
524 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

A Survey on High-Throughput Non-Binary LDPC
Decoders: ASIC, FPGA, and GPU Architectures
Oscar Ferraz , Student Member, IEEE, Srinivasan Subramaniyan , Ramesh Chinthala, João Andrade ,

Joseph R. Cavallaro , Fellow, IEEE, Soumitra K. Nandy, Senior Member, IEEE, Vitor Silva ,
Xinmiao Zhang , Senior Member, IEEE, Madhura Purnaprajna , and Gabriel Falcao , Senior Member, IEEE

Abstract—Non-binary low-density parity-check (NB-LDPC)
codes show higher error-correcting performance than binary
low-density parity-check (LDPC) codes when the codeword
length is moderate and/or the channel has bursts of errors. The
need for high-speed decoders for future digital communications
led to the investigation of optimized NB-LDPC decoding algo-
rithms and efficient implementations that target high throughput
and low energy consumption levels. We carried out a comprehen-
sive survey of existing NB-LDPC decoding hardware that targets
the optimization of these parameters. Even though existing
NB-LDPC decoders are optimized with respect to computational
complexity and memory requirements, they still lag behind their
binary counterparts in terms of throughput, power and area
optimization. This study contributes to an overall understanding
of the state-of-the-art on application-specific integrated-circuit
(ASIC), field-programmable gate array (FPGA) and

Manuscript received October 22, 2020; revised April 24, 2021 and August
14, 2021; accepted October 11, 2021. Date of publication November 8, 2021;
date of current version February 24, 2022. This work was supported in
part by the Project ECHO, a joint work supported through the Indo-
Portugal Bilateral Scientific and Technological Cooperation funded by
Instituto de Telecomunicações and Fundaçõo para a Ciência e Tecnologia
in Portugal under Grant UIDB/EEA/50008/2020 and Grant PTDC/EEI-
HAC/30485/2017 and the Ph.D. Scholarship 2020.07124.BD, and in part
by the Department of Science and Technology, Government of India,
under Grant INT/PORTUGAL/P-12/2017. The work of Joseph R. Cavallaro
was supported in part by the U.S. NSF under Grant CNS-1717218,
Grant CNS-2016727, and Grant CNS-1827940, for the “PAWR Platform
POWDER-RENEW: A Platform for Open Wireless Data-driven Experimental
Research with Massive MIMO Capabilities.” The work of Xinmiao Zhang
was supported by the National Science Foundation under Award 2052641.
(Corresponding author: Oscar Ferraz.)

Oscar Ferraz, Vitor Silva, and Gabriel Falcao are with the
Department of Electrical and Computer Engineering, Instituto de
Telecomunicações, University of Coimbra, 3030-290 Coimbra, Portugal
(e-mail: oscar.ferraz@co.it.pt; vitor@co.it.pt; gff@co.it.pt).

Srinivasan Subramaniyan and Madhura Purnaprajna are with the
Department of Computer Science, Amrita Vishwa Vidyapeetham,
Bengaluru 560035, India (e-mail: srinivasansubramaniam74@gmail.com;
p_madhura@blr.amrita.edu).

Ramesh Chinthala is with the Department of Electronics and
Communication Engineering, School of Engineering, Amrita Vishwa
Vidyapeetham, Bengaluru 560035, India (e-mail: c_ramesh@blr.amrita.edu).

João Andrade is with the Solutions Group, Synopsys Portugal, 4470-
605 Moreira da Maia, Portugal (e-mail: joao.andrade@synopsys.com).

Joseph R. Cavallaro is with the Department of Electrical and
Computer Engineering, Rice University, Houston, TX 77005 USA (e-mail:
cavallar@rice.edu).

Soumitra K. Nandy is with the Department of Computational and Data
Sciences, Indian Institute of Science Bangalore, Bengaluru 560012, India
(e-mail: nandy@iisc.ac.in).

Xinmiao Zhang is with the Department of Electrical and Computer
Engineering, The Ohio State University, Columbus, OH 43210 USA (e-mail:
zhang.8952@osu.edu).

Digital Object Identifier 10.1109/COMST.2021.3126127

graphics processing units (GPU) based systems, and high-
lights the current challenges that still have to be overcome on
the path to more efficient NB-LDPC decoder architectures.

Index Terms—Non-binary low-density parity-check codes,
error-correcting codes, resilient communications, non-binary
LDPC decoders, ASIC, FPGA, GPU.

I. INTRODUCTION

ERROR correcting codes (ECCs) are an important compo-
nent employed in modern communication systems. They

minimize the impact of errors in data over a transmission
channel. Error correcting codes (ECCs) can be classified into
two main branches, algebraic and probabilistic. The alge-
braic branch focuses on exploiting finite-field arithmetic to
maximize the minimum hamming distance between code-
words. However, the designs from this branch are not suitable
for achieving high error-correcting capability [1]. The prob-
abilistic branch is capable of relatively good throughput
performance while keeping a moderate design complexity. The
main advantage of the latter is the strong error-correcting
capability, which allows a lower bit error rate (BER) to be
achieved [1]. One class of ECCs from this branch is the
low-density parity-check (LDPC) codes. First proposed by
R. Gallager in the 1960s [2], LDPC codes have been shown
to approach the Shannon limit [3]. These were considered
impractical for many decades, in real-time communication
systems, due to the computational complexity involved.

Fig. 1 represents a structure of an ECC system. Data trans-
mitted through a channel is prone to noise that causes errors in
the received data. Several ECC algorithms can be employed to
correct those errors. The channel encoder transmits data with
N bits. In order to achieve resilience to noise, N − K redun-
dant bits are added to the payload or information bits (K). The
ratio between N and K or code rate (R = K

N), with N > K,
can be controlled to add resilience to noise, where a low code
rate is used in high noise channels.

Several ECCs have been proposed along with the design and
development of the successive generations of mobile telecom-
munications. At present, the most relevant are Turbo code [4],
binary LDPC codes and Polar codes [5]. However, the litera-
ture lacks an organized structure of reported works regarding
Non-binary low-density parity-check (NB-LDPC) codes and
their implementations, which are capable of achieving better
BER performance for moderate code lengths [6].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5266-9740
https://orcid.org/0000-0002-5848-5667
https://orcid.org/0000-0001-6078-6912
https://orcid.org/0000-0002-9841-1806
https://orcid.org/0000-0003-2439-1184
https://orcid.org/0000-0002-8289-2377
https://orcid.org/0000-0003-4995-6233
https://orcid.org/0000-0001-9805-6747

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 525

Fig. 1. Representation of an ECC system. N − K redundant bits are added
to the payload or information bits (K) and the codeword of length N is
sent through a channel. The transmitted information is prone to noise which
causes errors in the received data. ECC systems repair those errors and are
the backbone of reliable data transmission systems.

On the one hand, the code characteristics can be altered
since the code length and the number of iterations can be
increased, putting pressure on the hardware. On the other hand,
the hardware has limited resources and the decoder imple-
mentation can only perform to a limited degree in terms of
throughput, latency, flexibility and memory. The three main
performance goals consist of achieving (1) high through-
put and (2) low energy consumption, while guaranteeing
(3) performance scalability to higher Galois fields for reaching
even lower BER, and keeping the computational complexity
manageable for supporting real-time processing, all limited by
realistic latency, area and power constraints.

A. Motivation

The formulation of NB-LDPC decoding algorithms has
been reported in the literature for twenty years. In the
past decade, more algorithms that take architecture con-
straints into consideration have been proposed, while
very large scale integration (VLSI) architectures have reached
maturity for processing such complex codes. The literature
reports dozens of decoders but lacks comprehensive studies
about the relationship between NB-LDPC coding theory and
the computer architectures to process them efficiently.

This paper focuses on algorithms and NB-LDPC decoder
designs that target the graphics processing units (GPU),
field-programmable gate array (FPGA) and application-
specific integrated-circuit (ASIC)-based architectures. While
the former provides high energy efficiency due to the
high number of cores (i.e., data-parallelism) and memory
bandwidth available, they also require power two orders of
magnitude above the ones provided by the latter. FPGAs
demand low-power (ASICs even lower) and provide high-
throughput (ASICs even higher) performance, as demonstrated
in the last sections of the article. They provide a high degree
of customization and can lead to superior energy efficiency.
However, both present constraints in the form of coding
and development effort, parallelization complexity and cost,
compared with GPUs.

TABLE I
LIST OF ACRONYMS AND ABBREVIATIONS USED IN THIS PAPER

B. Contributions

This survey gives a comprehensive description of popular
NB-LDPC decoding algorithms and provides a study compar-
ing advantages and disadvantages between GPUs, FPGAs and
ASICs for various NB-LDPC decoder implementations. Quite
a few surveys have been conducted on several ECCs schemes
and/or their implementation architectures, as shown in Table II.
However, those surveys only briefly describe a few NB-LDPC
decoding algorithms without covering their implementations

526 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Fig. 2. Structure of the survey.

or only report a small fraction of NB-LDPC decoder imple-
mentations available in the literature. Our survey is the only
one that (1) describes NB-LDPC decoding algorithms found in
the literature, (2) compares more than 200 NB-LDPC decoders
in three different architectures (GPUs, FPGAs and ASICs)
and (3) provides a good basis for new researchers to under-
stand, choose the algorithm and the architecture for developing
NB-LDPC decoders for various applications.

Furthermore, this work seeks to achieve the following
contributions:

• explain the differences between binary LDPC and
NB-LDPC codes, discussing the qualities and disadvan-
tages of each;

• provide examples of applications that require NB-LDPC
codes;

• analyze the most relevant NB-LDPC decoding algo-
rithms;

• compare implementations on GPUs, FPGAs and ASICs
for the presented algorithms;

• discuss the trade-offs between the algorithmic character-
istics and the chosen architecture;

• recommend the best design guidelines for implementing
highly efficient NB-LDPC decoders;

• evaluate future trends of NB-LDPC decoders.

C. Organization of the Survey

Fig. 2 shows the structure of this survey. Section I pro-
vides a brief introduction to ECC and describes the motivation
and contributions of this survey. Section II reports cases of
NB-LDPC applications. Section III reports surveys on ECCs,

in particular, Polar codes, Turbo codes, binary and non-binary
LDPC codes. Section IV gives the background on LDPC
codes, discussing the details of binary (Section IV-A) and non-
binary LDPC codes (Section IV-B) and discusses their relative
advantages and disadvantages (Section IV-C). Section V pro-
vides a formal description of NB-LDPC decoding algorithms:
Section V-A provides a numerical example of an NB-LDPC
decoder, serving as a tutorial, while the following subsections
describe various NB-LDPC decoding algorithms. Section VI
presents the decoder implementations found in the litera-
ture. Section VII provides a standardized comparison between
decoders implemented in the same platform and discusses the
constraints and advantages when choosing a device or devel-
oping an architecture to implement an NB-LDPC decoder.
Section VIII presents the main conclusions of this survey by
comparing and discussing the relationship between decoding
algorithms, architectures and applications. Section IX pro-
vides a uniform analysis by comparing the number of used
transistors for every implementation (Section IX-A) and ana-
lyzes future research challenges (Section IX-B), and finally,
Section X offers our conclusions from this survey. Table I is
provided to improve the readability of this paper.

II. APPLICATIONS OF NB-LDPC CODES

This section presents examples of NB-LDPC applications
and discusses the requirements for each one. NB-LDPC
codes offer better error-correcting performance than their
binary counterparts, particularly for short to moderate lengths,
at the cost of increased decoder complexity [7], [8].
However, high order modulations do not require binary-to-NB

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 527

mapping/demapping operations, thus proposing a good solu-
tion for high spectral efficiency [9].

A. Space Communications

NB-LDPC codes are particularly useful for reduc-
ing BER in deep space downlink communications
and interactive uplink satellite communications, which
use moderate data rates and short to moderate
packet lengths [10]. In [11], the authors simulated an
Additive White Gaussian Noise (AWGN) satellite communi-
cation channel to transmit information using an NB-LDPC
code encapsulated in a Fountain encoder/encoder scheme,
achieving a BER of 10−6 at a signal-to-noise ratio (SNR)
of 1.85 dB. Furthermore, the use of NB-LDPC codes has
been proposed by the German Aerospace Center [12] and
National Aeronautics and Space Administration (NASA) [13].

Satellites communicate through free space channels which
cause signal attenuation. Atmospheric absorption, weather
conditions, pollution, electromagnetic and other interference
contribute to increase BER and thus decrease throughput
performance on free-space communications systems [14].

B. Optical Communications

Another class of applications suitable for massive adoption
of NB-LDPC codes is optical transport networks, particu-
larly those used over long transmission distances [35]–[39].
Unlike satellite communications, terrestrial optical networks
can provide less noisy channels, allowing for higher trans-
mission rates (Tbps) at lower BERs (< 10−15). Currently,
100Gb/s terrestrial optical transmission schemes are based on
concatenated codes, Turbo and LDPC codes [40]. However,
for the next generation of terrestrial optical communications,
BER in the order of 10−15 are required, a performance that
NB-LDPC decoders can deliver [40]. For example, in [37],
a simulation for 100Gb/s optical transport systems achieved
a BER of 10−15 at an SNR of 10.8 dB. Furthermore,
by exploring all available electrical and optical degrees of
freedom and applying NB-LDPC codes in a spectral-spatial-
multiple-input multiple-output (MIMO) scheme, it is possible
to achieve a 100 Tb/s serial optical transport network with a
BER of 10−15 at an SNR of 12.3 dB [41].

C. Data Storage

NB-LDPC codes can also be employed in data storage.
Unlike wireless or wired communications, data storage appli-
cations require an extremely low Frame Error Rate (FER)
since a single fault results in irreversible data loss [8].

D. Power-Line Communication

Also, in highly noisy Power-Line Communication (PLC)
channels, NB-LDPC codes can be employed to overcome
attenuation, impulsive noise and multipath frequency selectiv-
ity and can be used to reliably transmit voice data and media
signals, thereby removing pressure from communication-only
infrastructure [42], [43].

E. New Developments

These are the most recent themes of research in NB-LDPC
codes. However, new applications have been emerging such as
the Internet-of-Things, autonomous vehicles [44], that require
vehicle-to-vehicle communications, and even wearable com-
puting devices, where NB-LDPC codes can be exploited. The
evolution of communication systems will increasingly incor-
porate more elements of optical communications, providing
higher transmission rates at lower BER and reduced latency
while maintaining low energy consumption levels [27], [40].

The range of applications that can employ ECC techniques,
such as NB-LDPC codes, poses additional challenges on top
of the already hard problem of developing efficient hardware
designs [7]. A number of system parameters that have an
impact on the operating frequency, latency, area, power and
throughput of the decoder can be controlled and manipu-
lated. There are several that can improve the error correction
capability of the decoder.

III. OVERVIEW OF SURVEYS ON ECCS

A review of ECC surveys found in the literature is
presented in this section. Surveys found in the literature
provide works in several ECCs. Table II summarizes the sur-
veys related to Turbo, polar and LDPC codes. Turbo codes
are surveyed in [15], [20], [26] with Brejza et al. [25]
analyzing implementations in ASICs. Polar codes are sur-
veyed in [1], [31], [32], [34] but none of these papers provide
decoder implementations.

Some surveys report binary LDPC decoders
in ASICs [17], [18] and FPGAs [24]. Moreover,
Andrade et al. [23] report decoder implementations in
both GPUs and FPGAs, while Guilloud et al. [16] and
Thameur et al. [28] report implementations in both FPGAs
and ASICs. Only the binary LDPC decoding are reported
in [19], [21], without implementations.

From the surveyed literature, only three works provide sur-
veys across different ECCs. Polar and LDPC codes are studied
in [22] but do not present decoder implementations. In [27],
the author presents a tutorial using LDPC and Turbo codes
applied in optical networks. Finally, [7] provides a compre-
hensive survey on ASIC implementations of binary LDPC,
Turbo and polar codes.

Arikan et al. [22] compare Polar codes, binary and
non-binary LDPC codes. However, the authors only dedi-
cate one section to discuss advantages and disadvantages
between binary and non-binary LDPC codes, briefly describ-
ing four NB-LDPC decoding algorithms and focuses on the
analog digital belief propagation (ADBP) algorithm. This sur-
vey does not provide a detailed description of the algorithms
and only mentions a small fraction of the implementations
found in the literature. Djordjevic proposes a tutorial in [27]
on forward error correction and coded modulation for opti-
cal communications. For NB-LDPC decoders, the author
presents one subsection describing decoding algorithms and
cites one paper containing a dozen FPGA implementations.
In [29], the authors focus on the construction and tech-
niques of binary and non-binary LDPC codes applied to

528 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

TABLE II
COMPARISON OF THE SURVEYS FOUND IN THE LITERATURE ON TURBO, POLAR AND LDPC CODES

magnetic record systems without describing algorithms and
implementations. The work from [30] is the most recent
survey NB-LDPC codes. The author surveys methods and
decoding algorithms for both binary and non-binary LDPC
codes. For NB-LDPC codes, they describe four decoding algo-
rithms. However, the survey only mentions 11 decoder imple-
mentations and does not provide a qualitative comparative
analysis.

