanced
Information Management, 2010, pp. 592–594.

[154] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-
component labeling problem: A review of state-of-the-art algorithms,”
Pattern Recognition, vol. 70, pp. 25–43, 2017.

[155] T. H. Kim, D. S. Kim, and H. Y. Jung, “Defending against DDoS
attacks under ip spoofing using image processing approach,” IEICE
Transactions on Communications, vol. 99, no. 7, pp. 1511–1522, 2016.

[156] “The IPv4 routed /24 topology dataset.” [Online]. Available:
https://www.caida.org/data/active/ipv4 routed 24 topology dataset.xml

[157] “The IPv6 topology dataset.” [Online]. Available:
https://www.caida.org/data/active/ipv6 allpref topology dataset.xml

[158] Z. Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and J. Hu, “Detection
of denial-of-service attacks based on computer vision techniques,”
IEEE Transactions on Computers, vol. 64, no. 9, pp. 2519–2533, 2015.

36

[159] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “A system
for denial-of-service attack detection based on multivariate correla-
tion analysis,” IEEE transactions on parallel and distributed systems,
vol. 25, no. 2, pp. 447–456, 2013.

[160] “KDD cup 1999 data,” 1999. [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[161] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[162] S. Jin, D. S. Yeung, and X. Wang, “Network intrusion detection in
covariance feature space,” Pattern Recognition, vol. 40, no. 8, pp.
2185–2197, 2007.

[163] C. F. Tsai and C. Y. Lin, “A triangle area based nearest neighbors
approach to intrusion detection,” Pattern recognition, vol. 43, no. 1,
pp. 222–229, 2010.

[164] G. Kumar and K. Kumar, “Design of an evolutionary approach for
intrusion detection,” The Scientific World Journal, vol. 2013, 2013.

[165] M. Zou, C. Wang, F. Li, and W. Song, “Network phenotyping for
network traffic classification and anomaly detection,” CoRR, vol.
abs/1803.01528, 2018.

[166] “Cyber-physical systems (CPS),” 2010. [Online]. Available:
https://www.nsf.gov/publications/pub summ.jsp?ods key=nsf11516

[167] A. Materka and M. Strzelecki, “Texture analysis methods–a review,”
Technical university of lodz, institute of electronics, COST B11 report,
Brussels, pp. 9–11, 1998.

[168] A. Baraldi and F. Parmiggiani, “An investigation of the textural
characteristics associated with gray level cooccurrence matrix statis-
tical parameters,” IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING, vol. 33, no. 2, 1995.

[169] J. Ahrenholz, “Comparison of core network emulation platforms,” in
Military Communications Conference. IEEE, 2010, pp. 166–171.

[170] Z. Wang, “The applications of deep learning on traffic identification,”
BlackHat USA, vol. 24, 2015.

[171] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion detection using
convolutional neural networks for representation learning,” in Neural
Information Processing, D. Liu, S. Xie, Y. Li, D. Zhao, and E.-S. M.
El-Alfy, Eds., 2017, pp. 858–866.

[172] P. Aggarwal and S. K. Sharma, “Analysis of KDD dataset attributes-
class wise for intrusion detection,” Procedia Computer Science, vol. 57,
pp. 842–851, 2015.

[173] Y. Wang, J. An, and W. Huang, “Using cnn-based representation learn-
ing method for malicious traffic identification,” in 2018 IEEE/ACIS
17th International Conference on Computer and Information Science
(ICIS). IEEE, 2018, pp. 400–404.

[174] “The UNSW-NB15 dataset description,” 2016. [Online].
Available: https://www.unsw.adfa.edu.au/australian-centre-for-cyber-
security/cybersecurity/ADFA-NB15-Datasets/

[175] Z. Zhou, L. Yao, J. Li, B. Hu, C. Wang, and Z. Wang, “Classification
of botnet families based on features self-learning under network traffic
censorship,” in Third International Conference on Security of Smart
Cities, Industrial Control System and Communications, 2018, pp. 1–7.

