
1

Resource Scheduling in Edge Computing: A Survey
Quyuan Luo, Shihong Hu, Changle Li, Senior Member, IEEE, Guanghui Li, and Weisong Shi, Fellow, IEEE

Abstract—With the proliferation of the Internet of Things
(IoT) and the wide penetration of wireless networks, the surging
demand for data communications and computing calls for the
emerging edge computing paradigm. By moving the services
and functions located in the cloud to the proximity of users,
edge computing can provide powerful communication, storage,
networking, and communication capacity. The resource schedul-
ing in edge computing, which is the key to the success of edge
computing systems, has attracted increasing research interests.
In this paper, we survey the state-of-the-art research findings
to know the research progress in this field. Specifically, we
present the architecture of edge computing, under which different
collaborative manners for resource scheduling are discussed.
Particularly, we introduce a unified model before summarizing
the current works on resource scheduling from three research
issues, including computation offloading, resource allocation,
and resource provisioning. Based on two modes of operation,
i.e., centralized and distributed modes, different techniques for
resource scheduling are discussed and compared. Also, we sum-
marize the main performance indicators based on the surveyed
literature. To shed light on the significance of resource scheduling
in real-world scenarios, we discuss several typical application
scenarios involved in the research of resource scheduling in edge
computing. Finally, we highlight some open research challenges
yet to be addressed and outline several open issues as the future
research direction.

Index Terms—Internet of things; edge computing; resource
allocation; computation offloading; resource provisioning;

I. INTRODUCTION

A. From Cloud Computing to Edge Computing

With the rapid development of the mobile Internet, smart
devices have become an indispensable part of people’s life.
Increasingly complex applications such as mobile payment,

This work was supported in part by the National Natural Science Foundation
of China (No. 62101463, No. U1801266, No. 62072216 and No. 61731017),
in part by the Fundamental Research Funds for the Central Universities (
No. 2682021CX044), in part by the 111 project (No. 111-2-14), in part
by Jiangsu Agriculture Science and Technology Innovation Fund (No. CX
(19)3087), in part by Wuxi International Science and Technology Research
and Development Cooperative Project (No. CZE02H1706), in part by the
scholarship from China Scholarship Council. Quyuan Luo and Shihong Hu
contributed equally to this work. (Corresponding author: Shihong Hu.)

Q. Luo is with the School of Information Science and Technology, South-
west Jiaotong University, Chengdu 611756, China, the State Key Laboratory
of Integrated Services Networks, Xidian University, Xi’an 710071, China,
and the Department of Computer Science, Wayne State University, Detroit,
MI 48202, USA (e-mail: qyluo@swjtu.edu.cn).

S. Hu is with the school of Artificial Intelligence and Computer, Jiangnan
University, Wuxi, Jiangsu, 214122, China, and is also with the Department
of Computer Science, Wayne State University, Detroit, MI 48202 (e-mail:
Shihong@wayne.edu).

C. Li is with the State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an 710071, China (e-mail: clli@mail.xidian.edu.cn)

G. Li are with the school of Artificial Intelligence and Computer, Jiangnan
University, Wuxi, Jiangsu, 214122, China, and is also with theResearch Center
for IoT Technology Application Engineering (MOE), Wuxi, Jiangsu, 214122
China (e-mail: ghli@jiangnan.edu.cn).

W. Shi is with the Department of Computer Science, Wayne State Univer-
sity, Detroit, MI 48202 (e-mail: weisong@wayne.edu).

smart healthcare, mobile games, and virtual reality (VR) put
higher requirements on the resource capacity of smart devices.
Since Google put forward the concept of cloud computing
in 2008 [1], cloud computing was gradually accepted and
introduced into the mobile environment, which breaks through
the resource limitations of smart devices and provides highly
demanding applications for users. Cloud computing is a cost-
effective model that provides abundant applications and ser-
vices while making information technology (IT) management
more accessible and responding to users’ demands faster [2].
The services (computing, communication, storage, and all nec-
essary services) are delivered and implemented in a simplified
way: on-demand, regardless of the users’ location and the type
of smart devices.

Thanks to rapid advances in underlying technologies, the
Internet of Things (IoT) is opening tremendous opportunities
for a large number of novel applications that promise to
improve the quality of our lives [3]. Technically, all appli-
cations we discussed in this survey belong to the category
of IoT. Applications such as unmanned aerial vehicle (UAV),
connected and autonomous vehicle (CAV), video service,
smart city, smart health, smart manufactory, and smart home
are all committed to improving the quality of our lives through
various technologies of IoT. However, in recent years, the IoT
era has brought higher requirements for transmission band-
width, latency, energy consumption, application performance,
and reliability. In this context, due to the limited bandwidth,
high latency, and high energy consumption in the centralized
processing model of cloud computing, it is hard to meet
the high-performance requirements of users. Fortunately, it
can be estimated that tens of billions of edge nodes (ENs)
will be deployed in the near future [4]. By integrating these
large amounts of idle resources distributed at the edge of
the network to seamlessly provide services for users, a new
computing paradigm - edge computing is proposed, which is
regarded as the key technology and architectural concept of
the transition to 5G [5]. Fig. 1 illustrates the edge computing
paradigm. Edge computing refers to the enabling technologies
allowing computation to be performed at the edge of the
network, on downstream data on behalf of cloud services and
upstream data on behalf of IoT services. Edge computing
moves the services and functions originally located in the
cloud to the proximity of users, which integrates the cloud
computing platform and the network to provide powerful
computing, storage, networking, and communication capacity
at the edge of the network. Edge computing is interchange-
able with fog computing, but edge computing focuses more
on the things side, while fog computing focuses more on
the infrastructure side [6]. Since the services and functions
are closer to users in edge computing, a better quality-of-
experience (QoE) and quality-of-service (QoS) can be obtained

ar
X

iv
:2

10
8.

08
05

9v
1

 [
cs

.N
I]

 1
8

A
ug

 2
02

1

2

by users. Let’s take the edge computing in mobile communica-
tion/5G communication as an example. With the development
of mobile communication, especially the 5G communication,
the demand for high-quality wireless services shows a trend
of exponential growth. In the age of 5G, in addition to
mobile phones, tablets, a lot of new business scenarios in
mobile network service emerges, such as autonomous driving,
VR, and augmented reality (AR), and more close to the
life business scenarios, such as smart grid, smart agriculture,
smart city, and environmental monitoring. The emergence of
these new service scenarios has higher requirements for 5G
key technical indicators such as time delay, energy efficiency
and reliability. In this context, due to the limited bandwidth,
high latency, and high energy consumption in the centralized
processing model of cloud computing, it is hard to meet the
high-performance requirements of users. To cope with the
issue in mobile communication, a new emerging concept,
known as mobile edge computing (MEC), has been introduced.
The MEC brings computation and storage resources to the
edge of the mobile network enabling it to run the highly
demanding applications at the user equipment while meeting
strict performance requirements [7].

Data

Data Producer

Edge

Data

Data Producer/Consumer

Result Request Computing offload

Data caching/storage

Data processing

Request distribution

Service delivery

IoT management

Privacy protection

Fig. 1: Edge computing paradigm [6]. The things not only are
data consumers but also play as data producers. At the edge,
the things can not only request service and content from the
cloud but also perform the computing tasks from the cloud.
Edge can perform computing offloading, data storage, caching
and processing, as well as distribute request and delivery
service from cloud to user.

B. Resource Scheduling in Edge Computing

In recent years, resource scheduling in edge computing
has attracted widespread interest from industry and academia.
Before introducing resource scheduling in edge computing,
two questions should be answered firstly:

1) What is resource scheduling in edge computing?

Generally, resource scheduling refers to the set of actions
and methodology that participants used to efficiently assign
resources to the tasks that need to complete, and achieve
the objectives of participants based on resource availability.
Specifically, according to edge computing characteristics, the
key terms of resource scheduling in edge computing can be
detailed as follows.

• Resources: Various resources existing in the edge net-
work, by which the powerful serviceability is provided
and the tasks can be completed. The resource in edge
network can be categorized into three types, i.e., com-
munication resources, storage resources (also as caching
resources), and computing resources [8], [9].

• Tasks: Tasks generally refer to data generated from users.
The task types may vary based on different application
scenarios for different objectives. For example, the data
from LiDAR and high-definition camera on CAVs is
for safety purpose [10], [11]; the data from body area
networks (BAN) is for health monitoring; and the data
from surveillance cameras is for security [12].

• Participants: To complete tasks, there are different col-
laborative processing modes that involves different partic-
ipants. For “things-edge collaboration”, users (referred as
“things”) and edge are the participants [13]. For “things-
edge-cloud collaboration”, users, edge, and cloud are the
participants [14]. For “edge-cloud collaboration”, edge
and cloud center are the participants [15].

• Objectives: Different users pursue different objectives
during task processing. For example, CAVs aim to obtain
low latency for traffic safety [16]. UAVs and smart
health devices aim to reduce energy consumption for long
battery life [17]. The objectives can also be referred to
as performance indicators.

• Actions: The ways to achieve the objectives of partic-
ipants are referred to as actions. In edge computing,
there are mainly three actions: 1) computation offload-
ing, which decides whether a task is offloaded to the
edge or the cloud to process [18]; 2) resource alloca-
tion, which means allocating the communication, storage
resources, and computing resources for tasks [19]; 3)
resource provisioning, which decides the user-resource
pair association from the perspective of users, or actively
conducts resource placement from the perspective of
service providers (SPs) [20], [21].

• Methodology: Methodology refers to the methods, tech-
niques, and algorithms to better take the above actions for
the objectives of participants. Basically, the methodology
can be mainly categorized into centralized and distributed
manners. The centralized methodology needs a control
center to collect global information while the distributed
methodology does not [22], [23].

2) Why do we need resource scheduling in edge computing?
While edge computing greatly strengthens the serviceability

of edge network by providing powerful computing, storage,
and communication capacities, it also requires appropriate
resource scheduling strategies from three perspectives.

• User. Tens of billions of heterogeneous end-devices

3

TABLE I: A summary of surveys on edge computing.

Paper Year Topic

Mao et al. [24] 2017 Joint radio-and-computational resource management in edge computing.
Wang et al. [25] 2017 Issues on computing, caching and communication techniques in edge computing.
Mach et al. [7] 2017 User-oriented use case of computation offloading in edge computing.
Abbas et al. [26] 2017 Relevant research and technological developments in edge computing.
Peng et al. [27] 2018 Service adoption and provision in edge computing.
Tocze et al. [28] 2018 Resource management and optimization of multiple resources in edge computing.
Lin et al. [10] 2019 Research on computation offloading in edge computing.
Duc et al. [29] 2019 Resource provisioning in Edge-Cloud computing from a machine learning perspective.
Hong et al. [30] 2019 Resource management from the architecture, infrastructure and algorithms in edge computing.
Ghobaei et al. [31] 2019 Resource management approaches in edge computing.
Santos et al. [32] 2019 Resource provisioning from theory to practice in edge computing
Ren et al. [33] 2019 Issues on different computing paradigms in edge computing.
Varghese et al. [34] 2020 Different dimensions of research works in edge benchmarking.

are geographically deployed in a distributed manner,
the data volume generated from those end-devices and
their corresponding applications are also heterogeneous.
Orchestrating the limited edge resources to better pro-
cess those data requires appropriate resource scheduling
strategies. In the edge computing network, there are not
only static end-devices (e.g., sensors in smart homes,
video cameras in public places), but also dynamic ones
such as UAVs and vehicles, making the resource man-
agement even more challenging. Appropriate resource
scheduling can alleviate this situation. Besides, the data
from different application scenarios may have different
service requirements. For example, the CAVs in intelli-
gent transportation systems (ITS) need to process data
within several milliseconds for traffic safety; thus low
latency is their main objective. The UAV-assisted edge
computing usually focuses more on long battery life;
thus the objective of low energy consumption is expected
during data processing. Also, some mobile devices (MDs)
and IoT devices aim to achieve low data processing cost.
Therefore, it needs proper resource scheduling strategies
to meeting those service requirements.

• Service provider. In addition to users, the edge comput-
ing ecosystem incorporates multiple actors, such as edge
infrastructure SPs, edge computing service providers, ap-
plication service providers, and mobile network operators.
Although these SPs and operators are resource-rich and
have powerful serviceability, they are all commercial
entities aiming at earning revenue by providing services
[35]. In this context, designing an appropriate resource
scheduling strategy can help them get a maximal revenue
during service providing competition at a minimal cost.

• Edge network. Edge resources are distributed and scat-
tered in the edge network. It is a waste of resources if
scattered ones can not be efficiently utilized by resource
scheduling. For example, the parked vehicles (PVs) ac-
count for a large portion of the global vehicles and
have idle time to perform computational workloads [36],
[37]. If an efficient resource strategy is applied, they can
be combined to establish an available and cost-effective
computing resource pool [38], which helps to alleviate
workloads of edge computing servers and promote the
distributed computing environment. Besides, since both

users and SPs try to earn their benefits from edge com-
puting, it is more like a game between buyers and sellers
in terms of resources and services. An effective resource
strategy can jointly consider their interests and improve
the edge system utility [39].

C. Related Surveys

In recent years, many surveys on edge computing from
various perspectives have been published, as shown in Table I.
Mao et al. [24] presented a survey with the focus of joint radio-
and-computational resource management in edge computing.
Likely, a more recent survey [30] also focused on resource
management in edge computing. The difference is that this
survey is from the viewpoint of architecture, infrastructure,
and the underlying algorithms about resource management.
Furthermore, both [28] and [31] presented a comprehensive
survey of resource management in edge computing, the work
in [28] surveyed related literature in terms of resource type,
objective, resource location, and resource while Ghobaei et
al. [31] provided a systematic review from application place-
ment, resource scheduling, task offloading, load balancing,
resource allocation and provisioning six fields in resource
management. Wang et al. [25] summarized the related works
on computing, caching, and communication techniques in the
area of edge computing. Mach et al. [7] surveyed the research
on computation offloading in the area of edge computing.
Later, Lin et al. [10] presented a more comprehensive survey
on computation offloading. The review angle of the survey [26]
is more macro. It comprehensively elaborated on the definition,
architecture, application areas, and advantages of edge com-
puting. Besides, Varghese et al. [34] presented a systematic
survey on edge benchmarking, which summarized the research
from the system under test, techniques, quality metrics, and
benchmark runtime in the edge computing. Some surveys
focus on one topic, like service adoption and provision [27],
resource provision from a machine learning perspective [29]
or computing paradigms [33] in edge computing.

It can be concluded that some existing surveys summarized
the research in edge computing only from a single angle in
the resource scheduling field, like computation offloading or
resource provisioning. Some surveys in previous years mostly
discussed topics in edge computing from a high level and
failed to comprehensively address these topics at the depth.

4

With the increasing enthusiasm of the academic community
for edge computing research in recent years, a large number
of new research results have emerged, among which the
research on resource scheduling is particularly prominent.
Although the existing surveys listed in Table I have reviewed
edge computing from various perspectives, none of them
focus on the resource scheduling issue in a comprehensive
way. This motivates us to present a systematic survey on
resource scheduling, so we review from multiple perspectives,
including architecture, research issue, techniques, indicators,
and applications to provide a comprehensive, informative and
up-to-date viewpoint for researchers.

D. Contribution and Organization

Fig. 2: The distribution of papers surveyed by year and source.
Book includes books and book chapters; Report includes arXiv
articles, website articles and white papers; Conference includes
conference and symposium papers; Journal includes journal
and magazine articles.

This article provides a comprehensive survey of the state-
of-the-art research with a focus on resource scheduling in edge
computing. Fig. 2 shows the distribution of papers surveyed
by year and source. Specifically, the focus of this article is
five-fold.
• Architecture (Section II): A three-tier edge computing

architecture including the thing layer, the edge layer, and
the cloud layer is first introduced. Then we elaborate
on four different collaborations for resource scheduling
under the three-tier architecture, i.e., things-edge, things-
edge-cloud, edge-edge, and edge-cloud.

• Basic Model and Research issue (Section III): To achieve
the different requirements of both end-devices and the
system for QoS and QoE, several basic models are first
introduced. Based on those models, we then present three
aspects involved in resource scheduling, which forms the
three key research issues, i.e., computation offloading,
resource allocation, and resource provisioning.

• Technique and indicator (Section IV): We summarize
the main performance indicators such as latency, energy
consumption, cost, utility, profit, and resource utilization
in existing works. To achieve those objectives, we also
elaborate on the resource scheduling techniques both in
centralized and distributed ways.

• Application (Section V): We summarize several typical
application scenarios involved in the research on resource
scheduling in edge computing, mainly including UAV,
CAV, video service, smart city, smart health, smart man-
ufacturing, and smart home.

• Challenge and open issue (Section VI): The lessons
learned in the area of resource scheduling in edge com-
puting are highlighted and several challenges yet to be
addressed are presented for future research directions.

To help the readers have a comprehensive picture of the
structure of this survey, Fig. 3 outlines the organization of the
survey, and Table II lists the acronyms that will be frequently
used in the survey.

II. ARCHITECTURE

This section introduces the edge computing architecture
for resource scheduling. We overview the composition of
the architecture and introduce a three-tier heterogeneous edge
computing network, where the first tier is the thing layer, the
second tier is the edge layer, and the third one is the cloud
layer. Based on the three-tier architecture, we then present
different collaborative manners for resource scheduling in edge
computing.

A. Overview of the Architecture for Resource Scheduling in
Edge Computing

Traditional cloud computing has difficulty to meet the high
requirements of users in real-time response and low energy
consumption due to bandwidth congestion and heavy load
on the core network (CN). Nevertheless, the edge computing
paradigm itself cannot be a substitute for cloud computing
because it does not have as powerful resource capacity as
cloud computing. In some cases, however, the advantages
of edge computing can be leveraged to offload comput-
ing services from the cloud to the edge to improve users’
QoE. Accordingly, cloud computing and edge computing are
complementary and mutually reinforcing. Thus, the resource
scheduling in edge computing is not only operated among
users and the edge, but also among users, the edge, and the
cloud. The three-tier heterogeneous architecture for resource
scheduling in edge computing is presented, as shown in Fig. 4,
including the thing layer (a.k.a, the user layer), the edge layer,
and the cloud layer. The three-tier architecture is a widely
popular and accepted paradigm by many existing works [7],
[10], [24], [26], [30]. The function of this kind of architecture
is to illustrate the relationship among components that make
up the edge computing system. In the following, we first give
a brief introduction on the three layers. Then, we elaborate on
four different collaborations for resource scheduling under the
three-tier architecture, i.e., things-edge collaboration, things-
edge-cloud collaboration, edge-edge collaboration, and edge-
cloud collaboration, as shown in Fig 5.

1) Thing Layer: The thing layer, also known as the user
layer, is composed of various end-devices (a.k.a., things), such
as UAVs [40], CAVs [16], AR equipment [41], surveillance
cameras for smart city [42], sensors for smart health [43],
IoT devices for smart manufacturing [44], [45], smart devices

5

TABLE II: Summary of Acronyms Frequently Used in the Paper.

Acronym Definition Acronym Definition
ADMM Alternating Direction Method of Multipliers MD Mobile Device
AI Artificial Intelligence MDC Micro Data Center
AR Augmented Reality MDP Markov Decision Process
BAN Body Area Network MEC Mobile Edge Computing
BS Base Station MILP Mixed Integer Linear Programming
CAV Connected and Autonomous Vehicle MU Mobile User
CC Computing and Communication NFV Network Function Virtualization
CCS Computing, Communication, and Storage NSGA Non-dominated Sorting Genetic Algorithm
CN Core Network NOMA Non-orthogonal Multiple Access
DQN Deep Q-network PVEC Parked Vehicle Edge Computing
DRL Deep Reinforcement Learning PSO Particle Swarm Optimization
DSRC Dedicated Short-Range Communications PV Parked Vehicle
EC Edge Cloud QoE Quality of Experience
EG Edge Gateway QoS Quality of Service
EN Edge Node RSU Road Side Unit
ES Edge Server SP Service Provider
FiWi Fiber-Wireless SCA Successive Convex Approximation
FL Federated Learning SDN Soft-defined Network
GA Genetic Algorithm TDMA Time Division Multiple Access
IIoT Industrial Internet of Things UAV Unmanned Aerial Vehicle
IoT Internet of Thing UE User Equipment
IT Information Technology VEC Vehicle Edge Computing
ITS Intelligent Transportation Systems VM Virtual Machine
LSTM Long Short-Term Memory WAN Wireless Access Network

Section VII. Conclusion

Section IV. Key Techniques and Performance
Indicators

A. Three-Tier Architecture

B. Four Collaboration Manners

 1) Things-Edge

 2) Things-Edge-Cloud

 3) Edge-Edge

 4) Edge-Cloud

Section II. Architecture

A. Basic Model

B. Computation Offloading

C. Resource Allocation

D. Resource Provisioning

Section III. Basic Model and
Research Issues

A. Model and Architecture B. Feasibility C. Security and Privacy D. Dynamics

E. Joint Scheduling of CCS Resources F. Evaluation

Section VI. Challenges and Research Directions

 A. UAV

 B. CAV

 C. Video Service

 D. Smart City

Section V. Resource Scheduling in Applications
Context

B. Distributed Methods:

 1) Game Theory;

 2) Matching Theory;

 3) Auction;

 4) Federated Learning;

 5) Block Chain.

E. Smart Health

F. Smart Manufactory

G. Smart Home

A. From Cloud Computing to Edge Computing

B. Resource Allocation in Edge Computing

 1) What is resource scheduling in edge computing?

 2) Why do we need resource scheduling in edge computing?

C. Related Surveys

D. Contribution of the Survey

Section I. Introduction

C. Key Performance Indicator

A. Centralized Methods:

 1) Convex Optimization;

 2) Approximation;

 3) Heuristic method;

 4) Machine Learning.

Fig. 3: Road map of the survey.

for smart home [46]. In different works, end-devices are
also called MDs or mobile users (MUs). Various things can

perceive and have certain storage and computing capability.
Things continuously generate and collect multiple types of

6

ThingThing

Industrial IoTCAVs

Thing

Industrial IoTCAVs

ThingThing

Wearable Devices
Vessels

Thing

Wearable Devices
Vessels

ThingThing

Smart City Devices

Thing

Smart City Devices

Thing

Drones Smart Devices

Thing

Drones Smart Devices

Edge

Cellular Tower Edge Server

Edge

Cellular Tower Edge Server

Edge

Roadside Unit Gateway

Edge

Roadside Unit Gateway

Things-Edge

Collaboration

Edge-Cloud

Collaboration

Edge-Edge

Collaboration

Edge

Layer

Thing

Layer

Cloud

Layer

Things-Edge-Cloud

Collaboration

Wireless Access Network

CloudCloud

Core Network

Fig. 4: Architecture for Resource Scheduling in Edge Computing.

Fig. 5: Four different collaboration manners for resource
scheduling under three-tier architecture.

data. Based on the QoE and QoS requirements of things, the
data can be processed locally, or be offloaded to the edge
and the cloud. In the edge computing network, there are not
only static end-devices (e.g., sensors in smart homes, video
cameras in public places) but also dynamic ones such as
UAVs and vehicles, making the resource management even
more challenging. Therefore, different solutions are proposed
to address this issue, which are discussed in Section IV.