The current paper surveys a variety of implementations of
NB-LDPC decoding algorithms and decoder implementations
on GPUs, FPGAs and ASICs, being the only work to sur-
vey implementations on three distinct systems. This work also
discusses the best approaches for different algorithms and
provides insightful information regarding NB-LDPC decoding
and architectural design.

In the literature, numerous implementations of Turbo, polar
and LDPC decoders have been proposed. From the sur-
veyed literature, Turbo codes achieve the lowest through-
put performance of 15.8 Gbps [45]. Data dependencies
prevent parallel implementations from improving through-
put performance [7], even with a higher degree of paral-
lelization than polar decoders, which also experience data
dependencies. However, polar decoders can achieve a peak
throughput performance of 25.6 Gbps by unrolling and
pipelining large amounts of data blocks [46]. The par-
allelization degree is higher for LDPC decoders, which
allows throughput performance to increase up to 172.4 Gbps
for binary decoders [47] and 21.6 Gbps for non-binary
decoders [48].

IV. BACKGROUND ON LDPC CODES

This section provides a background on LDPC codes.
Section IV-A introduces the historical context and a small
example is given of a binary LDPC code. Section IV-B details
the evolution from binary to NB-LDPC codes and the anal-
ogous example from the previous section is given in the
non-binary form. Section IV-C compares the advantages and
disadvantages between binary and non-binary LDPC codes.

A. LDPC Codes

LDPC codes were invented by Gallager in 1962 [2] and
allow transmission rates close to the Shannon limit [49]. Due
to the computational complexity, these codes were deemed
impractical and were forgotten by the scientific commu-
nity. Fueled by the invention of turbo codes in 1993 [4],
MacKay and Neal rediscovered the LDPC codes after 34 years,
when processing systems could process such computational
complexity.

An LDPC code is a linear block code defined by a
sparse parity-check matrix (PCM) H or the equivalent Tanner
graph representation [50]. These types of codes contain K
information bits on an N-bit codeword. The redundant bits
(M = N − K, with K < N) can be added to provide
immunity against noise, thus increasing the robustness of the
codeword [51], as depicted in Fig. 1. check nodes (CNs) and
variable nodes (VNs) are some of the main components of
LDPC codes, where some data processing occurs (detailed in
Section V-A). The number of CNs and VNs is defined by the

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 529

Fig. 3. LDPC Tanner graph representation for the matrix presented in (1)
(right side) and (2) (left side). The number of VNs (N) is equal to the number
of columns of the H matrix, while the number of CNs (M) equals the number
of rows. The permutation network is defined by the non-zero entries of the H
matrix and occurs on both binary and non-binary cases. Data is sent through
connected nodes and processed by VNs and CNs. For NB-LDPC codes, the
data from VNs is multiplied by the corresponding symbol when transmitted
to the CN and divided by the symbol when transmitted from the CN to the
VN. The permutation/depermutation operations on the upper left part of the
figure are not required in the binary case.

number of rows and columns of the PCM. A binary example
of a PCM H with M = 3 rows, corresponding to the number
of CNs and N = 6 columns, corresponding to the number of
VNs is illustrated in (1), below. The code rate is the number
of information bits per transmitted bits [52]. In this example,
the code rate is equal to K

N = 0.5.

H =

⎡
⎣
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1

⎤
⎦ (1)

The PCM in (1) indicates the connections between CNs and
VNs, which can be illustrated by the Tanner graph in Fig. 3.
The LDPC code is considered regular if the number of non-
zero elements is equal in all rows (dc) and the number of
non-zero elements is equal in all columns (dv). If the CN
degree dc and the VN degree dv are not constant, the code is
irregular. Irregular codes have better coding performance but
are computationally more complex [53], [54].

A transmission system that uses an LDPC code encodes
data to transmit (v), of size K, by multiplying the data by
generator matrix (G), outputting a codeword (c = v · G). In
the receiver, the received codeword is multiplied by the PCM
in an operation named parity check equation (c · HT = 0).
However, the codeword can be corrupted with noise, resulting
in the parity check equation to fail (not equal to zero). In this
case, a decoding algorithm must be employed to correct errors
(further details can be found in Section V-A).

Several methods can be used to construct both G and H
matrices. Gallager codes [2] and Mackay codes [3] (also
known as progressive edge growth) were the first to be used
and result in a semi-random construction. Quasi-cyclic LDPC
code construction methods are some of the most used in the
literature due to their decreased complexity, which results in

TABLE III
ARITHMETIC RULES FOR ADDING AND MULTIPLYING b1 AND b2 GF (22)

a simpler decoder [55], [56]. In quasi-cyclic LDPC codes,
the construction method uses shifted identity sub-matrices
and zero sub-matrices to create the PCM matrix through
multiplicative or additive groups of finite fields or even through
masking methods [56], [57].

B. Non-Binary LDPC Codes

Fueled by the invention of Turbo codes [4] in the 1990s,
Davey and MacKay revisited LDPC codes and proposed an
extension for a non-binary formulation [6]. By then, with
the evolution of Moore’s Law, new processing systems could
create enough computing power to execute moderate-length
versions of these codes efficiently.

Davey and MacKay an extension of binary LDPC codes
over the Galois field GF(q) with q > 2 [6]. Barnault and
Declercq proposed a modification to NB-LDPC codes that
allowed the definition of higher orders with a complexity
that scaled as q × log2(q) [58]. The new proposal allowed
codes with order GF (2m) to be decoded up to a maximum
of GF (28).

A Galois field is defined as a mathematical field with a
finite number of elements and is denoted as GF(q), where q
is the cardinality of the field [59]. Galois fields obey a set
of proprieties, which dictates that any result of a Galois field
operation must result in a number contained in the field (see
Table III). An irreducible primitive polynomial can be used
to define an m-order Galois field. Therefore, αm is used to
represent symbols in NB-LDPC codes [59] (further details in
Section V-A).

Extending (1) to GF (22), (2) represents a possible
NB-LDPC code with the same connections as (1). Contrary to
binary LDPC codes, where the symbols are represented either
by a ‘0’ or ‘1’, NB-LDPC codes are represented by symbols
contained in the respective Galois field. For instance, for codes
defined over GF (22), each symbol is represented by 2 bits or
0, 1, α and α2 using a irreducible polynomial [59]. For those
defined over GF (24), 4 bits are required to define a symbol.

H =

⎡
⎣
α 0 1 α 0 1
α2 α 0 1 1 0
0 α α2 0 α2 1

⎤
⎦ (2)

The main difference from binary LDPC codes is the permu-
tation and depermutation operators, as depicted on the upper
left side of Fig. 3. In an arbitrary connection between a VN
and a CN, the probability is multiplied by the Galois symbol
corresponding to the PCM entry of the n-th VN (n-th PCM

530 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Fig. 4. Non-binary LDPC codes and decoders evolution timeline.

column) and the m-th CN (m-th PCM row). When the data is
propagated from the CN to the VN, the same process happens
but instead, the probability is divided by the corresponding
symbol.

C. Binary LDPC vs. NB-LDPC Codes

NB-LDPC codes can achieve better error-correcting
performance than binary LDPC codes when the code length
is moderate, but this is at the cost of higher decoding com-
plexity [60]. In [6], by moving an irregular 1

3 rate code
from binary to a GF(8) construction, it is possible to achieve
a 0.3 dB improvement. In a MIMO system, NB-LDPC
codes over a small Galois field (up to GF(16)) outperform
certain binary LDPC codes, both employing joint MIMO
detection and channel decoding. At BER of 10−4, for 16
quadrature amplitude modulation (QAM), [61] shows that a
separate detection and decoding MIMO system employing an
NB-LDPC code over GF(256) outperforms the joint detection
and decoding system of [6], by 0.37 dB.

NB-LDPC decoders show a high computational complexity
in CN processing and require a high volume of memory to
store the intermediate results. There are various methods in the
literature where researchers tried to reduce both computational
complexity and memory requirement.

V. NON-BINARY LDPC DECODING ALGORITHMS

The present section describes NB-LDPC decoding algo-
rithms. An example of an NB-LDPC decoding algorithm,
serving as a tutorial, is given in Section V-A. The follow-
ing sections present the NB-LDPC decoding algorithms found
in the literature based on two criteria: (1) literature rele-
vance, based on the popularity and impact on the evolution
of NB-LDPC decoders, and (2) timeline. The algorithms in
Sections V-B, V-C, V-D, V-E, and V-F are presented chrono-
logically. In contrast, in Section V-G, each paragraph describes
one algorithm and it is also presented chronologically. One
exception to this criteria is the sum-product algorithm (SPA)
which contains three variants (fast Fourier transform (FFT)-
SPA, Log domain SPA and mixed domain SPA). For the sake
of simplicity, they are grouped in the same category (SPA) but

in Tables IV, V and VI, they are presented in different groups
for better analysis.

Fig. 4 provides an evolution timeline of NB-LDPC
codes and decoding algorithms; SPA (also known as
belief propagation (BP) algorithm) was the first to be proposed
in 2003 [58]. In this proposal, the decoder’s calculations
are executed in the frequency domain (FFT-SPA). However,
some variants have been proposed. In 2004, a decoder was
proposed on the Log domain [62] and afterward, in 2009,
a mixed domain (both frequency and Log domain) decoder
was proposed [63] (further details in Section V-B). In 2007,
the extended min-sum (EMS) algorithm was introduced [64],
reducing the computational complexity of the CN processor
in SPA.

Then, in 2008, the min-max (MM) algorithm further
increased performance by replacing the sum operation on the
EMS algorithm CN processor with the max() operation [65].

In 2010, two methods were proposed in [66] that
belong to the majority-logic decoding (MLGD) class.
The iterative hard reliability-based (IHRB) and the
iterative soft reliability-based (ISRB) methods reduce
memory utilization.

In 2013 and 2014, Trellis-EMS [67] and Trellis-MM [68]
proposed a configuration set path by only considering the
most reliable symbols and further reducing the decoder’s
complexity. Apart from the intense arithmetic operations, the
complexity lies in the permutation network that connects CNs
and VNs, order of the Galois field and memory requirements.

A. Example of a Non-Binary LDPC Decoder

LDPC codes are defined by a sparse PCM H. The decod-
ing process works by satisfying the parity check equation
(HT · c = 0), where c is the received codeword. In binary
codes, H and c ∈ GF (2) = {0, 1}. However, NB-LDPC codes
use finite fields in GF (2m) (m ∈ Z

+), which requires arith-
metical rules. All the elements of GF (2m) can be expressed
as 0, 1, α, α2, . . . , αm−2, where α is a primitive element of
GF (2m). An irreducible primitive polynomial defines these
fields with degree m for each GF (2m), which is used to derive
addition and multiplication for two elements ∈ GF (2m).
For example, Table III depicts the addition and multiplication

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 531

tables generated by the primitive polynomial α2 + x1 + 1 in
GF (22) [52].

Decoders use XOR operators to implement additions, while
multiplication operators are efficiently implemented using
look-up table (LUT) [69].

Data transmission works by transmitting a codeword c =
[c0, . . . , cn] of n symbols over a noisy channel. The received
message y = [y0, . . . , yn] may contain errors that need to
be corrected using an iterative decoding process. On binary
LDPC decoding, the process calculates the probability of a
received symbol being 0 or 1. On NB-LDPC decoding, the
probabilities are computed for every element in GF (2m) =
{0, 1, α, α2, . . . , αm−2}.

The first step is to initialize the probabilities pn = P(cn =
β|yn), which are the probability of a symbol (β) belonging
to an element of the codeword (cn), knowing the received
codeword element (yn). For older algorithms, such as the BP
algorithm (also known as SPA), the probabilities are repre-
sented by a probability mass function (pn(0) + pn (1) + · · ·+
pn(α

m−2) = 1). However, newer algorithms exchange and

compute log-likelihood ratio (LLR) as ln P(cn=̂β)
P(cn=βn)

where β̂ is
the most likely GF (2m) element for the n-th codeword sym-
bol. Instead of using probability mass functions, the conversion
to LLRs allows to convert multiplications into additions and
reduce quantization errors [62].

The decoder structure can be described as Tanner graph,
as depicted in Fig. 5. In this figure, the example NB-LDPC
decoder contains four VNs and two CNs equal to the number
of columns (n) and rows (m) of H. Each VN is connected to
the CNs defined by the non-zero entries in H. In this exam-
ple, VN0 connects to CN0 and CN1 because H0,0 and H1,0

are non-zero entries. However, VN1 does not connect to CN0

because H0,1 = 0. These connections serve the purpose of
transmitting probabilities vectors. Those are initialized with
γn = [pn (0), . . . , pn (α

m−2)] and transmitted to connected
CNs in the form of the message vector (um,n = γn). These
messages are multiplied by the corresponding Galois symbol
on Hm,n in an operation named permutation, to be processed
in the CNs.

Then, CN processing is executed. The probabilities are
recalculated for each symbol on each CN. Each algorithm
applies different operations to the messages (addition, mul-
tiplication, minimum, maximum), defined in the following
sections. The general rule determines that the new probabil-
ity vector to be sent to a connected VN (vm,n) is calculated
through the received messages (um,n) from adjacent connec-
tions on the same CN. For example, the CN1 in Fig. 5(a)
receives messages u1,0, u1,1 and u3,1. To calculate the mes-
sage v1,0, the CN processor uses u1,1 and u3,1. For message
v1,1, it will use u1,0 and u3,1 and finally for message v3,1,
it will use u1,0 and u1,1. In CN0, the calculation of message
v2,0 only uses the u0,0, while the calculation of message v0,0
will use message u2,0.

After calculating all check-to-variable (CN-to-VN) mes-
sages, the next step depermutes the vector messages and sends
them to the connected VNs as shown in Fig. 5(b). VN pro-
cessing differs in each algorithm. Similar to CN processing,

Fig. 5. NB-LDPC message exchange and permutations.

the new probability vectors (um,n) are calculated through the
received messages (vm,n) from adjacent connections on the
same VN. The main difference from CN processing is that
new messages um,n are added to or multiplied (depending on
the algorithm) by the initial probability vector γn, generating
a z vector with the most likely symbols.

For the decoding to end, the parity check equations must be
verified (z ·HT = 0). If this condition is true, the process stops
and the codeword is successfully corrected. If the premise is
false, the messages um,n are sent to CNs for the probabili-
ties to be recalculated and the process repeats until the parity
equation or a maximum number of iterations (Imax) is veri-
fied. This Imax variable is set to limit the maximum latency
but should be large enough to allow the decoding process to
converge, and is chosen to achieve a given FER goal. The
decoding process checks the parity equation before starting
the decoding process. If the received codeword γn contains
no errors, the decoding process is not executed.

532 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Algorithm 1 Belief Propagation (BP) for NB-LDPC Decoding
input: γn , H; Imax

initialization: u(0)m,n (β) = γn (β); z
(0)
n = argmaxβ(γn (β))

for k = 1 : Imax
Compute z (k−1)HT ; Stop if z (k−1)HT = 0
check node processing
for each check node m, each n ∈ Sv (m), each β ∈ GF (q)

v
(k)
m,n (β) =

∑

(aj)∈L(m|an=β)

⎛

⎝
∏

j∈Sv (m)\n
u
(k−1)
m,j (aj)

⎞

⎠ (3)

variable node processing
for each variable node n, each m ∈ Sc(n), each β ∈ GF (q)

u
(k)
m,n (β) = γn (β)

∏

i∈Sc(n)\m
v
(k)
i ,n (β)

a posteriori information computation & tentative decision
for each variable node n, each β ∈ GF (q)

z
(k)
n = argmax

β
(γn (β)

∏

i∈Sc(n)

v
(k)
i ,n (β))

B. Sum-Product Algorithm (SPA)

The BP decoding (also known as SPA) for binary LDPC
codes can be extended to NB-LDPC codes. However, for
a code constructed over GF(q), given the observation of a
received symbol, the corresponding transmitted symbol can
be any element of GF(q). Therefore, vectors of q probability
messages instead of single probabilities need to be computed
and stored during the decoding. This increases the complexity
and the size of the memory for message storage by a factor
of q. Moreover, the CN processing complexity is increased
much more due to the non-binary check equations. As a result,
NB-LDPC decoders have much higher hardware complexity
than binary LDPC decoders, and their complexity increases
quickly with the order of the finite field.

Use um,n (vm,n) to represent the message vector from
CN n (check node m) to check node m (variable node n).
Let Sc(n) (Sv (m)) be the set of check (variable) nodes
connected to variable (check) node n (m). Let hi ,j be the
entry of the PCM matrix in the ith row and jth column.
Define the configuration set, L(m|an = β), as the set of
sequences of finite field elements (aj) (j ∈ Sv (m)\n) such
that

∑
j∈Sv (m)\n hm,j aj = hm,nβ. Let zn be the hard-

decision of the n-th received symbol, the BP for NB-LDPC
decoding is listed in Algorithm 1 [70], where Imax is the
maximum iteration number.