[176] B. Anderson and D. McGrew, “Identifying encrypted malware traffic
with contextual flow data,” in Proceedings of the 2016 ACM workshop
on artificial intelligence and security. ACM, 2016, pp. 35–46.

[177] “Botnet dataset.” [Online]. Available:
https://www.unb.ca/cic/datasets/botnet.html

[178] M. R. Moore and J. M. Vann, “Anomaly detection of cyber physical
network data using 2D images,” in 2019 IEEE International Conference
on Consumer Electronics (ICCE). IEEE, 2019, pp. 1–5.

[179] J. McHugh, “The 1998 lincoln laboratory ids evaluation,” in Interna-
tional Workshop on Recent Advances in Intrusion Detection. Springer,
2000, pp. 145–161.

[180] C. Brown, A. Cowperthwaite, A. Hijazi, and A. Somayaji, “Analysis of
the 1999 darpa/lincoln laboratory ids evaluation data with netadhict,”
in 2009 IEEE Symposium on Computational Intelligence for Security
and Defense Applications. IEEE, 2009, pp. 1–7.

[181] D. Grant, “Detecting phishing with computer vision: Part 1, blazar,”
2018. [Online]. Available: https://www.endgame.com/blog/technical-
blog/detecting-phishing-computer-vision-part-1-blazar

[182] “Endgame,” 2018. [Online]. Available: https://www.endgame.com
[183] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Detecting

homoglyph attacks with a siamese neural network,” in 2018 IEEE
Security and Privacy Workshops (SPW). IEEE, 2018, pp. 22–28.

[184] D. G. Bill Finlayson, “Detecting phishing with com-
puter vision: Part 2, speedgrapher,” 2018. [Online].

Available: https://www.endgame.com/blog/technical-blog/detecting-
phishing-computer-vision-part-2-speedgrapher

[185] “Microsoft.Office.Interop.Word.Namespace.” [On-
line]. Available: https://docs.microsoft.com/en-
us/dotnet/api/microsoft.office.interop.word?view=word-pia

[186] J. Richards, “What is lookout phishing AI?” 2019. [Online]. Available:
https://blog.lookout.com/lookout-phishing-ai

[187] “Phishing attack targeting united nations and humanitarian
organizations discovered by lookout phishing AI.” [Online]. Avail-
able: https://blog.lookout.com/lookout-phishing-ai-discovers-phishing-
attack-targeting-humanitarian-organizations

[188] “Next-generation anti-phishing platform powered by AI & computer
vision,” 2019. [Online]. Available: https://www.phish.ai

[189] MayaChitra, “Mayachitra is developing advanced cybersecurity tools
using deep learning and pattern recognition methods,” 2019. [Online].
Available: https://mayachitra.com/cyber-security/

[190] IronScales, “Ironscales raises $15 million to defeat
phishing attacks with AI,” 2019. [Online]. Avail-
able: https://venturebeat.com/2019/06/17/ironscales-raises-15-million-
to-defeat-phishing-attacks-with-ai/

[191] “Total anti-phishing protection,” 2019. [Online]. Available:
https://cyberfish.io

[192] 406Venture, “Greathorn prevents Microsoft Office 365 and Google
G Suite credential theft phishing using advanced computer vision,”
2019. [Online]. Available: https://www.406ventures.com/news/2418-
greathorn-prevents-microsoft-office-365-and-google-g-suite-credential-
theft-phishing-using-advanced-computer-vision

[193] O. Falkowitz, “Seeing through normal with computer vision,”
2017. [Online]. Available: https://www.area1security.com/blog/seeing-
normal-computer-vision/

[194] M. Price, “Artificial intelligence is key to digital risk protection,”
2019. [Online]. Available: https://www.zerofox.com/blog/artificial-
intelligence-computer-vision/

[195] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[196] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a sim-
ple and accurate method to fool deep neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 2574–2582.