2) Edge Layer: The edge layer, as the core of the three-
tier architecture, is an intermediate layer between the thing
layer and the cloud layer. From the perspective of hardware
composition, the edge layer consists of various networking and
computing equipment, such as cellular tower, edge server (ES),

roadside unit (RSU), gateway, edge controller, etc. The edge
layer provides wireless access to smart devices through the
radio access technology, such as Long Term Evolution (LTE),
Wireless Fidelity (WiFi), and Dedicated Short-Range Com-
munications (DSRC). Basically, the edge layer can provide
more powerful storage and computing capabilities than the
thing layer. From the perspective of software composition, the
edge layer has edge management capabilities that offer service
orchestration and invocation and schedule the ESs to complete
tasks. The edge layer can receive, process, and forward data
streams from the thing layer, and achieve intelligent sens-
ing, privacy protection, data analysis, intelligent computing,
process optimization, and real-time control. Besides, since
the edge and the cloud are complementary and mutually
reinforcing, services in the cloud can be offloaded to the edge
layer for load balancing and better QoE. With the objective
of reducing bandwidth usage and energy conption of the CN
as well as reducing the communication overhead between the
edge and the cloud, the edge layer is expected to schedule
edge resources to enable rapid service response.

3) Cloud Layer: The cloud layer consists of the existing
cloud computing infrastructures, such as computing units,
storage units, and micro data centers (MDCs), connected with

7

the edge layer through the CN (a.k.a, backbone network).
Among the three layers, the cloud layer is undoubtedly the
most powerful data processing and storage center. While
ESs in the edge layer can process large amounts of data to
reduce latency and energy consumption, the edge computing
paradigm still requires the computing power and high-capacity
storage infrastructure of the cloud to handle some tough tasks
and global information. For example, the cloud layer can
receive data streams from the edge layer, and send control
information to the edge layer, and then from the edge layer to
the thing layer, thereby optimizing the resource scheduling and
field production process from a global perspective. Besides,
based on the network resource distribution, the cloud layer
can also dynamically adjust the deployment strategies and
algorithms. Furthermore, it also provides decision-support sys-
tems, intelligent production, networking collaboration, service
extension, personalized and customized service, and other
domain-specific application services.

B. Things-Edge Collaboration

The resource scheduling in a things-edge collaboration
manner involves the things layer and the edge layer. The
task generated from smart devices can be processed locally
or offloaded to ESs. Whether to offload these data depends
on the things-edge collaboration strategy and the QoS and
QoE requirements of smart devices. For example, Ali et al.
in [47] proposed to select an optimal set of computation
components to offload to ESs, aiming at minimizing the
energy consumption of MDs. In addition to offloading task
to the ES in a local region, Wang et al. in [48] proposed
that the task can also be offloaded to the ES in a nearby
region to reduce overall system costs and guarantee users’
QoE. Since the service requests of MUs and location may be
dynamically changing, the static ES deployment may cause a
“service hole”. To compensate for this issue and to improve
the resource utilization as well as the system utility, Liu et
al. in [49] explored a vehicle edge computing (VEC) network
architecture and regarded the moving vehicles as vehicular
ESs to assist the fixed ES to process the task from MUs.
Besides, regarding UAVs as ESs is also a research treading.
Yang et al. in [50] considered a UAV-enabled mobile edge
computing (MEC) network, where the computation tasks from
MUs can be processed by UAVs aiming at minimizing the
power consumption of all MUs and UAVs. Unlike previous
studies in which users first offload task to ES and results
are then fed back, Chen et al. in [51] investigated the relay-
assisted computation offloading (RACO). In the considered
RACO scenario, a mobile-edge relay server (MERS) is utilized
to assist the results of computational tasks among users by
allocating computing and communication resources.

C. Things-Edge-Cloud Collaboration

Although the things-edge collaboration manner has a rel-
atively powerful capacity, it ignores the huge computing
resources in the cloud computing center. With the ever-
increasing smart devices and their resource-hungry applica-
tions, it will become increasingly difficult to rely on the

resources in the edge layer alone to meet the service require-
ments of smart devices. Therefore, it is particularly important
and necessary to take full advantage of both edge computing
and cloud computing and make them complementary to design
a collaborative paradigm, the things-edge-cloud collaboration
manner. Guo et al. in [52] introduced the concept of a hybrid
fiber-wireless (FiWi) network, in which the multi-access edge
computing and the centralized cloud computing cooperated to
provide better offloading performance and good scalability as
computation tasks increase. The combination of edge com-
puting and cloud computing FiWi takes the complementary
advantages of good scalability, high mobility, and supports
diverse wireless access technologies in edge computing, large
capacity, high reliability, and low-latency in fiber-enabled
cloud computing. For the resource-intensive applications, such
as big-data analytics, AI processing, and 3D sensing from
industrial Internet of things (IIoT) devices, Hong et al. in
[53] proposed a multi-hop IIoT-edge-cloud collaborative com-
putation offloading paradigm, aiming at minimizing energy
consumption and computing time of task processing. Wang et
al. in [54] proposed the concept of ”HetMEC”, which refers
to heterogeneous multi-layer MEC. In HetMEC, if the task
offloaded from smart devices cannot be processed on time
by the ES, it can be offloaded to the cloud center, aiming
at minimizing transmission and computing time. Different
from previous studies, Dinh et al. in [14] considered renting
computing resources termed virtual machines (VMs) from the
cloud layer to scale up the capacity of the edge layer, with the
goal of minimizing the total cost, including the processing cost
at the edge, the remote on-demand VMs cost, the reserving
and using remote reserved VMs cost.

D. Edge-Edge Collaboration

Generally, the edge-edge collaboration manner for resource
scheduling in edge computing does not arise in isolation.
Instead, it usually comes along with the things-edge collabo-
ration manner or the things-edge-cloud collaboration manner.
Through an edge-edge collaboration manner, there is one more
option for task processing. Many studies have investigated
this collaboration manner. Huang et al. in [36] proposed a
parked vehicle edge computing (PVEC) architecture, where
idle resources of PVs can be fully utilized. In PVEC ar-
chitecture, VEC servers explore opportunistic resources from
PVs to allocate workloads, and provide rewards to PVs for
their assistance. When necessary, VEC servers can also un-
dertake the residual workloads. As a result, VEC servers and
PVs cooperate to process task in an edge-edge collaboration
manner. To alleviate the workload on ESs, Na et al. in [55]
proposed to utilize edge gateways (EGs) at the edge layer
to assist task processing. A resource orchestration scheme
among EGs and/or between ES and EGs is also proposed,
aiming to maximize the efficiency of IoT systems. Alamed-
dine et al. in [56] studied the dynamic task offloading and
scheduling problem (DTOS) in multi-access edge computing,
where application’s task assignment and the order of execution
are jointly considered. The tasks that cannot be processed
by its corresponding eNB-enabled ES can be offloaded to

8

TABLE III: Comparison of Papers Focusing on Different Collaboration Manner for Resource Scheduling. Acronyms used in
this Table: user equipment (UE), edge server (ES), mobile device (MD), vehicular edge server(VES), fixed edge server (FES),
mobile edge relay server (MERS), base station (BS), unmanned arerial vehicle (UAV), edge gateway (EG), parked vehicle
(PV), mobile user (MU), micro data center (MDC).

Paper Collaboration
Manner Things Edge Research Issue Characteristics Methodology

[47] Things-edge UE ES Offloading strategy
Minimize the energy consumption of MDs
by selecting an optimal set of computation
components to offload to ESs.

Deep learning

[48] Things-edge UE
ES in local
and nearby

region
Offloading strategy Formulate the computation offloading problem

as a potential game
Game theory, Jacobi

algorithm

[49] Things-edge UE VES and
FES

Offloading strategy;
resource allocation

Consider the stochastic vehicle traffic, dy-
namic computation requests and time-varying
communication conditions

Reinforcement
learning

[50] Things-edge UE UAV Resource allocation
Jointly optimize user association, power con-
trol, computation capacity allocation and loca-
tion planning

Compressive
sensing, search

method

[51] Things-edge User MERS
Computation

offloading; resource
allocation

Jointly optimize transmit powers, processor
speeds, bandwidth, and offloading ratio Iterative algorithm

[52] Things-edge-
cloud MD ES Offloading strategy

Minimize all MDs’ energy consumption while
satisfying the MDs’ computation execution
time constraint

Game theory

[53] Things-edge-
cloud

IIoT
devices

BS enabled
ES offloading strategy Minimize energy consumption and computing

time of task processing Game theory

[14] Things-edge-
cloud User ES Resource allocation Consider the edge’s local processing cost and

capacity, the cloud’s multiple rental options
Offline and online

algorithms

[54] Things-edge-
cloud

Smart
device ES Resource allocation

The communication and computing resources,
the task assignment among multiple layers are
jointly coordinated

Latency
minimization

algorithm

[55] Things-edge;
edge-edge

IoT
devices EG; ES Resource allocation Consider computing capacities of ES and EGs,

and interference among EGs
Lagrangian and
KKT condition.

[36] Things-edge;
edge-edge

Mobile
vehicles PVs; VES Resource allocation Fully utilize the idle resource of parked vehi-

cles
Stackelberg game,
iterative algorithm

[56] Things-edge;
edge-edge UE eNB enabled

ES

Computation
offloading; resource

allocation

The tasks from UEs is scheduled among dif-
ferent ESs

benders
decomposition

technique

[57]
Things-edge-

cloud;
edge-edge

MD ES Computation
offloading

Integrate artificial intelligence (AI), local com-
puting, edge computing, and cloud computing

Deep learning,
LSTM

[58]
Things-edge-

cloud;
edge-edge

Smart
device ES Computation

offloading
Vertical and horizontal offloading; workload
and capacity optimization problem

branch-and-bound
method

[15]
Things-edge-

cloud;
edge-cloud

MU ES Resource placement
Place the video transcoding function at edge
layer; provide higher video bit-rates without
causing video stall or rebuffering

Video transcoding at
edge

[59]
Things-edge-

cloud;
edge-cloud

Smart
device MDC Resource allocation;

resource provisioning
SPs put resource in the edge layer; a latency-
aware task scheduling mechanism

Auction-based
contracts

[60]
Things-edge-

cloud;
edge-cloud

UE ES Resource allocation
SPs at the edge layer assign the tasks from
UEs to be processed in base staion or cloud
center

Decentralized
multi-SP resource

allocation

another ES in an edge-edge collaboration manner to meet
UE’s QoE requirement. Miao et al. in [57] proposed an
intelligent offloading strategy based on the mobile-edge cloud
computing architecture, where tasks are scheduled among
MDs, ESs, and the cloud based on task prediction, aiming
at reducing the total task delay. Besides, the ES in this
strategy can decide whether to migrate its overload to other
ES in an edge-edge collaboration manner. Differently, Thai et
al. in [58] proposed a cloud-edge computing architecture to
provide horizontal and vertical collaborations, aim to minimize
the total cost. Horizontal collaboration means that offloading
operations can be conducted among the nodes in the same tier,
while vertical collaboration means that offloading operations
can be conducted among the cross-tier nodes.

E. Edge-Cloud Collaboration

If most computing tasks are performed in the cloud com-
puting center in the considered three-tier architecture, long
latency will be produced, which can not satisfy users’ QoE.
The long latency problem can be improved by offloading some
or all of the tasks in the cloud center to the edge in an
edge-cloud collaboration manner, such as the edge accelerated
web platform (EAWP) by Nippon Telegraph and Telephone
Corporation [61]. The edge-cloud collaboration manner can be
used in many applications. For example, mobile client shop-
ping has become popular where customers frequently operate
the shopping cart. The change of the shopping cart status
is first completed in the cloud center, and then the product
view is updated on the MD, which results in long latency. If

9

shopping cart data can be cached and relevant actions can be
performed on the edge, the new product view will be pushed
to the MD once the customer’s request reaches the edge,
thus greatly improving the customer’s QoE. Another example
is the video transcoding application. Online video traffic on
MDs is growing exponentially in network traffic [62], [63],
and MUs have high QoE requirements for streaming video.
The video transcoding has become an optimized technique
for video data transmission. However, since video transcoding
consumes a great quantity of computing and storage resources,
it is typically executed in the offline media server (located in
the cloud layer). Unfortunately, this approach may increase
the latency when the video stream is redirected from the
media server and the real-time streaming service cannot be
provided. To this end, Yoon et al. in [15] proposed to run the
video transcoding on ENs such as home WiFi access point.
The experimental results show that their solution is low-cost,
transparent, and scalable. Besides, Xu et al. in [59] proposed
to regard the edge layer as MDCs to provide edge computing
services. A model, named Zenith, was also proposed, where
SPs can establish resource sharing contracts with edge infras-
tructure providers, aiming to increase resource utilization and
minimize job execution latency. Similarly, Zhang et al. in [60]
proposed to deploy SPs in the edge layer to manage the task
processing for MUs. The SPs can schedule the task to the edge
or the cloud in an edge-cloud collaboration manner, aiming at
providing high-quality services and maximizing the total profit
of all SPs.

For simplicity, a comparison of papers focusing on different
collaboration manner for resource scheduling are summarized
in Table III.

III. BASIC MODEL AND RESEARCH ISSUES

In this section, we first present the basic model for re-
source scheduling in edge computing, which guides users to
decide whether to take offloading action based on the current
communication and computing resource state as well as their
QoE requirements. Then, we elaborate on the state-of-the-
art research on resource scheduling in edge computing from
three aspects: computation offloading, resource allocation, and
resource provisioning.

A. Basic Model

In a typical edge computing scenario, various tasks would
be generated from user devices. Generally, an arbitrary task
T can be described by five items, i.e., T = {D, c, α, γ, τ},
where D is the data size of T , c represents the processing
density (in CPU cycles/bit) of T , α (0 ≤ α ≤ 1) stands
for the parallelizable fraction of T , γ denotes the ratio of
the data size of processing result to the data size of T ,
and τ represents the delay constraint of T [10]. The end-
devices, CAVs and UAVs, can be connected to the edge
through various communication channels (such as 4G/5G,
WiFi, LTE/DSRC, etc.). We denote the wireless bandwidth
assigned to the end-devices for task T as B. The generated
task T can be processed locally or offloaded to the edge or the
cloud to be processed. The offloading action is taken based on

different requirements for energy consumption, latency, cost,
and computing acceleration. Let λ (0 ≤ λ ≤ 1) denote the
offloading decision variable, which represents the ratio of the
offloaded data size to the total data size of task T . If λ = 0,
task T will be processed locally; if λ = 1, task T will be fully
offloaded; otherwise, the data with size λD will be offloaded,
the data with size (1− λ)D will be processed locally. In the
following, we will demonstrate the local processing part and
offloading part, respectively.

1) Task T processed locally: The number of cores of the
users is denoted as n1, and the processing capability (i.e., the
amount of CPU frequency in cycles/s) of each core assigned
for local computing as f l, then the power consumption of each
core for a user to process data locally is expressed as pl =
κ1(f

l)3, where κ1 is a coefficient reflecting the relationship
between processing capability and power consumption at the
end-device side [64].

Local computing time: Based on the Amdahl’s law [65],
the local computing time for (1 − λ)D bits data of the task,
which consists of the computing time of the serialized part
tls = c(1 − α)(1 − λ)D/f l and the computing time of the
parallelizable part tlp = cα(1 − λ)D/f ln1, can be calculated
as

tl = tls + tlp =
c(1− λ)D

f l
(1− α+

α

n1
). (1)

Local energy consumption: The energy consumption for
local computing is formulated as

El = pltls + n1p
ltlp = κ1cD(1− λ)(f l)2. (2)

2) Task T offloaded to the edge: The data of task T can
be offloaded to the edge through wireless communication
links. For the data transmission rate, we use r to denote it.
The data transmission rate can be characterized by various
wireless transmission models based on Shannon’s formula. For
example, Wang et al. in [66] model the path loss as d−ϑ, where
d denotes the distance from the end-device to the edge, and ϑ
denotes the path loss exponent. Based on Shannon’s formula,
when data is offloaded from the end-device to the edge over
the assigned wireless bandwidth B, the transmission rate can
be expressed as r1 = Blog2(1 + P1|h|2

ω0dϑ
), where P1 is the

transmission power of the end-device, h is the channel fading
coefficient, and ω0 denotes the white Gaussian noise power.

Transmission delay for offloading: Based on the analysis
above, the transmission delay for offloading λD bits of data
to the edge can be obtained by

tup =
λD

r1
(3)

Transmission energy consumption for offloading: Ac-
cordingly, the energy consumption of the end-device for
transmitting the offloaded λD bits of data is expressed as

Eup = P1t
up =

λDP1

r1
. (4)

Computing time at the edge: After the λD bits of data is
offloaded to the edge, the edge would process the data. Let n2
denote the number of cores assigned for task processing of the
edge, fe denote the processing capability (i.e., the amount of

10

CPU frequency in cycles/s) of each core (fe � f l). The power
consumption of each core of the edge to process data can be
expressed as pe = κ2(f

e)3, where κ2 is a coefficient reflecting
the relationship between processing capability and power
consumption at the edge side [64]. And the computing time for
the offloaded λD bits of data, which consists of the computing
time of the serialized part tes = cλ(1 − α)D/fe and the
computing time of the parallelizable part tep = cλαD/n2f

e,
can be formulated as

te = tes + tep =
cλD

fe
(1− α+

α

n2
). (5)

Energy consumption at the edge: The energy consumption
of the edge for computing the λD bits of data is formulated
as

Ee = petes + n2p
etep = κ2cD(fe)2. (6)

3) Result return: After the task T has been processed,
the result will be returned to the end-device. Generally, the
return process has been neglected in many works since the
processing result is usually very tiny [67]–[69]. As a general
model, we still consider the result return process. Let r2 denote
the data transmission rate in the result return process, then
similar to the offloading data rate, r2 can be formulated as
r2 = Blog2(1 +

P2|h|2
ω0dϑ

), where P2 is the transmission power
of the EN.

Transmission delay for result return: Based on the anal-
ysis above, the transmission delay for γD bits result return
can be obtained by

tdown =
γD

r2
. (7)

Transmission energy consumption for result return: Ac-
cordingly, the energy consumption of the EN for transmitting
the γD-bits of processing result to the end-device is expressed
as

Edown = P2t
down =

γDP2

r2
. (8)

4) Total delay: Based on the analysis above, the total delay
of processing task T is a combination of local computing time,
transmission delay for offloading, computing time at the edge,
and transmission delay for result return, which is formulated
as

t = min {tl, tup + te + tdown}. (9)

5) Total cost: The total cost of processing task T comes
from three aspects, including energy consumption, use of
bandwidth resources, and use of computing resources. For
the energy consumption, let % denote the weight coefficient
that indicates the energy consumption cost of one unit energy
during task computing and transmitting [70], then the energy
consumption cost can be formulated as

Cenergy = %(El + Etr + Ee + Edown). (10)

For the bandwidth cost, let p1 denote the cost of using per
unit of bandwidth per unit of time, the the bandwidth cost can
be formulated as

Ccomm = p1B(tup + tdown). (11)

For the computing cost, let p2 denote the cost of using per unit
of processing capability per unit of time, then the computing
cost can be formulated as

Ccomp = p2n2f
ete. (12)

Therefore, the total cost for processing task T can be expressed
as

C = Cenergy + Ccomm + Ccomp. (13)

6) Computing acceleration: Before the task offloading de-
cision is made, some other QoE requirement such as comput-
ing acceleration is also a key consideration. The computing
acceleration refers to the speedup of processing a task at the
edge when compared with computing it locally. According to
Amdahl’s law, the speedup can be obtained if the (1−λ)D bits
of task data is computed locally as follows, S1 = 1

(1−α)+ α
n1

.
Similarly, the speedup can be obtained if the λD bits of
task data is computed at the edge by the following formula,
S2 = 1

(1−α)+ α
n2

. However, when task data is offloaded to the
edge for processing, the actual latency comes from computing
delay and transmission delay. In this circumstance, the actual
computing acceleration is expressed as,

A =
tl

tup + te + tdown
. (14)

According to the above basic model, many aspects should be
considered to achieve the different requirements of both end-
devices and the system for energy consumption, latency, cost,
and computing acceleration. The first aspect is to decide the
offloading variable λ, i.e., an efficient computation offloading.
The second aspect is to decide the variables B, n1, n2, f l, fe,
i.e., resource allocation of the communication and computing
resources. The third aspect is to decide the association between
tasks and ENs and the placement of computing resources, i.e.,
resource provisioning. The outline of the three research issues
is shown in Fig. 6 and is described in detail below.

Fig. 6: Research issues of resource scheduling in edge com-
puting.

B. Computation offloading

The computation offloading is a very important research
issue for resource scheduling in edge computing, which brings

11

services to the proximity of data source [34]. This subsection
reviews the research on this issue. As shown in Fig. 7, the
computation offloading can be broadly classified on the base
of: a) the direction of offloading, namely from device to edge,
from edge to cloud, from cloud to edge, from device to device,
and from edge to edge, and b) the granularity of offloading,
namely binary offloading and partial offloading.

Fig. 7: A classification of computation offloading for resource
scheduling in edge computing.

B.1. Direction
Since end-devices in the thing layer are mostly resource-

constrained, resource-intensive tasks need to be fully or par-
tially offloaded to ENs with powerful computing resources.
The computation offloading from end-devices to ENs com-
pensates for the deficiency of end-devices in computing per-
formance, storage, and energy efficiency. Also, the compu-
tation offloading from end-devices to ENs can alleviate the
overload of the cloud computing center and reduce the delay
caused by wireless transmission. For example, video data from
surveillance cameras can be offloaded to the EN for low-delay
and privacy-protecting analysis and process, compared with
being offloaded to the cloud computing center. In addition,
the upward offloading has also promoted the development
of the super low-delay applications such as video services
and CAVs. The application data of real-time perception need
to be offloaded to ENs for rapid processing, which guides
vehicles to take right driving actions. Similarly, if ENs are
unable to process the task data offloaded from end-devices
in a timely manner, it can be offloaded to the cloud center.
The computation offloading ways both from end-devices to
ENs and from ENs to the cloud center can be referred to as
upward offloading.

The computation offloading also concentrates on downward
offloading, which means the offloading from the cloud center
to the edge. In the edge-cloud collaboration manner discussed
in the last section, this kind of offloading is adopted. Both
upward offloading and downward offloading are regarded as
vertical offloading. In addition to vertical offloading, the com-
putation offloading manner also includes horizontal offloading.
There are two research issues in horizontal offloading. The
first one is that end-devices can offload their resource-intensive
tasks to other end-devices with idle computing resources. The
second is that one EN can also migrate their task data to
other ENs for processing. Thus, there are in total five different

offloading directions in the vertical offloading and horizontal
offloading, which will be discussed in the following.