The VN processing and a posteriori message computation
in NB-LDPC BP are direct extensions of those in binary BP.
However, for a code with row weight dc , the cardinality of a
configuration set is O(qdc−2). As a result, the CN processing
in NB-LDPC decoding needs to sum up substantially more
products and it is much more complicated.

To simplify the CN processing, a forward-backward method
was proposed in [6] to break down the computations in (3) into
an iterative process and share intermediate results. However,
a large number of intermediate vectors need to be stored

Algorithm 2 Extended Min-Sum (EMS) Decoding Algorithm
input: γn ; H; Imax

initialization: u(0)m,n (β) = γn (β); z
(0)
n = argminβ(γn (β))

for k = 1 : Imax
Compute z (k−1)HT ; Stop if z (k−1)HT = 0
check node processing
for each check node m, each n ∈ Sv (m), each β ∈ GF (q)

v
(k)
m,n (β) = min

(aj)∈L(m|an=β)

⎛

⎝
∑

j∈Sv (m)\n
u
(k−1)
m,j (aj)

⎞

⎠ (4)

variable node processing
for each variable node n, each m ∈ Sc(n), each β ∈ GF (q)

u
′(k)
m,n (β) = γn (β) +

∑

i∈Sc(n)\m
v
(k)
i ,n (β)

u
(k)
m,n (β) = u

′(k)
m,n (β)− min

ω∈GF (q)
(u

′(k)
m,n (ω))

a posteriori information computation & tentative decision
for each variable node n, each β ∈ GF (q)

z
(k)
n = argmin

β
(γn (β) +

∑

i∈Sc(n)

v
(k)
i ,n (β))

and the iterative process causes long latency. The compu-
tations in (3) can be also interpreted as convolution. A
frequency-domain decoder was developed in [58] to convert
convolutions to term-by-term multiplications. The hardware-
consuming multiplications become additions in log-domain
decoding algorithms [62], which are also more resilient to
quantization noise. The mix-domain decoder in [63] tries
to take advantage of both domains. Nevertheless, domain
conversions implemented as expensive look-up tables are
needed. Overall, log-domain decoders lead to lower hardware
complexity.

At the cost of very little loss in the error-correcting
performance, the hardware complexity is greatly reduced
by approximations of the non-binary BP in the log
domain, such as the EMS [64], [71], MM [65],
simplified min-sum algorithm (SMSA) [72], syndrome-
based EMS [67], and iterative reliability-based MLGD
algorithms [66]. Many hardware implementations are based
on these approximate algorithms. These algorithms are briefly
discussed in the next section.

C. Extended Min-Sum (EMS) Algorithm

In the EMS and MM algorithms, messages are LLRs. For
the n-th received symbol, its LLR associated with β ∈ GF (q)
is defined as ln(P(cn = β̂n)/P(cn = β)), where β̂n is the
most likely GF(q) element for the n-th symbol. Hence, the
LLR for the most likely field element in each vector is always
zero and all the other LLRs are positive. Moreover, a smaller
LLR means its associate field element is more likely to be the
transmitted symbol. Using these LLRs, the non-binary BP can
be approximated by the EMS algorithm shown in Algorithm 2.

The CN processing in the EMS algorithm is an approxima-
tion of that in the BP. To compensate for the approximation

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 533

error, the sums of the CN-to-VN messages can be scaled by a
constant factor or added with a constant offset before they are
added to the channel LLR in the VN processing and a posteri-
ori information computation. Besides, the normalization in the
VN processing is needed to make the smallest LLR in each
vector zero.

It was first proposed in [73] to represent the variable-to-
check (VN-to-CN) messages by the nodes in a Trellis with dc
stages. Then a configuration set in L(m|an = β) is equiv-
alent to a path that passes exactly one node in each stage,
except stage n. Accordingly, the CN processing is mapped
to a path construction process. The constraints on the paths
are relaxed in the SMSA [72] by allowing multiple nodes
from the same stage to be included in a path. As a result,
complexity is reduced at the cost of very slight performance
degradation. To eliminate the redundancy among the computa-
tions of different CN-to-VN messages, it was proposed in [67]
to first calculate syndromes that include the contributions of
nodes from every stage. Then the contributions from the node
in stage n are excluded to derive the CN-to-VN messages
to VN n.

D. Min-Max (MM) Algorithm

The MM algorithm [65] is very similar to the EMS algo-
rithm, except that the sum computation in (4) is replaced by
‘max’ comparison. Comparators have lower hardware com-
plexity than adders and the maximum of the messages equals
one of the messages. As a result, MM decoders achieve
more complexity reduction than the EMS decoders, with slight
performance loss.

E. Iterative Reliability-Based Majority-Logic Decoding
(MLGD) Algorithms

Compared to other LDPC decoding algorithms, MLGD
algorithms have lower complexity but inferior error-correcting
capability, especially when the column weight is small.
Two algorithms have been proposed in [66] to improve
the performance of MLGD for NB-LDPC codes by carry-
ing reliability information over the decoding iterations and
incorporating it in the decoding decision.

Define the LLR associated with β ∈ GF (q) as
ln(P(β)/P(0)). Let γn be the LLR vector for the nth received
symbol computed from the channel information. Algorithm 3
lists the ISRB-MLGD algorithm proposed in [66]. In this algo-
rithm, the scalar λ is used for performance optimization. φm,n

can be considered as an extrinsic measure of the reliability
from the channel. ψn (β) is the extrinsic reliability that the nth
received symbol is β contributed by all the connected CNs. It
is accumulated to Rn (β), which is carried over the iterations
and used to make decoding decisions.

The IHRB-MLGD algorithm [66] assumes only hard deci-
sions, zn , are available from the channel. Compared to the
ISRB algorithm, its major differences lie in the message ini-
tialization and extrinsic reliability accumulation. In the IHRB
algorithm, R

(0)
n (β) is initialized to a pre-set positive inte-

ger γ if β = z
(0)
n or 0 otherwise. ψn (β) is replaced by

the count of σn,m that equals β. The ISRB algorithm has

Algorithm 3 ISRB-MLGD Algorithm
input: γn
initialization: z (0)n = argmaxβ(γn (β));

R
(0)
n (β) = λγn (β);

φm,n = min
j∈Sv (m)\n

max
β

γj (β)

for k = 1 : Imax

Compute z (k−1)HT ; stop if z (k−1)HT = 0
for each variable node n

for each m ∈ Sc(n)

σm,n = h−1
m,n

∑
u∈Sv (m)\n

(
z
(k−1)
u hm,u

)

ψn (β) =
∑

σm,n=β,i∈Sc(n)

φi ,n

R
(k)
n (β) = R

(k−1)
n (β) + ψn (β)

z
(k)
n = argmaxβ(R

(k)
n (β))

better performance than the IHRB algorithm. However, the
IHRB algorithm has lower complexity since its ψn (β) val-
ues are easier to compute and its LLRs require shorter word
length [74].

F. Trellis-Based Algorithms

Algorithm 4 extends the relaxations on the Trellis paths for
CN-to-VN message computation [72], [75]. The CN processor
converts the received messages into the delta domain. In (5),
the messages are subtracted from the most reliable symbol in
the received message (um,n (β̂n)), ensuring that all messages
in the delta domain are non-negative and the first index of
each message in the delta domain is always the most reliable
symbol [67], [68].

From these received messages, a configuration set can be
established. This set is defined by a path that contains the most
reliable elements from each received message, denoted as a 0-
order configuration. Other paths that differ from this 0-order
configuration are called deviations. The sets of 0-order con-
figurations and their deviations are defined by conf (nr ,nc),
where the paths are formed from the nr most reliable mes-
sages for a symbol β and can have nc elements that deviate
from 0-order configuration [68].

This configuration set (conf (nr ,nc)) is used to build a syn-
drome column in (7), where the nr most reliable symbols are
considered, reducing complexity and increasing the degree of
parallelism [67].

The CN-to-VN messages are generated by calculating the
difference in the reliability of the configurations (Δum,n) and
the syndrome (ΔUm,n) in (8). If this operation is associated
with an existing output message, the minimum of those values
is considered.

In (9), the messages are converted to the normal domain,
and the VN processing is the same as the EMS algorithm.

The Trellis-MM algorithm is obtained by changing (7) into:

ΔU (k−1)(β) = min
η(β)∈conf (nr ,nc)

(
max

j∈Sv (m)\n
Δu

(k−1)
m,j (ηj (β))

)
.

534 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Algorithm 4 Trellis Extended Min-Sum (EMS) Decoding
Algorithm
input: γn ; H; Imax

initialization: u(0)m,n (β) = γn (β); z
(0)
n = argminβ(γn (β))

for k = 1 : Imax
Compute z (k−1)HT ; Stop if z (k−1)HT = 0

delta computation
for each check node m, each n ∈ Sv (m), each β ∈ GF (q)

Δu
(k−1)
m,n (ηn =

̂
β
(k−1)
n + β) = u

(k−1)
m,n (

̂
β
(k−1)
n)− u

(k−1)
m,n (β)

(5)
syndrome computation
for each check node m, each n ∈ Sv (m)

ω
(k−1)
m =

∑

j∈Sv (m)\n
Δu

(k−1)
m,j (

̂
β
(k−1)
j) (6)

check node processing
for each check node m, each n ∈ Sv (m), each β ∈ GF (q)

ΔU (k−1)(β) = min
η(β)∈conf (nr ,nc)

⎛

⎝
∑

j∈Sv (m)\n
Δu

(k−1)
m,j (ηj (β))

⎞

⎠

(7)

Δv
(k)
m,n (β + ηn (β)) = min

η(β)∈conf (nr ,nc)
(Δv

(k)
m,n (β + ηn (β)),

ΔU (k−1)(β)−Δu
(k−1)
m,n (ηn (β))))

(8)

v
(k)
m,n (β + ω

(k−1)
m +

̂
β
(k−1)
n) = Δv

(k)
m,n (β) (9)

This operation further increases throughput performance
and reduces the area required for ASIC implementations [68].
In particular, for codes over GF(4), only one syndrome needs
to be computed and the decoder is greatly simplified [76].

G. Other Algorithms

Other algorithms with less representation in the
literature are also presented in this survey. The
generalized bit-flipping decoding algorithm (GBFDA) com-
putes the syndrome using the hard decision symbols obtained
from the most reliable Galois field values. The hard decision
symbols are then propagated to the nodes and accumulated
along with decoding iterations [77]. Some variations extend
the algorithm by considering more symbols with a multiple-
vote symbol system, which reduces complexity but decreases
decoding performance (>0.7 dB) [77].

In the Adaptive Multiset Stochastic Algorithm (AMSA),
instead of exchanging probabilities, symbols are generated by
stochastic stream generators with the probabilities encoded in
the statistics of the stream [78]. This algorithm reduces area
cost and hardware complexity at the expense of an increased
memory requirement [78].

In the ADBP algorithm, messages are not exchanged as
probability mass functions or LLRs but instead are defined
by a class of Gaussian-like distributions cast into the general
class of expectation-propagation algorithms [79]. This algo-
rithm reduces complexity and memory requirements since they
are independent of the Galois field’s size [79].

Symbol reliability based (SRB) algorithms combine fea-
tures from MLGD algorithms and multiple voting systems,
resulting in decreased complexity with a slight decoding
performance loss compared to the EMS and MM algo-
rithms [80].

The weighted bit reliability-based (WBRB) algorithm [81]
exchanges the minimum bit-reliability values instead of
symbol-reliability values, such as MLGD algorithms. This
algorithm allows CN and VN processing to overlap, lead-
ing to higher throughput performance, and lower complexity
and memory requirement than the EMS algorithm. In the
full bit reliability-based (FBRB) algorithm, all bit-reliability
values of a symbol are used [81].

VI. TARGET ARCHITECTURES FOR NON-BINARY LDPC
DECODING

In this section, it is presented the NB-LDPC decoder imple-
mentations for programmable (GPU), reconfigurable (FPGA)
and dedicated architectures (ASIC) using the algorithms men-
tioned in the previous section.

These architectures provide different characteristics that
can be exploited to highlight features in the algorithms and
applications.

GPUs have better-suited features for prototyping and cost-
sensitive systems due to low development effort and low
non-recurring engineering costs while providing a high degree
of programming flexibility. However, GPUs have fixed instruc-
tion sets and fixed memory hierarchies. They also have a high
energy consumption.

Compared to GPUs, FPGAs do not have a fixed instruc-
tion set and allow a customizable memory hierarchy. These
systems offer more flexibility at a higher development effort
but consume less energy. However, FPGAs systems may have
inefficient resource utilization due to the complexity of the
routing network.

ASICs have a very high non-recurring engineering cost and
development effort. Although, they can achieve the highest
throughput performance. However, they provide a highly effi-
cient design that consumes less energy compared to FPGAs.

The relationship and analysis between algorithms presented
in Section V and the architectures presented in this section
can be found in Section VII.

Tables IV, V, and VI present the year of published work,
characteristics of the device, characteristics of the used code and
the output metrics of the implementation. Some works report
more than one decoder implementation in the same paper. In
this case, they are considered different implementations and
thus, have their own entry in Tables IV, V, and VI.

A. GPU

GPU devices still represent a growing research
trend in this field, with several articles detailing

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 535

TABLE IV
CHARACTERISTICS OF NON-BINARY LDPC DECODERS ON GPUS GROUPED BY ALGORITHMS MENTIONED IN SECTION V. THIS TABLE PRESENTS THE

YEAR OF PUBLISHED WORK, CHARACTERISTICS OF THE DEVICE (DEVICE, NUMBER OF CORES, PROCESS NODE AND DIE SIZE), CHARACTERISTICS

OF THE USED CODE (CODE SIZE, CONNECTIONS PER VN AND CN, SIZE OF GALOIS FIELD, NUMBER OF ITERATIONS OF THE DECODER AND SNR)
AND THE OUTPUT METRICS OF THE IMPLEMENTATION (DECODING THROUGHPUT AND POWER OF THE GPU)

highly parallel software-based designs [82].
Compute Unified Device Architecture (CUDA) is a frame-
work for developing parallel programs on Nvidia GPUs.

Nvidia coined the term CUDA core to designate the main
GPU compute unit. While CPUs contain a few dozen cores,
GPUs feature thousands of CUDA cores. The implementations

536 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

TABLE IV
(Continued.) CHARACTERISTICS OF NON-BINARY LDPC DECODERS ON GPUS GROUPED BY ALGORITHMS MENTIONED IN SECTION V. THIS TABLE

PRESENTS THE YEAR OF PUBLISHED WORK, CHARACTERISTICS OF THE DEVICE (DEVICE, NUMBER OF CORES, PROCESS NODE AND DIE SIZE),
CHARACTERISTICS OF THE USED CODE (CODE SIZE, CONNECTIONS PER VN AND CN, SIZE OF GALOIS FIELD, NUMBER OF ITERATIONS OF THE

DECODER AND SNR) AND THE OUTPUT METRICS OF THE IMPLEMENTATION (DECODING THROUGHPUT AND POWER OF THE GPU)

on GPUs mostly exploit the FFT SPA, mixed domain SPA
and MM algorithms.

1) SPA: Table IV contains the most important GPU
implementations from the literature. For the FFT-SPA,
Andrade et al. [82] proposed a decoder with efficient data
structures exploiting coalesced memory accesses and intro-
duced simplifications using a fast Hadamard transform (FHT),
achieving 3.34 Mbps.

In [83], the authors proposed efficient decoders using lay-
ered and flooding schedules, achieving 26.4 Mbps. In the same
year, Lui et al. [84] proposed a multi-codeword decoder, reach-
ing the best throughput result on GPUs of 98.8 Mbps by
exploiting coalesced memory accesses.

For the mixed domain SPA, [85] proposed layered and
flooding schedules for irregular codes, achieving 1.9 Mbps.

2) MM Algorithm: In 2012, Wang et al. [86] proposed
the first NB-LDPC decoder on GPU for the MM algo-
rithm, achieving 0.694 Mbps. For the same algorithm, another
followed in [87], improving the throughput performance to
1.81 Mbps by removing multiplications and introducing a
merger step, thus reducing latency.

Later on, the authors in [88] proposed a parallel block-
layered approach to the NB-LDPC decoder, further improving
performance and reaching 9.795 Mbps. While the GPUs

implementations require a few dozen to several hundreds of
Watts (65 to 250 W), the authors in [89], [90] were capable of
reaching 2.33 Mbps using an embedded system that requires
less than 15 W of power.

3) Analysis: The works [82]–[84], [87] do not report SNR
values and do not feature early termination. These works
evaluate the decoders’ throughput performance, exclude the
analysis of error-correction capability and can be compared
with decoders that report a fixed number of iterations (without
early termination).

Moreover, some implementations in [83] do not report the
code weights (dv , dc), which does not provide information
about the parallelization degree and is hard to replicate the
decoder’s evaluation parameters.