[197] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” arXiv preprint arXiv:1611.01236, 2016.

[198] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[199] L. Muñoz González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, 2017.

[200] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” in Advances in Neural Information Processing
Systems, 2018, pp. 6103–6113.

[201] A. Al Dujaili, A. Huang, E. Hemberg, and U.-M. OReilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in 2018
IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp. 76–82.

[202] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” arXiv preprint arXiv:1606.04435, 2016.

[203] W. Hu and Y. Tan, “Generating adversarial malware examples for
black-box attacks based on GAN,” arXiv preprint 1702.05983, 2017.

[204] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Query-efficient
GAN based black-box attack against sequence based machine and deep
learning classifiers,” arXiv preprint arXiv:1804.08778, 2018.

[205] M. Rigaki and S. Garcia, “Bringing a GAN to a knife-fight: Adapting
malware communication to avoid detection,” in 2018 IEEE Security
and Privacy Workshops (SPW). IEEE, 2018, pp. 70–75.

[206] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bag-
ging classifiers for fighting poisoning attacks in adversarial classifi-
cation tasks,” in International workshop on multiple classifier systems.
Springer, 2011, pp. 350–359.

[207] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri,
A. Matyasko, K. Hambardzumyan, Y.-L. Juang, A. Kurakin, and
R. Sheatsley, “cleverhans v2. 0.0: an adversarial machine learning
library,” arXiv preprint arXiv:1610.00768, 2016.

[208] H. Xu, Y. Ma, H. Liu, D. Deb, H. Liu, J. Tang, and A. Jain, “Adversarial
attacks and defenses in images, graphs and text: A review,” arXiv
preprint arXiv:1909.08072, 2019.

37

[209] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,
2018.

[210] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, “Adversarial attacks and defences: A survey,” arXiv
preprint arXiv:1810.00069, 2018.

[211] O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra, “Matching
networks for one shot learning,” in Advances in neural information
processing systems, 2016, pp. 3630–3638.

[212] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Advances in Neural Information Processing Systems,
2017, pp. 4077–4087.

[213] S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image recogni-
tion by predicting parameters from activations,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 7229–7238.

[214] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning with-
out forgetting,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4367–4375.

[215] M. Woodward and C. Finn, “Active one-shot learning,” arXiv preprint
arXiv:1702.06559, 2017.

[216] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learning
through cross-modal transfer,” in Advances in neural information
processing systems, 2013, pp. 935–943.

[217] L. Fei Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 28, no. 4, pp. 594–611, 2006.

[218] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the good, the
bad and the ugly,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4582–4591.

[219] O. J. Hénaff, A. Razavi, C. Doersch, S. Eslami, and A. V. D. Oord,
“Data-efficient image recognition with contrastive predictive coding,”
arXiv preprint arXiv:1905.09272, 2019.

[220] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum con-
trast for unsupervised visual representation learning,” arXiv preprint
arXiv:1911.05722, 2019.

[221] S. C. Hsiao, D. Y. Kao, Z. Y. Liu, and R. Tso, “Malware image
classification using one-shot learning with siamese networks,” Procedia
Computer Science, vol. 159, pp. 1863–1871, 2019.

[222] T. K. Tran, H. Sato, and M. Kubo, “Image-based unknown mal-
ware classification with few-shot learning models,” in 2019 Seventh
International Symposium on Computing and Networking Workshops
(CANDARW). IEEE, 2019, pp. 401–407.

[223] A. Atapour Abarghouei, S. Bonner, and A. S. McGough, “A
kings ransom for encryption: Ransomware classification using aug-
mented one-shot learning and bayesian approximation,” arXiv preprint
arXiv:1908.06750, 2019.

[224] W. J. Scheirer, A. De Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 7, pp. 1757–1772, 2012.

[225] C. Geng, S. j. Huang, and S. Chen, “Recent advances in open set
recognition: A survey,” arXiv preprint arXiv:1811.08581, 2018.