1) Device-to-Edge: For applications that require powerful
capacity or edge data aggregation, various end-devices will
offload their tasks to ENs. This offloading direction is the
focus of computation offloading, and it is operated under the
things-edge collaboration manner as discussed in Section II-B.
The offloading from end-devices to ENs can achieve different
QoS and QoE requirements for end-devices. For example,
for reducing the task processing latency, Chen et al. in [87]
considered to offload the computation tasks from MDs to
small-cell base stations (BSs) with cloud-like computing and
storage capabilities, with the aim of minimizing the long-
term system delay. For reducing energy consumption, Guo et
al. in [88] proposed to offload the computation tasks from
MDs to small BSs, and an efficient computation offloading
scheme by jointly considering offloading decision-making and
resource allocation was proposed, aiming at reducing the en-
ergy consumption of MDs. Also, Guo et al. in [88] considered
an ultra-dense edge computing network, where MDs’ energy
consumption is minimized by offloading their tasks to ENs.
Besides, Jošilo et al. in [89] proposed a computation offloading
scheduling scheme to determine whether to offload the tasks
of end-devices to ENs, aiming to minimize the cost that is a
combination of delay and energy consumption.

2) Edge-to-Cloud: Generally, the tasks offloaded from end-
devices are processed by computing nodes in the edge layer.
The computing nodes, including cloudlets, ENs, BSs, mini
data centers, etc., can provide different capacities. If the task
data in the edge layer cannot be processed by the computing
node in time, they can be further offloaded to the cloud
center to achieve a balanced overload. This kind of offloading
direction, from the edge to the cloud, is actually operated
under the edge-cloud collaboration manner, as discussed in
Section II-E. For example, in the area of CAVs, Zhang et al.
in [90] proposed to improve the system utility by utilizing a
multi-level offloading scheme among ENs and cloud servers.
Also, Zhao et al. in [91] considered to jointly optimize the
offloading decision and resource allocation by an edge-cloud
collaborative offloading approach.

3) Cloud-to-Edge: This kind of offloading direction is
also operated under the edge-cloud collaboration manner as
discussed in Section II-E, which brings computation tasks from
the distant cloud to the edge to achieve lower data transmission
latency, thereby shortening the application response time. The
typical issues of the cloud-to-edge offloading mainly include:
(i) video transcoding on ENs [15]; (ii) application cloning
from cloud to edge to provide users with better QoE [92];
(iii) data replication on the edge [59], [93]–[95]; (iv) edge
discovery and management, where workloads are offloaded
from the cloud to the chosen ENs and the orchestration across
multiple ENs is evaluated [96], [97].

4) Edge-to-Edge: The edge-to-edge offloading is actually
operated under the edge-edge collaboration manner, as dis-
cussed in Section II-D, which can alleviate the workload
of some overloaded EN by offloading (or migrating) some
workloads to a peer. The typical issues of the edge-to-edge
offloading mainly include: (i) task scheduling, which can

12

TABLE IV: Comparison of Papers Focusing on Computation Offloading. Acronyms used in this Table: virtual machine (VM).

Gran. Paper Objective Research Content

B
in

ar
y

O
ffl

oa
di

ng
[71] Delay, energy consumption a) Offloading decision; b) transmission power allocation; c) CPU frequency

allocation;

[72] Utility a) Offloading proportion determining; b) power allocation; c) energy
harvesting;

[73] Energy consumption a) Task-destination association; b) offloading decision;

[74] Energy consumption a) Task-destination association; b) offloading decision; c) task ready time
determining;

[75] Utility a) Task-destination association; b) offloading decision;

[76] Energy consumption a) Transmission power allocation; b) offloading decision; c) CPU clock
allocation;

[77] Latency, energy consumption a) Task-destination association; b) wireless channel allocation; c) compu-
tation capability allocation;

[78] Energy consumption a) Task-destination association; b) computing capability allocation;

Pa
rt

ia
l

O
ffl

oa
di

ng

[79] Revenue a) Task-destination association; b) offloading workload amount determin-
ing; c) energy harvesting;

[80] Delay, energy consumption a) Computing resource allocation; b) offloading ratio determining;
[81] Latency a) Task-destination association; b) offloading ratio determining;
[82] Delay a) Task-destination association; b) offloading decision;

[83] Energy consumption a) Offloading data amount determining; b) transmission power allocation;
c) transmission time allocation;

[84] Latency a) Subcarrier assignment; b) offloading ratio determining; c) transmission
power allocation;

[85] Execution time a) Subtask placement; b) topology/schedules of the IoT tasks;
[86] Latency, resource utilization a) Task placement; b) VM instance provisioning;

orchestrate the task processing among different ENs [55]–
[58]; (ii) service migration, by which services are dynamically
migrated across multiple heterogeneous ENs [98], [99]; (iii)
offload forwarding, in which an EN is regarded as a relay to
forward workloads to neighboring ENs [100].

5) Device-to-Device: The device-to-device offloading
can be operated under both the things-edge collaboration
manner and the things-edge-cloud collaboration manner, as
discussed in Section II-B and Section II-C, which offloads the
workloads from one end-device to a peer by making full use
of idle resources. For example, Luo et al. in [101] proposed
a collaborative task data scheduling scheme in VEC, where
the computation tasks of vehicles can be not only processed
locally, i.e., offloaded to RSUs, but also can be migrated to
other vehicles with idle computing resources.

B.2. Granularity
As one of the important research issues in computation

offloading, the offloading decision-making problem focuses
on whether and how much to offload. Depending on whether
the computation task is dividable or not, the granularity of
offloading can be classified into two categories: a) binary
offloading, and b) partial offloading, which will be presented
in the following.

1) Binary Offloading: Binary offloading, also known as “0-
1 offloading”, means the whole computation task is either
processed locally or offloaded to elsewhere. “0” and “1”
are the indicators of whether the task is offloaded or not.
Generally, “0” means the whole task is processed locally, and
“1” means it is offloaded to elsewhere [53], [75]. When the
whole task is processed locally, the computing time, energy
consumption, and the cost of processing task are determined
by the local capacity. When the whole task is offloaded to
other nodes to process, the computing time mainly includes
task transmission time and task processing time. Similarly,

energy consumption mainly includes transmission energy con-
sumption and processing energy consumption. The cost mainly
includes transmission cost and processing cost. From this point
of view, the factors that affect the offloading performance
include wireless channel conditions, wireless bandwidth, and
processing capability of the destination node (i.e., the node to
which the task is offloaded). The research on binary offloading
involves in the association between tasks and destination
nodes [102]–[106], which refers to the determination of the
offloading of a specific task to a destination node, among
various tasks and destination nodes.

2) Partial Offloading: Partial offloading allows flexible
components/data partitioning, which means that a task can be
divided into separated parts [17], [107]–[109]. The research
on partial offloading is to determine how much and in what
way of the whole task can be offloaded to the destination node.
Generally, a ratio known as “offloading ratio” is set to indicate
the proportion of offloading part of the task. Partial offloading
involves two parts of task processing, the local processing
part and the offloading part. Accordingly, the task processing
performance is jointly determined by the computing time,
energy consumption, and the cost of processing task locally
and at the destination side. Actually, in addition to deciding
and optimizing the offloading ratio to achieve various QoS
requirements, the study of partial offloading also involves in
the association between the offloading part of the task and the
destination node [110].

In most existing works, neither binary offloading or partial
offloading issues can be addressed alone, and other issues such
as resource allocation [111]–[114] and resource provisioning
[115], [116] are jointly studied with computation offloading,
which will be presented in later sections. To enable readers to
grasp basic ideas of computation offloading on both binary
offloading and partial offloading, a comparison of papers
focusing on this research issue is presented in Table IV.

13

C. Resource Allocation

As another important research issue in resource scheduling,
resource allocation studies how to reasonably and effectively
allocate resources in the edge computing system to complete
offloading and task processing. Generally, the main resources
involved in the current research on resource allocation are
computing, communication, and storage resources. Computing
resources typically refer to CPU cycles and resource blocks
(VMs/containers). Communication resources refer to wireless
resources including bandwidth, spectrum, power, and link used
for data transmission during computation offloading. Storage
resources are used to cache computation tasks and popular
content (e.g., on-demand video, AR/VR, road surveillance,
etc.) to the edge of the network, reducing the service response
time and the burden on the network. Some research on
resource allocation only focuses on allocating one kind of
resource while most research considering the joint resource
allocation, which will be elaborated on in the following.

1) Single resource: The existing works involved in the
single-resource allocation mainly focus on the allocation of
computing or communication resources. In the computation
offloading decision-making problem, many works consider the
allocation of communication resources. Like the works in
[117] and [118], both focused on communication resources
and studied how to allocate the transmission power during the
offloading process, with the goal of minimizing the system’s
energy consumption. Differently, Li et al. in [119] studied
the channel selection for task offloading. The effect of multi-
channel interference on the energy efficiency of task offloading
was taken into account. Obviously, the most important thing in
the offloading process is the allocation of computing resources.
The work in [120] designed the selective offloading scheme
for IoT devices, and it studied how to allocate the best EN for
offloading tasks to minimize energy consumption. Similarly,
Xu et al. in [121] studied the computation offloading problem
for IoT-enabled cloud-edge computing, and they focused on
how to allocate the computing resource for tasks to minimize
the execution time and energy consumption for MDs. Also,
some studies only consider storage resources in terms of
caching data [122] and caching service [123], [124]. Yu et al.
in [122] proposed a collaborative offloading with data caching
enhancement strategy to minimize the total delay. Caching
services such as databases or libraries on ENs for task execu-
tion can effectively reduce the total delay. The study in [123]
focused on dynamic service caching and task offloading, and
proposed an online algorithm based on Lyapunov optimization
and Gibbs sampling.

2) Computing and communication (CC): The offloading
process often involves the joint allocation of communication
and computing resources. Many existing works have stud-
ied this topic [125]–[134]. Guo et al. in [126] proposed
an adaptive resource allocation framework for MEC, which
applied the idea of blockchain into the framework design.
They formulated an optimization problem for spectrum and
block allocation. The study in [127] formulated the problem
of optimizing the joint allocation of computing resources on
ENs and radio resources under the non-orthogonal multiple

access (NOMA) protocol and used an efficient layer algorithm
to solve it. Likely, to maximize the total revenue, Wang et
al. in [129] studied the optimization problem for bandwidth
and computation allocation with the QoS-guaranteed con-
straint, and they proposed an algorithm based on alternating
direction method of multipliers (ADMM) to solve it. Under
the transmission protocol of time division multiple access
(TDMA), the authors in [130] studied how to assign the
time and rate of local users for task offloading and how
to allocate computation frequency for task execution, aiming
to minimize the computation latency. Similarly, the work in
[131] also adopted TDMA transmission protocol. Millimeter-
wave (mmWave) communication as one of the promising
transmission protocols was applied in the work [132]. This
paper formulated the joint beamforming vectors at the users
and computation ratios at ENs allocation problem to minimize
the system delay, and proposed a penalty dual decomposition
technique to solve this optimization problem.

3) Computing, communication, and storage (CCS): Many
works have considered communication, computing, and stor-
age resources simultaneously in the resource allocation prob-
lem [8], [67], [135]–[137]. In recent years, the prevalence
of edge intelligence has attracted widespread attention from
academia and industry. In the work [135], the authors designed
an In-Edge AI framework for optimizing computing, com-
munication, and caching allocation. They utilized both deep
reinforcement learning and federated learning (FL) techniques
to optimize the edge system’s performance. Liang et al. in
[136] studied the bandwidth provisioning and content source
selection problem by introducing caching and computing func-
tions in MEC. They proposed a decentralized approach based
on ADMM to solve it. Likely, the work in [67] addressed
the optimization problem for joint computation offloading,
resource allocation, and content caching, in which computing,
spectrum, and caching resources were considered simulta-
neously. Particularly, all resources in the study [8] were in
the form of virtual resources. The authors formulated a joint
virtual resource (including spectrum, caching, and computing)
allocation problem, intending to maximize the system’s utility.
Similarly, the authors in [137] also studied the virtual resource
allocation problem in which the communication, computation,
and caching resources can be shared among all users. Besides,
they presented a distributed algorithm based on ADMM to
address the formulated problem. Moreover, a few research
focus on joint communication and storage resource allocation
problems [138], [139].

A comparison of papers focusing on resource allocation is
presented in Table V. It can be observed that communication,
computing, and storage resources are rarely allocated individ-
ually in resource scheduling. Many works combine two or
three of them to model and jointly optimize the allocation
simultaneously.

D. Resource Provisioning
Since loads of users’ requests vary over time, edge com-

puting systems experience constant fluctuations in workload.
These fluctuated workloads may cause problems such as over-
provisioning or under-provisioning of edge resources. In the

14

TABLE V: Comparison of Papers Focusing on Resource Allocation. Acronyms used in this Table: non-dominated sorting
genetic algorithm (NSGA), Deep Q-network (DQN), alternating direction method of multipliers (ADMM), federated learning
(FL).

Paper Computing Communication Storage Algorithm Objective

[117] # ! # Majorization minimization method Energy consumption
[118] # ! # Genetic algorithm Energy consumption
[119] # ! # Auction-based approach Energy consumption
[121] ! # # NSGA-III algorithm Delay, energy consumption
[122] ! # # Game-based Delay
[123] ! # # Lyapunov optimization Delay
[126] ! ! # DQN Performance
[127] ! ! # Many-to-one matching algorithm Cost
[129] ! ! # ADMM Revenue
[130] ! ! # Heuristic-based algorithm Latency
[132] ! ! # Penalty dual decomposition technique Delay
[135] ! ! ! DQN, FL Performance
[136] ! ! ! ADMM Energy consumption

[8] ! ! ! ADMM Utility
[137] ! ! ! ADMM Utility

case of over-provisioning, where the resources allocated to
some users are greater than the actual load demanded by
users, the edge system may be unnecessarily costly. Besides,
in under-provisioning, the resources allocated to users for
the service are less than the actual load demanded by users,
resulting in a poor QoS or even the inability to complete users’
tasks. Therefore, allocating the appropriate amount of edge
resources to users dynamically to minimize the system cost
and meet users’ QoS requirement is an important issue. Based
on the analysis and summary of current research, the studies on
resource provisioning in edge computing can be divided into
two categories: a) task allocation, which is a passive resource
provisioning from users’ perspective. The task allocation prob-
lem in edge computing refers to the optimal placement and
matching plan between users’ tasks and edge resources; b)
resource placement, which is an active resource provisioning
from resource providers’ perspective. The resource placement
mainly includes cloud service decentralization to the edge,
optimized deployment of ESs, quantity allocation of edge
resources, and virtual edge resource placement issues. In the
following, we will elaborate on the two aspects.

1) Task allocation: Yang et al. in [140] studied the cloudlet
placement and task allocation problem. Then, they formed
a mixed integer linear programming (MILP) problem and
used the benders decomposition-based approach to solve it.
Before task allocation, the authors investigated the resource
placement, aiming to calculate the task delay and energy
consumption of different ENs. It provides systematic condi-
tions for task allocation. The work in [141] focused on data
management in edge computing, and it presented a multi-
layer scheduler considered the various context dimensions of
data. In the multi-layer scheduler design, the tasks generated
by data are allocated based on the current context and the
system state during runtime. Fan et al. in [142] proposed
a deadline-oriented task allocation mechanism and formed a
task scheduling problem as a multi-dimensional 0-1 knapsack
problem. They adopted an efficient task allocation algorithm

based on ant colony optimization to increase the system’s total
profit while satisfying the deadline and resource constraints
of the task. There are some works on application placement,
which focus on assigning tasks from users’ applications to the
appropriate edge resources for processing [143]–[145]. It is
essentially a task allocation problem. In [143], the authors
designed a third-party platform responsible for allocating
MUs’ application tasks to edge resource providers. MUs
subscribe to the platform that collects the information of ENs
to place tasks on ENs optimally. A programming algorithm
was proposed to select the best task placement server from
the users’ perspective to avoid task migration, thus minimizing
the time cost. From the platform’s point, the efficient heuristic
algorithm is presented to schedule tasks to minimize the
total cost. Likely, Mahmud et al. in [144] proposed a QoE-
aware scheme for application placement. The proposed scheme
prioritized different tasks of applications and updated the
capabilities of ENs according to their current status, thus
facilitating optimal task allocation decisions. Later, for the
edge-cloud environment, they proposed another application
placement policy [145], aiming to maximize the edge system’s
profit and ensure the user’s QoE.

2) Resource placement: In terms of resource placement,
a portion of works focus on how to place ENs [146], [147],
[154]–[156]. The location and number of edge services have a
crucial impact on both the cost of the edge computing network
and users’ average latency. The study in [146] presented a cost-
aware cloudlet placement scheme for MEC, considering the
cost of cloudlet deployment and the average latency of users.
A Lagrange-based heuristic algorithm was used to achieve
sub-optimal solutions, and a workload allocation scheme was
designed to minimize the delay between users and cloudlet
considering the mobility of users. The edge server placement
has raised concerns on the expenditure of deployment and
operation, the current backhaul network capacity, and non-
technical placement constraints. In [147], the authors proposed
a new framework for edge server placement aiming to reduce

15

TABLE VI: Comparison of Papers Focusing on Resource Provisioning. Acronyms used in this Table: quality of experience
(QoE), quality of service (QoS), mixed integer linear programming (MILP), edge cloud (EC), network function virtualization
(NFV).

Paper Research Content Solution Objective What’s to be scheduled
[140] Cloudlet placement and task allocation Benders decomposition-based algorithm Energy consumption Task from users
[141] Data placement and task allocation Multi-level scheduler Latency, overhead Data
[142] Task allocation Ant colony optimization Profit Users’ tasks
[143] Application placement Game model Cost Uses’ applications
[144] Application placement Separate Fuzzy logic based approaches QoE Uses’ applications
[146] Cloudlet placement Lagrangian heuristic algorithm Delay Cloudlet
[147] EC placement MILP mathematical model Cost EC
[148] Data placement Graph-based iterative algorithm Cache hit rate Data
[149] NFV placement Matching game Delay NFV
[150] Service placement Logical fog network Resource utilization Service
[151] Service placement Genetic-based algorithm QoS Service
[152] Resource provisioning Serverless scheduler Cost CPU cycles
[153] Service provisioning Adaptive scheduling QoS Service

the overall costs of deploying and operating edge computing
networks. The framework addressed the server placement
problem by implementing service placement and optimization
strategies.

Notably, there are lots of current research focusing on
service placement. On the one hand, some research study
decentralized cloud services to the edge [148], [157]–[161].
Nowadays, many data-intensive tasks are computed at the
edge. If the data required for the task is not stored at the
edge, it needs to be downloaded from the cloud, which may
cause additional delay. Therefore, it is valuable to study how to
decentralize cloud data to the edge. Jin et al. in [148] proposed
an efficient graph-based algorithm for the data placement
problem, aiming to maximize the cache hit rate to reduce the
task delay. Combining edge computing and cloud computing
to place data for scientific workflows to minimize the trans-
mission time across different data centers, the authors in [158]
proposed a self-adaptive discrete particle swarm optimization
(PSO) algorithm for the data placement problem. The proposed
algorithm considered the bandwidth, the number of the edge,
and the storage capacity of the edge that affect transmission
delay. Similarly, Chen et al. in [160] also explored the data
placement problem for scientific workflows, and they proposed
the model based on GA and PSO to solve the problem. On the
other hand, more works have studied the service or application
placement at the edge based on users’ requirements [150],
[151], [162]–[168]. The objective functions and constraints in
those works are determined by considering various aspects of
the edge computing environment, such as the application (or
service) architecture, the edge architecture or the edge-cloud
architecture, the network condition, and the network topology.
In [150], the authors proposed a service placement mechanism
based on a logical edge network to meet users’ needs and the
resource constraints of ENs. The proposed service placement
mechanism aimed to minimize the number of services placed
on ENs to optimize the resource utilization of ENs. The work
in [151] studied the load distribution and layout of scalable
IoT services, including vertical and horizontal, to minimize the
possibility of QoS violations due to edge computing resource
constraints. Similarly, the study [166] introduced the problem
of dynamic edge computing service placement, which was

designed to dynamically deploy IoT services on edge resources
to meet QoS requirements such as service delay and bandwidth
usage. At present, the difficulty and trend of this subject are
how to place tasks with data dependencies when the service or
application is composed of multiple dependent tasks. Usually,
in the dependent category, related works modeled their service
or application by Directed Acyclic Graph (DAG) [169]–[173].
The placement purpose of their research is to find a group of
tasks for scheduling, by which the execution time of service or
application and energy consumption of MD become reduced.

Although built on less powerful hardware, edge computing
faces similar challenges as cloud computing in effectively
managing the hardware resources. Therefore, edge computing
also employs virtualization as one of its fundamental technolo-
gies. The virtualization technology, no matter in the form of
VMs or containers, provides flexible and reliable services for
edge computing at a high level. VM placement is a popular
research in resource provisioning at the edge, which can be re-
garded as a process to find the optimal network path to allocate
VM. Therefore, the task can be quickly executed, and energy
usage can be reduced. Li and Wang [174] proposed the method
to find out a VM placement scheme that can reduce the total
energy consumption and keep the access delay in a reasonable
range. In [175], the authors exploited the prediction of users’
movement. The prediction is used for dynamic VM placement
and to find the most suitable communication path according to
expected users’ movement. To date, there are several pioneer
projects proposed by the industry that aims at building general-
purpose edge computing frameworks, including OpenStack
[176], Kubernetes [177], and OpenEdge [178]. Applying con-
tainer techniques to the edge environment is a natural trend
because of the facts of rapid construction, instantiation, and
initialization of virtualized instances [179]. Morabito [180]
evaluated the performance of container-based virtualization
on IoT devices on the edge. They conducted more practical
experiments on Advanced RISC Machine (ARM)-based IoT
end-devices (Raspberry Pi). Performance evaluation on the
CPU, memory, disk I/O, and network shows that container-
based virtualization can represent an efficient and promising
way to enhance the features of edge architectures. In [181],
the authors found that inter-container communications, and

16

container management consume significant CPU resources by
experiments. Then, a joint task scheduling and containerizing
scheme are introduced to tackle this problem. In the past two
years, research on resource provisioning based on serverless
computing architecture has attracted much attention [152],
[153], [182]. Serverless computing is an emerging paradigm
for running user-specified functions on resource providers with
infinite scalability. Suresh et al. in [152] proposed Fnsched,
a novel resource provisioning framework that aims to meet
users’ performance requirements while minimizing the cost of
SPs. Fnsched implemented the autoscale ability by carefully
regulating resource usage on each resource scheduler. Besides,
the authors in [153] proposed an MPSC framework for server-
less computing that supports multiple edge resource providers.
MPSC monitored the performance of serverless providers in
real-time and dispatched users’ application tasks to appropriate
resources.

A comparison of papers focusing on resource provisioning
is presented in Table VI. Since the virtualization technology
brings high flexibility and resource isolation to the edge,
it can be predicted that more research will be devoted to
resource provisioning based on container-based or serverless-
based edge computing architecture in the future.

IV. KEY TECHNIQUES AND PERFORMANCE INDICATORS

Advanced scheduling strategies and techniques are indis-
pensable for realizing optimal scheduling of edge computing
resources and thus meeting the QoS and QoE requirements of
both end-devices and the system. In recent years, many state-
of-the-art resource scheduling techniques have emerged. Based
on whether a control center is needed to collect global in-
formation, resource scheduling can be operated in centralized
manner or distributed manner. Generally, centralized methods
mainly include convex optimization, approximate algorithm,
heuristic algorithm, and machine learning; distributed meth-
ods mainly include game theory, matching theory, auction,
federated learning (FL), and blockchain, as shown in Fig. 8.
In the following, we elaborate on the centralized and dis-
tributed resource scheduling methods before summarizing six
performance indicators, i.e., latency, energy consumption, cost,
utility, profit, and resource utilization.