The focus of work [86] is also on throughput performance
and reported SNR is just a complementary metric increasing
the paper’s value.

In [88], the focus is on the evaluation of the error-
correction capability. The setup includes early termination
and reports SNR values. Early termination stops the decod-
ing process after the codeword is successfully decoded.
Comparing works with and without early termination is not
accurate since the exact number of iterations is unknown and
influences the decoder’s throughput. Comparisons between

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 537

TABLE V
CHARACTERISTICS OF NON-BINARY LDPC DECODERS ON FPGAS GROUPED BY THE ALGORITHMS MENTIONED IN SECTION V. THIS TABLE

PRESENTS THE YEAR OF PUBLISHED WORK, THE NAME OF THE DEVICE, CHARACTERISTICS OF THE USED CODE (CODE SIZE, CONNECTIONS PER VN
AND CN, SIZE OF GALOIS FIELD, NUMBER OF ITERATIONS OF THE DECODER AND SNR) AND THE OUTPUT METRICS OF THE IMPLEMENTATION

(NUMBER OF REPLICATED CORES, LUTS, FLIP-FLOPS (FFS), EQUIVALENT LOGIC BLOCKS (ELBS), CLOCK FREQUENCY AND DECODING

THROUGHPUT)

decoders reporting SNR with early termination are only
valid for implementations using the same SNR with early
termination.

Moreover, [85] reports the values for irregular codes, which
achieve higher error-correcting performance at a decreased
throughput performance.

538 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

The one-page paper [89] focuses on comparing throughput
performance between a low-power GPU and an FPGA and
does not report SNR and the number of iterations, thereby
limiting comparisons against other implementations.

B. FPGA

FPGA-based solutionsprovide a middle ground for design-
ing and testing NB-LDPC solutions. FPGAs require less
design effort than ASICs and less power than GPUs. In
terms of throughput performance, FPGAs present them-
selves in the middle of GPUs and ASICs. Compared with
GPUs, the FPGAs’ implementations presented in Table V
address a higher number of algorithms and higher throughput
performances.

1) SPA: The first implementations on FPGAs were
proposed in 2007 in [63] and [93]. These works provide a
detailed description for the SPA in the Log and mixed domain,
achieving 0.92 Mbps and 1.09 Mbps, respectively.

Lehnigk-Emden and Wehn [94] studied the first FPGA
implementation for GF(22), GF(24) and GF(28), achieving
33.16, 13.22 and 1.56 Mbps respectively for the mixed domain
SPA. Using the same algorithm, in [95], the authors pro-
pose the use of multiplier cores and introduced message
normalization and pipeline processing, achieving 6 Mbps.

Andrade et al. used OpenCL in [91] to provide a par-
allel FFT-SPA decoder architecture suited to the character-
istics of a wide-pipeline accelerator, reaching 3.36 Mbps.
Later, for the same algorithm, the authors showed that using
high-level synthesis (HLS) can reduce the development effort
compared to register transfer level (RTL), while they were
still able to achieve 14.54 Mbps for 14 cores.

2) EMS Algorithm: The first implementation of the EMS
algorithm was proposed in [96] using a semi-parallel approach
that achieved 50 Mbps. Another work proposed an FPGA imple-
mentation that exploited skimming, prefetching and relaxed
redundancy control to reduce latency and enable an efficient
pipeline schedule, achieving 9.76 Mbps [97]. For the same algo-
rithm, in [98], a serial architecture is proposed implementing
horizontal shuffled scheduling that reaches 2.95 Mbps.

3) MM Algorithm: For the MM algorithm, the authors
of [99] proposed a partial-parallel decoder employing an
overlapped scheme and layered decoding to simplify the archi-
tecture, achieving 9.3 Mbps. This implementation was further
improved in [100] with the proposal of a flexible decoder for
regular and irregular codes for various Galois fields, reaching
13 Mbps.

In [89], [90], the authors show that using HLS can reduce
the development effort while maintaining a high performance,
reaching 38.7 Mbps.

4) IHRB-MLGD Algorithm: An enhanced IHRB decoder is
proposed in [74] that achieves a significant coding gain with
small hardware overhead, achieving 90.68 Mbps.

5) Trellis-MM Algorithm: Lacruz et al. provided a signif-
icant breakthrough in [101]. The authors proposed a decoder
with a reduction in memory resources by exploiting a layered
schedule. The implementation also innovates by compress-
ing the CN output messages, reducing the information sent

to the VNs, thus achieving a quite significant performance of
630.47 Mbps.

6) Other Algorithms: For the GBFDA, in [102], the authors
provide an implementation that achieves 439 Mbps with
early termination. For the same algorithm, modifications are
proposed. One avoids the sorting process and storing of
unnecessary vectors, achieving 44.6 Mbps [103], while the
other presents a technique to limit data growth and a broad-
cast mechanism to reduce routing congestion that can reach
267 Mbps [104].

The AMSA is proposed in [105], making the use of mul-
tisets, a generalization of sets that allows multiple instances
of the same element, and achieving the best throughput of all
FPGA implementations, in the order of 698 Mbps.

In [81], the authors proposed a layered partial-parallel
WBRB decoder that reduces the amount of memory required,
achieving 118.98 Mbps, and an FBRB decoder that obtains
a better error-correcting performance and faster convergence
rate, achieving a throughput of 95.73 Mbps.

7) Analysis: As discussed in the previous section,
works [74], [92], [95], [97]–[101], [103], [104] focus on
implementation and throughput performance (without early
termination) and do not report SNR. These works can be
compared to implementations with fixed iterations.

Additionally, the authors in [95] did not report the number
of FFs, while in [103], [104], the number of used LUTs is
not reported. However, (10) gives a metric for calculating the
ELBs, which is an acceptable metric to estimate the FPGA
resources used (given by [24]).

max(number of 4− input LUTs , number of FFs). (10)

On the other hand, in [81], [105] the authors analyze the
throughput performance for a specific SNR, although not
reporting the number of iterations. These results are valid, but
comparison is possible only for decoders with the same SNR.

The implementations missing SNR and the number of iter-
ations [63], [91], [93], [96] do not provide a meaningful
contribution in terms of error-correction performance and,
alternatively, they focus on resource requirement. In particular,
the first decoder implementations [63], [93], [96] pioneered in
the analysis of memory requirements for NB-LDPC decoders.
Furthermore, the one-page paper [89] provides a comparison
with a low-power GPU but due to missing metrics, it is hard
to make a comparison between other implementations.

In [94], [102] report decoders with early termination
without reporting SNR values, making it hard to com-
pare error-correction capability and, consequently, throughput
performance against other decoders. However, the authors
in [94] normalized throughput performance by the number
of iterations, thus facilitating comprehension of throughput
performance. However, conclusions can not be taken from
the decoder’s overall performance since the total number of
iterations is unknown.

C. ASIC

Among some of the most important designs found in the
literature, top-performing ASIC designs are the best in terms
of throughput performance and energy efficiency.

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 539

TABLE VI
CHARACTERISTICS OF NON-BINARY LDPC DECODERS ON ASICS GROUPED BY THE ALGORITHMS MENTIONED IN SECTION V. THIS TABLE

PRESENTS THE YEAR OF PUBLISHED WORK, THE SIZE OF THE PROCESS NODE DESIGN, CHARACTERISTICS OF THE USED CODE (CODE SIZE,
CONNECTIONS PER VN AND CN, SIZE OF GALOIS FIELD, NUMBER OF ITERATIONS OF THE DECODER AND SNR) AND THE OUTPUT METRICS OF THE

IMPLEMENTATION (NUMBER OF GATES, CLOCK FREQUENCY, DECODING THROUGHPUT, AREA AND POWER OF THE DECODER)

1) SPA: The SPA has increased complexity and it is hard
to implement in hardware; only 2 works were found in the lit-
erature. In 2013, [106] proposed an efficient implementation

with layered decoding to reduce the number of iterations
and increase the throughput performance for SPA in the log
domain, and managed to achieve 233.53 Mbps.

540 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

TABLE VI
(Continued.) CHARACTERISTICS OF NON-BINARY LDPC DECODERS ON ASICS GROUPED BY THE ALGORITHMS MENTIONED IN SECTION V. THIS

TABLE PRESENTS THE YEAR OF PUBLISHED WORK, THE SIZE OF THE PROCESS NODE DESIGN, CHARACTERISTICS OF THE USED CODE (CODE SIZE,
CONNECTIONS PER VN AND CN, SIZE OF GALOIS FIELD, NUMBER OF ITERATIONS OF THE DECODER AND SNR) AND THE OUTPUT METRICS OF THE

IMPLEMENTATION (NUMBER OF GATES, CLOCK FREQUENCY, DECODING THROUGHPUT, AREA AND POWER OF THE DECODER)

For the mixed domain SPA, the same authors that imple-
mented the first FPGA design [94] also proposed the first ASIC
designs for GF(22), GF(24) and GF(28), achieving 99.48,
36.66 and 4.69 Mbps, respectively.

2) EMS Algorithm: The majority of the ASIC designs
found in the literature implement either the EMS algorithm
or the MM algorithm. In 2012, [72] proposed the first EMS
algorithm implementation in ASICs, achieving 64 Mbps.

Soon after, the authors of [107] applied dynamic clock gat-
ing to the CNs to achieve greater energy efficiency, reaching
1.15 Gbps. Park et al. further improve the algorithm by adding
a one-step look-ahead on the CN, enabling an increase in
the operating frequency to 700 MHz, and by overlapping the
execution of CN and VN operations, reducing the decoding
iterations and reaching 1.221 Gbps [108].

Other works include a partial-parallel layered decoder
employing (1) a double-throughput CN, (2) overlapped CN
and VN processors and (3) pipelined scheduling to achieve
124.6 Mbps [109].

In [110], the authors propose a fully overlapped decoder with
(1) an early bubble check to reduce the initialization latency
of the CN, (2) a backward memory scan method to overlap the
CN and VN and hide CN latency within the VN. Also, they
incorporate a redundant memory reuse technique to further
decrease the latency of a single decoding iteration, allowing
the decoder to reach 2.222 Gbps of throughput performance.

A year later, Harb proposes a pre-sorting procedure that sorts
messages entering the CN based on their reliability values,
where the less likely messages are omitted. The author also
presents a hybrid CN model combining the forward-backward
and syndrome-based algorithm. The decoder is capable of

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 541

achieving 19.5 Gbps [111]. Later, Harb proposed a processing
block that updates CNs and their associated VNs in a fully
pipelined way, reaching 10.1 Gbps [113].

In [112], a hybrid architecture is proposed that combine
the extended-forward and the forward-backward approaches
to reduce the total number of computed syndromes reaching
267 Mbps.

3) MM Algorithm: The first MM algorithm ASIC decoder
proposed in [114]. It delivers 60 Mbps of throughput
performance. Another version, such as that in [73], presents a
MM algorithm decoder integrating a scheme that sorts out
a limited number of VN-to-CN messages with the highest
reliability. Then, the CN-to-VN messages are derived inde-
pendently from the sorted messages, reducing computational
complexity and memory usage without noticeable performance
loss, achieving 10 Mbps.

The authors of [115] presented a selective-input layered
decoder with an associated compensation technique. In the
same year, in [116], they offered a barrel-shifter-based permu-
tation network and a minimum value filter used to determine
the first few smallest values from a given set. Those designs
are capable of achieving 29 and 66.6 Mbps, respectively.

The authors in [100], proposed a flexible decoder for both
regular and irregular codes for various Galois fields, achieving
21 Mbps. After that, Cai and Zhang [75] developed a relaxed
CN processing scheme for the MM algorithm. By making use
of the property that a linear combination of the elements can
uniquely represent each finite field element on the minimum
basis, all the entries in a message vector are computed simul-
taneously in and efficiently, reducing memory requirement and
computational complexity, and achieving 66 Mbps.

Lin and Yan [117] proposed two shuffled scheduling
schemes that increase throughput performance while reduc-
ing complexity and memory usage. These scheduling schemes
have slightly better error performance and converge faster than
flooding schedule and are capable of achieving 64.3 Mbps.
The same authors demonstrated that a design can reach 982
Mbps if it adopts a scheme that approximates the CN-to-VN
messages using a piecewise linear function, instead of using
probabilities, and so reducing memory requirements [118].

From the same design developed for FPGA, Lacruz et al.
provided an ASIC architecture in [101], lowering the need
for memory resources by exploiting a layered schedule. The
implementation also innovates by compressing the CN output
messages, which reduces the information sent to the VNs, thus
achieving a performance of 964.7 Mbps.

The last design of the MM algorithm belongs to
Toriyama and Marković [8]. The authors proposed a decoder
for storage applications with a reduction in message bitwidth,
thus reducing memory requirements and achieving 2.551
Gbps. The same work also presents a design for the IHRB-
MLGD, reaching 544 Mbps, respectively.

4) ISRB-MLGD Algorithm: Lu et al. [119] proposed the
first partial-parallel ISRB-MLGD decoder, introducing alter-
nate message-passing schemes, reaching almost the same BER
performance as the MM algorithm. This design saves memory,
produces a higher operating frequency and, consequently, a
higher throughput performance with less hardware complexity,
achieving 46.6 Mbps.

The latest developed work belongs to Song et al. [120].
They improved [119] by proposing a clipped-modified ISRB-
MLGD algorithm, introducing two complexity-reduction mod-
ifications and an unsaturated clipping method, achieving
higher performance with lower implementation complexity,
raising the throughput to 136 Mbps.

5) IHRB-MLGD Algorithm: Reliability-based designs have
been proposed both for hard and soft decoding. The authors
in [74] presented an enhanced IHRB-MLGD decoder that
achieves a significant coding gain with small hardware over-
head, obtaining 193 Mbps.

For the same algorithm, in [121] the authors propose a par-
tially parallel layered IHRB-MLGD algorithm, which delivers
better error performance and faster convergence, achieving
779 Mbps.

The authors of [8] proposed a decoder for storage appli-
cations with a reduction in message bitwidth, thus reducing
memory requirements and achieving 544 Mbps.

6) Trelis-Based Algorithms: Some designs are based on
Trellis-based algorithms, with Li et al. [67] proposing the first
Trellis-EMS algorithm implementation in an ASIC. The same
authors added an extra column for message representation,
achieving 3.6 Gbps [122], thus breaking the barrier of 1 Gbps
decoding.

Reference [123] is a study that proposes implementations
of the Trellis-EMS algorithm and Trellis-MM algorithm. The
proposed architectures eliminate the computation of the sec-
ond minimum operation in messages of the CN processor and
present efficient estimators to infer the second minimum value,
reducing the complexity and latency and increasing through-
put, reaching 729 Mbps for the Trellis-EMS algorithm and
818 Mbps for Trellis-MM algorithm.

In [68], a simplified Trellis-MM decoder is proposed where
the CN messages are computed in parallel, using only the most
reliable information in a horizontal layered schedule, achieving
660 Mbps.

This work was further improved in [124], which uses
compressed message passing between nodes to decrease the
routing area and memory requirements; it increases through-
put up to 981 Mbps. The work in [124] is further improved,
allowing even fewer messages to be exchanged and achieving
1.345 Gbps, as described in [125].

In [126], the authors relaxed the constraints on the nodes
included in the decoder configuration, reducing the hard-
ware units by 3 times and allowing the CN-to-VN messages
to be computed in one clock cycle achieving 6.78 Gbps.
Lacruz et al. [127] proposed an approximation for the Trellis-
MM algorithm to reduce complexity for the CN processor,
achieving 1.259 Gbps.

A series of works presented by Thi and Lee proposed a two-
extra-column Trellis-MM algorithm with layered scheduling
and thus reducing the complexity of the CN processor and the
decoder area, achieving 1.274 Gbps [128].

This work was further improved in [129] by reducing the
number of exchanged messages and enabling the decoder to
reach 1.396 Gbps. The same authors proposed a basic-set Trellis-
MM algorithm in [130] that considers a set of independent
field elements with the smallest LLRs, achieving 1.403 Gbps.

542 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Their latest work [132] proposes a half-row modified
two-extra-column Trellis-MM algorithm that reduces hard-
ware complexity by 50%, keeping only the two elements
with the highest reliabilities in each extra column, achieving
1.155 Gbps.

In [131], a row-parallel Trellis-MM decoder is proposed
with compression, a two-stage minimum finder and an early
termination scheme to improve throughput performance and
decrease storage requirements. The design is capable of
reaching 4.681 Gbps.

7) Other Algorithms: For the GBFDA, in [103] and [104],
the authors describe implementations for FPGAs but also pro-
pose ASIC designs. The work reported in [103] achieves
89 Mbps, while the [104] study reaches 573 Mbps.

Some lesser known algorithms are also reported in the lit-
erature. In [78], a decoder is proposed using the AMSA with
tracking forecast memory that achieves 540 Mbps.

In [79], the authors propose the ADBP algorithm that works
on factor graphs over linear models and uses messages in
the form of Gaussian-like probability distributions by tracking
their parameters, capable of achieving 27 Mbps.