[226] T. Boult, S. Cruz, A. Dhamija, M. Gunther, J. Henrydoss, and
W. Scheirer, “Learning and the unknown: Surveying steps toward open
world recognition,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 9801–9807.

[227] A. R. Dhamija, M. Günther, and T. Boult, “Reducing network agnosto-
phobia,” in Advances in Neural Information Processing Systems, 2018,
pp. 9157–9168.

[228] A. Raj Dhamija, M. Gunther, and T. E. Boult, “Improving deep network
robustness to unknown inputs with objectosphere,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 87–90.

[229] P. Oza and V. M. Patel, “C2AE: Class conditioned auto-encoder for
open-set recognition,” arXiv preprint arXiv:1904.01198, 2019.

[230] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-
scale long-tailed recognition in an open world,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[231] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Nae-
mura, “Classification-reconstruction learning for open-set recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4016–4025.

[232] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why ReLU networks
yield high-confidence predictions far away from the training data and
how to mitigate the problem,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 41–50.

[233] S. Cruz, C. Coleman, E. M. Rudd, and T. E. Boult, “Open set
intrusion recognition for fine-grained attack categorization,” in 2017
IEEE International Symposium on Technologies for Homeland Security.

[234] J. Henrydoss, S. Cruz, E. M. Rudd, and T. E. Boult, “Incremental open
set intrusion recognition using extreme value machine,” in 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2017, pp. 1089–1093.

[235] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, “A survey of stealth
malware attacks, mitigation measures, and steps toward autonomous
open world solutions,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 1145–1172, 2016.

[236] L. Bottou and Y. L. Cun, “Large scale online learning,” in Advances
in neural information processing systems, 2004, pp. 217–224.

[237] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, “Online deep learning: Learn-
ing deep neural networks on the fly,” arXiv preprint arXiv:1711.03705,
2017.

[238] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[239] R. Ratcliff, “Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions.” Psychological review,
vol. 97, no. 2, p. 285, 1990.

[240] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[241] P. Tune and D. Veitch, “Sampling vs sketching: An information
theoretic comparison,” in 2011 Proceedings IEEE INFOCOM. IEEE,
2011, pp. 2105–2113.

[242] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM SIGCOMM Conference.
ACM, 2016, pp. 101–114.

[243] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 561–575.

[244] P. Tune and D. Veitch, “OFSS: Skampling for the flow size distribu-
tion,” in Proceedings of the 2014 Conference on Internet Measurement
Conference. Citeseer, 2014, pp. 235–240.

Jiawei Zhao Jiawei Zhao received her Bachelors
Degree in Electrical Engineering (First Class Hons.)
jointly from The University of Sydney, Australia,
and The Harbin Institute of Technology, China, in
2017. She is currently pursuing a PhD degree at
The School of Computer Science in the University
of Sydney, Australia. Her research interests include
cybersecurity, deep learning, fraud detection, and
security of machine learning.

Rahat Masood Rahat Masood is currently a re-
search fellow at The University of Sydney. She
received her PhD in 2019 from the University of
New South Wales, Australia, in collaboration with
information security and privacy group at Data61-
CSIRO. Her research area focuses on security and
privacy of mobile and web platforms, authentication
and authorization, biometric security, and critical
infrastructure protection. She was also a visiting
scholar at the Sandia National Laboratories (SNL),
New Mexico, and Cyber Security Policy and Re-

search Institute (CSPRI) at The George Washington University.

Suranga Seneviratne Suranga Seneviratne is a Lec-
turer in Security at the School of Computer Science,
The University of Sydney. He received his PhD
from University of New South Wales, Australia in
2015. His current research interests include privacy
and security in mobile systems, AI applications in
security, and behaviour biometrics. Before moving
into research, he worked nearly six years in the
telecommunications industry in core network plan-
ning and operations. He received his bachelor degree
from University of Moratuwa, Sri Lanka in 2005.