Fig. 8: Research techniques of resource scheduling in edge
computing.

A. Centralized Methods

1) Convex optimization: The optimization models devel-
oped in the issues of computation offloading, resource al-
location, and resource provisioning are typically non-convex
or NP-hard problems. A significant portion of studies trans-
form the non-convex problem into a near-convex or convex
optimization problem, thus adopting a feasible convex opti-
mization method. Deng et al. in [46] studied the offloading
problem under the green and sustainable MEC framework for
the IoT system. To minimize the response time, they proposed
a DPCOEM algorithm based on the Lyapunov technique and
achieve approximately optimal performance. Similarly, some
research [87], [183]–[187] also used Lyapunov technique to
solve the optimization problem. Lyapunov optimization, as a
stochastic optimization approach, can enable online decision-
making while preserving sub-optimal performance. The work
[188] modeled the problem of resource allocation in MEC as
a mixed-integer program. Due to the NP-hardness nature of
the formulated problem, the authors proposed a decomposition
method to solve it. They decomposed the original problem
into two sub-problems, one is the workload assignment and
another is the edge node dimensioning. Also, the studies in
[189], [190] employed the decomposition method to solve
the complicated optimization problem. The authors in [40]
investigated the computation offloading problem in the UAV
scenario, and the formulated non-convex optimization problem
was solved using the Dinkelbath algorithm and successive
convex approximation (SCA) technique. Similarly, Liu et al.
[191] also used the SCA technique to solve a non-convex
optimization problem. The idea of SCA is to iteratively solve a
series of convex optimization problems similar to the original
non-convex problem, to find a local optimal solution of the
original problem. Yang et al. in [192] formulated a non-convex
problem for computation offloading and data caching. To solve
the problem, they transformed it into a near-convex problem
and then designed an algorithm based on ADMM. ADMM
is a simple method for solving decomposable convex opti-
mization problems. Using the ADMM algorithm, the original
problem can be equivalently decomposed into some solvable
sub-problems, which can be solved in parallel. Finally, the
solutions of the sub-problems were coordinated to obtain the
global solution of the original problem. Besides, the ADMM
technique was also utilized in [193], [194].

Summary: The main techniques of convex optimization
include the Lyapunov technique, decomposition technique,
SCA technique, and ADMM technique. In general, techniques
based on convex optimization have the following advantages:
a) mature, and widely used; and b) sub-optimal optimization
results can be easily obtained. However, the calculations of
methods based on these techniques are often complex and
challenging to implement in real systems.

2) Approximate algorithm: In addition to the transfor-
mation to traditional convex optimization methods, a large
number of studies adopt various approximation algorithms
to solve the non-convex and NP-hard problems in resource
scheduling. For MEC systems, Badri et al. in [195] built the
application placement problem as a multi-stage stochastic pro-

17

gramming problem. They adopted a parallel sample averaging
approximation (SAA) algorithm to solve this problem and
obtained an effective solution. In [196], the computation prob-
lem was modeled as an infinite horizon average cost Markov
decision process (MDP) process and was approximated to a
virtual continuous-time system before a multi-level offloading
policy was proposed. The work in [197] studied the edge-
cloud placement problem and described it as a multi-objective
optimization problem, which was solved by an approximate
method using k-means and hybrid quadratic programming.
Lu et al. in [198] modeled a multi-user resource allocation
problem in edge computing and utilized an approximation
algorithm for local search to solve the NP-hard problem. The
work in [199] studied the problem of maximizing revenue
by placing multiple services in an edge system. The authors
first proved that the formulated problem is NP-hard and then
proposed a deterministic approximation algorithm to solve it.

Summary: The basic idea of the approximate algorithm is
utilizing the existing approximate methods, such as relaxation,
bounded, local search, and dynamic planning techniques,
to solve the established NP-hard problems. In general, the
approximate algorithm has the following advantages: a) sim-
ple, flexible, and easy to implement; and b) not difficult to
design a local search algorithm for most difficult NP-hard
problems. However, the approximation algorithm has some
disadvantages: a) easy to fall into a local optimum; and b)
the performance of the solution can not be guaranteed due to
randomness.

3) Heuristic algorithm: Nowadays, one of the most popular
ways to solve NP-hard problems is utilizing heuristic algo-
rithms including simple heuristics and meta-heuristics. Using
principles similar to bionics, heuristic algorithms abstract some
phenomena in nature and animals into algorithms to deal
with corresponding problems [200]. In resource scheduling
research, most of the current works utilize greedy algorithms
while some works utilize local search algorithms. Huang et
al. in [161] modeled a multi-replica data placement problem
for MEC. They analyzed the complexity of the formulated
problem and designed a greedy strategy to solve the problem.
Similarly, the works in [116], [201] also employed the greedy
idea to solve the NP-hard problem. The study in [155] jointly
studied the problem of edge server placement and application
allocation, and they proposed a heuristic algorithm based
on local search to effectively solve the problem. Likely, the
local search heuristic algorithm was also used in [202]. Meta-
heuristics in heuristics is widely used in various fields, includ-
ing genetic algorithm, ant colony algorithm, PSO, simulated
annealing, and tabu search. Canali et al. in [203] designed a
heuristic algorithm based on a genetic algorithm for the service
placement problem. There are also some works [121], [204]–
[208] utilizing the non-dominated sorting genetic algorithm
(NSGA) to solve the formulated multi-objective optimization
problem. Hu et al. in [206] formulated the request scheduling
problem as a mixed-integer nonlinear program. The problem
was analyzed as a double decision-making problem, and the
authors presented an optimization approach based on NSGA
to address the problem. Besides, the authors in [209] proposed
a PSO-based heuristic strategy to solve the joint problem of

service placement and task provisioning. The study in [210]
designed a heuristic algorithm based on tabu search for task
scheduling in IoVs. In [211], the authors studied the problem
of computation offloading and resource allocation and solved
the upper-level optimization problem with an ant colony based
heuristic algorithm.

Summary: The research that utilizes heuristic algorithms to
solve NP-hard problems in resource scheduling tends to em-
ploy greedy-based and genetic-based algorithms. The simple
heuristic algorithm is efficient, but easy to fall into a local
optimal solution. The meta-heuristic algorithm has too many
parameters, which makes it difficult to reuse the calculation
results. Also, it is impossible to adjust those parameters
quickly and effectively.

4) Machine learning: In recent years, advanced AI tech-
niques have been applied in various fields due to the de-
velopment of machine learning, such as deep learning and
reinforcement learning techniques. In the research on resource
scheduling for edge computing, traditional methods (e.g., con-
vex optimization and approximation algorithms) are usually
static solutions to complex optimization problems. They can-
not achieve optimal decisions based on dynamic environments.
Generally, the interaction with the edge environment during
resource scheduling can be modeled as an MDP problem,
which can be effectively solved by the reinforcement learning
technique. Therefore, many studies utilize reinforcement and
deep learning methods for resource scheduling problem in
edge computing. In [212], the authors modeled the online
offloading problem as an MDP and proposed a deep Q-network
(DQN) technique to accommodate dynamic environments and
solve the problem. Ning et al. in [213] utilized the DQN
technique to design an intelligent scheduling approach for
VEC. Similarly, the works in [216]–[218], [219] and [220]
respectively studied the computation offloading, resource al-
location, and request scheduling problems of IoT users, and
all utilized the DQN technique to learn the optimal strategy.
Lu et al. in [214] utilized the LSTM network layer and
candidate network combined with the actual edge computing
environment to improve the DQN algorithm and achieve better
performance. The work in [215] studied the computation of-
floading optimization problem and proved it is NP-hard before
proposing an offloading algorithm based on DQN and FL.
Besides, the work in [221] described the offloading decision
problem as a multi-label classification problem and utilized
a deep supervised learning technique. Chen et al. in [222]
proposed a novel prediction-enabled feedback control with re-
inforcement learning based resource allocation method, which
effectively obtain adaptive and efficient resource allocation for
cloud-based software services.

Summary: Generally, the machine learning technique used
for resource scheduling in edge computing has the following
advantages: a) strong parallel processing capability; b) strong
distributed storage and learning capability; and c) has the
function of associative memory and can fully approximate
the complex nonlinear relationship. However, it also has the
following disadvantages: a) require a large number of param-
eters; b) a black-box process, and the learning process cannot
be observed, and the output results are difficult to interpret,

18

TABLE VII: Comparison of Papers Using Centralized Methods. Acronyms used in this Table: markov decision process (MDP),
successive convex approximation (SCA), alternating direction method of multipliers (ADMM),non-dominated sorting genetic
algorithm (NSGA), Deep Q-network (DQN),Quality of service (QoS), quality of experience (QoE), long short-term memory
(LSTM), federated learning (FL).

Tech. Paper Objective Online Method Advantages Disadvantages

C
on

ve
x

op
tim

iz
at

io
n

[46] Response time #
a) Use Lyapunov technique to decompose the formu-
lated problem to be a convex optimization; b) Pro-
posed a DPCOEM algorithm to solve the problem.

a) Mature and widely
used;

b) Near-optimal
results can be

easily obtained.

a) High complexity;
b) Poor practicality.

[188] Cost #
a) Divide the formulated problem into two sub-
problems; b) Propose a trade-off approach to solve
it.

[40] Energy efficiency #
a) Decompose the problem into sub-problems; b) Use
the Dinkelbath algorithm and SCA technique to solve
it

[192] Execution delay #

a) Use McCormick envelopes to transformed the
problem into a near-convex one; b) Designed an
algorithm based on ADMM to achieve near optimal
results.

A
pp

ro
xi

m
at

e
al

go
ri

th
m

[195] QoS #

a) Use a sample averaging approximation algorithm
to solve muti-stage stochastic programs; b) Design
a fast parallel greedy algorithm to solve application
placement.

a) Simple, flexible
and easy to implement;

b) Easy to design a
local search algorithm.

a) Easy to fall into
a local optimum;

b) The performance
of the solution

can not be
guaranteed.

[197] Service delay #
a) Prove the formulated problem is NP-hard; b)
Propose an approximate approach with k-means and
hybrid quadratic programming.

[198] Cost !
a) From a simple case to a complicated case; b) Prove
the formulated problem is NP-hard; c) Propose an
approximation algorithm for local search.

[199] Revenue !
a) Prove the formulated problem is NP-hard; Propose
a deterministic approximation algorithm to solve it.

H
eu

ri
st

ic
al

go
ri

th
m

[161] Latency #
a) Prove the problem is NP-hard; b) design a greedy-
based heuristic algorithm to address it.

a) Efficient;
b) Obtain the optimal

solution quickly

a) Easy to fall into
the local optimal

solution;
b) Too many
parameters.

[155] Service cost #
a) Prove the formulated problem is NP-hard; b)
Propose SPAC based on local research.

[203] Latency #
a) Prove the formulated problem is NP-hard; Pro-
pose a scalable heuristic approach based on genetic
algorithm.

[206] Latency #
a) Analyze the problem as a double decision-making
problem; b) Propose an heuristic approach based on
NSGA.

M
ac

hi
ne

le
ar

ni
ng

[212] Performance !
a) Formulate the offloading problem as an MDP; b)
design a DQN-based offloading policy. a) Strong parallel

processing capability;
b) Strong distributed
storage and learning

capabilities;
3) Approximate the
complex nonlinear

relationship.

a) Require a large
number of
parameters;

b) A black-box
process;

c) Long learning
time.

[213] QoE !
a) Divide the original problem into two sub-
problems; b) Develop a two-side matching scheme
and a DQN approach to schedule requests.

[214] Performance !
a) Propose a DQN algorithm to solve the offloading
problem; b) use LSTM network layer and candidate
network to improve DQN algorithm.

[215] Utility !
a) Prove the formulated problem is NP-hard; b)
Design an offloading method based on DQN and FL.

which will affect the credibility and acceptability of the results;
and c) long learning time, and may fall into a local optimal
solution or may not even achieve the learning purpose.

B. Distributed Methods

1) Game Theory: Game theory is a powerful framework to
analyze the interactions among entities that act for their self-
interests with low complexity [223]. In a game, all players
are rational and aware that their interests are affected by
others and also affect others. All players can change their
actions in response to others’ actions to maximize their own
interests. Li et al. [224] proposed a game-theoretic scheme
to optimize the offloading strategy considering computing
resource and bandwidth to minimize the system cost. Liu
et al. [225] formulated a Stackelberg game to model the

interactions between ENs and users, where the EN determines
the price at which services are provided to maximize its
revenue, and users make offloading decisions based on the
price to minimize their own costs. Also, Ranadheera et al.
[226] developed a distributed mechanism for computation
offloading by utilizing a minority game-based method, aiming
to guarantee users’ QoE requirement for latency and energy-
efficient activation of servers. Similarly, some research [48],
[227]–[229] also utilized game theory to analyze and solve
the resource scheduling problem in edge computing. Besides,
some solutions combine game theory with other techniques.
For example, Meng et al. [230] proposed a game-theoretic
based resource allocation mechanism to optimally allocate
resources for each component task of a mobile application.
They combined the mechanism with a reverse-auction based

19

allocation mechanism and a Partial Critical Path (PCP) strat-
egy. Zhan et al. in [231] proposed a computation offloading
game framework that does not need information of network
bandwidth and preference. To obtain the optimal offloading
decision for a maximal utility in terms of processing time and
energy consumption, an MDP and a policy gradient based
deep reinforcement learning (DRL) are utilized to solve the
problem. Zhang et al. [232] proposed a coalitional game-
based method to analyze the data offloading from MDs to
MEC servers, aiming to improve bandwidth efficiency and
user latency, and gain the payoff of MEC servers. To stimulate
the offloading, the authors utilized a pricing mechanism to
combined with the coalitional game-based method.

Summary: The basic idea of a game theory-based distributed
method is to regard each user in the game as a player.
The best response decision is made through a collaborative
or non-collaborative manner among players to gain their
best interests. All those game theory-based methods need to
prove the existence of Nash Equilibrium, where a mutually
satisfactory solution among users is obtained, and no user
is willing to change its decision unilaterally. Generally, the
game theory-based method has the following advantages: a)
simple, flexible, and easy to implement; and b) practical and
rational for the participants. However, it also has the following
disadvantages: a) the mutually satisfactory solution may not
be the global optimal solution; and b) continuous iteration to
achieve the Nash Equilibrium.

2) Matching theory: The matching theory is a sub-field
of economics, which is a promising concept in distributed
resource management and scheduling. Besides, the matching
theory provides distributed self-organizing solutions to re-
source scheduling problems with low complexity. In matching
theory-based resource scheduling, each agent (such as an EN,
a radio resource, or a transmitter node) sorts the others and
allocates resources using a preference relation. Generally, a
match is defined as: for a given graph G = (V,E), a match
of the graph M is a sub-graph of G that consists of a portion
of vertexes and edges of the original graph G. And there are
no common vertex and no adjacent edge in the sub-graph.
A vertex has at most one edge in a matching graph, and
if a vertex has one edge, this vertex is called a matched
vertex. Gu et al. [73] studied the problem of how to efficiently
assign computing tasks to reduce energy consumption in the
edge computing system under the constraints of the computing
capacity of both MDs and ENs, wireless channel conditions,
and delay. In this regard, this paper utilized a one-to-many
matching theory for modeling and analysis, and proposed a
heuristic swap-matching based algorithm to solve the task
assignment problem. Pham et al. [233] proposed two matching
algorithms to solve the computation offloading decision prob-
lem and joint resource allocation problem, aiming to minimize
the system-wide computation overhead. Similarly, the study
in [44], [108], [149], [234] also utilized matching theory-
based methods to solve resource scheduling problems in edge
computing.

Summary: Matching theory is a strong tool for analyzing the
mutually and dynamic beneficial relations between users and
SPs [243], [244]. Generally, the matching theory-based method

has the following advantages: a) effective in high dynamic
networks; and b) extendable, decentralized, and practical for
some complex networks. However, since it is generally used
to solve binary offloading problems, it is not very appropriate
in solving partial offloading problems.

3) Auction: Auction is inherited from economics and
is widely used for resource management and scheduling
problems. In an auction mechanism framework for resource
scheduling, the entities with tasks to be processed act as
bidders, and the entities providing task processing service act
as sellers. A trusted entity acts as a third auctioneer to ad-
ministrate trading and makes online decisions. To understand
the auction concept easily, we take the work in [245] as an
example. IoT devices first published their computation tasks
and the corresponding rewards to the edge computing system.
Then, the MDs providing computing services analyzed the
rewards they can obtain through computing tasks and sub-
mitted their bids to the system. Finally, the system assigns the
task to the MD who submitted the highest bids. The auction-
based resource scheduling technique can provide a polynomial
complexity solution, which has been verified to achieve near-
optimal performance. He et al. in [235] considered regarding
the resourceful MDs as collaborative nodes to process tasks
offloaded from end-devices. And an online auction-based
incentive mechanism is proposed to maximize the long-term
system welfare. Sun et al. in [45] investigated joint resource
allocation and network economics in edge computing. They
proposed two double auction schemes with dynamic pricing
in MEC to maximize the number of successful trades, one
is called breakeven-based double auction (BDA), and another
is called dynamic pricing based double auction (DPDA). Li
et al. in [236] integrated time scheduling, resource allocation,
and task executor selection for collaborative task offloading,
and proposed an online auction mechanism based on primal-
dual optimization framework to maximize the social welfare.
Also, the work in [237] proposed a reverse auction theory-
based method to solve the 0-1 nonlinear integer programming
optimization problem to decide the offloading target channel.
Similarly, the research in [119], [246] also utilized the auction-
based method to solve resource scheduling problem in edge
computing.

Summary: Like the game theory-based method, in an
auction-based resource scheduling framework, both SPs and
users try to maximize their own welfare. Generally, the match-
ing theory-based method has the following advantages: a)
economic efficiency to achieve a trade-off between requests
and services; and b) practical in real scenarios. However, it
also has the following drawbacks: a) the solution may not be
the global optimal solution; and b) extra third trusted party for
auction management may induce extra overhead.

4) Federated learning: FL, also known as collaborative
learning, is a machine learning technique that can train
resource scheduling algorithm on multiple distributed edge
devices or servers that do not exchange local data samples
[247]. FL is a distributed machine learning algorithm, which
not only takes the advantages of machine learning in solving
dynamic resource scheduling problems, but also develops
and improves it. In this regard, Ren et al. in [238] studied

20

TABLE VIII: Comparison of Papers Using Distributed Methods. Acronyms used in this Table: markov decision process (MDP),
deep reinforcement learning (DRL), non-dominated sorting genetic algorithm (NSGA), vehicular edge computing (VEC), mobile
device (MD), edge node (EN), federated learning (FL).

Tech. Paper Objective Online Method Advantages Disadvantages

G
am

e
T

he
or

y

[224] Cost #

a) The formulated problem is decoupled into re-
source allocation and offloading decision-making
problems; b) The offloading decisions are obtained
via potential game; c) The resource allocation is
achieved by using the Lagrange multiplier. a) Simple, flexible

and easy to
implement;

b) Practical and
rational strategy

for the
participants.

a) The mutually
satisfactory

solution may
not the global

optimal solution;
b) Continuous

iteration to
achieve the

Nash Equilibrium.

[225] Revenue, cost #
Depending on the edge node’s knowledge of the
network information, developed the uniform and
differentiated pricing algorithms.

[226] Energy efficiency !
A distributed learning algorithm to solve server mode
selection problem

[231] Utility !
a) Formulate the problem as a partially observable
MDP; b) Solve it by a policy gradient DRL based
approach.

M
at

ch
in

g
T

he
or

y

[233] Overhead #
a) Users make the offloading decisions; b) Approxi-
mate the inter-cell interference and find the transmit
power of offloading users using a bisection method. a) Effective in

high dynamic
networks;

b) Extendable,
decentralized, and
practical solutions
for some complex

networks.

a) Generally used
to solve binary

offloading
problem;

b) Ineffective in
solving partial

offloading
problem.

[234] Delay #

a) Formulate the task assignment problem in VEC
as a matching game; b) Propose two methods, one
is one-to-many matching method and another is a
heuristic swap-matching method.

[44] Throughput !

Propose a learning-based channel selection frame-
work by leveraging the combined power of machine
learning, Lyapunov optimization, and matching the-
ory.

A
uc

tio
n

[235] Welfare !
a) Propose a VCG-based offline optimal auction
Mechanism; b) Propose a Myerson Theorem-based
allocation rule of online truthful auction.

a) Economic
efficiency to

achieve a trade-off
between requests

and services;
b) Practical in
real scenarios.

a) The solution
may not be the
global optimal

solution;
b) Extra overhead
will be induced

since a third
trusted party

is needed.

[45] Successful trades #
a) Propose a breakeven-based double auction (BDA);
b) Propose a more efficient dynamic pricing based
double auction (DPDA).

[236] Welfare !

a) Proposed a primal-dual framework based online
auction. b) Schedule transmission and computing
times, and optimally allocate communication and
computing resources;

[237] Energy consump-
tion #

a) Determine the MD user classification and prior-
ity; b) Proposed a reverse auction-based offloading
algorithm.

Fe
de

ra
te

d
L

ea
rn

in
g

[238] Utility #

a) Multiple DRL agents are deployed on multiple
ENs to indicate the decisions of the IoT devices;
b) FL is used to train DRL agents in a distributed
fashion. a) Privacy-

protected;
b) Reduce the

burden of
wireless channel;
c) Low overhead

of learning.

a) Involve in
multiple devices;
b) Vulnerable to

malicious attacks.

[135] Utility !

a) Integrate the DRL and FL methods with edge
computing system; b) Exchange the training model
parameters among end-devices and servers in a col-
laborative way.

[239] Privacy, service
demands #

a) Model the problem of whether service is placed
on edge node or not as a 0-1 problem; b)Propose a
hybrid algorithm combining a distributed FL method
and a centralized greedy algorithm.

B
lo

ck
ch

ai
n

[240] Profit #
a) A prototype of an edge computing system for
mobile blockchain; b) A pricing schemes. a) Maintain data

security;
b) Maintain data

integrity

a) Relatively high
latency;

b) Involve in
multiple devices.

[241] Latency #
a) blockchain-based framework is designed degrade
the data loss possibility; b) NSGA-III is leveraged to
acquire the balanced offloading strategies;

[242] Profit #
a) subtask-virtual machine mapping strategy; b) stack
cache supplement mechanism;

21

the computation offloading problem for IoT devices in an
energy harvesting scenario. To jointly allocate communica-
tion and computing resources during the offloading process,
DRL agents are deployed in IoT devices to guide them to
make offloading decisions. Meanwhile, to make the DRL-
based algorithm feasible and reduce the transmission overhead
between IoT devices and servers, the FL method is adopted
to train DRL agents in a distributed manner. Also, to jointly
allocate communication, computing, and storage resources in
edge computing, the authors in [135] integrated the DRL
method and FL method in edge computing and proposed an
In-Edge-AI framework, where the parameters of the training
model are exchanged between end-devices and edge node to
better optimize the resource scheduling model. Besides, Qian
et al. in [239] combined the FL method with a centralized
greedy algorithm to address the problem of service placement
with privacy-awareness in the edge computing system.