Zhou et al. [80] propose the SRB algorithm that performs
well when the column weight is low, achieving 97 Mbps.

For the WBRB algorithm, Tian et al. achieve the best
performance of all NB-LDPC decoders known in the literature,
with a throughput of 21.661 Gbps.

Lastly, the authors of [133] provide an ASIC implemen-
tation for the FBRB algorithm using GF(28) that achieves
4.372 Gbps.

8) Analysis: The authors of [8], [108], [110], [118], [125],
[127], [130], [131] focus on throughput performance by report-
ing the number of iterations without early termination and
SNR values. The two reported values allow an analysis of the
throughput performance and comparison with implementations
without SNR and a fixed number of iterations (without early
termination). Moreover, the decoders that include early termi-
nation [107], [108], [112], [113], [131], only allow for a fair
comparison between implementations with the same SNR.

Contrarily, works that do not report SNR but report
a fixed number of iterations (without early termina-
tion) [68], [72]–[75], [79], [100], [101], [103], [104], [106],
[109], [115], [120], [122], [123], [128], [132], can be com-
pared with decoders in the same class (no SNR and fixed
number of iterations) since throughput performance can be
normalized by the number of iterations.

Furthermore, works that do not report SNR and the number
of iterations [78], [116], [122]–[124], [133] or employ early
termination [48], [67], [80], [94], [111], [114], [117], [119],
[121], [126] cannot be compared against other decoders since
the SNR impacts the throughput performance and little can be
inferred from the number of iterations.

In [8], [120], the authors do not report the code size but
instead report the number of symbols, while in [122] they
do not report code weights (dv , dc). These setups do not
allow researchers to understand the parallelization degree of
the decoders.

Of the surveyed papers, only [8], [68], [106]–[109], [116],
[118], [120] report values for power. Power values help

Fig. 6. Representation of the design process of an LDPC code. The ECC
solution considers algorithmic and hardware aspects to produce a solution
tailored to fulfill specific parameters.

understand energy efficiency and to which extent these
decoders can be deployed. In addition to the previous
works, [74], [79], [94], [101], [104], [110], [121]–[125], [127],
[130], [131], [133] report area values. Area is a constraint in
systems with limited space, such as satellites. In Table VI, the
missing area values were calculated through the average area
per gate for a certain process node design.

Works [78], [104], [111], [115], [125], [128]–[130], [132],
report synthesis values that do not represent the true decoder
values but provide an approximation.

Finally in [8], [94], [122], [131], [133] the number of gates
is not reported, which would offer insightful information about
the amount of resources consumed to produce the decoders.

VII. ANALYSIS, CONSTRAINTS AND DESIGN PARAMETER

CONSIDERATIONS

In this section, a comprehensive analysis is provided for the
surveyed literature and the parameters that influence the design
process of NB-LDPC decoders are considered and discussed.

As depicted in Fig. 6, several parameters (decoding algo-
rithms, code size, etc.) and hardware specifications, such as
memory, decoding schedules, etc., must be considered for pro-
ducing a solution, which influences the decoder’s latency, area,
power and throughput.

Examining results without normalization increases the data
analysis difficulty due to the huge number of variables of
NB-LDPC codes. To make a fair comparison between designs,
the plots are normalized by the number of connections between
CNs and VNs or edges (N ×dv or M ×dc), excluding GPUs.

A. GPU

GPUs represent the platforms with the least development
effort and with the lowest throughput performance. The
main advantage of GPUs is the faster development cycle
and the hardware abstraction, allowing them to test and
implement more complex decoders. GPUs also enable for
flexible decoders to be implemented and eliminate the need

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 543

Fig. 7. Decoding throughput versus the number of CUDA cores for all the surveyed GPU decoders. The colored right vertical bar represents different Galois
fields in the implementations. The throughput increases for smaller Galois fields and higher number of CUDA cores. The trend line is calculated using linear
regression.

Fig. 8. Energy efficiency versus die size for all the surveyed GPU decoders. The throughput is higher for smaller Galois fields and slightly increases on
GPUs with larger die sizes. It is assumed a die size of 118mm2 for the results from the Jetson TX2. These were not included in the calculation of the trend
line.

for dedicated hardware with correspondingly high levels of
non-recurring engineering cost.

As shown in Fig. 7 and Fig. 8, the decoding throughput tends
to increase with the number of cores and, consequently, the
GPU’s die size, as shown by the trend lines. It is also observed
that implementations in higher fields result in lower throughput
performance.This is expectedsincehigherGaloisfieldsconsume
more resources and therefore, the performance drops.

The mixed domain SPA implementation [85] uses different
code sizes and Galois fields with early termination on the same
GPU. One major drawback of this approach is that it fails to
make a fair comparison of throughput performance. In codes
with early termination, the throughput performance can be the
same for large codes and smaller fields as for shorter codes
and higher fields. This can be identified by the clumped circles
in Fig. 7 and Fig. 8.

544 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Fig. 9. Decoding throughput per core versus ELBs per core of the surveyed FPGA decoders. The trend line is calculated using linear regression, excluding
the SPA points. A red trend line for GF(2) from [24] is plotted for comparison.

The analysis of Fig. 8 is more intricate. The energy
efficiency is related to the GPU technology and newer archi-
tectures are usually more efficient, as can be seen in the
figure, particularly for the MM algorithm. The Jetson TX2
results are represented in the figure, although the actual
die size is not publicly available, and it was assumed
to be the same size as its predecessor (Jetson TX1),
i.e., 118nm.

B. FPGA

Compared to GPUs, FPGAs allow developers to implement
decoders at the hardware level, using several techniques, such
as HLS and RTL. Electronic design automation (EDA) tools
are used to automate processes, such as place & route, and
reduce the implementation complexity, i.e., the programmer is
detached from parts of the design.

Nonetheless, these systems have constraints in terms of
area and resources, hindering the ability to create an effi-
cient NB-LDPC decoder. In particular, FPGAs are vulnerable
to codes with many nodes or high Galois fields since those
increase connections and FPGAs can only support a limited
number of complex wiring connections.

Due to the variation of resource organization in Intel (former
Altera) and Xilinx FPGAs, a metric called ELB represents the
maximum number of required FFs or 4-input LUTs that would
be needed to implement the design. To compensate for the
increased size of 6 LUTs in some devices, in comparison with
4-input LUTs, we approximate each 6-input LUTs to become
equivalent to two 4-input LUTs. The total number of ELBs of
an implementation corresponds to max(total 4 − LUTs, total
FFs) [24].

Most of the FPGA designs replicate decoders to occupy the
available resources of the FPGA. To provide a fair comparison,

the points present in Fig. 9 are normalized by the number of
reported cores, represented in Table V, ensuring the lowest
number of ELBs to implement one decoder.

By applying a linear regression, an upward trend can be
seen as the number of ELBs increases. SPA decoders were
not included in the regression because they were from older
implementations and this algorithm is computationally more
complex than the rest.

Points above the trend line present efficient designs in terms
of throughput performance per resource unit. Of those, the
designs from [105] using the AMSA show a good performance
for GF (26) and GF (28). Implementations using SPA show a
poor performance due to the computational complexity of the
algorithm. These designs achieve a throughput performance of
less than 2 Mbps except for [94]. The designs from [91] are
the largest decoders and occupy more than 300K ELBs per
core. In [63], [92], [95], the solutions achieve less resource
utilization. However, their efficiency falls short of the trend
line. Of all SPA decoders, [94] is the one that achieves good
performance for GF (22) and GF (24). For GF (28), the design
becomes too complex and the resource utilization per core
increases 10-fold.

EMS and MM algorithms do not have efficient designs.
However, [101] delivers the best throughput performance per
core. The remaining solutions, implemented using GBFDA,
AMSA, WBRB and FBRB, follow the expected trend and are
considered good designs.

Characteristics of the NB-LDPC code, notably the code size
and the operating field, impose restrictions on FPGA-based
designs in terms of resources. The different PCM varieties
found in the literature create difficulties in analyzing the results
because to larger codes are more complex and use more
resources.

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 545

Fig. 10. ELBs per edge versus cores per edge of the surveyed FPGA decoders. The trend line is calculated using linear regression. A red trend line for
GF(2) from [24] is plotted for comparison.

The points presented in the following two figures are nor-
malized by the number of edges, and so comparison between
designs is possible, regardless of the code size. Fig. 10 pro-
vides resource utilization per core. Ideally, the designs should
use as few ELBs as possible. In this analysis, the most effi-
cient designs are located in the bottom-left corner and below
the trend line in terms of resource utilization.

Designs using FFT-SPA in [91], [92] and AMSA in [105]
consume a great deal of resources. Log and mixed
domain SPA shows a resource utilization below the trend
line [63], [93]–[95], [134].

EMS and MM algorithms [97]–[101] follow the trend line
and the MM design of LaCruz et al. [101] is one of the least
resource-consumption solutions.

The implementation of [104] also achieves an efficient
design, as it is the most efficient in resource utilization.
Designs in [74], [81], [102] process the same edges per
core but consume more ELBs. Nevertheless, these can be
considered excellent designs.

Fig. 11 provides a measure of raw throughput performance.
The data points follow a trend when the throughput is plotted
against the cores. The optimal point is located in the top-left
corner of the plot, where the throughput per edge is high and
the designs can execute many of the edges in a single core.

Designs using SPA are located below the trend
line [63], [91]–[93], [95] except for [94]. These imple-
mentations generally achieve a poor performance due to the
algorithm’s complexity and to it being one of the oldest. The
EMS algorithm also achieves poor results, with all points
being located below the trend line [63], [98]. A different
story is told for the MM implementations. Those are located
above the trend line [89], [100], [101], except for [99].
Implementations using the IHRB [74], GBFDA [102], [104],

WBRB [81] and FBRB [81] algorithms achieve similar
performance when decoding the same amount of edges by
core.

In conclusion, the AMSA [105], GBFDA [102], [104] and
Lacruz et al. [101] designs are the best-performing FPGA
solutions in terms of throughput efficiency, according to Fig. 9
and Fig. 11. However, if resource allocation (Fig. 10) is taken
into consideration, only the designs from [101] and [104] are
considered since they have low resource utilization.

C. ASIC

The surveyed ASIC designs are primarily implemented for
GF (25) and GF (26). For both Fig. 12 and Fig. 13, the optimal
points are in the top-left corner of the plot since through-
put should be maximized and the maximum number of edges
should be processed in the minimum number of gates and area.

Data points in Fig. 12 follow a linear trend. Log-
domain SPA [106] and MM [73], [75], [100], [114]–[117]
designs show a poor performance that can be explained by
their use of older process node technologies. The designs
from [101], [118] use recent process node designs (28 and
90nm) and can achieve better performance even for GF (28).

Designs using the EMS algorithm produce a good
performance. This is particularly true for the designs
in [111], [113], which amount to one of the best designs in
terms of efficiency. Variants that use Trellis schemes for the
EMS and MM algorithms achieve results in the same trend
and use fewer gates per edge. Using the Trellis-MM algorithm,
Zhang et al. were able to achieve the best ASIC designs [126].

The designs using ISRB [120], IHRB [121] and WBRB [48]
achieve excellent performance and can be alternatives to
better-known algorithms such as MM and EMS.

546 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Fig. 11. Throughput per edge versus cores per edge of the surveyed FPGA decoders. The trend line is calculated using linear regression. A red trend line
for GF(2) from [24] is plotted for comparison.

Fig. 12. Throughput per edge versus the number of gates per edge for all the surveyed ASIC decoders. The colored right vertical bar represents different
Galois fields in the implementations. The trend line is calculated using linear regression.

In this figure, we can see that data points can be clus-
tered in process node technologies. For this chart, there is a
direct relationship between process node design and achieved
throughput. For smaller technologies, the throughput is higher,
even when adjusted for the trend.

Like previous figure, Fig. 13 presents the throughput and
area normalized by the number of edges. Instead of a lin-
ear trend line, in this figure the trend is quadratic since
increasing the area provides double the resources to increase
the throughput.

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 547

Fig. 13. Throughput per edge versus area per edge for all the surveyed ASIC decoders. The trend line is calculated using linear regression.

From Fig. 12, a similar analysis can be done for Fig. 13.
SPA and MM decoders have poor area efficiency because
they use older process node designs. However, MM designs
from [8], [118], [126] stand out and achieve above-average
performance, in particular for the design in [126], which has
the lowest area per edge. Using a Trellis scheme for MM
substantially improves the decoder’s performance, placing the
implementation on the trend line. For the EMS algorithm, in
general the efficiency is excellent, with designs from [113]
being among the candidates for the most efficient designs.
The exception to the above-average performance is [72] since
it uses an old process node technology (180nm). Contrary to
MM decoders, using Trellis schemes for EMS designs lowers
performance to Trellis-MM algorithm levels.

Designs using IHRB, ISRB, GBFDA and AMSA achieve
similar performance that follows the trend. WBRB and
FBRB algorithm implementations have shown impressive
performance on ASIC. However, designs that use ADBP and
SRB algorithms have one of the poorest performances.

The data points can be clustered by the type of process node
design. ASICs using 180nm technology are mainly located
below the trend line. This is expected since the technology
is older and thus less efficient. The 90, 65 and 40nm tech-
nologies are situated around the trend line, with the designs
using 40nm occupying less area. The cluster using 65nm is
slightly higher than the expected throughput performance. This
can be explained by most of the points being implemented
using EMS, which is the best algorithm to achieve throughput
performance per edge, as can be seen in Fig. 13. The cluster
using 28nm technology achieves the best performance per area
since it is the most efficient technology.

In conclusion, designs using Trellis-MM [126]
and EMS [113] algorithms are the best performing

implementations in terms of area and gate efficiency
with the solution from [121], using the IHRB-MLGD
algorithm falling short of those designs for lower Galois
fields.

D. Design Considerations

Fig. 6 generalizes the process of specifying and design-
ing NB-LDPC decoders. From the code specification, multiple
variables need to be considered to produce an NB-LDPC
decoder solution. This solution is expected to comply with
various performance parameters such as throughput, latency,
area, power and flexibility.

1) Throughput: The most crucial output metric is through-
put performance: the number of bits decoded per unit of time.
This metric is required for high-speed data communication for
applications described in Section II (Section II-B).

2) Latency: Second, latency is the time that the system
takes to decode a codeword. Applications should have the
lowest latency possible. In particular, safety-related applica-
tions (Section II-E) require low response times. Latency is
intrinsically connected to throughput performance and the
implementations often pose a trade-off between throughput
and latency. As a result, the designers must consider the type
of application and design the decoder in accordance with
requirements.

3) Hardware Resources: Next, the hardware resources
impose limitations on the performance and flexibility of
the decoder. Specifically, memory plays a huge role in
the decoder’s performance, with high-performance decoders
requiring more resources and larger footprints.

4) Power and Energy: As for power and energy-constrained
systems such as satellites and smartphones (Section II-A),
energy-efficiency must be contemplated. The works found

548 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Fig. 14. Algorithms on the right side have an increased complexity, cost and development effort. The horizontal axis correlates with the architectures,
with ASICs having higher cost, complexity and development effort, while requiring lower power levels and having less flexibility. Although, the decoding
algorithms are not bound to a specific architecture, the literature shows GPU implementations for the SPA and MM. For FPGAs, implementations with SPA,
MM, EMS and other algorithms can be found and all algorithms have implementations for ASICs, as shown in Table IV, V, and VI. Although not observed
on this diagram, low complexity algorithms and different degrees of parallelism can improve throughput performance for the same silicon area.

in the literature do not report energy consumption values.
Despite that, some works report power values and FPGA
and ASIC’s energy-efficiencies can be inferred. Concerning
the GPU results, the thermal design power (TDP) values are
considered.

5) Flexibility: Another important metric is the decoder’s
flexibility. In general terms, the literature reports implementa-
tions using fixed designs. However, if the decoders have the
ability to process different PCMs they can improve the error-
correcting capability by adapting to the changing noise levels
of the environment. Admittedly, such flexibility increases the
decoder complexity, particularly in ASICs, but FPGAs and
GPUs can provide flexible solutions, too.

6) Field, Code Size and Code Rate: The error-correction
performance increases for (1) high order fields, (2) longer
code sizes, allowing more symbols to be decoded and (3) low
code rates. However, these metrics scale exponentially with the
increase of code edges, code size and, especially, high-order
fields, making the implementation of decoders impractical for
larger values.

Another parameter that the designer must consider when
designing decoders is flexibility. Allowing the system to
decode variable code sizes or different Galois fields, sig-
nificantly increases complexity and decreases throughput
performance.

Most of the works reported use designs that process different
PCM sizes with different weights ranging from 200 to 10000
edges.

7) Iterations: The number of iterations imposed on
the system can impact error-correction capability and the
decoder’s throughput performance. Received codewords with
a high level of noise can result in undecodable codewords,

and these systems usually employ a sufficient maximum num-
ber of iterations (Imax) to stop the non-converging decoding
process. Imax is chosen in order to achieve a given FER goal.

However, various works employ a fixed number of itera-
tions without early termination for benchmark purposes. This
diversity imposes a barrier to make a fair comparison between
implementations. Some works provided in Tables IV, V
and VI either do not specify the number of iterations or
give the maximum number of iterations with early termi-
nation but fail to pinpoint the exact number of iterations
taken for that experiment, making it difficult to compare
implementations.

8) Quantization: The quantization of the input probabilities
(γn) also plays a role in the decoder’s complexity. Converting
floating-point arithmetic to binary produces a decoder with
a reduced hardware complexity. This provides a trade-off
between resolution and convergence. However, such a trade-
off has implications for the decoder’s throughput performance.
Lower resolutions have higher throughput performance but
reduce error-correction performance.

9) Technology: Lastly, the technology used influences the
decoder capability. Faster clock frequencies translate into
higher throughput performance. Usually, the implementation
must be tailored to accommodate the platform requirements,
resulting in different approaches to the same algorithm.

VIII. KEY TAKEAWAYS

The analysis of the NB-LDPC decoders is a multi-domain
design exploration with many dimensions. Fig. 14 depicts the
relationship between decoding algorithms, architectures and

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 549

TABLE VII
COMPARISON OF DIFFERENT DECODING ALGORITHMS AND ARCHITECTURES FOR DIFFERENT METRICS USING RELATIVE SCORES RANGING FROM 1

TO 5. THE ARROWS ON THE LEFT COLUMN DESCRIBE THE GOAL OF THE METRIC, WHERE, FOR INSTANCE, A 5 ON THROUGHPUT MEANS THE

HIGHEST THROUGHPUT PERFORMANCE AND 5 ON COMPLEXITY MEANS THE SIMPLEST DECODER

TABLE VIII
COMPARISON OF DIFFERENT DECODING ALGORITHMS FOR THE

DIFFERENT APPLICATIONS MENTIONED IN SECTION II. (HIGHER

NUMBER OF ‘+’ IS BETTER)

applications for the most important metrics, BER and through-
put. The following sections describe the takeaways from this
survey, with Table VII summarizing the relationship between
decoding algorithms and architectures and Table VIII giving
an overview of which decoding algorithms are better suited
for the applications in Section II, according to the authors’
opinion.

A. Applications

Most of the applications require a compromise between
throughput and BER performance. High noise levels character-
ize space communications and throughput performance is not
a crucial metric for these systems. The decoders employed
in this should maximize the error-correction performance and
consider other variables such as memory, power, and area since
these are usually employed in resource-constrained systems
such as satellites.

In terrestrial optical communications, these constraints are
eliminated and noise is much less influential. Therefore, on
these applications, throughput is prioritized to allow fast data
communication.

For data storage applications, throughput and BER should
be balanced. However, this application requires the decoder
to have low complexity to decrease costs and consume low
energy levels.

Noise is also present in power-line communications.
However, the BER performance required in these applica-
tions is more relaxed than in space communications and the
throughput performance requirement is more strict.

The new applications have different types of requirements.
For example, communications for autonomous vehicles require
a high level of throughput performance but, more importantly,
need a decoder with small latency. A great effort has been put
into exploring energetic efficiency decoders. Emergent applica-
tions such as Internet-of-Things and wearable devices require
low-power communications.

B. Algorithms

1) SPA: SPA has the best error-correction performance
at the cost of a decreased throughput performance. For this
algorithm, ASICs provide a higher throughput rate. However,
for a cost-effective decoder, GPUs represent a good solution.
FPGA implementations have a similar throughput performance
to GPUs. In applications where the throughput performance
requirement is relaxed and in noisy communications chan-
nels, for instance in space and power-line communications
(Sections II-A and II-D), this algorithm has an advantage over
the rest.

2) EMS: Compared to SPA, EMS decoders have less
computational complexity, require less memory and area,
while achieving higher throughput performance, particularly
on ASICs. These decoders can accomplish this at the cost
of reduced error-correction performance. This decoding algo-
rithm is better suited for applications that require high
decoding throughput, for instance in optical communications
(Section II-B) or a good BER and throughput performance, as
in power-line communications (Section II-D).

3) MM: The MM decoders have even less complexity
but the reported results do not show higher throughput
performance. Despite this, this algorithm has a reduced error-
correction performance compared to the EMS. The area
utilization on ASICs is one of the worst, together with the SPA.
The reduced throughput of the algorithm does not suit high-
speed applications. For example, this algorithm does not suit
optical communications. However, it has a reduced complexity
compared to the SPA and EMS, making a good implementa-
tion on data storage decoding systems(Section II-C).

4) MLGD: MLGD algorithms show to have poor through-
put and BER performance. However, they require less memory
usage and are less complex than the ones previously men-
tioned. They also have the most efficient power per area

550 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

ratio. Although they are similar, the IHRB-MLGD algorithm
has a better performance per area than the ISRB-MLGD.
These decoding algorithms are better for applications where
throughput performance is not crucial and BER requirement
is more relaxed. They provide the best solution for memory-
constrained, as in data storage systems (Section II-C) and
energy-constrained systems, for instance in Internet-of-Things
applications or wearable computing communications devices
(Section II-E).

5) Trellis-Based: Compared to the EMS and MM decoders,
Trellis versions further reduce complexity with a minimal
loss in error-correction performance. The Trellis-EMS [113]
and Trellis-MM [126] provide a good trade-off between
throughput performance and error-correction capability and
are widely available, with good implementations for data stor-
age (Section II-C) and power-line applications (Section II-D).
The Trellis-EMS is more inclined to BER performance and
Trellis-MM more suitable for throughput performance, and
both provide the best throughput per area ratio.

6) Other Algorithms: For lesser reported algorithms,
GBFDA decoders are a good fit for memory-constrained appli-
cations, for example, data storage applications (Section II-C).
AMSA, WBRB, FBRB, ADBP and SRB algorithms are not
featured in many studies published in the literature but can
achieve high throughput performance, making them suitable
for applications that require high-speed communications, as
in optical communications (Section II-B). In particular, the
ADBP decoder is shown to have a very low resource utilization
and area, making them suitable for data storage and wearable
communications devices (Sections II-C and II-E). However
these decoding are still new and more research is needed.

C. Final Remarks

1) Galois Fields: Choosing higher Galois fields increases
the decoder’s complexity and requires greater amounts of
memory, which creates constraints in terms of datapath and
edge communications. Galois fields between GF (22) and
GF (24) are standard for testing NB-LDPC decoders. For
FPGAs and ASICs, an excellent field choice to implement
decoders is in GF (25) and GF (26). Throughput performance
dramatically decreases with the increase in the field order.
However, decoders in GF (27) and GF (28) result in complex
wiring and connections, making decoders hard to implement.
With FPGA and ASIC process node design technology and
tools development, it is expected to see the implementation of
many new high-order fields. In GPUs, hardware abstraction
allows for high-order fields to be implemented easily.

2) Architectures: The hardware designer must know the
platform limitations when choosing the proper VLSI system
to implement these decoders. As depicted in Fig. 14, a
customized ASIC design is expensive and highly complex
implementation-wise. However, this system will present the
best throughput performance, low area utilization and high
energy efficiency (as shown in Table VII). Using FPGAs
reduces cost and can be helpful for specific scenarios where
the run-time configuration is used (Fig. 14), but faces the
wiring and connection restrictions that ASICs do, and has

reduced throughput performance. GPUs detach the developer
from the hardware and have a faster development cycle but
significantly reduce the throughput performance, as illustrated
in Fig. 14(a), Fig. 14(b) and Table VII. The latter is good for
iterative co-design (exit chart analysis[135]) towards superior
BER performance, to validate NB-LDPC decoders and test the
BER performance of new codes.

3) Code Choice: In terms of code length, most decoders
found in the literature employ codes between a few hundred
(> 500) and a few thousand (< 2000) symbols for the decoder
to have some practicality. It has been shown that NB-LDPC
codes with low column weights perform well. In [50], the
authors showed that for fields higher than GF (26), codes
with dv = 2 have an optimal average Hamming weight spec-
trum, and thus have a higher error-correcting performance
associated with low hardware complexity. The work in [55]
presents methods for constructing NB-LDPC codes with low
column weights (dv) used in the majority of the surveyed lit-
erature. Furthermore, some authors provide a collection of the
codes [136]–[138].

IX. FUTURE DEVELOPMENTS

This section provides an examination of all decoder imple-
mentations by analyzing the number of gates that each
implementation requires and provides insights about future
challenges and evolution of NB-LDPC decoding.

To compare designs in different systems, understand how
future systems will evolve, and check if some designs sat-
isfy the current requirements, a standardized evaluation should
be adopted across all systems. Figs. 15 and 16 present the
achieved throughput against the number of transistors normal-
ized by the number of edges (N ×dv or M ×dc). The number
of transistors for GPUs is calculated according to the manu-
facturer’s specifications. For an ASIC, it is considered that a
gate has 2 transistors. Finally, for FPGA, it is assumed 1 ELB
(14-input LUT (156 transistors) + 1 FF (18 transistors)) to
have 174 transistors.

A. Unified Analysis

Fig. 15 illustrates the relative performance against the num-
ber of transistors for all surveyed systems. GPU implemen-
tations have a more compacted cloud than those of FPGAs.
This is due to this type of device being more inflexible and
containing more overheads. On the other hand, FPGA designs
can achieve higher throughput using the same number of tran-
sistors as GPUs do. This is expected because FPGAs are more
flexible and designs can be tailored to specific algorithms.
For instance, GPUs can quantize samples in 8-bit variables,
while FPGAs can use fewer customized bits, thus creating
more efficient designs. ASICs sacrifice the flexibility of an
FPGA system to achieve even higher throughput for the same
number of transistors.

Outliers in the figure are found for both FPGA and ASIC
designs. This is expected because these devices can provide
custom hardware design and are implemented in different
Galois fields, process node designs and algorithms, thus
increasing variability in performance.

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 551

Fig. 15. Throughput per edge versus transistors per edge for all the surveyed decoders implemented on GPUs, FPGAs and ASICs. The trend lines are
calculated using linear regression.

Fig. 16. Throughput per edge versus transistors per edge yearly evolution
for the decoders implemented on GPUs, FPGAs and ASICs. The trend lines
are the same from Fig. 15. Each point represents the center of mass of every
implementation in the corresponding year.

The trend lines show how throughput evolves with the vari-
ation in the number of transistors. GPUs, FPGAs and ASICs
have different efficiency trend lines. As observed in the trend
lines of Fig. 15, it is clear that FPGAs are 10 times more
efficient than GPUs in terms of throughput per transistor per
edge. ASICs have a similar trend line to FPGAs. However, the
transistors from these custom-made circuits are 30 times more
efficient than FPGAs, allowing higher throughput performance
using the same number of transistors per edge.

B. Challenges and Goals Ahead

An important step is to analyze how these implementations
develop over time. Fig. 16 shows the trend for the landmark

years for the three architectures, keeping the same trend lines
as in Fig. 15 for a reference point. These points represent
the center of mass of implementations published in the same
year. Some outlier years in this figure are not shown due to
implementations using older process node designs and being
underrepresented, with one or two papers published in that
mentioned year.

1) Higher Throughput and Computational Complexity, and
Lower BER: Some conclusions can be taken from this evo-
lution. Overall, it is expected that future designs may achieve
higher throughput, enabling the execution of larger and more
complex codes, and leading to superior BER performance.
Furthermore, with the evolution of these architectures and the
reduction of the process node design technology, the number
of transistors per edge should increase as well as the designs’
energy efficiency.

As depicted in Fig. 16, the trend shows an increase in
throughput performance mainly due to process node design
size reduction and the adoption of new hardware optimization
techniques. Table IX shows the main research challenges
from technological and algorithmic perspectives for develop-
ing future NB-LDPC decoders. Algorithmic parameters rely
on developing new codes that will probably become larger
and require the use of higher-order Galois field arithmetic,
thus increasing BER performance and decoding complexity.
Moreover, with more CNs and VNs processors incorporated
into the design, more memory should be required. Also, new
memory technologies have been proposed that allow part of
the processing to be performed in memory, which will bene-
fit throughput performance and energy efficiency, namely by
reducing the data movement bottleneck.

2) More Efficient Hardware Design With Lower
Development Effort: Regarding the interaction of future

552 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

TABLE IX
RESEARCH CHALLENGES FOR FUTURE NB-LDPC DECODERS

codes and NB-LDPC decoding algorithms with technological
developments of process node design, although codes may
expectedly become larger and algorithms more complex, the
size and power of the transistors are expected to decrease,
leading to similar energy consumption levels and circuit
area. The evolution of architectures and new EDA tools can
potentially increase the decoder’s flexibility and decrease
development time and effort. Although a tremendous research
effort has been invested in this field, it has mainly been
dedicated to binary LDPC decoders, opening room to
new research that is still required both for architectures
and NB-LDPC codes, namely for targeting superior BER
performance in the range of 10−15 dB and lower, while still
guaranteeing very high throughput.

X. CONCLUSION

In this paper we have presented an exhaustive listing of
NB-LDPC decoder architectures and systems found in the
literature and discussed their practicalities and limitations,
described best matching between algorithm and applications
and highlighted the best performances and open challenges
for future designs. The large number of algorithmic vari-
ables, and the range of code sizes, architectures, algorithms
and hardware make the task of comparing decoders hard.
Nevertheless, we concluded that SPA decoders have the best
BER but a poor throughput performance. Trellis decoders
provide the best trade-off between error-correction capacity
and throughput and have excellent performance per area. The
MLGD decoder further reduces complexity but shows poor
BER performance. Other decoders (GBFDA, AMSA) are more
suitable for memory-constrained applications.

The process of investigating NB-LDPC decoders involves
(1) the prototyping of new architectures to test the error-
capability performance of new NB-LDPC decoders and (2) the
design of decoders for specific applications, taking into con-
sideration tight constraints regarding throughput, latency and
energy.

ASIC-based decoders are more suitable for energy-
constrained applications that demand high throughput
performance. GPUs, however, are suited to applications with-
out power restrictions, such as base stations where arrays of
GPUs can provide a cost-effective solution. In the middle

term, FPGAs can provide throughput one order of magnitude
higher than GPUs and one order below ASICs, and the oppo-
site for energy. The reprogrammable and flexible nature of
FPGAs and GPUs can also offer good platforms to prototype,
test and validate new codes, to reduce costs and development
time. ASIC-based decoders can generate prohibitive costs and
should therefore be used in application-specific designs.

REFERENCES

[1] Z. Babar et al., “Polar codes and their quantum-domain counter-
parts,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 123–155, 1st
Quart., 2020.

[2] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[3] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431,
Mar. 1999.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Proc. ICC
IEEE Int. Conf. Commun., vol. 2, 1993, pp. 1064–1070.

[5] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[6] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),” in Proc. IEEE Inf. Theory Workshop, 1998, pp. 70–71.

[7] S. Shao et al., “Survey of turbo, LDPC, and polar decoder ASIC
implementations,” IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2309–2333, 3rd Quart., 2019.

[8] Y. Toriyama and D. Marković, “A 2.267-Gb/s, 93.7-pJ/bit non-binary
LDPC decoder with logarithmic quantization and dual-decoding algo-
rithm scheme for storage applications,” IEEE J. Solid-State Circuits,
vol. 53, no. 8, pp. 2378–2388, Aug. 2018.

[9] A. Abdmouleh, E. Boutillon, L. Conde-Canencia, C. A. Nour, and
C. Douillard, “A new approach to optimise non-binary LDPC codes
for coded modulations,” in Proc. 9th Int. Symp. Turbo Codes Iterative
Inf. Process. (ISTC), 2016, pp. 295–299.

[10] L. Costantini, B. Matuz, G. Liva, E. Paolini, and M. Chiani, “On
the performance of moderate-length non-binary LDPC codes for space
communications,” in Proc. 5th Adv. Satell. Multimedia Syst. Conf. 11th
Signal Process. Space Commun. Workshop, 2010, pp. 122–126.

[11] L. Wen, J. Lei, and J. B. Wei, “Design of concatenation of fountain
and non-binary LDPC codes for satellite communications,” in Proc.
2nd Int. Conf. Inf. Eng. Comput. Sci., 2010, pp. 1–4.

[12] G. Liva, E. Paolini, T. De Cola, and M. Chiani, “Codes on high-order
fields for the CCSDS next generation uplink,” in Proc. 6th Adv. Satell.
Multimedia Syst. Conf. (ASMS) 12th Signal Process. Space Commun.
Workshop (SPSC), 2012, pp. 44–48.

[13] B. Chang, D. Divsalar, and L. Dolecek, “Non-binary protograph-
based LDPC codes for short block-lengths,” in Proc. IEEE Inf. Theory
Workshop, 2012, pp. 282–286.

[14] A. Mansour, R. Mesleh, and M. Abaza, “New challenges in
wireless and free space optical communications,” Opt. Lasers
Eng., vol. 89, pp. 95–108, Feb. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0143816616300252

[15] R. Achiba, M. Mortazavi, and W. Fizell, “Turbo code performance
and design trade-offs,” in Proc. 21st Century Military Commun. Archit.
Technol. Inf. Superiority, vol. 1, 2000, pp. 174–180.