Summary: Compared with the traditional centralized ma-
chine learning algorithm, FL has the following advantages:
a) since the training process is carried out on distributed
devices, there is no need to upload local data to the dedicated
server for centralized training, which can protect the user
privacy and reduce the data transmission burden of wireless
channels; b) users only upload the parameters of their own
training models, and the synthesized parameters from multiple
devices are fed back to users, which can effectively reduce the
individual training time. However, it also has the following
disadvantages: a) involves in multiple devices; and b) is
vulnerable to malicious attacks. The FL method for resource
scheduling in edge computing is a new method, and we look
forward to more works in the future.

5) Blockchain: Blockchain technology, as an emerging de-
centralized security system, has attracted more and more atten-
tion due to its unique functions such as decentralization, non-
tampering, irreversible and traceable, and has been applied in
many applications, such as bitcoin, smart grid, and IoT [237],
[248]. The introduction of blockchain technology into edge
computing can ensure the integrity of resource transaction
data and the SP’s profits. There are several works considering
integrating the blockchain technology into edge computing
[240]–[242], [249]. To manage edge computing resources
effectively, the work in [240] introduced a novel concept
of edge computing for mobile blockchain and presented a
prototype for IoT blockchain mining tasks offloading. Xu et
al. in [241] proposed BCD, a blockchain-based computation
offloading method in edge computing. The proposed method
can address the unequal resource distribution problem and
ensure QoS requirements of users with an offloading strategy
that preserves data integrity and balance. Also, to ensure the
integrity of resource transaction data and SPs’ profits, Xiao
et al. in [242] proposed an emerging IoT architecture, name
EdgeABC, where the computation offloading algorithm is
implemented on the blockchain in the form of smart contracts.

Summary: The blockchain-based method has the following
advantages: a) can maintain data security; and b) can maintain
data integrity. However, it also has the following disadvan-
tages: a) has relatively high latency; and b) involves in multiple
devices. The blockchain-based resource scheduling method in

edge computing is also a new method, we expect more future
works dedicated to this direction.

From the above analysis, since centralized methods need to
collect global information from users, it can obtain a better
optimal solution and incur more overhead than distributed
methods. Differently, distributed methods are more simple,
flexible, easy-implement, and adaptive to a dynamic environ-
ment than centralized methods. We summarize centralized and
distributed methods in Tables VII and VIII, respectively.

C. Performance Indicators

1) Latency: From the objectives designed in current re-
search (Table IV-Table VIII), we find that latency is a key per-
formance indicator that affects users’ QoE. For delay-sensitive
applications, designing a resource scheduling algorithm to re-
duce latency is one of the main focuses. Since the computing,
communication, and storage resources in the edge system are
limited, if multiple delay-sensitive task requests are sent to the
edge simultaneously, not only the latency requirements should
be considered but also the constraints of resource capacity and
energy consumption should be weighed, which would form
a complex optimization problem. Generally, the latency of a
task in resource scheduling consists of: a) local computing
time; b) transmission time for task offloading; c) processing
time at the edge or cloud; and d) transmission time for result
return. The idea of current research is generally establishing a
delay model for specific application scenarios, and formulating
an optimization problem by considering various constraints to
reduce latency, before solving it by different algorithms.

2) Energy Consumption: Energy consumption is an impor-
tant performance indicator for users’ QoE in edge computing
system, especially for small smart devices. The energy con-
sumption in the research of resource scheduling in edge com-
puting mainly consists of: a) the energy consumption for local
computing; b) the energy consumption for offloading; c) the
energy consumption for processing tasks at the edge or cloud;
and d) the energy consumption for transmitting result back.
Many works just aim to reduce energy consumption [202],
[250], [251] while some works aim to reduce latency and
energy consumption simultaneously [51], [107], [112], [131],
[252]. Besides, there are also some works considering end-
devices have the function of energy harvesting and wireless
charging during the energy consumption minimization [72],
[79], [111], [187].

3) Cost: Research on minimizing the cost of the edge
computing system as a performance indicator is generally a
comprehensive performance indicator established under sat-
isfying user service quality. As described in Section III-A,
when the task is offloaded, its costs include the energy cost
(for transmission and processing tasks), the cost for using
communication channels for transmission, and the cost for
processing tasks at the edge. The current research generally
seeks the best solution by establishing different cost models
with the objective of minimizing the cost [71], [216], [253].

4) Utility: The concept of utility in edge computing refers
to the satisfaction users obtain under a certain resource
scheduling scheme. And the utility is generally represented

22

by the utility function. According to different objectives,
the utility function is represented and mathematically trans-
formed by different service quality parameters, such as data
transmission rate, delay, energy consumption, and cost. The
mathematical transformation mainly includes reciprocal, loga-
rithm, and weighted summation. Finally, effective optimization
algorithms are designed to maximize the utility [91], [108],
[251], [254], [255].

5) Profit: The profit is generally measured from the per-
spective of edge SPs when deploying, allocating, and schedul-
ing edge resources for users. The obtained profit is calculated
by subtracting the SPs’ operating costs from users’ payment.
Under the condition of satisfying the users’ QoS, a profit
maximization problem is generally developed before some
marvelous solutions (such as game theory, matching theory,
and auction) is proposed [145], [256]. Similarly to profit
maximization problem, some works also aim to maximize the
welfare of society in edge computing system [235]–[237].

6) Resource Utilization: Resource utilization is also mea-
sured by edge resource providers. Since the resources in edge
are limited compared to that in cloud, the utilization of edge
resources becomes particularly important with the increasing
users. A proper resource scheduling strategy can make full
advantage of edge resources and meet users’ requirements
simultaneously. Existing works typically aim to maximize
resource utilization, which is defined as the ratio of the
resource usage volume to the total resource volume [219],
[257]–[259].

V. RESOURCE SCHEDULING IN APPLICATIONS CONTEXT

New applications are the main driving force for edge com-
puting. Edge computing involves optimal resource scheduling
in many application scenarios due to users’ stringent require-
ments for latency, energy consumption, cost, privacy, etc. In
this section, we introduce several typical application scenarios
involved in the research on resource scheduling in edge
computing. When we were analyzing references, we recorded
the applications involved in each paper. Through statistics, we
have summarized several more researched and more common
applications, which serve as the typical applications of this
survey, including UAV, CAV, video service, smart city, smart
health, smart manufacturing, and smart home, as shown in
Fig. 9.

A. UAV

UAVs, especially low-cost quad-rotor aircraft, are experi-
encing explosive growth and have been widely used in civil
and military fields, such as traffic monitoring, public safety,
disaster detection, search, and rescue. And the research on
resource scheduling in the field of UAVs can be divided into
two directions:

1) UAVs as users: In some computing-intensive applica-
tions, the UAVs are unable to meet the task requirements due
to the limited resources. In this case, the resources at the edge
of the wireless network, such as cellular BSs, can provide
cloud-like computing services to assist UAVs to complete the
task processing [260], [261]. Cao et al. in [260] studied how

to offload the latency-sensitive tasks of UAVs to the ground
BSs, subject to the speed constraint of UAVs. Similarly, the
authors in [261] studied the offloading problem based on two-
tier UAVs, aiming to minimize the latency of tasks and the
system cost.

2) UAVs as edge resources: Due to the convenient mobility,
UAVs can be regarded as mobile edge resources or cooper-
ate with traditional edge servers on the ground to improve
their connectivity, which can provide high-quality services for
users [107], [252], [262]–[265]. In [262], multiple UAVs are
regarded as flying edge nodes for MUs. The authors presented
ToDeTaS, a two-layer optimization method, to jointly solve the
deployment and task scheduling problem, aiming to minimize
the system energy consumption. Likely, Zhang et al. in [263]
formulated a computation efficiency maximization problem in
a UAV-assisted MEC system. Yu et al. in [107] proposed a
UAV-enabled MEC system to provide the computing service
to the IoT devices, which cannot access any service due to
the sparse distribution of the existing ENs. They studied the
resource allocation problem to minimize the service delay of
IoT devices. Similarly, in [252], under the UAV-aided MEC
architecture, the authors studied the task offloading problem
and adopted the agent to conduct an offloading plan based on
the perceived information of users, UAV, and edge nodes.

We summarize the studies on UAVs mentoined above in
Table IX.

B. CAV

With the development of AI, computer vision, depth per-
ception and sensing technologies, vehicles have gradually
evolved from traditional travel tools into CAVs with intelligent
and interconnected computing systems. According to Intel,
4TB of raw data would be generated from a CAV in one
day, which poses a great challenge on processing capacity
of CAVs to support various low-latency and computation-
intensive applications. Therefore, the research on computation
offloading from vehicles to edge or cloud has attracted much
attention. Also, considering the enhancement of the comput-
ing, communication, and storage capabilities of vehicles and
the widespread distribution, vehicles can also be regarded
as edge resources to provide users with flexible computing
services. Accordingly, the research on resource scheduling in
edge computing under the CAV environment includes two
directions:

1) Vehicle as users: In this case, the focus is to schedule the
tasks generated by vehicles to the edge (e.g., RSU) [90], [210],
[251], [255], [266]–[270]. Li et al. in [255] considered the
vehicular edge computing framework where the computation
tasks of autonomous vehicles can be scheduled to RSUs.
They investigated the task offloading problem based on the
time-varying channel characteristics to maximize the system
utility. Likely, by offloading vehicles’ tasks to RSUs, the
work in [266] took load balancing into account and used
FiWi technology to manage network due to the dynamic
vehicular network. Then, the authors proposed a soft-defined
network (SDN) based offloading scheme aiming to minimize
the task delay. Zhou et al. in [267] studied the energy-efficient

23

Cloud

CN

CN

Edge

Thing

WAN

WAN

WAN

 Cloud Edge Thing

UAVs

Video service

Smart manufacturing

Smart home

CAVs

Smart city

Smart health

Fig. 9: Various application scenarios under edge computing architecture.

offloading problem and presented a distribution method based
on consensus ADMM. The work in [269] developed a multi-
objective optimization problem for computation offloading in
an IoV edge system to reduce energy consumption and delay
simultaneously. And the authors adopted a non-dominated
sorting genetic algorithm to solve the problem. Moreover, the
work in [270] formulated a computation offloading problem
as a distributed offloading decision-making game, in which
each vehicle as a player makes its best response decision to
minimize its joint cost (including latency and offloading cost).

2) Vehicle as SPs: In this case, vehicles can be the supple-
ment to the edge, providing computing services for MUs [36],
[271]–[273]. Utilizing the idle resources of parked vehicles
(PVs), the authors in [271] studied how to schedule the tasks
generated by MUs that can be partitioned into sub-tasks to
PVs, aiming to maximize the social welfare. Besides, Huang
et al. in [36] regarded PVs as available edge resources that
can collaborate with the existing edge servers to provide
computing services for MUs. They proposed an interactive
protocol for service provisioning considered the security and
privacy requirements of users. Similarly, in [272], collaborated
with edge servers, PVs are employed to execute tasks of MUs
with delay constraints. The authors proposed a distributed
approach based on the Stackelberg game to solve the task
assignment problem. Particularly, AVE was presented in [273]
as a job scheduling framework, where autonomous vehicles
collaborate to provide computation services for each other.

We summarize the studies on UAVs mentioned above in
Table X.

C. Video Service
The video generated by smart devices has promoted the

development of various applications, such as traffic control,
autonomous driving, public surveillance and security, and

AR/VR. Due to the limited storage and computing capabil-
ities of smart devices, it may be inefficient to process the
computation-intensive and bandwidth-hungry videos locally.
Scheduling video service to the edge to process is a feasible
method to meet the low-latency requirement.

In [274], VideoEdge was proposed to optimize the place-
ment of computer vision components, where two challenges
were addressed including exponentially large search space
caused by multiple resource providers and merging conflicts.
Yi et al. in [275] presented LAVEA, a video analytics edge
computing platform. They formulated the task selection and
prioritized for offloading as an optimization problem. LAVEA
can provide low-latency computation offloading service based
on serverless architecture. For the AR applications in video
services, Ali et al. in [276] proposed a resource allocation
scheme, which involved both communication and comput-
ing resources. They leveraged the inherently collaborative
nature of AR applications and solved the energy expendi-
ture minimization problem with low-latency constraint by the
successive convex approximation algorithm. Further, Liu et
al. in [277] considered the reliability of AR task offloading
problem, where the components of an AR task was modeled
as a directed acyclic graph with dependencies. To minimize
the failure probability of AR service, an integer PSO-based
algorithm was proposed.

We summarize the studies on video services mentioned
above in Table XI.

D. Smart City
In 2016, Alibaba put forward the concept of “smart city”,

where multiple urban data are used to manage the city better.
To manage and process the smart city data characterized by
diversity and heterogeneity and involved the privacy and secu-
rity of residents, some studies focus on designing edge collab-

24

TABLE IX: Comparison of Papers Focusing on UAVs. Acronyms used in this Table: edge server (ES), base station (BS),
unmanned arerial vehicle (UAV), mobile user (MU).

Paper Research issue Edge What’s to be scheduled Key points

[260] Computation offloading BSs Tasks from UAVs

Minimize the response time; Optimizing
the trajectory of UAVs; the constraints: the
speed of UAVs and the computation capac-
ity of BSs

[261] Computation offloading BSs Tasks from MUs Minimize latency and cost; Stackelberg
game

[262] Joint deployment and
task scheduling UAVs Tasks from MUs Minimize system energy consumption; a

two-layer optimization method

[263]
Joint Computation of-
floading and trajectory
scheduling

UAVs Tasks from MUs
Maximize computation efficiency; the con-
straints: user association, computing and
spectrum resources; non-convex problem

[107] Joint task offloading
and resource placement UAVs and ESs Tasks from MUs Maximize service delay; maximize the en-

ergy efficiency; non-convex problem

[252]
Joint UAV deployment
and computation of-
floading

UAVs and ESs Tasks from MUs Maximize task delay and energy consump-
tion

TABLE X: Comparison of Papers Focusing on CAVs. Acronyms used in this Table: road side unit (RSU), edge server (ES),
unmanned arerial vehicle (UAV), parked vehicle (PV), mobile user (MU), soft-defined network (SDN), alternating direction
method of multipliers (ADMM).

Paper Research issue Edge What’s to be scheduled Key points

[255] Computation offloading RSUs Tasks from vehicles
Maximize the system utility; time-varying
channel; the linearization based branch and
bound algorithm

[266] Computation offloading RSUs Tasks from vehicles Minimize the task delay;load balancing;
SDN-based scheme

[267] Workload offloading UAVs Tasks from vehicles
Maximize the energy efficiency; a low-
complexity distributed method based on
ADMM

[269] Computation offloading RSUs Tasks from vehicles
Multi-objective: reduce energy consumption
and time delay while keep load balancing;
non-dominated sorting genetic algorithm

[270] Computation offloading RSUs Tasks from vehicles
Distributed offloading decision-making
game; self-learning based distributed
computation offloading

[271] Task offloading and
container placement PVs Tasks from MUs Maximize the social welfare; convex opti-

mization methods

[36] Service provisioning PVs and ESs Tasks from MUs
Maximize the cost of users; an interactive
protocol; security and privacy constraints;
Stackelberg game approach

[272] Task offloading PVs and ESs Tasks from MUs and
vehicles

Maximize the overall coat; Stackelberg
game approach

[273] Task offloading Vehicles Tasks from vehicles
Maximize the system utility; vehicle-to ve-
hicle communication; ant colony optimiza-
tion

TABLE XI: Comparison of Papers Focusing on Video Service. Acronyms used in this Table: edge server (ES), particle swarm
optimization (PSO), augmented reality (AR).

Paper Things Edge What’s to be scheduled Key points

[274] IoT Cameras
Private clusters

and public
clouds

Components of computer
visions

Maximize the average query accuracy;
trade-off between multiple resources and
accuracy; the constraints: large search space
and merging conflicts

[275] Smartphones,
security/dash cameras

Container-based
ESs Components of videos Minimize response time; inter-edge collab-

oration

[276] Smartphones ESs Components of a AR
application

Minimize the energy expenditure and la-
tency; component-based model of an AR
application; successive convex approxima-
tion algorithm;

[277] MDs ESs AR Tasks
Minimize the failure probability; the relia-
bility and latency requirement; the depen-
dency of sub-tasks; PSO-based algorithm

orative processing systems [278]–[280]. Also, some works on the optimal placement of edge resources provide convenient

25

and fast computing services for emerging applications in smart
cities [150], [203], [259], [281]. For large-scale smart cities,
the authors in [150] presented the logical edge network formed
in a tree topology to place edge service in a resource-effective
way. Based on the logical edge network, they also designed a
service placement scheme meeting the service demands of IoT
devices as well as the resource capacity of edge servers. To
process the quantities of services produced by IoT devices in
smart cities, Xu et al. in [281] proposed TSP as a trust-oriented
IoT service placement scheme to tackle the improvement of
resource usage, load balance and energy consumption while
protecting the privacy of IoT devices. Similarly, to deal with
data streams generated from sensors deployed in smart cities,
Canali et al. in [203] also studied the service problem and
proposed a scalable heuristic-based genetic algorithm.

E. Smart Health

The development of cloud computing, wireless broadband
communication, BAN and wearable medical devices enhances
mobile medical services and improves medical standards and
medical conditions. However, as medical data grows exponen-
tially, the cost of operating and maintaining the medical system
is increasing. To alleviate this situation, deploying edge re-
sources to process medical data at the edge has attracted much
attention [253], [287], [288]. Moreover, the establishment of
edge-assisted medical systems can save costs for healthcare
service providers [282], [289], [290]. Alam et al. [253] pro-
posed an edge-of-things (EoT) computation framework for
healthcare service provisioning, where an EoT is a bridge
between service providers and healthcare consumers. The
authors proposed a portfolio optimization approach for cost-
effective service provisioning and used an ADMM method
for healthcare data offloading. The security and privacy of
healthcare data in smart health is very important. In [282],
a security provisioning model named AZSPM, was proposed
for medical devices in edge computing. AZSPM can build
trust among medical devices with zero knowledge. For the
wearable smart devices for physical monitoring, the work
in [288] proposed an edge computing-based deep learning
network system for physical monitoring by using multimedia
technology with agile learning for real-time data processing,
which improved the multiple performance metrics effectively.

F. Smart Manufacturing

Smart manufacturing refers to the realization of intelligent
industrial operations through AI and big data technology. In
smart manufacturing, the industrial devices need real-time
control based on the generated data characterized with security
and privacy. And the introduction of AI technology into the
IIoT requires powerful computing capabilities to complete ad-
vanced fault prediction, demand forecasting and other big data
processing tasks. Therefore, applying edge computing in smart
manufacturing has become the direction of industry develop-
ment, which can improve system performance, ensure data
security and privacy, and reduce the cost of operation [283],
[284], [291], [292]. Chen et al. [291] presented an edge
computing architecture for IoT-based manufacturing, where

edge computing acted as edge equipment, information fusion,
network communication and cooperative mechanism with tra-
ditional computing. Job shop scheduling (JSP) problems are
complex in smart manufacturing. In [283], Lin et al. proposed
an edge computing framework for smart manufacturing, which
adjusted DQN to solve JSP problems. The work in [284]
designed an AI-enhanced offloading framework that combined
the edge and cloud computing to maximize the service accu-
racy in IIoT. The authors introduced edge intelligence to smart
manufacturing for the sake of many advantages it can bring,
including personalization, responsiveness and privacy.

G. Smart Home

The development and enrichment of smart devices have
made the system of smart homes reaches commercial maturity.
Smart homes use lots of IoT devices (such as various sensors)
to control and monitor the living environment in real-time.
However, the ever-increasing number of smart devices, the
multiple applications with low latency requirements, the big
data generated by smart devices, and the extremely private
home data, make it a tread to apply edge computing instead
of cloud computing to smart homes. There are many works
focusing on edge resource scheduling towards the smart home
environment [220], [285], [293]. EdgeOSH, a home operating
system, was proposed in [293] to provide functions of the
program interface and data management. In [285], HomePad
was presented for home environments, and it allows IoT ap-
plications to execute at the edge. For users’ privacy, HomePad
was designed to enable users to determine how applications
access and process sensitive data generated by smart devices.
Besides, Wang et al. in [286] studied the resource management
of the healthcare system in smart homes under the edge-
cloud architecture, and presented a task scheduling scheme
named HealthEdge, which can process different tasks based
on priorities aiming to reduce the latency.

The studies on smart city, smart health, smart manufacturing
and smart home are called the study on smart “things” in our
survey. And we summarize the studies on smart ”things” men-
tioned above in Table XII. Notably, the application scenarios
for smart ”things” are deeply dependent on the development of
IoT. We believe that the research on each application scenario
will become more and more mature thanks to the explosive
growth of edge computing in the field of IoT.

VI. CHALLENGES AND RESEARCH DIRECTIONS

Despite the fact that the research on resource scheduling in
edge computing has accumulated a lot of results, there are still
many key issues that have not been well explored. This section
discusses several open research challenges followed by future
research directions.

A. Model and Architecture

1) Computation and Communication Model: To efficiently
schedule edge resources to accomplish task processing, a
computation model should be first established to reflect the re-
lationship between task data size and the amount of computing

26

TABLE XII: Comparison of Papers Focusing on Smart “Things”. Acronyms used in this Table: alternating direction method
of multipliers (ADMM), deep Q-learning (DQN), job shop scheduling (JSP).

Paper Domain Research issue What’s to be scheduled Key points

[150] Smart city Service placement Edge services Maximize the resource utilization; logical
edge network

[281] Smart city Service placement IoT services
Optimize multiple performance metrics; the
constraints: time and privacy; the strength
Pareto evolutionary algorithm

[253] Smart health Service provisioning Healthcare service and
data

Maximize the cost of healthcare system; a
portfolio optimization approach; ADMM

[282] Smart health Service provisioning Healthcare service A remote verification method; dynamic se-
curity composition; zero knowledge

[283] Smart manufacturing JSP Jobs generated by
machine

Maximize the job latency; DQN; job shop
scheduling

[284] Smart manufacturing Offloading Tasks generated by IoT
devices

Maximize the service accuracy; AI-
enhanced offloading framework

[285] Smart home Data analysis Data generated by smart
home devices

Protect the privacy of users; a directed graph
of elements; prolog rules; automatic verifi-
cation

[286] Smart home Task offloading Tasks generated by the
healthcare system

Minimize the task latency; health emer-
gency and human behavior consideration

capacity it requires. In most existing works, it always utilizes
a processing density (in CPU cycles/bit) to denote this kind of
relationship; thus that the amount of computing capacity a task
requires is equal to the product of task data size and processing
density [10], [64]. Obviously, it is a linear representation.
However, since different types of tasks have different pro-
cessing densities, this kind of one-size-fits-all representation
approach may not be suitable for various application tasks in
edge computing. Therefore, more flexible computation models
are worthy of further study. Besides, to better process applica-
tion tasks, utilizing communication resources to offload part or
all of the tasks to ENs is trending. During this process, the data
transmission rate is a key concern for communication resource
scheduling. Current representations of data transmission rate
are mostly based on the Shannon-Hartley theorem, which tells
a theoretical tightest upper bound on the data transmission
rate over a communication channel of a specified bandwidth
in the presence of noise. However, in the practical scenario of
edge computing, end-devices and ENs are always positioned
in a complicated environment with extremely poor channel
conditions, such as high mobility, shield, and interference
[255]. The actual data transmission rate can not achieve
the theoretical value. Therefore, it is necessary to develop a
more practical communication model based on field tests or
considering different application scenarios.

2) Computation Migration: Since task processing always
involves cooperation among multiple ENs or end-devices,
few studies focus on computation migration. Generally, to
accomplish the computation migration, there are mainly six
steps: migration environment sensing, task division, migration
decision, task uploading, task execution, result return. Among
them, task division and migration decision are the two most
critical steps. However, in most existing works that considered
computation migration in resource scheduling, only the migra-
tion decision step is considered, and other steps are ignored
[98], [99]. Computation migration is more like a kind of
concept of collaborative computing in current studies. Future
research can focus more on the implement of computation

migration considering the entire process.
3) Task Partitioning and Integration: Computation offload-

ing has attracted much attention in resource scheduling in edge
computing. A task can be divided into two parts, one part
computed locally and the other part offloaded to ENs or other
nodes for processing. It is assumed that the offloaded part of
a task is denoted by an offloaded ratio in most existing works
[107], [108]. The resource scheduling process is to determine
an optimal offloaded ratio and other optimization variables.
Once the optimal offloaded ratio is obtained, this part of the
task is directly offloaded [17]. However, for a certain task, the
divisible part may not be equal to the optimal offloaded part
based on the optimization solution. Therefore, future research
should step further on exploring the nature of tasks during
task partitioning for computation offloading. After the task is
partitioned and processed by different nodes, it is necessary
to integrate the dispersal results. Another concern may arise
during this process: whether the integrated results are the same
as those of none-partitioning processing? This concern leads
to a future study on how to integrate the processing results
from different nodes without losing the original information
of the task.

4) Green Energy: To achieve energy saving and maintain
longer battery life of IoT devices, it is a trend to utilize
renewable green resources light and wind to strengthen energy
support, which can significantly reduce carbon emissions and
environmental pollution. There are many studies on energy-
harvesting or wireless-charging enabled edge computing [79],
[111]. The introduction of extra energy supplement makes
resource scheduling more complex since not only the energy
consumption model during task transmission and task pro-
cessing should be considered, but also the harvested energy.
Although marvelous solutions are proposed in existing works,
most of them consider the extra energy can be harvested
continuously [72], [187]. However, in practice, the energy
harvesting process may be unstable, which poses a signifi-
cant challenge in designing an efficient resource scheduling
strategy. Therefore, future research should focus more on the
energy harvesting process.

27

5) Heterogeneous Architecture: The architecture of edge
computing generally includes things layer, edge layer, and
cloud layer. Most of the existing research on resource schedul-
ing are under the thing-edge-cloud architecture. It is predicted
that the integration of multidimensional networks such as
space, air, and ground to form the space-air-ground integrated
network (SAGIN) is the future trend to support the ever-
increasing IoT applications [294]. Under such a space-air-
ground heterogeneous architecture, the SAGIN incorporated
with edge computing can provide a myriad of services and
applications, such as edge caching, computation offloading
and cloud services [295]. However, heterogeneous nodes (
end-devices, edge servers, CAVs, UAVs, and satellites) and
the heterogeneous resources of those nodes make the re-
source management and scheduling complicated. Besides,
heterogeneous nodes are subject to strong spatio-temporal
constraints [296], which make the management and scheduling
of heterogeneous resources more challenging. Therefore, it
is necessary to develop an efficient resource scheduling and
management technology that can simultaneously orchestrate
the heterogeneous nodes and resources in SAGIN. In this
context, network slicing is a viable technique for efficient
heterogeneous resource scheduling and management [297],
[298].

B. Feasibility
1) Deployment: There are relatively few studies on the

deployment of ENs, including edge servers or IoT devices
in resource scheduling. The geographical location of ENs has
a great impact on resource scheduling. Enlarging the service
range of ENs can effectively improve edge resource utilization
and effectively improve resource scheduling utility [30]. In
many cases, the users are mobile, and ENs’ deployment will
be more complex. Therefore, future research can consider
the deployment of ENs when designing resource scheduling
mechanisms.

2) Management: For the edge, scheduling computation
tasks of users at the infrastructure is mostly limited to the-
oretical research. The technical issues on the implementation
have not been well explored. Besides, the scalability of re-
source scheduling algorithms should be taken seriously. With
the rapid expansion of users’ scale, the resource scheduling
scheme is required to achieve flexible deployment and rapid
configuration [32]. Serverless computing has become a pop-
ular architectural alternative for building and running up-to-
date applications and services [152]. Serverless applications
allow developers to focus on the code rather than on in-
frastructure configuration and management, which can speed
up service provisioning and provide more efficient scaling
[299]. The serverless computing architecture realizes the au-
tomatic scalability of services, pay-by-value, and automated
high-availability management, which provides a powerful and
convenience orchestration framework to schedule and manage
edge resources. However, research on applying serverless
architectures to edge computing is in its infancy, and many
problems remain unsolved. Therefore, more attention need
to be paid to resource scheduling research based on the
serverless edge architecture.

C. Security and privacy

1) System-level: In the existing resource scheduling re-
search, security and privacy issues have not been appreci-
ated and fully explored. In resource scheduling, the multi-
layer architecture of edge computing makes the edge system
vulnerable to hostile attacks [183]. A system failure of an
edge node or a failure caused by attacks may threaten the
reliability and robustness of the entire edge system, thus
making the resource scheduling meaningless. Therefore, efforts
are required to put into the fault tolerance research of edge
systems in resource scheduling. Specifically, system robustness
enhancement mechanism and intrusion detection strategy need
to be developed.

2) Service-level: In the existing research on computation
offloading and service provisioning, the following issues are
generally not considered: whether the offloaded edge node can
be trusted, how to ensure that users can authorize the edge
services, and how to protect the privacy of the data generated
by the edge service. Therefore, designing authentication mech-
anisms for the users covered by a specific edge node is needed.
Besides, the privacy module is also required for the edge data
center to improve the trustworthiness of edge services.

3) Data-level: In the process of resource scheduling, es-
pecially computation offloading, data collected by the edge
or shared with IoT devices involve much private information.
In the existing research, the user data, the interaction data
between ENs, and the computing data at the edge are uncon-
ditionally trusted and easily accessible [29]. However, in real
application scenarios such as smart home and smart health,
these data involves privacy and even commercial secrets of
users, and can be easily leaked during transmission and
processing, causing huge losses [31], [300]. Therefore, more
works are needed to focus on designing trust mechanisms and
privacy preservation policies for the edge and users.

D. Dynamics

In resource scheduling, users’ mobility is a thorny chal-
lenge. In various application scenarios, users’ mobile char-
acteristics have not been well explored in current research,
and most studies just conduct idealization and ignore this
characteristic. The frequent mobility of users has a significant
impact on task offloading and cache provisioning. The offload-
ing decision and cache decision at the current moment may
not be applicable to users at the next moment, or even users
have moved out of the service range of the edge node [10].
Therefore, incorporating the trajectory prediction of users into
resource scheduling studies can effectively improve the users’
QoS. Moreover, designing the mobility management policies to
enable users to access ENs seamlessly can improve the service
stability.

E. Joint Scheduling of Communication, Computing, Storage
(CCS) Resources

Task data should be received by processing nodes and
cached in the data queue, waiting for processing to accomplish
the offloaded tasks. The caching and queuing process is com-
plicated and also very important for real-time task processing.

28

However, in most existing works, the total task processing time
is considered as the sum of local processing time, transmission
time, and offloading processing time, ignoring the caching and
queuing process. Besides, most studies on scheduling cache re-
sources focus more on caching popular content at the network
edge to improve hit ratio and avoid duplicate transmissions
of the same content, thus improving users’ QoE [25], [301].
A few works have been done to considered combining the
joint allocation of communication and computing resources.
Therefore, future work on joint scheduling of CCS resources
should take the research further forward by considering the
caching and queuing process.

F. Evaluation

1) Workload: The workload of users’ requests has a non-
negligible impact on resource scheduling. The requests from
users are generally assumed to obey a specific distribution
(e.g., Poisson distribution) in the current evaluation. Fur-
thermore, the scheduled task’s CPU, memory, and storage
requirements are treated theoretically and idealistically without
considering real system performance. However, in the real
environment, the peak situation of workload may put abnormal
pressure on edge resources and even cause users’ tasks to
fail [29]. Therefore, resource provisioning based on workload
prediction is an urgent problem for SPs. Also, for reliable
service, a good load balancing strategy needs to be designed.

2) Test environment: The performance evaluation of
scheduling algorithms in current research is generally per-
formed using simulation tools, including professional sim-
ulators for edge computing such as iFogSim [302], Edge-
CloudSim [303], and MyiFogSim [304], and general simu-
lation platforms like Matlab. Few studies evaluate their algo-
rithms in real edge systems. Effort is required to focus on
the feasibility of scheduling algorithms in real systems, e.g.,
designing testbeds or prototypes for evaluation.

VII. CONCLUSION

In this survey, we conduct a systematic and comprehensive
review of resource scheduling in edge computing. First, we
lay the groundwork for the entire overview by elaborating
on two fundamental questions of why resource scheduling is
needed and what exactly resource scheduling refers to in edge
computing. Second, we present the architecture and different
collaborative manners for resource scheduling. Third, an in-
depth overview of research issues and research techniques in
resource scheduling is presented, which is the prominent effort
of this survey. Regarding the key research issues, we first
introduce a unified offloading model for edge computing. Then
we summarize the current works from three research aspects
including computation offloading, resource allocation, and
resource provisioning. Regarding the key techniques, based
on two operation modes, namely, centralized and distributed
modes, the state-of-art works are investigated and explicitly
categorized. Also, we summarize six performance indicators
that frequently appear in the surveyed literature. Fourth, some
typical application scenarios involved in resource scheduling

are introduced. Finally, for resource scheduling in edge com-
puting to be investigated extensively and deeply, we shed light
on the current research bottlenecks and challenges and look
forward to more research investment in promising research
directions.

REFERENCES

[1] B. Hayes, “Cloud computing,” Communications of the ACM, vol. 51,
no. 7, pp. 9–11, 2008.

[2] T. Velte, A. Velte, and R. Elsenpeter, Cloud computing, a practical
approach. McGraw-Hill, Inc., 2009.

[3] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International journal of communication systems, vol. 25, no. 9, p. 1101,
2012.

[4] Cisco, “Edge-to-enterprise iot analytics for electric utilities
solution overview,” Website, 2018, https://www.cisco.com/
c/en/us/solutions/collateral/data-center-virtualization/big-data/
solution-overview-c22-740248.html.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5g,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637–646, 2016.

[7] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[8] Z. Tan, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Virtual resource
allocation for heterogeneous services in full duplex-enabled scns with
mobile edge computing and caching,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 2, pp. 1794–1808, 2017.

[9] P. Wang, C. Yao, Z. Zheng, G. Sun, and L. Song, “Joint task assign-
ment, transmission, and computing resource allocation in multilayer
mobile edge computing systems,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2872–2884, 2018.

[10] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607,
2019.

[11] J. Li, G. Luo, N. Cheng, Q. Yuan, Z. Wu, S. Gao, and Z. Liu, “An
end-to-end load balancer based on deep learning for vehicular network
traffic control,” IEEE Internet of Things Journal, vol. 6, no. 1, pp.
953–966, 2018.

[12] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server place-
ment in mobile edge computing,” Journal of Parallel and Distributed
Computing, vol. 127, pp. 160–168, 2019.

[13] X. Chen, W. Li, S. Lu, Z. Zhou, and X. Fu, “Efficient resource alloca-
tion for on-demand mobile-edge cloud computing,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 9, pp. 8769–8780, 2018.

[14] T. Q. Dinh, B. Liang, T. Q. Quek, and H. Shin, “Online resource
procurement and allocation in a hybrid edge-cloud computing system,”
IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp.
2137–2149, 2020.

[15] J. Yoon, P. Liu, and S. Banerjee, “Low-cost video transcoding at the
wireless edge,” in 2016 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 2016, pp. 129–141.

[16] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, and S. Wan, “An
edge computing-enabled computation offloading method with privacy
preservation for internet of connected vehicles,” Future Generation
Computer Systems, vol. 96, pp. 89–100, 2019.

[17] F. Zhou, Y. Wu, H. Sun, and Z. Chu, “Uav-enabled mobile edge
computing: Offloading optimization and trajectory design,” in 2018
IEEE International Conference on Communications (ICC). IEEE,
2018, pp. 1–6.

[18] M. Li, Q. Wu, J. Zhu, R. Zheng, and M. Zhang, “A computing
offloading game for mobile devices and edge cloud servers,” Wireless
Communications and Mobile Computing, vol. 2018, 2018.

[19] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng,
B. Hu, and V. C. Leung, “Joint resource allocation for latency-sensitive
services over mobile edge computing networks with caching,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4283–4294, 2018.

[20] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint computation offload-
ing and user association in multi-task mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 313–
12 325, 2018.

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.html

29

[21] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-
component applications in edge computing environments,” IEEE Ac-
cess, vol. 5, pp. 2514–2533, 2017.

[22] H. Guo, J. Liu, and J. Zhang, “Computation offloading for multi-access
mobile edge computing in ultra-dense networks,” IEEE Communica-
tions Magazine, vol. 56, no. 8, pp. 14–19, 2018.

[23] E. Meskar and B. Liang, “Fair multi-resource allocation with external
resource for mobile edge computing,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2018, pp. 184–189.

[24] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[25] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” Ieee Access, vol. 5, pp. 6757–6779, 2017.

[26] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[27] K. Peng, V. Leung, X. Xu, L. Zheng, J. Wang, and Q. Huang,
“A survey on mobile edge computing: focusing on service adoption
and provision,” Wireless Communications and Mobile Computing, vol.
2018, 2018.

[28] K. Toczé and S. Nadjm-Tehrani, “A taxonomy for management and
optimization of multiple resources in edge computing,” Wireless Com-
munications and Mobile Computing, vol. 2018, 2018.

[29] T. L. Duc, R. G. Leiva, P. Casari, and P.-O. Östberg, “Machine learning
methods for reliable resource provisioning in edge-cloud computing:
A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–39,
2019.

[30] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: a survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[31] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource manage-
ment approaches in fog computing: A comprehensive review,” Journal
of Grid Computing, pp. 1–42, 2019.

[32] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Resource
provisioning in fog computing: From theory to practice,” Sensors,
vol. 19, no. 10, p. 2238, 2019.

[33] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,”
ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–36, 2019.

[34] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. de Lara, W. Shi,
and C. Stewart, “A survey on edge benchmarking,” arXiv preprint
arXiv:2004.11725, 2020.

[35] A. Samanta and Z. Chang, “Adaptive service offloading for revenue
maximization in mobile edge computing with delay-constraint,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3864–3872, 2019.

[36] X. Huang, R. Yu, J. Liu, and L. Shu, “Parked vehicle edge computing:
Exploiting opportunistic resources for distributed mobile applications,”
IEEE Access, vol. 6, pp. 66 649–66 663, 2018.

[37] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
2016.

[38] S. Abdelhamid, H. S. Hassanein, and G. Takahara, “Vehicle as a
resource (vaar),” IEEE Network, vol. 29, no. 1, pp. 12–17, 2015.

[39] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Decentralized
resource allocation for video transcoding and delivery in blockchain-
based system with mobile edge computing,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 11, pp. 11 169–11 185, 2019.

[40] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-
efficient uav-assisted mobile edge computing: Resource allocation and
trajectory optimization,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 3, pp. 3424–3438, 2020.

[41] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An edge-
computing based architecture for mobile augmented reality,” IEEE
Network, vol. 33, no. 4, pp. 162–169, 2019.

[42] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38–43, 2017.

[43] K. Lin, S. Pankaj, and D. Wang, “Task offloading and resource
allocation for edge-of-things computing on smart healthcare systems,”
Computers & Electrical Engineering, vol. 72, pp. 348–360, 2018.

[44] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S. H.
Ahmed, and A. K. Bashir, “Learning-based context-aware resource al-
location for edge-computing-empowered industrial iot,” IEEE Internet
of Things Journal, vol. 7, no. 5, pp. 4260–4277, 2019.

[45] W. Sun, J. Liu, Y. Yue, and H. Zhang, “Double auction-based resource
allocation for mobile edge computing in industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4692–
4701, 2018.

[46] Y. Deng, Z. Chen, X. Yao, S. Hassan, and A. M. Ibrahim, “Parallel
offloading in green and sustainable mobile edge computing for delay-
constrained iot system,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 12, pp. 12 202–12 214, 2019.

[47] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf, “A
deep learning approach for energy efficient computational offloading
in mobile edge computing,” IEEE Access, vol. 7, pp. 149 623–149 633,
2019.

[48] C. Wang, C. Dong, J. Qin, X. Yang, and W. Wen, “Energy-efficient
offloading policy for resource allocation in distributed mobile edge
computing,” in 2018 IEEE Symposium on Computers and Communi-
cations (ISCC). IEEE, 2018, pp. 00 366–00 372.

[49] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[50] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient
resource allocation in uav-enabled mobile edge computing networks,”
IEEE Transactions on Wireless Communications, vol. 18, no. 9, pp.
4576–4589, 2019.

[51] X. Chen, Y. Cai, Q. Shi, M. Zhao, B. Champagne, and L. Hanzo,
“Efficient resource allocation for relay-assisted computation offloading
in mobile-edge computing,” IEEE Internet of Things Journal, vol. 7,
no. 3, pp. 2452–2468, 2019.

[52] H. Guo and J. Liu, “Collaborative computation offloading for multiac-
cess edge computing over fiber–wireless networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526, 2018.

[53] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial iot–edge–cloud computing
environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 12, pp. 2759–2774, 2019.

[54] P. Wang, Z. Zheng, B. Di, and L. Song, “Hetmec: Latency-optimal task
assignment and resource allocation for heterogeneous multi-layer mo-
bile edge computing,” IEEE Transactions on Wireless Communications,
vol. 18, no. 10, pp. 4942–4956, 2019.

[55] W. Na, S. Jang, Y. Lee, L. Park, N.-N. Dao, and S. Cho, “Frequency
resource allocation and interference management in mobile edge com-
puting for an internet of things system,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4910–4920, 2018.

[56] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency iot services
in multi-access edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, 2019.

[57] Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, and M. S. Hos-
sain, “Intelligent task prediction and computation offloading based on
mobile-edge cloud computing,” Future Generation Computer Systems,
vol. 102, pp. 925–931, 2020.

[58] M.-T. Thai, Y.-D. Lin, Y.-C. Lai, and H.-T. Chien, “Workload and
capacity optimization for cloud-edge computing systems with vertical
and horizontal offloading,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, pp. 227–238, 2019.

[59] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware
resource allocation for edge computing,” in 2017 IEEE international
conference on edge computing (EDGE). IEEE, 2017, pp. 47–54.

[60] C. Zhang, H. Du, Q. Ye, C. Liu, and H. Yuan, “Dmra: A decentralized
resource allocation scheme for multi-sp mobile edge computing,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 390–398.

[61] NTT, “Edge accelerated web platform,” Website, 2020, https://www.
ntt.co.jp/news2014/1401e/140123a.html.

[62] G. M. D. T. Forecast, “Cisco visual networking index: global mobile
data traffic forecast update, 2017–2022,” Update, vol. 2017, p. 2022,
2019.

[63] J. Erman, A. Gerber, K. Ramadrishnan, S. Sen, and O. Spatscheck,
“Over the top video: the gorilla in cellular networks,” in Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement
conference, 2011, pp. 127–136.

[64] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing.” HotCloud, vol. 10, no. 4, pp. 1–7, 2010.

https://www.ntt.co.jp/news2014/1401e/140123a.html
https://www.ntt.co.jp/news2014/1401e/140123a.html

30

[65] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference, 1967, pp. 483–485.

[66] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[67] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, 2017.

[68] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994–6009, 2017.

[69] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and re-
source allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, 2018.

[70] Y. Kim, J. Kwak, and S. Chong, “Dual-side optimization for cost-delay
tradeoff in mobile edge computing,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 2, pp. 1765–1781, 2017.

[71] Y. Ding, C. Liu, X. Zhou, Z. Liu, and Z. Tang, “A code-oriented
partitioning computation offloading strategy for multiple users and mul-
tiple mobile edge computing servers,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 7, pp. 4800–4810, 2019.

[72] J. Feng, Q. Pei, F. R. Yu, X. Chu, and B. Shang, “Computation
offloading and resource allocation for wireless powered mobile edge
computing with latency constraint,” IEEE Wireless Communications
Letters, vol. 8, no. 5, pp. 1320–1323, 2019.

[73] B. Gu, Z. Zhou, S. Mumtaz, V. Frascolla, and A. K. Bashir, “Context-
aware task offloading for multi-access edge computing: matching
with externalities,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–6.

[74] F. Liu, Z. Huang, and L. Wang, “Energy-efficient collaborative task
computation offloading in cloud-assisted edge computing for iot sen-
sors,” Sensors, vol. 19, no. 5, p. 1105, 2019.

[75] B. Liu, Y. Cao, Y. Zhang, and T. Jiang, “A distributed framework for
task offloading in edge computing networks of arbitrary topology,”
IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp.
2855–2867, 2020.

[76] T. T. Nguyen, L. Le, and Q. Le-Trung, “Computation offloading
in mimo based mobile edge computing systems under perfect and
imperfect csi estimation,” IEEE Transactions on Services Computing,
2019.

[77] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. Leung, “A distributed
computation offloading strategy in small-cell networks integrated with
mobile edge computing,” IEEE/ACM Transactions on Networking,
vol. 26, no. 6, pp. 2762–2773, 2018.

[78] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, “Mobile edge computing
empowered energy efficient task offloading in 5g,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 7, pp. 6398–6409, 2018.

[79] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Transactions
on Services Computing, vol. 12, no. 5, pp. 726–738, 2018.

[80] N. Kiran, C. Pan, S. Wang, and C. Yin, “Joint resource allocation
and computation offloading in mobile edge computing for sdn based
wireless networks,” Journal of Communications and Networks, vol. 22,
no. 1, pp. 1–11, 2019.

[81] J. Liu and Q. Zhang, “Offloading schemes in mobile edge computing
for ultra-reliable low latency communications,” Ieee Access, vol. 6, pp.
12 825–12 837, 2018.

[82] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial
computation offloading scheme for mobile edge computing enabled
internet of things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4804–4814, 2018.

[83] Y. Pan, M. Chen, Z. Yang, N. Huang, and M. Shikh-Bahaei, “Energy-
efficient noma-based mobile edge computing offloading,” IEEE Com-
munications Letters, vol. 23, no. 2, pp. 310–313, 2018.

[84] U. Saleem, Y. Liu, S. Jangsher, and Y. Li, “Performance guaranteed
partial offloading for mobile edge computing,” in 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[85] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user offload-
ing for edge computing networks: A dependency-aware and latency-
optimal approach,” IEEE Internet of Things Journal, vol. 7, no. 3, pp.
1678–1689, 2019.