[16] F. Guilloud, E. Boutillon, J. Tousch, and J.-L. Danger, “Generic
description and synthesis of LDPC decoders,” IEEE Trans. Commun.,
vol. 55, no. 11, pp. 2084–2091, Nov. 2007.

[17] T. Brack et al., “A survey on LDPC codes and decoders for OFDM-
based UWB systems,” in Proc. IEEE 65th Veh. Technol. Conf., 2007,
pp. 1549–1553.

[18] C. Roth, A. Cevrero, C. Studer, Y. Leblebici, and A. Burg, “Area,
throughput, and energy-efficiency trade-offs in the VLSI implemen-
tation of LDPC decoders,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), 2011, pp. 1772–1775.

[19] N. Bonello, S. Chen, and L. Hanzo, “Low-density parity-check codes
and their rateless relatives,” IEEE Commun. Surveys Tuts., vol. 13,
no. 1, pp. 3–26, 1st Quart., 2011.

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 553

[20] H. Chen, R. G. Maunder, and L. Hanzo, “A survey and tutorial on low-
complexity turbo coding techniques and a holistic hybrid ARQ design
example,” IEEE Commun. Surveys Tuts., vol. 15, no. 4, pp. 1546–1566,
4th Quart., 2013.

[21] Y. Fang, G. Bi, Y. L. Guan, and F. C. M. Lau, “A survey on protograph
LDPC codes and their applications,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 4, pp. 1989–2016, 4th Quart., 2015.

[22] E. Arikan, N. Ul Hassan, M. Lentmaier, G. Montorsi, and J. Sayir,
“Challenges and some new directions in channel coding,” J. Commun.
Netw., vol. 17, no. 4, pp. 328–338, Aug. 2015.

[23] J. Andrade, G. Falcao, V. Silva, and L. Sousa, “A survey on pro-
grammable LDPC decoders,” IEEE Access, vol. 4, pp. 6704–6718,
2016.

[24] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,
“A survey of FPGA-based LDPC decoders,” IEEE Commun. Surveys
Tuts., vol. 18, no. 2, pp. 1098–1122, 2nd Quart., 2016.

[25] M. F. Brejza, L. Li, R. G. Maunder, B. M. Al-Hashimi, C. Berrou, and
L. Hanzo, “20 years of turbo coding and energy-aware design guide-
lines for energy-constrained wireless applications,” IEEE Commun.
Surveys Tuts., vol. 18, no. 1, pp. 8–28, 1st Quart., 2016.

[26] H. Mukhtar, A. Al-Dweik, and A. Shami, “Turbo product codes:
Applications, challenges, and future directions,” IEEE Commun.
Surveys Tuts., vol. 18, no. 4, pp. 3052–3069, 4th Quart., 2016.

[27] I. B. Djordjevic, “On advanced FEC and coded modulation for ultra-
high-speed optical transmission,” IEEE Commun. Surveys Tuts., vol. 18,
no. 3, pp. 1920–1951, 3rd Quart., 2016.

[28] H. B. Thameur, B. Le Gal, N. Khouja, F. Tlili, and C. Jego, “A
survey on decoding schedules of LDPC convolutional codes and asso-
ciated hardware architectures,” in Proc. IEEE Symp. Comput. Commun.
(ISCC), 2017, pp. 898–905.

[29] Y. Fang, G. Han, G. Cai, F. C. M. Lau, P. Chen, and Y. L. Guan,
“Design guidelines of low-density parity-check codes for magnetic
recording systems,” IEEE Commun. Surveys Tuts., vol. 20, no. 2,
pp. 1574–1606, 2nd Quart., 2018.

[30] S. Abdulghani, “Binary and non-binary low density parity check codes:
A survey,” Int. J. Inf. Eng. Appl., vol. 1, no. 3, pp. 104–117, 2018.

[31] T. Tonnellier, A. Cavatassi, and W. J. Gross, “Length-compatible polar
codes: A survey (invited paper),” in Proc. 53rd Annu. Conf. Inf. Sci.
Syst. (CISS), 2019, pp. 1–6.

[32] I. E. KAIME, A. A. MADI, and H. Erguig, “A survey of polar codes,”
in Proc. 7th Mediterr. Congr. Telecommun. (CMT), 2019, pp. 1–7.

[33] Z. B. K. Egilmez, L. Xiang, R. G. Maunder, and L. Hanzo, “The
development, operation and performance of the 5G polar codes,” IEEE
Commun. Surveys Tuts., vol. 22, no. 1, pp. 96–122, 1st Quart., 2020.

[34] V. Bioglio, C. Condo, and I. Land, “Design of polar codes in 5G new
radio,” IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 29–40, 1st
Quart., 2021.

[35] M. Arabaci, I. B. Djordjevic, R. Saunders, and R. Marcoccia, “A class
of non-binary regular girth-8 LDPC codes for optical communication
channels,” in Proc. Conf. Opt. Fiber Commun. Includes Post Deadline
Papers, 2009, pp. 1–3.

[36] M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Rate-
adaptive non-binary-LDPC-coded polarization-multiplexed multilevel
modulation with coherent detection for optically-routed networks,” in
Proc. 11th Int. Conf. Transparent Opt. Netw., 2009, pp. 1–4.

[37] C. Choi, H. Lee, N. Kaneda, and Y. Chen, “Concatenated non-binary
LDPC and HD-FEC codes for 100Gb/s optical transport systems,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2012, pp. 1783–1786.

[38] X. Xiao, Y. Lu, and S. Goto, “A low-complexity coding scheme for
non-binary LDPC code based on IDRB-MLGD algorithm,” in Proc.
9th Int. Conf. Inf. Commun. Signal Process., 2013, pp. 1–5.

[39] M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia,
“Nonbinary quasi-cyclic LDPC-based coded modulation for beyond
100-Gb/s transmission,” IEEE Photon. Technol. Lett., vol. 22, no. 6,
pp. 434–436, Mar. 15, 2010.

[40] G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris,
and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical
networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 209–221,
1st Quart., 2016.

[41] I. B. Djordjevic, “On the irregular nonbinary QC-LDPC-coded hybrid
multidimensional OSCD-modulation enabling beyond 100 Tb/s optical
transport,” J. Lightw. Technol., vol. 31, no. 16, pp. 2669–2675, Aug. 15,
2013.

[42] G. A. Al-Rubaye, C. C. Tsimenidis, and M. Johnston, “Non-binary
LDPC coded OFDM in impulsive power line channels,” in Proc. 23rd
Eur. Signal Process. Conf. (EUSIPCO), 2015, pp. 1431–1435.

[43] W. Abd-Alaziz, Z. Mei, M. Johnston, and S. Le Goff, “Non-
binary turbo-coded OFDM-PLC system in the presence of impulsive
noise,” in Proc. 25th Eur. Signal Process. Conf. (EUSIPCO), 2017,
pp. 2576–2580.

[44] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 2, pp. 1243–1274, 2nd Quart., 2019.

[45] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and
L. Hanzo, “VLSI implementation of fully parallel LTE turbo decoders,”
IEEE Access, vol. 4, pp. 323–346, 2016.

[46] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Multi-mode
unrolled architectures for polar decoders,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 63, no. 9, pp. 1443–1453, Sep. 2016.

[47] A. Naderi, S. Mannor, M. Sawan, and W. J. Gross, “Delayed stochastic
decoding of LDPC codes,” IEEE Trans. Signal Process., vol. 59, no. 11,
pp. 5617–5626, Nov. 2011.

[48] J. Tian, J. Lin, and Z. Wang, “A 21.66 Gbps nonbinary LDPC decoder
for high-speed communications,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 65, no. 2, pp. 226–230, Feb. 2018.

[49] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,” Electron. Lett., vol. 32, no. 18,
pp. 1645–1646, 1996.

[50] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-
LDPC codes over GF(q) using their binary images,” IEEE Trans.
Commun., vol. 56, no. 10, pp. 1626–1635, Oct. 2008.

[51] S. Lin and D. J. Costello, Error Control Coding, vol. 2. Englewood
Cliffs, NJ, USA: Prentice Hall, 2001.

[52] R. A. Carrasco and M. Johnston, Non-Binary Error Control Coding for
Wireless Communication and Data Storage. Chichester, U.K.: Wiley,
2008.

[53] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Improved low-density parity-check codes using irregular graphs,”
IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[54] A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-
cyclic LDPC codes by ACE optimization,” in Proc. IEEE Inf. Theory
Workshop (ITW), 2013, pp. 1–5.

[55] B. Zhou, J. Kang, S. W. Song, S. Lin, K. Abdel-Ghaffar, and
M. Xu, “Construction of non-binary quasi-cyclic LDPC codes by arrays
and array dispersions—[Transactions papers],” IEEE Trans. Commun.,
vol. 57, no. 6, pp. 1652–1662, Jun. 2009.

[56] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of
quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun.,
vol. 53, no. 11, p. 1973, Nov. 2005.

[57] B. Zhou, L. Zhang, J. Kang, Q. Huang, S. Lin, and K. Abdel-Ghaffar,
“Array dispersions of matrices and constructions of quasi-cyclic LDPC
codes over non-binary fields,” in Proc. IEEE Int. Symp. Inf. Theory,
2008, pp. 1158–1162.

[58] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF (2q),” in Proc. IEEE Inf. Theory Workshop, 2003, pp. 70–73.

[59] G. L. Mullen and D. Panario, Handbook of Finite Fields. Boca Raton,
FL, USA: CRC Press, 2013.

[60] A. A. Ghouwayel and E. Boutillon, “A systolic LLR generation archi-
tecture for non-binary LDPC decoders,” IEEE Commun. Lett., vol. 15,
no. 8, pp. 851–853, Aug. 2011.

[61] R. Peng and R.-R. Chen, “Application of nonbinary LDPC cycle codes
to MIMO channels,” IEEE Trans. Wireless Commun., vol. 7, no. 6,
pp. 2020–2026, Jun. 2008.

[62] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain
decoding of LDPC codes over GF(q),” in Proc. IEEE Int. Conf.
Commun., vol. 2, 2004, pp. 772–776.

[63] C. Spagnol, E. M. Popovici, and W. P. Marnane, “Hardware imple-
mentation of GF(2m) LDPC decoders,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 56, no. 12, pp. 2609–2620, Dec. 2009.

[64] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF(q),” IEEE Trans. Commun., vol. 55, no. 4,
pp. 633–643, Apr. 2007.

[65] V. Savin, “Min-max decoding for non binary LDPC codes,” in Proc.
IEEE Int. Symp. Inf. Theory, 2008, pp. 960–964.

[66] C. Chen, Q. Huang, C.-C. Chao, and S. Lin, “Two low-complexity
reliability-based message-passing algorithms for decoding non-binary
LDPC codes,” IEEE Trans. Commun., vol. 58, no. 11, pp. 3140–3147,
Nov. 2010.

[67] E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended min-
sum algorithm for non-binary LDPC codes and its hardware structure,”
IEEE Trans. Commun., vol. 61, no. 7, pp. 2600–2611, Jul. 2013.

554 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

[68] J. O. Lacruz, F. García-Herrero, D. Declercq, and J. Valls, “Simplified
trellis min-max decoder architecture for nonbinary low-density parity-
check codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 23, no. 9, pp. 1783–1792, Sep. 2015.

[69] K. M. Greenan, E. L. Miller, and S. J. T. J. E. Schwarz, “Optimizing
galois field arithmetic for diverse processor architectures and appli-
cations,” in Proc. IEEE Int. Symp. Model. Anal. Simulat. Comput.
Telecommun. Syst., 2008, pp. 1–10.

[70] X. Zhang, VLSI Architectures for Modern Error-Correcting Codes.
Boca Raton, FL, USA: CRC Press, 2017.

[71] D. Declercq and M. Fossorier, “Extended minsum algorithm for decod-
ing LDPC codes over GF(q),” in Proc. Int. Symp. Inf. Theory, 2005,
pp. 464–468.

[72] X. Chen and C.-L. Wang, “High-throughput efficient non-binary LDPC
decoder based on the simplified min-sum algorithm,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2784–2794, Nov. 2012.

[73] X. Zhang and F. Cai, “Reduced-complexity decoder architecture for
non-binary LDPC codes,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 7, pp. 1229–1238, Jul. 2011.

[74] X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based
message-passing decoder architectures for non-binary LDPC codes,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 11,
pp. 1938–1950, Nov. 2012.

[75] F. Cai and X. Zhang, “Relaxed min-max decoder architectures for non-
binary low-density parity-check codes,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 11, pp. 2010–2023, Nov. 2013.

[76] X. Zhang, “Low-complexity modified trellis-based min-max non-
binary LDPC decoders,” J. Commun., vol. 10, no. 11, pp. 836–842,
2015.

[77] F. García-Herrero, E. Li, D. Declercq, and J. Valls, “Multiple-vote
symbol-flipping decoder for nonbinary LDPC codes,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 11, pp. 2256–2267,
Nov. 2014.

[78] C.-W. Yang, X.-R. Lee, C.-L. Chen, H.-L. Chang, and C.-Y. Lee,
“Area-efficient TFM-based stochastic decoder design for non-binary
LDPC codes,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2014,
pp. 409–412.

[79] M. Awais, G. Masera, M. Martina, and G. Montorsi, “VLSI implemen-
tation of a non-binary decoder based on the analog digital belief prop-
agation,” IEEE Trans. Signal Process., vol. 62, no. 15, pp. 3965–3975,
Aug. 2014.

[80] L. Zhou, J. Sha, Y. Chen, C. Zhang, and Z. Wang, “Efficient symbol
reliability based decoding for QCNB-LDPC codes,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), 2014, pp. 405–408.

[81] Q. Huang and S. Yuan, “Bit reliability-based decoders for non-binary
LDPC codes,” IEEE Trans. Commun., vol. 64, no. 1, pp. 38–48,
Jan. 2016.

[82] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “FFT-SPA non-binary
LDPC decoding on GPU,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2013, pp. 5099–5103.

[83] Z. Liu, R. Liu, Y. Hou, H. Peng, and L. Zhao, “Efficient GPU-based
implementation for decoding non-binary LDPC codes with layered and
flooding schedules,” Concurrency Comput. Pract. Exp., vol. 30, no. 16,
2018, Art. no. e4442.

[84] Z. Liu, R. Liu, Y. Hou, and L. Zhao, “High-throughput multi-codeword
decoder for non-binary LDPC codes on GPU,” IEEE Commun. Lett.,
vol. 22, no. 3, pp. 486–489, Mar. 2018.

[85] M. Beermann, E. Monzo, L. Schmalen, and P. Vary, “GPU accelerated
belief propagation decoding of non-binary LDPC codes with parallel
and sequential scheduling,” J. Signal Process. Syst., vol. 78, no. 1,
pp. 21–34, 2015.

[86] G. Wang, H. Shen, B. Yin, M. Wu, Y. Sun, and J. R. Cavallaro, “Parallel
nonbinary LDPC decoding on GPU,” in Proc. Conf. Rec. 46th Asilomar
Conf. Signals Syst. Comput. (ASILOMAR), 2012, pp. 1277–1281.

[87] H. P. Thi, S. Ajaz, and H. Lee, “Efficient min-max nonbinary LDPC
decoding on GPU,” in Proc. Int. SoC Design Conf. (ISOCC), 2014,
pp. 266–267.

[88] H. T. Pham, S. Ajaz, and H. Lee, “Parallel block-layered nonbinary
QC-LDPC decoding on GPU,” in Proc. IEEE Workshop Signal Process.
Syst. (SiPS), 2015, pp. 1–6.

[89] O. Ferraz, S. Subramaniyan, G. Wang, J. R. Cavallaro, G. Falcao, and
M. Purnaprajna, “Gbit/s non-binary LDPC decoders: High-throughput
using high-level specifications,” in Proc. IEEE 28th Annu. Int. Symp.
Field-Programmable Custom Comput. Mach. (FCCM), 2020, p. 226.

[90] S. Subramaniyan et al., “Pushing the limits of energy efficiency for
non-binary LDPC decoders on GPUs and FPGAs,” in Proc. IEEE
Workshop Signal Process. Syst. (SiPS), 2020, pp. 1–6.

[91] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “Flexible non-binary
LDPC decoding on FPGAs,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), 2014, pp. 1936–1940.

[92] J. Andrade et al., “From low-architectural expertise up to high-
throughput non-binary LDPC decoders: Optimization guidelines using
high-level synthesis,” in Proc. 25th Int. Conf. Field Programmable
Logic Appl. (FPL), 2015, pp. 1–8.

[93] C. Spagnol, W. Marnane, and E. Popovici, “FPGA implementations
of LDPC over GF (2m) decoders,” in Proc. IEEE Workshop Signal
Process. Syst., 2007, pp. 273–278.