[86] X. Xu, C. He, Z. Xu, L. Qi, S. Wan, and M. Z. A. Bhuiyan, “Joint
optimization of offloading utility and privacy for edge computing
enabled iot,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2622–
2629, 2019.

[87] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1619–1632, 2018.

[88] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient com-
putation offloading management scheme in the densely deployed small
cell networks with mobile edge computing,” IEEE/ACM Transactions
on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[89] S. Jošilo and G. Dán, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Transactions on Network-
ing, vol. 28, no. 2, pp. 667–680, 2020.

[90] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal delay
constrained offloading for vehicular edge computing networks,” in 2017
IEEE International Conference on Communications (ICC). IEEE,
2017, pp. 1–6.

[91] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7944–7956, 2019.

[92] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Hauptmann, and
M. Satyanarayanan, “Early implementation experience with wearable
cognitive assistance applications,” in Proceedings of the 2015 workshop
on Wearable Systems and Applications, 2015, pp. 33–38.

[93] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris, “En-
hancing edge computing with database replication,” in 2007 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS
2007). IEEE, 2007, pp. 45–54.

[94] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar, “Application
specific data replication for edge services,” in Proceedings of the 12th
international conference on World Wide Web, 2003, pp. 449–460.

[95] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Edgevcd: Intelligent algorithm-
inspired content distribution in vehicular edge computing network,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5562–5579, 2020.

[96] B. Amento, B. Balasubramanian, R. J. Hall, K. Joshi, G. Jung, and
K. H. Purdy, “Focusstack: Orchestrating edge clouds using location-
based focus of attention,” in 2016 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2016, pp. 179–191.

[97] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight
multi-tenancy at the network’s extreme edge,” in 2016 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, 2016, pp. 1–13.

[98] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A dynamic
service migration mechanism in edge cognitive computing,” ACM
Transactions on Internet Technology (TOIT), vol. 19, no. 2, pp. 1–15,
2019.

[99] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge
servers via docker container migration,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[100] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in IEEE INFOCOM
2017-IEEE Conference on Computer Communications. IEEE, 2017,
pp. 1–9.

[101] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9637–9650, 2020.

[102] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Learn-
ing driven computation offloading for asymmetrically informed edge
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 8, pp. 1802–1815, 2019.

[103] S. Li, D. Zhai, P. Du, and T. Han, “Energy-efficient task offloading, load
balancing, and resource allocation in mobile edge computing enabled
iot networks,” Science China Information Sciences, vol. 62, no. 2, p.
29307, 2019.

[104] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Transactions on Communications, vol. 67, no. 6, pp.
4132–4150, 2019.

[105] H. Mazouzi, N. Achir, and K. Boussetta, “Dm2-ecop: An efficient com-
putation offloading policy for multi-user multi-cloudlet mobile edge
computing environment,” ACM Transactions on Internet Technology
(TOIT), vol. 19, no. 2, pp. 1–24, 2019.

[106] T. Yang, H. Feng, C. Yang, Y. Wang, J. Dong, and M. Xia, “Multivessel
computation offloading in maritime mobile edge computing network,”
IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4063–4073, 2018.

31

[107] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and
resource allocation in uav-enabled mobile edge computing,” IEEE
Internet of Things Journal, vol. 7, no. 4, pp. 3147–3159, 2020.

[108] K. Xiao, Z. Gao, C. Yao, Q. Wang, Z. Mo, and Y. Yang, “Task of-
floading and resources allocation based on fairness in edge computing,”
in 2019 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2019, pp. 1–6.

[109] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Minimizing the delay and
cost of computation offloading for vehicular edge computing,” IEEE
Transactions on Services Computing, pp. 1–1, 2021, early access, doi:
10.1109/TSC.2021.3064579.

[110] J. Liu and Q. Zhang, “Reliability and latency aware code-partitioning
offloading in mobile edge computing,” in 2019 IEEE Wireless Com-
munications and Networking Conference (WCNC). IEEE, 2019, pp.
1–7.

[111] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, 2018.

[112] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[113] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, “Resource allocation
and computation offloading with data security for mobile edge com-
puting,” Future Generation Computer Systems, vol. 100, pp. 531–541,
2019.

[114] Q. Gu, G. Wang, J. Liu, R. Fan, D. Fan, and Z. Zhong, “Optimal
offloading with non-orthogonal multiple access in mobile edge com-
puting,” in 2018 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2018, pp. 1–5.

[115] T. Bahreini, H. Badri, and D. Grosu, “Energy-aware capacity pro-
visioning and resource allocation in edge computing systems,” in
International Conference on Edge Computing. Springer, 2019, pp.
31–45.

[116] A. Kiani, N. Ansari, and A. Khreishah, “Hierarchical capacity provi-
sioning for fog computing,” IEEE/ACM Transactions on Networking,
vol. 27, no. 3, pp. 962–971, 2019.

[117] A. Khalili, S. Zarandi, and M. Rasti, “Joint resource allocation and
offloading decision in mobile edge computing,” IEEE Communications
Letters, vol. 23, no. 4, pp. 684–687, 2019.

[118] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774–6785, 2019.

[119] L. Li, X. Zhang, K. Liu, F. Jiang, and J. Peng, “An energy-aware
task offloading mechanism in multiuser mobile-edge cloud computing,”
Mobile Information Systems, vol. 2018, 2018.

[120] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and
Y. Zhang, “Selective offloading in mobile edge computing for the green
internet of things,” IEEE Network, vol. 32, no. 1, pp. 54–60, 2018.

[121] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi, “A
computation offloading method over big data for iot-enabled cloud-
edge computing,” Future Generation Computer Systems, vol. 95, pp.
522–533, 2019.

[122] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation offloading
with data caching enhancement for mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11 098–
11 112, 2018.

[123] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 207–215.

[124] Y. Nikoloudakis, E. Markakis, G. Alexiou, S. Bourazani, G. Mastorakis,
E. Pallis, I. Politis, C. Skianis, and C. Mavromoustakis, “Edge caching
architecture for media delivery over p2p networks,” in 2018 IEEE 23rd
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD). IEEE, 2018, pp. 1–5.

[125] F. Guo, L. Ma, H. Zhang, H. Ji, and X. Li, “Joint load management
and resource allocation in the energy harvesting powered small cell
networks with mobile edge computing,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). IEEE, 2018, pp. 299–304.

[126] F. Guo, F. R. Yu, H. Zhang, H. Ji, M. Liu, and V. C. Leung, “Adaptive
resource allocation in future wireless networks with blockchain and
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 19, no. 3, pp. 1689–1703, 2019.

[127] L. P. Qian, B. Shi, Y. Wu, B. Sun, and D. H. Tsang, “Noma-enabled
mobile edge computing for internet of things via joint communica-

tion and computation resource allocations,” IEEE Internet of Things
Journal, vol. 7, no. 1, pp. 718–733, 2019.

[128] F. Wang and X. Zhang, “Dynamic interface-selection and resource al-
location over heterogeneous mobile edge-computing wireless networks
with energy harvesting,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2018, pp. 190–195.

[129] Y. Wang, X. Tao, Y. T. Hou, and P. Zhang, “Effective capacity-based
resource allocation in mobile edge computing with two-stage tandem
queues,” IEEE Transactions on Communications, vol. 67, no. 9, pp.
6221–6233, 2019.

[130] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment
and resource allocation for d2d-enabled mobile-edge computing,” IEEE
Transactions on Communications, vol. 67, no. 6, pp. 4193–4207, 2019.

[131] Z. Yang, C. Pan, J. Hou, and M. Shikh-Bahaei, “Efficient resource
allocation for mobile-edge computing networks with noma: Completion
time and energy minimization,” IEEE Transactions on Communica-
tions, vol. 67, no. 11, pp. 7771–7784, 2019.

[132] P. Zhao, H. Tian, K.-C. Chen, S. Fan, and G. Nie, “Context-aware
tdd configuration and resource allocation for mobile edge computing,”
IEEE Transactions on Communications, vol. 68, no. 2, pp. 1118–1131,
2019.

[133] C. Zhao, Y. Cai, A. Liu, M. Zhao, and L. Hanzo, “Mobile edge
computing meets mmwave communications: Joint beamforming and
resource allocation for system delay minimization,” IEEE Transactions
on Wireless Communications, vol. 19, no. 4, pp. 2382–2396, 2020.

[134] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile iot networks,” IEEE Transactions
on Network and Service Management, vol. 17, no. 4, pp. 2410–2422,
2020.

[135] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Network, vol. 33, no. 5, pp. 156–165,
2019.

[136] C. Liang, Y. He, F. R. Yu, and N. Zhao, “Energy-efficient resource
allocation in software-defined mobile networks with mobile edge
computing and caching,” in 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2017, pp.
121–126.

[137] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Resource allocation
for information-centric virtualized heterogeneous networks with in-
network caching and mobile edge computing,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 12, pp. 11 339–11 351, 2017.

[138] Y. Cui, W. He, C. Ni, C. Guo, and Z. Liu, “Energy-efficient resource
allocation for cache-assisted mobile edge computing,” in 2017 IEEE
42nd Conference on Local Computer Networks (LCN). IEEE, 2017,
pp. 640–648.

[139] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy
efficient task caching and offloading for mobile edge computing,” IEEE
Access, vol. 6, pp. 11 365–11 373, 2018.

[140] S. Yang, F. Li, M. Shen, X. Chen, X. Fu, and Y. Wang, “Cloudlet
placement and task allocation in mobile edge computing,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 5853–5863, 2019.

[141] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker, “Context-aware
data and task placement in edge computing environments,” in 2019
IEEE International Conference on Pervasive Computing and Commu-
nications (PerCom). IEEE, 2019, pp. 1–10.

[142] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam, “Deadline-
aware task scheduling in a tiered iot infrastructure,” in GLOBECOM
2017-2017 IEEE Global Communications Conference. IEEE, 2017,
pp. 1–7.

[143] Z. Cao, H. Zhang, and B. Liu, “Performance and stability of application
placement in mobile edge computing system,” in 2018 IEEE 37th In-
ternational Performance Computing and Communications Conference
(IPCCC). IEEE, 2018, pp. 1–8.

[144] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Quality of experience (qoe)-aware placement of applications in fog
computing environments,” Journal of Parallel and Distributed Com-
puting, vol. 132, pp. 190–203, 2019.

[145] ——, “Profit-aware application placement for integrated fog–cloud
computing environments,” Journal of Parallel and Distributed Com-
puting, vol. 135, pp. 177–190, 2020.

[146] Q. Fan and N. Ansari, “On cost aware cloudlet placement for mobile
edge computing,” IEEE/CAA Journal of Automatica Sinica, vol. 6,
no. 4, pp. 926–937, 2019.

32

[147] A. Santoyo-González and C. Cervelló-Pastor, “Network-aware place-
ment optimization for edge computing infrastructure under 5g,” IEEE
access, vol. 8, pp. 56 015–56 028, 2020.

[148] J. Jin, Y. Li, and J. Luo, “Cooperative storage by exploiting graph-
based data placement algorithm for edge computing environment,”
Concurrency and Computation: Practice and Experience, vol. 30,
no. 20, p. e4914, 2018.

[149] F. Chiti, R. Fantacci, F. Paganelli, and B. Picano, “Virtual functions
placement with time constraints in fog computing: A matching theory
perspective,” IEEE Transactions on Network and Service Management,
vol. 16, no. 3, pp. 980–989, 2019.

[150] J. Choi and S. Ahn, “Scalable service placement in the fog computing
environment for the iot-based smart city,” Journal of Information
Processing Systems, vol. 15, no. 2, pp. 440–448, 2019.

[151] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
“Optimized placement of scalable iot services in edge computing,”
in 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). IEEE, 2019, pp. 189–197.

[152] A. Suresh and A. Gandhi, “Fnsched: An efficient scheduler for server-
less functions,” in Proceedings of the 5th International Workshop on
Serverless Computing, 2019, pp. 19–24.

[153] A. Aske and X. Zhao, “Supporting multi-provider serverless computing
on the edge,” in Proceedings of the 47th International Conference on
Parallel Processing Companion, 2018, pp. 1–6.

[154] Y. Li and S. Wang, “An energy-aware edge server placement algorithm
in mobile edge computing,” in 2018 IEEE International Conference on
Edge Computing (EDGE). IEEE, 2018, pp. 66–73.

[155] J. Meng, C. Zeng, H. Tan, Z. Li, B. Li, and X.-Y. Li, “Joint het-
erogeneous server placement and application configuration in edge
computing,” in 2019 IEEE 25th International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 2019, pp. 488–497.

[156] K. Xiao, Z. Gao, Q. Wang, and Y. Yang, “A heuristic algorithm
based on resource requirements forecasting for server placement in
edge computing,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 2018, pp. 354–355.

[157] C. Li, J. Bai, and J. Tang, “Joint optimization of data placement and
scheduling for improving user experience in edge computing,” Journal
of Parallel and Distributed Computing, vol. 125, pp. 93–105, 2019.

[158] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. N. Xiong, and J. L.
Mauri, “A time-driven data placement strategy for a scientific workflow
combining edge computing and cloud computing,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 7, pp. 4254–4265, 2019.

[159] Y. Tang, H. Wang, K. Guo, T. Luo, and T. Chi, “A new replica
placement mechanism for mobile media streaming in edge computing,”
Concurrency and Computation: Practice and Experience, p. e5361,
2019.

[160] Z. Chen, J. Hu, G. Min, and X. Chen, “Effective data placement for
scientific workflows in mobile edge computing using genetic particle
swarm optimization,” Concurrency and Computation: Practice and
Experience, p. e5413, 2019.

[161] T. Huang, W. Lin, Y. Li, L. He, and S. Peng, “A latency-aware multiple
data replicas placement strategy for fog computing,” Journal of Signal
Processing Systems, vol. 91, no. 10, pp. 1191–1204, 2019.

[162] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communi-
cations. IEEE, 2019, pp. 1459–1467.

[163] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp.
2333–2345, 2018.

[164] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1468–1476.

[165] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 10–18.

[166] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya,
Q. Zhang, W. Xie, and J. P. Jue, “Fogplan: a lightweight qos-aware
dynamic fog service provisioning framework,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 5080–5096, 2019.

[167] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service placement
for edge computing in dense small cell networks,” IEEE Transactions
on Mobile Computing, vol. 20, no. 2, pp. 377–390, 2021.

[168] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya, “An applica-
tion placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
2020.

[169] B. Mutichiro, H. Yang, and Y. Kim, “Usage aware vnf placement for
improved qos in edge computing,” in 2019 International Conference
on Information and Communication Technology Convergence (ICTC).
IEEE, 2019, pp. 808–812.

[170] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application
partitioning algorithm in mobile environments,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 7, pp. 1464–1480, 2019.

[171] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar,
and S. Secci, “Uloof: A user level online offloading framework for
mobile edge computing,” IEEE Transactions on Mobile Computing,
vol. 17, no. 11, pp. 2660–2674, 2018.

[172] C. Wang, S. Zhang, Z. Qian, M. Xiao, J. Wu, B. Ye, and S. Lu,
“Joint server assignment and resource management for edge-based mar
system,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp.
2378–2391, 2020.

[173] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks
with dependency and service caching in mobile edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 11, pp.
2777–2792, 2021.

[174] Y. Li and S. Wang, “An energy-aware edge server placement algorithm
in mobile edge computing,” in 2018 IEEE International Conference on
Edge Compung (EDGE). IEEE, 2018, pp. 66–73.

[175] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allocation
exploiting mobility prediction in mobile edge computing,” in 2016
IEEE 27th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC). IEEE, 2016, pp. 1–6.

[176] “Build the future of open infrastructure,” Website, 2019, https://www.
openstack.org.

[177] “Production-grade container orchestration—kubernetes,” Website,
2020, https://kubernetes.io.

[178] “Openedge support and learning,” Website, 2019, https://www.progress.
com/support/openedge.

[179] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A survey of
virtual machine management in edge computing,” Proceedings of the
IEEE, vol. 107, no. 8, pp. 1482–1499, 2019.

[180] R. Morabito, “Virtualization on internet of things edge devices with
container technologies: a performance evaluation,” IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[181] J. Zhang, X. Zhou, T. Ge, X. Wang, and T. Hwang, “Joint task
scheduling and containerizing for efficient edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 8, pp.
2086–2100, 2021.

[182] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: vision and challenges,” in 2021 Australasian Com-
puter Science Week Multiconference, 2021, pp. 1–10.

[183] X. He, R. Jin, and H. Dai, “Peace: Privacy-preserving and cost-efficient
task offloading for mobile-edge computing,” IEEE Transactions on
Wireless Communications, vol. 19, no. 3, pp. 1814–1824, 2019.

[184] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis, and
A. Paulraj, “Optimal schedule of mobile edge computing for internet
of things using partial information,” IEEE Journal on Selected Areas
in Communications, vol. 35, no. 11, pp. 2606–2615, 2017.

[185] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp.
3590–3605, 2016.

[186] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic
task offloading and resource allocation for mobile-edge computing in
dense cloud ran,” IEEE Internet of Things Journal, vol. 7, no. 4, pp.
3282–3299, 2020.

[187] C. Li, J. Tang, and Y. Luo, “Dynamic multi-user computation offloading
for wireless powered mobile edge computing,” Journal of Network and
Computer Applications, vol. 131, pp. 1–15, 2019.

[188] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi, and
A. Ghrayeb, “Optimized provisioning of edge computing resources
with heterogeneous workload in iot networks,” IEEE Transactions on
Network and Service Management, vol. 16, no. 2, pp. 459–474, 2019.

[189] U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency mini-
mization for d2d-enabled partial computation offloading in mobile edge
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4,
pp. 4472–4486, 2020.

https://www.openstack.org
https://www.openstack.org
https://kubernetes.io
https://www.progress.com/support/openedge
https://www.progress.com/support/openedge

33

[190] F. Wang, J. Xu, and S. Cui, “Optimal energy allocation and task of-
floading policy for wireless powered mobile edge computing systems,”
IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp.
2443–2459, 2020.

[191] Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. B. Letaief, “Uav-assisted
wireless powered cooperative mobile edge computing: Joint offloading,
cpu control, and trajectory optimization,” IEEE Internet of Things
Journal, vol. 7, no. 4, pp. 2777–2790, 2019.

[192] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint
multi-user computation offloading and data caching for hybrid mobile
cloud/edge computing,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 11, pp. 11 018–11 030, 2019.

[193] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and
C. S. Hong, “A proximal algorithm for joint resource allocation and
minimizing carbon footprint in geo-distributed fog computing,” in 2015
International Conference on Information Networking (ICOIN). IEEE,
2015, pp. 324–329.

[194] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Virtual resource alloca-
tion for information-centric heterogeneous networks with mobile edge
computing,” in 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2017, pp. 235–240.

[195] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware appli-
cation placement in mobile edge computing: a stochastic optimization
approach,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 4, pp. 909–922, 2019.

[196] X. Meng, W. Wang, Y. Wang, V. K. Lau, and Z. Zhang, “Closed-
form delay-optimal computation offloading in mobile edge computing
systems,” IEEE Transactions on Wireless Communications, vol. 18,
no. 10, pp. 4653–4667, 2019.

[197] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User
allocation-aware edge cloud placement in mobile edge computing,”
Software: Practice and Experience, vol. 50, no. 5, pp. 489–502, 2020.

[198] S. Lu, J. Wu, Y. Duan, N. Wang, and J. Fang, “Cost-efficient resource
provision for multiple mobile users in fog computing,” in 2019 IEEE
25th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2019, pp. 422–429.

[199] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communica-
tions. IEEE, 2019, pp. 514–522.

[200] Q. Luo, C. Li, T. H. Luan, and Y. Wen, “Optimal utility of vehicles in
lte-v scenario: An immune clone-based spectrum allocation approach,”
IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 5,
pp. 1942–1953, 2019.

[201] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function place-
ment and resource optimization in nfv and edge computing enabled
networks,” Computer Networks, vol. 152, pp. 12–24, 2019.

[202] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, and V. C. Leung,
“Energy-efficient workload allocation and computation resource con-
figuration in distributed cloud/edge computing systems with stochastic
workloads,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1118–1132, 2020.

[203] C. Canali and R. Lancellotti, “Gasp: Genetic algorithms for service
placement in fog computing systems,” Algorithms, vol. 12, no. 10, p.
201, 2019.

[204] K. Peng, M. Zhu, Y. Zhang, L. Liu, J. Zhang, V. C. Leung, and
L. Zheng, “An energy-and cost-aware computation offloading method
for workflow applications in mobile edge computing,” EURASIP Jour-
nal on Wireless Communications and Networking, vol. 2019, no. 1, p.
207, 2019.

[205] X. Xu, H. Cao, Q. Geng, X. Liu, F. Dai, and C. Wang, “Dynamic re-
source provisioning for workflow scheduling under uncertainty in edge
computing environment,” Concurrency and Computation: Practice and
Experience, p. e5674, 2020.

[206] S. Hu and G. Li, “Dynamic request scheduling optimization in mobile
edge computing for iot applications,” IEEE Internet of Things Journal,
vol. 7, no. 2, pp. 1426–1437, 2019.

[207] X. Xu, Y. Li, T. Huang, Y. Xue, K. Peng, L. Qi, and W. Dou, “An
energy-aware computation offloading method for smart edge computing
in wireless metropolitan area networks,” Journal of Network and
Computer Applications, vol. 133, pp. 75–85, 2019.

[208] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient com-
putation offloading management scheme in the densely deployed small
cell networks with mobile edge computing,” IEEE/ACM Transactions
on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[209] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Joint container
placement and task provisioning in dynamic fog computing,” IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 10 028–10 040, 2019.

[210] Y. Wu, J. Wu, L. Chen, J. Yan, and Y. Luo, “Efficient task scheduling
for servers with dynamic states in vehicular edge computing,” Com-
puter Communications, vol. 150, pp. 245–253, 2020.

[211] P.-Q. Huang, Y. Wang, K. Wang, and Z.-Z. Liu, “A bilevel optimization
approach for joint offloading decision and resource allocation in
cooperative mobile edge computing,” IEEE transactions on cybernetics,
vol. 50, no. 10, pp. 4228–4241, 2019.

[212] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep
reinforcement learning for computation offloading in blockchain-
empowered mobile edge computing,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 8, pp. 8050–8062, 2019.

[213] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep
reinforcement learning for vehicular edge computing: An intelligent
offloading system,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 6, pp. 1–24, 2019.

[214] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of
lightweight task offloading strategy for mobile edge computing based
on deep reinforcement learning,” Future Generation Computer Systems,
vol. 102, pp. 847–861, 2020.

[215] S. Shen, Y. Han, X. Wang, and Y. Wang, “Computation offloading with
multiple agents in edge-computing–supported iot,” ACM Transactions
on Sensor Networks (TOSN), vol. 16, no. 1, pp. 1–27, 2019.

[216] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with edge
computing in iot networks via machine learning,” IEEE Internet of
Things Journal, vol. 7, no. 4, pp. 3415–3426, 2020.

[217] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computa-
tion offloading in multi-access edge computing using a deep sequential
model based on reinforcement learning,” IEEE Communications Mag-
azine, vol. 57, no. 5, pp. 64–69, 2019.

[218] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in
urban informatics,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 7635–7647, 2019.

[219] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in iot edge computing,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 6, pp. 1133–1146,
2020.

[220] Y. Zhai, T. Bao, L. Zhu, M. Shen, X. Du, and M. Guizani, “Toward
reinforcement-learning-based service deployment of 5g mobile edge
computing with request-aware scheduling,” IEEE Wireless Communi-
cations, vol. 27, no. 1, pp. 84–91, 2020.

[221] S. Yu, X. Wang, and R. Langar, “Computation offloading for mobile
edge computing: A deep learning approach,” in 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC). IEEE, 2017, pp. 1–6.

[222] X. Chen, F. Zhu, Z. Chen, G. Min, X. Zheng, and C. Rong, “Resource
allocation for cloud-based software services using prediction-enabled
feedback control with reinforcement learning,” IEEE Transactions on
Cloud Computing, 2020.

[223] S. Lasaulce and H. Tembine, Game theory and learning for wireless
networks: fundamentals and applications. Academic Press, 2011.

[224] Q. Li, J. Zhao, and Y. Gong, “Cooperative computation offloading and
resource allocation for mobile edge computing,” in 2019 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2019, pp. 1–6.

[225] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Communications Letters, vol. 7, no. 3, pp. 420–423, 2017.

[226] S. Ranadheera, S. Maghsudi, and E. Hossain, “Computation offloading
and activation of mobile edge computing servers: A minority game,”
IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 688–691,
2018.

[227] J. Zhang, W. Xia, F. Yan, and L. Shen, “Joint computation offloading
and resource allocation optimization in heterogeneous networks with
mobile edge computing,” IEEE Access, vol. 6, pp. 19 324–19 337, 2018.

[228] A. Asheralieva and D. Niyato, “Hierarchical game-theoretic and
reinforcement learning framework for computational offloading in
uav-enabled mobile edge computing networks with multiple service
providers,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8753–
8769, 2019.

[229] Y. Bai, L. Chen, L. Song, and J. Xu, “Risk-aware edge computation
offloading using bayesian stackelberg game,” IEEE Transactions on
Network and Service Management, vol. 17, no. 2, pp. 1000–1012, 2020.

34

[230] S. Meng, Q. Li, T. Wu, W. Huang, J. Zhang, and W. Li, “A fault-
tolerant dynamic scheduling method on hierarchical mobile edge cloud
computing,” Computational Intelligence, vol. 35, no. 3, pp. 577–598,
2019.

[231] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning
based offloading game in edge computing,” IEEE Transactions on
Computers, vol. 69, no. 6, pp. 883–893, 2020.

[232] T. Zhang, “Data offloading in mobile edge computing: A coalition and
pricing based approach,” IEEE Access, vol. 6, pp. 2760–2767, 2017.

[233] Q.-V. Pham, T. Leanh, N. H. Tran, B. J. Park, and C. S. Hong,
“Decentralized computation offloading and resource allocation for
mobile-edge computing: A matching game approach,” IEEE Access,
vol. 6, pp. 75 868–75 885, 2018.

[234] B. Gu and Z. Zhou, “Task offloading in vehicular mobile edge com-
puting: A matching-theoretic framework,” IEEE Vehicular Technology
Magazine, vol. 14, no. 3, pp. 100–106, 2019.

[235] J. He, D. Zhang, Y. Zhou, and Y. Zhang, “A truthful online mechanism
for collaborative computation offloading in mobile edge computing,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4832–
4841, 2019.

[236] G. Li and J. Cai, “An online incentive mechanism for collaborative task
offloading in mobile edge computing,” IEEE Transactions on Wireless
Communications, vol. 19, no. 1, pp. 624–636, 2019.

[237] Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social welfare maxi-
mization auction in edge computing resource allocation for mobile
blockchain,” in 2018 IEEE international conference on communications
(ICC). IEEE, 2018, pp. 1–6.

[238] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated
learning-based computation offloading optimization in edge computing-
supported internet of things,” IEEE Access, vol. 7, pp. 69 194–69 201,
2019.

[239] Y. Qian, L. Hu, J. Chen, X. Guan, M. M. Hassan, and A. Alelaiwi,
“Privacy-aware service placement for mobile edge computing via
federated learning,” Information Sciences, vol. 505, pp. 562–570, 2019.

[240] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile
blockchain meets edge computing,” IEEE Communications Magazine,
vol. 56, no. 8, pp. 33–39, 2018.

[241] X. Xu, Y. Chen, X. Zhang, Q. Liu, X. Liu, and L. Qi, “A blockchain-
based computation offloading method for edge computing in 5g net-
works,” Software: Practice and Experience, 2019.

[242] K. Xiao, Z. Gao, W. Shi, X. Qiu, Y. Yang, and L. Rui, “Edgeabc: An
architecture for task offloading and resource allocation in the internet of
things,” Future Generation Computer Systems, vol. 107, pp. 498–508,
2020.

[243] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: Fundamentals and applications,” IEEE
Communications Magazine, vol. 53, no. 5, pp. 52–59, 2015.

[244] Z. Zhou, J. Feng, B. Gu, B. Ai, S. Mumtaz, J. Rodriguez, and
M. Guizani, “When mobile crowd sensing meets uav: Energy-efficient
task assignment and route planning,” IEEE Transactions on Commu-
nications, vol. 66, no. 11, pp. 5526–5538, 2018.

[245] D. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. Zhang, and
P.-J. Wan, “Near-optimal and truthful online auction for computation
offloading in green edge-computing systems,” IEEE Transactions on
Mobile Computing, vol. 19, no. 4, pp. 880–893, 2019.

[246] A.-L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju, “Auction mecha-
nisms toward efficient resource sharing for cloudlets in mobile cloud
computing,” IEEE Transactions on Services Computing, vol. 9, no. 6,
pp. 895–909, 2015.

[247] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimiza-
tion: Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575, 2015.

[248] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for
edge computing resource management in mobile blockchain networks:
A deep learning approach,” in 2018 IEEE International Conference on
Communications (ICC). IEEE, 2018, pp. 1–6.

[249] Y. Huang, J. Zhang, J. Duan, B. Xiao, F. Ye, and Y. Yang, “Resource
allocation and consensus of blockchains in pervasive edge computing
environments,” IEEE Transactions on Mobile Computing, 2021.

[250] T. Bai, J. Wang, Y. Ren, and L. Hanzo, “Energy-efficient computation
offloading for secure uav-edge-computing systems,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 6, pp. 6074–6087, 2019.

[251] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint offloading and
resource allocation in vehicular edge computing and networks,” in 2018
IEEE Global Communications Conference (GLOBECOM). IEEE,
2018, pp. 1–7.

[252] R. Wang, Y. Cao, A. Noor, T. A. Alamoudi, and R. Nour, “Agent-
enabled task offloading in uav-aided mobile edge computing,” Com-
puter Communications, vol. 149, pp. 324–331, 2020.

[253] M. G. R. Alam, M. S. Munir, M. Z. Uddin, M. S. Alam, T. N. Dang, and
C. S. Hong, “Edge-of-things computing framework for cost-effective
provisioning of healthcare data,” Journal of Parallel and Distributed
Computing, vol. 123, pp. 54–60, 2019.

[254] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin, “Learning for
computation offloading in mobile edge computing,” IEEE Transactions
on Communications, vol. 66, no. 12, pp. 6353–6367, 2018.

[255] S. Li, S. Lin, L. Cai, W. Li, and G. Zhu, “Joint resource allocation and
computation offloading with time-varying fading channel in vehicular
edge computing,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 3, pp. 3384–3398, 2020.

[256] Y. Chen, Z. Li, B. Yang, K. Nai, and K. Li, “A stackelberg game
approach to multiple resources allocation and pricing in mobile edge
computing,” Future Generation Computer Systems, vol. 108, pp. 273–
287, 2020.

[257] W. Shi, J. Zhang, and R. Zhang, “Share-based edge computing
paradigm with mobile-to-wired offloading computing,” IEEE Commu-
nications Letters, vol. 23, no. 11, pp. 1953–1957, 2019.

[258] I. Ullah and H. Y. Youn, “Task classification and scheduling based on
k-means clustering for edge computing,” Wireless Personal Communi-
cations, pp. 1–14, 2020.

[259] X. Zheng, M. Li, and J. Guo, “Task scheduling using edge computing
system in smart city,” International Journal of Communication Systems,
p. e4422, 2020.

[260] X. Cao, J. Xu, and R. Zhang, “Mobile edge computing for cellular-
connected uav: Computation offloading and trajectory optimization,”
in 2018 IEEE 19th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC). IEEE, 2018, pp.
1–5.

[261] J. Liu, L. Li, F. Yang, X. Liu, X. Li, X. Tang, and Z. Han,
“Minimization of offloading delay for two-tier uav with mobile edge
computing,” in 2019 15th International Wireless Communications &
Mobile Computing Conference (IWCMC). IEEE, 2019, pp. 1534–
1538.

[262] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment and
task scheduling optimization for large-scale mobile users in multi-uav-
enabled mobile edge computing,” IEEE transactions on cybernetics,
vol. 50, no. 9, pp. 3984–3997, 2019.

[263] J. Zhang, L. Zhou, F. Zhou, B.-C. Seet, H. Zhang, Z. Cai, and J. Wei,
“Computation-efficient offloading and trajectory scheduling for multi-
uav assisted mobile edge computing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 2, pp. 2114–2125, 2019.

[264] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “Uav-assisted relaying
and edge computing: Scheduling and trajectory optimization,” IEEE
Transactions on Wireless Communications, vol. 18, no. 10, pp. 4738–
4752, 2019.

[265] H. Peng and X. Shen, “Multi-agent reinforcement learning based
resource management in mec-and uav-assisted vehicular networks,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 1,
pp. 131–141, 2021.

[266] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2019.

[267] Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge
computing service provisioning for vehicular networks: A consensus
admm approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 5, pp. 5087–5099, 2019.

[268] J. Wang, D. Feng, S. Zhang, J. Tang, and T. Q. Quek, “Computation
offloading for mobile edge computing enabled vehicular networks,”
IEEE Access, vol. 7, pp. 62 624–62 632, 2019.

[269] X. Xu, R. Gu, F. Dai, L. Qi, and S. Wan, “Multi-objective computation
offloading for internet of vehicles in cloud-edge computing,” Wireless
Networks, vol. 26, no. 3, pp. 1611–1629, 2019.

[270] Q. Luo, C. Li, T. H. Luan, W. Shi, and W. Weigang, “Self-learning
based computation offloading for internet of vehicles: Model and
algorithm,” IEEE Transactions on Wireless Communications, pp. 1–1,
2021, early access, doi: 10.1109/TWC.2021.3071248.

[271] X. Huang, P. Li, and R. Yu, “Social welfare maximization in container-
based task scheduling for parked vehicle edge computing,” IEEE
Communications Letters, vol. 23, no. 8, pp. 1347–1351, 2019.

[272] J. Zhang, X. Huang, and R. Yu, “Optimal task assignment with delay
constraint for parked vehicle assisted edge computing: A stackelberg
game approach,” IEEE Communications Letters, vol. 24, no. 3, pp.
598–602, 2019.

35

[273] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular edge
computing framework with aco-based scheduling,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 12, pp. 10 660–10 675, 2017.

[274] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[275] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–
13.

[276] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,”
IEEE Wireless Communications Letters, vol. 6, no. 3, pp. 398–401,
2017.

[277] J. Liu and Q. Zhang, “Code-partitioning offloading schemes in mobile
edge computing for augmented reality,” IEEE Access, vol. 7, pp.
11 222–11 236, 2019.

[278] T. Wang, M. Z. A. Bhuiyan, G. Wang, M. A. Rahman, J. Wu, and
J. Cao, “Big data reduction for a smart city’s critical infrastructural
health monitoring,” IEEE Communications Magazine, vol. 56, no. 3,
pp. 128–133, 2018.

[279] W. Hou, Z. Ning, and L. Guo, “Green survivable collaborative edge
computing in smart cities,” IEEE Transactions on Industrial informat-
ics, vol. 14, no. 4, pp. 1594–1605, 2018.

[280] M. Li, P. Si, and Y. Zhang, “Delay-tolerant data traffic to software-
defined vehicular networks with mobile edge computing in smart city,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9073–
9086, 2018.

[281] X. Xu, X. Liu, Z. Xu, F. Dai, X. Zhang, and L. Qi, “Trust-oriented iot
service placement for smart cities in edge computing,” IEEE Internet
of Things Journal, vol. 7, no. 5, pp. 4084–4091, 2019.

[282] J. Chaudhry, K. Saleem, R. Islam, A. Selamat, M. Ahmad, and C. Valli,
“Azspm: Autonomic zero-knowledge security provisioning model for
medical control systems in fog computing environments,” in 2017
IEEE 42nd Conference on Local Computer Networks Workshops (LCN
Workshops). IEEE, 2017, pp. 121–127.

[283] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, “Smart manufactur-
ing scheduling with edge computing using multiclass deep q network,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4276–
4284, 2019.

[284] W. Sun, J. Liu, and Y. Yue, “Ai-enhanced offloading in edge computing:
When machine learning meets industrial iot,” IEEE Network, vol. 33,
no. 5, pp. 68–74, 2019.

[285] I. Zavalyshyn, N. O. Duarte, and N. Santos, “Homepad: A privacy-
aware smart hub for home environments,” in 2018 IEEE/ACM Sympo-
sium on Edge Computing (SEC). IEEE, 2018, pp. 58–73.

[286] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach, “Healthedge:
Task scheduling for edge computing with health emergency and human
behavior consideration in smart homes,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 1213–1222.

[287] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power iot
edge devices,” in 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT). IEEE, 2016, pp. 7–12.

[288] G. Manogaran, P. M. Shakeel, H. Fouad, Y. Nam, S. Baskar, N. Chil-
amkurti, and R. Sundarasekar, “Wearable iot smart-log patch: An edge
computing-based bayesian deep learning network system for multi
access physical monitoring system,” Sensors, vol. 19, no. 13, p. 3030,
2019.

[289] Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, and
R. Kwok, “Mobile edge computing enabled 5g health monitoring for
internet of medical things: A decentralized game theoretic approach,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 2,
pp. 463 – 478, 2021.

[290] Y. Nikoloudakis, E. Pallis, G. Mastorakis, C. X. Mavromoustakis,
C. Skianis, and E. K. Markakis, “Vulnerability assessment as a service
for fog-centric ict ecosystems: A healthcare use case,” Peer-to-Peer
Networking and Applications, vol. 12, no. 5, pp. 1216–1224, 2019.

[291] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang,
“Edge computing in iot-based manufacturing,” IEEE Communications
Magazine, vol. 56, no. 9, pp. 103–109, 2018.

[292] X. Li, J. Wan, H.-N. Dai, M. Imran, M. Xia, and A. Celesti, “A
hybrid computing solution and resource scheduling strategy for edge
computing in smart manufacturing,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 7, pp. 4225–4234, 2019.

[293] J. Cao, L. Xu, R. Abdallah, and W. Shi, “Edgeos h: a home operating
system for internet of everything,” in 2017 IEEE 37th international
conference on distributed computing systems (ICDCS). IEEE, 2017,
pp. 1756–1764.

[294] T. Hong, W. Zhao, R. Liu, and M. Kadoch, “Space-air-ground iot
network and related key technologies,” IEEE Wireless Communications,
vol. 27, no. 2, pp. 96–104, 2020.

[295] N. Cheng, W. Quan, W. Shi, H. Wu, Q. Ye, H. Zhou, W. Zhuang, X. S.
Shen, and B. Bai, “A comprehensive simulation platform for space-air-
ground integrated network,” IEEE Wireless Communications, vol. 27,
no. 1, pp. 178–185, 2020.

[296] J. Liu, X. Du, J. Cui, M. Pan, and D. Wei, “Task-oriented intelligent
networking architecture for the space–air–ground–aqua integrated net-
work,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5345–5358,
2020.

[297] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. S.
Shen, “Software defined space-air-ground integrated vehicular net-
works: Challenges and solutions,” IEEE Communications Magazine,
vol. 55, no. 7, pp. 101–109, 2017.

[298] S. Zhang, W. Quan, J. Li, W. Shi, P. Yang, and X. Shen, “Air-ground
integrated vehicular network slicing with content pushing and caching,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp.
2114–2127, 2018.

[299] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

[300] E. K. Markakis, K. Karras, N. Zotos, A. Sideris, T. Moysiadis, A. Cor-
saro, G. Alexiou, C. Skianis, G. Mastorakis, C. X. Mavromoustakis
et al., “Exegesis: Extreme edge resource harvesting for a virtualized
fog environment,” IEEE Communications Magazine, vol. 55, no. 7, pp.
173–179, 2017.

[301] W. Wen, Y. Cui, T. Q. Quek, F.-C. Zheng, and S. Jin, “Joint optimal
software caching, computation offloading and communications resource
allocation for mobile edge computing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 7, pp. 7879 – 7894, 2020.

[302] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,
2017.

[303] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An envi-
ronment for performance evaluation of edge computing systems,”
Transactions on Emerging Telecommunications Technologies, vol. 29,
no. 11, p. e3493, 2018.

[304] M. M. Lopes, W. A. Higashino, M. A. Capretz, and L. F. Bittencourt,
“Myifogsim: A simulator for virtual machine migration in fog comput-
ing,” in Companion Proceedings of the10th International Conference
on Utility and Cloud Computing, 2017, pp. 47–52.

Quyuan Luo received the Ph.D. degree in com-
munication and information system from Xidian
University, Xi’an, China, in 2020. He had been
a visiting scholar with computer science, Wayne
State University, USA from 2019 to 2020. He is
currently an assistant professor with the School
of Information Science and Technology, Southwest
Jiaotong University. His current research interests
include intelligent transportation systems, content
distribution, edge computing and resource allocation
in vehicular networks.

36

Shihong Hu received the bachelor’s degree in com-
munication engineering from Jiangnan University
in 2016. She is a PhD. candidate of the school
of Artificial Intelligence and Computer, Jiangnan
University. She had been a Visiting Scholar in Prof.
Weisong Shi’s MIST Lab for research on resource
scheduling in edge computing project, Wayne State
University, USA, from 2019 to 2020. Her research
interests include wireless sensor networks and edge
computing.

Changle Li (M’09-SM’16) received the Ph.D. de-
gree in communication and information system from
Xidian University, Xi’an, China, in 2005. He con-
ducted his postdoctoral research in Canada and the
National Institute of information and Communica-
tions Technology, Japan, respectively. He had been
a Visiting Scholar with the University of Technology
Sydney and is currently a Professor with the State
Key Laboratory of Integrated Services Networks,
Xidian University. His research interests include in-
telligent transportation systems, vehicular networks,

mobile ad hoc networks, and wireless sensor networks.

Guanghui Li received the Ph.D. degree from the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, China, in 2005. He is currently
a Professor with the Department of Computer Sci-
ence, Jiangnan University, Wuxi, China. He has pub-
lished over 70 papers in journal or conferences. His
research interests include wireless sensor networks,
fault tolerant computing, and nondestructive testing
and evaluation. His research was supported by the
National Foundation of China, Zhejiang, Jiangsu
Provincial Science and Technology Foundation, and

other governmental and industrial agencies.

Weisong Shi received the B.S. degree fromXidian
University, Xi’an, China, in 1995, and thePh.D.
degree from the Chinese Academy of Sci-ences,
in 2000, both in computer engineering.Weisong Shi
is a Charles H. Gershenson Distin-guished Faculty
Fellow and a Professor of ComputerScience with
Wayne State University, USA, wherehe directs the
Mobile and Internet SysTems Labora-tory (MIST)
and Connected and Autonomous dRiv-ing Labo-
ratory (CAR), investigating performance,reliability,
power- and energy-efficiency, trust andprivacy issues

of networked computer systems, and applications. He is one ofthe world
leaders in the edge computing research community and publishedthe first
book on edge computing. His paper entitled “Edge Computing: Visionand
Challenges” has been cited more than 1700 times. In 2018, Dr. Shiled the
development of IEEE Course on Edge Computing. In 2019, Dr. Shiserved as
the lead guest editor for the edge computing special issue on theprestigious
Proceedings of the IEEE journal. He is the Founding SteeringCommittee Chair
of the ACM/IEEE Symposium on Edge Computing (SEC)and the IEEE/ACM
Connected Health: Applications, Systems and Engineering(CHASE). He is an
IEEE Fellow and an ACM Distinguished Scientist.

	I Introduction
	I-A From Cloud Computing to Edge Computing
	I-B Resource Scheduling in Edge Computing
	I-C Related Surveys
	I-D Contribution and Organization

	II Architecture
	II-A Overview of the Architecture for Resource Scheduling in Edge Computing
	II-A1 Thing Layer
	II-A2 Edge Layer
	II-A3 Cloud Layer

	II-B Things-Edge Collaboration
	II-C Things-Edge-Cloud Collaboration
	II-D Edge-Edge Collaboration
	II-E Edge-Cloud Collaboration

	III Basic Model and Research Issues
	III-A Basic Model
	III-A1 Task T processed locally
	III-A2 Task T offloaded to the edge
	III-A3 Result return
	III-A4 Total delay
	III-A5 Total cost
	III-A6 Computing acceleration

	III-B Computation offloading
	III-C Resource Allocation
	III-C1 Single resource
	III-C2 Computing and communication (CC)
	III-C3 Computing, communication, and storage (CCS)

	III-D Resource Provisioning
	III-D1 Task allocation
	III-D2 Resource placement

	IV Key Techniques and Performance Indicators
	IV-A Centralized Methods
	IV-A1 Convex optimization
	IV-A2 Approximate algorithm
	IV-A3 Heuristic algorithm
	IV-A4 Machine learning

	IV-B Distributed Methods
	IV-B1 Game Theory
	IV-B2 Matching theory
	IV-B3 Auction
	IV-B4 Federated learning
	IV-B5 Blockchain

	IV-C Performance Indicators
	IV-C1 Latency
	IV-C2 Energy Consumption
	IV-C3 Cost
	IV-C4 Utility
	IV-C5 Profit
	IV-C6 Resource Utilization

	V Resource Scheduling in Applications Context
	V-A UAV
	V-A1 UAVs as users
	V-A2 UAVs as edge resources

	V-B CAV
	V-B1 Vehicle as users
	V-B2 Vehicle as SPs

	V-C Video Service
	V-D Smart City
	V-E Smart Health
	V-F Smart Manufacturing
	V-G Smart Home

	VI Challenges and Research Directions
	VI-A Model and Architecture
	VI-A1 Computation and Communication Model
	VI-A2 Computation Migration
	VI-A3 Task Partitioning and Integration
	VI-A4 Green Energy
	VI-A5 Heterogeneous Architecture

	VI-B Feasibility
	VI-B1 Deployment
	VI-B2 Management

	VI-C Security and privacy
	VI-C1 System-level
	VI-C2 Service-level
	VI-C3 Data-level

	VI-D Dynamics
	VI-E Joint Scheduling of Communication, Computing, Storage (CCS) Resources
	VI-F Evaluation
	VI-F1 Workload
	VI-F2 Test environment

	VII Conclusion
	References
	Biographies
	Quyuan Luo
	Shihong Hu
	Changle Li
	Guanghui Li
	Weisong Shi