[94] T. Lehnigk-Emden and N. Wehn, “Complexity evaluation of non-binary
Galois field LDPC code decoders,” in Proc. 6th Int. Symp. Turbo Codes
Iterative Inf. Process., 2010, pp. 53–57.

[95] W. Sulek, M. Kucharczyk, and G. Dziwoki, “GF(q) LDPC decoder
design for FPGA implementation,” in Proc. IEEE 10th Consum.
Commun. Netw. Conf. (CCNC), 2013, pp. 460–465.

[96] Y. Sun, Y. Zhang, J. Hu, and Z. Zhang, “FPGA implementation of
nonbinary quasi-cyclic LDPC decoder based on EMS algorithm,” in
Proc. Int. Conf. Commun. Circuits Systems, 2009, pp. 1061–1065.

[97] Y. Tao, Y. S. Park, and Z. Zhang, “High-throughput architecture and
implementation of regular (2, dc) nonbinary LDPC decoders,” in Proc.
IEEE Int. Symp. Circuits Syst., 2012, pp. 2625–2628.

[98] E. Boutillon, L. Conde-Canencia, and A. Al Ghouwayel, “Design of
a GF(64)-LDPC decoder based on the EMS algorithm,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 60, no. 10, pp. 2644–2656, Oct. 2013.

[99] X. Zhang and F. Cai, “Efficient partial-parallel decoder architecture
for quasi-cyclic nonbinary LDPC codes,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 58, no. 2, pp. 402–414, Feb. 2011.

[100] X. Chen, S. Lin, and V. Akella, “Efficient configurable decoder archi-
tecture for nonbinary quasi-cyclic LDPC codes,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 59, no. 1, pp. 188–197, Jan. 2012.

[101] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, J. Valls, and
A. Pérez-Pascual, “A 630 Mbps non-binary LDPC decoder for FPGA,”
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2015, pp. 1989–1992.

[102] F. García-Herrero, M. J. Canet, and J. Valls, “Decoder for an enhanced
serial generalized bit flipping algorithm,” in Proc. 19th IEEE Int. Conf.
Electron. Circuits Syst. (ICECS), 2012, pp. 412–415.

[103] F. Garcia-Herrero, M. J. Canet, and J. Valls, “Architecture of gen-
eralized bit-flipping decoding for high-rate non-binary LDPC codes,”
Circuits Syst. Signal Process., vol. 32, no. 2, pp. 727–741, 2013.

[104] F. Garcia-Herrero, M. J. Canet, and J. Valls, “High-speed NB-LDPC
decoder for wireless applications,” in Proc. Int. Symp. Intell. Signal
Process. Commun. Syst., 2013, pp. 215–220.

[105] A. Ciobanu, S. Hemati, and W. J. Gross, “Adaptive multiset stochastic
decoding of non-binary LDPC codes,” IEEE Trans. Signal Process.,
vol. 61, no. 16, pp. 4100–4113, Aug. 2013.

[106] Y.-L. Ueng, K.-H. Liao, H.-C. Chou, and C.-J. Yang, “A high-
throughput trellis-based layered decoding architecture for non-binary
LDPC codes using max-log-QSPA,” IEEE Trans. Signal Process.,
vol. 61, no. 11, pp. 2940–2951, Jun. 2013.

[107] Y. S. Park, Y. Tao, and Z. Zhang, “A 1.15 Gb/s fully parallel nonbinary
LDPC decoder with fine-grained dynamic clock gating,” in IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, 2013, pp. 422–423.

[108] Y. S. Park, Y. Tao, and Z. Zhang, “A fully parallel nonbinary LDPC
decoder with fine-grained dynamic clock gating,” IEEE J. Solid-State
Circuits, vol. 50, no. 2, pp. 464–475, Feb. 2015.

[109] C.-L. Lin, S.-W. Tu, C.-L. Chen, H.-C. Chang, and C.-Y. Lee, “An
efficient decoder architecture for nonbinary LDPC codes with extended
min-sum algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63,
no. 9, pp. 863–867, Sep. 2016.

[110] I. Choi and J.-H. Kim, “High-throughput non-binary LDPC decoder
based on aggressive overlap scheduling,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 64, no. 7, pp. 1937–1948, Jul. 2017.

[111] H. Harb, “Design of ultra high throughput rate NB-LDPC decoder,”
Ph.D. dissertation, Mathématiques Sci. Technol. Inf. Commun., Univ.
Bretagne Sud, Lorient, France, 2018.

[112] C. Marchand, E. Boutillon, H. Harb, L. Conde-Canencia, and
A. Al Ghouwayel, “Hybrid check node architectures for NB-LDPC
decoders,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 2,
pp. 869–880, Feb. 2019.

[113] H. Harb, A. C. Al Ghouwayel, L. Conde-Canencia, C. Marchand, and
E. Boutillon, “Ultra-high-throughput EMS NB-LDPC decoder with
full-parallel node processing,” to be published. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02494736

[114] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient decoder design for non-
binary quasicyclic LDPC codes,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 57, no. 5, pp. 1071–1082, May 2010.

FERRAZ et al.: A SURVEY ON HIGH-THROUGHPUT NON-BINARY LDPC DECODERS: ASIC, FPGA, AND GPU ARCHITECTURES 555

[115] Y.-L. Ueng, C.-J. Yang, S.-W. Chen, and W.-X. Wu, “A selective-
input non-binary LDPC decoder architecture,” in Proc. Int. SoC Design
Conf., 2011, pp. 40–43.

[116] Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao, and
S.-W. Chen, “An efficient layered decoding architecture for nonbinary
QC-LDPC codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
no. 2, pp. 385–398, Feb. 2012.

[117] J. Lin and Z. Yan, “Efficient shuffled decoder architecture for nonbinary
quasi-cyclic LDPC codes,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 21, no. 9, pp. 1756–1761, Sep. 2013.

[118] J. Lin and Z. Yan, “An efficient fully parallel decoder architecture for
nonbinary LDPC codes,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 22, no. 12, pp. 2649–2660, Dec. 2014.

[119] Y. Lu, G. Tian, and S. Goto, “An efficient decoder architecture for
cyclic non-binary LDPC codes,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), 2014, pp. 397–400.

[120] S. Song, H. Cui, J. Tian, J. Lin, and Z. Wang, “A novel iterative
reliability-based majority-logic decoder for NB-LDPC codes,” IEEE
Trans. Circuits Syst. II, Exp. Briefs,vol. 67, no. 8, pp. 1399–1403,
Aug. 2020.

[121] C. Xiong and Z. Yan, “Low-complexity layered iterative hard-
reliability-based majority-logic decoder for non-binary quasi-cyclic
LDPC codes,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2013,
pp. 1348–1351.

[122] E. Li, F. García-Herrero, D. Declercq, K. Gunnam, J. O. Lacruz, and
J. Valls, “Low latency T-EMS decoder for non-binary LDPC codes,”
in Proc. Asilomar Conf. Signals Syst. Comput., 2013, pp. 831–835.

[123] J. O. Lacruz, F. García-Herrero, J. Valls, and D. Declercq, “One min-
imum only trellis decoder for non-binary low-density parity-check
codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1,
pp. 177–184, Jan. 2015.

[124] J. O. Lacruz, F. García-Herrero, and J. Valls, “Reduction of com-
plexity for nonbinary LDPC decoders with compressed messages,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11,
pp. 2676–2679, Nov. 2015.

[125] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls, “High-
performance NB-LDPC decoder with reduction of message exchange,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 5,
pp. 1950–1961, May 2016.

[126] X. Zhang, “Modified trellis-based min-max decoder for non-binary
LDPC codes,” in Proc. Int. Conf. Comput. Netw. Commun. (ICNC),
2015, pp. 613–617.

[127] J. O. Lacruz, F. García-Herrero, M. J. Canet, and J. Valls, “Reduced-
complexity nonbinary LDPC decoder for high-order Galois fields based
on trellis min-max algorithm,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 24, no. 8, pp. 2643–2653, Aug. 2016.

[128] H. P. Thi and H. Lee, “Two-extra-column trellis min-max decoder
architecture for nonbinary LDPC codes,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 25, no. 5, pp. 1787–1791, May 2017.

[129] H. P. Thi and H. Lee, “Reduced-complexity trellis min-max decoder
for non-binary LDPC codes,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), 2018, pp. 1179–1183.

[130] H. P. Thi and H. Lee, “Basic-set trellis min-max decoder architecture
for nonbinary LDPC codes with high-order galois fields,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 3, pp. 496–507,
Mar. 2018.

[131] M.-R. Li, W.-X. Chu, H.-C. Lee, and Y.-L. Ueng, “An efficient high-
rate non-binary LDPC decoder architecture with early termination,”
IEEE Access, vol. 7, pp. 20302–20315, 2019.

[132] H. P. Thi, H. Lee, and X. N. Pham, “Half-row modified two-extra-
column trellis min-max decoder architecture for nonbinary LDPC
codes,” Integration, vol. 69, pp. 234–241, Nov. 2019.

[133] V. Rybalkin, P. Schlafer, and N. Wehn, “A new architecture for high
speed, low latency NB-LDPC check node processing for GF(256),” in
Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), 2016, pp. 1–5.

[134] A. Haroun, R. Nasr, and A. Al-Ghouwayel, “On the implementation
of vertical shuffle scheduling decoder for joint MIMO detection and
channel decoding system,” in Proc. Int. Arab Conf. Inf. Technol. (ACIT),
2018, pp. 1–4.

[135] B.-Y. Chang, L. Dolecek, and D. Divsalar, “EXIT chart analysis and
design of non-binary protograph-based LDPC codes,” in Proc. Military
Commun. Conf., 2011, pp. 566–571.

[136] M. Helmling et al. “Database of Channel Codes and ML Simulation
Results.” 2019. [Online]. Available: www.uni-kl.de/channel-codes

[137] C. Marchand, H. Harb, T. Gendron, B. Orvoine, and E. Boutillon.
“Free NB-LDPC Code Database of the Lab-STICC Laboratory.” 2018.
[Online]. Available: www-labsticc.univ-ubs.fr/nb_ldpc/

[138] D. Declerq. “Regular Ultra-Sparse Graphs and Related Nonbinary
LDPC Codes.” 2015. [Online]. Available: https://perso-etis.ensea.fr/
declercq/graphs.php

Oscar Ferraz (Student Member, IEEE) received
the M.Sc. degree from the University of Coimbra,
Portugal, in 2019. He is currently pursuing the Ph.D.
degree. He was a Visiting Researcher with Amrita
Vishwa Vidyapeetham University, Bengaluru, India,
and is currently a Researcher with the Instituto de
Telecomunicações, Coimbra, Portugal. His research
interests include parallel computer architectures,
energy-efficient processing, and high-performance
computing. He is a Student Member of the IEEE
Signal Processing Society and IEEE Computer
Society.

Srinivasan Subramaniyan received the bachelor’s
degree in electronics and communication engineer-
ing from Amrita Vishwa Vidyapeetham, Amritapuri,
in August 2019. He was a Visiting Researcher
with the Instituto de Telecomunicações Coimbra,
Portugal, and was also a Junior Research Fellow
of the Computer Architecture and High-Performance
Lab, Amrita Vishwa Vidyapeetham, Bengaluru. His
research interests include reconfigurable computing,
signal Processing, and VLSI system design.

Ramesh Chinthala received the M.Tech. degree
in VLSI from the Indian Institute of Technology
Guwahati, Guwahati, India, and the Ph.D.
degree from the Indian Institute of Science
Bengaluru, Bengaluru, India. He is currently
serves as an Assistant Professor (Sr. Gr.) with the
Department of Electronics and Communication
Engineering, School of Engineering, Amrita Vishwa
Vidyapeetham, Bengaluru. His research interest
includes high-performance computing architectures,
FPGA-based Accelerators, FPGA-based embedded

systems, hardware-software co-deign on FPGA platforms, parallel archi-
tectures for decoding algorithms like non-binary low-density parity check
decoders, and hardware accelerators for machine learning algorithms.

João Andrade received the M.Sc. and Ph.D. degree
in electrical and computer engineering from the
University of Coimbra in 2010 and 2016. He was a
Researcher with the Instituto de Telecomunicações
from 2010 to 2016, and has since joined Synopsys,
where he has worked as a Verification Engineer
to HDMI controller IPs, and currently as an
Applications Engineer to MIPI digital and PHY IPs.
His research interests include error-correcting codes,
computer architectures, and unreliable memory
systems.

556 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

Joseph R. Cavallaro (Fellow, IEEE) received
the B.S. degree in electrical engineering from the
University of Pennsylvania, Philadelphia, PA, USA,
in 1981, the M.S. degree in electrical engineering
from Princeton University, Princeton, NJ, USA, in
1982, and the Ph.D. degree in electrical engineering
from Cornell University, Ithaca, NY, USA, in 1988.
In 1988, he joined the faculty of Rice University,
Houston, TX, USA, where he is currently a Professor
of Electrical and Computer Engineering and an
Associate Chair. His research interests include com-

puter arithmetic, and DSP, GPU, FPGA, and VLSI architectures for applica-
tions in wireless communications. He is an Advisory Board Member of the
IEEE SPS TC on Design and Implementation of Signal Processing Systems
(ASPS) and the Past Chair of the IEEE CAS TC on Circuits and Systems for
Communications. He currently serves as an Associate Editor for the Journal
of Signal Processing Systems and a Senior Editor for the IEEE JOURNAL ON

EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS.

Soumitra K. Nandy (Senior Member, IEEE)
received the B.Sc. (Hons.) degree in physics from
the Indian Institute of Technology Kharagpur,
Kharagpur, India, in 1977, the B.E. (Hons.) degree
in electronics and communication in 1980, the M.Sc.
(Engg.) degree in computer science and engineering
in 1986, and the Ph.D. degree in computer science
and engineering in 1989 from the Indian Institute
of Science Bengaluru, Bengaluru, where he is a
Professor with the Department of Computational and
Data Sciences. His research interests are in areas

of high-performance embedded systems on a chip, VLSI architectures for
reconfigurable systems on chip, and architectures and compiling techniques
for heterogeneous many core systems. He has over 170 publications in
international journals, and proceedings of international conferences, and five
patents.

Vitor Silva received the Graduation Diploma degree
in electrical engineering and the Ph.D. degree from
the University of Coimbra, Portugal, in 1984 and
1996, respectively. He is currently an Assistant
Professor with the Department of Electrical and
Computer Engineering, University of Coimbra,
where he lectures digital signal processing, and
information and coding theory. He is currently
the Director of the Instituto de Telecomunicações,
Coimbra, coordinating the research activities of 40
collaborators. His research activities include signal

processing, image and video compression, and coding theory.

Xinmiao Zhang (Senior Member, IEEE) received
the Ph.D. degree from the University of Minnesota.
She joined The Ohio State University as an
Associate Professor in 2017. She was a Senior
Technologist with Western Digital/SanDisk
Corporation from 2013 to 2017 and was a
Timothy E. and Allison L. Schroeder Associate
Professor with Case Western Reserve University
prior to that. She published close to 100 papers
on error-correcting en/decoder design and a book
“VLSI Architectures for Modern Error-Correcting

Codes” (CRC Press, 2015). Her research spans the areas of VLSI architecture
design, digital storage and communications, security, and signal processing.
She is a recipient of the NSF CAREER Award in 2009. She is currently
a member of the Board-of-Governors of the IEEE Circuits and Systems
Society and the Chair of the Data Storage Technical Committee of the
Communications Society. She also served on many conference organization
and technical committees, and is currently an Associate Editor for IEEE
OPEN JOURNAL OF CIRCUITS AND SYSTEMS.

Madhura Purnaprajna received the master’s
degree in electrical and computer engineering from
the University of Alberta, Canada, in January 2005,
and the Ph.D. degree in electrical engineering from
the Heinz Nixdorf Institute, University of Paderborn,
Germany, in December 2009. She was a Postdoctoral
Fellow with an International Research Fellowship
from the German Research Foundation (Deutsche
Forschungsgemenischaft) and MHV Fellowship
(SNSF), at the Processor Architecture Lab, EPFL,
Switzerland, and the High-performance Computing

Lab, Indian Institute of Science Bengaluru, Bengaluru. She currently serves
as an Associate Professor with the Department of Computer Science, Amrita
Vishwa Vidyapeetham, Bengaluru. Her research interests are in reconfigurable
computing and processor architectures.

Gabriel Falcao (Senior Member, IEEE) received
the Ph.D. degree from the University of Coimbra
in 2010, where he is currently a Tenured Assistant
Professor with the Department of Electrical and
Computer Engineering. He is a Researcher with
the Instituto de Telecomunicações and his research
activities include parallel computer architecture,
GPU- and FPGA-based accelerators, and energy-
efficient processing for compute-intensive signal
processing applications, namely, in digital communi-
cations and imaging, where he published more than

100 papers. He was a recipient of a Google Faculty Research Award in
2013/14 (together with J. Barreto). From 2011 to 2017, he was a Visiting
Professor with EPFL, Switzerland, and in the summer of 2018 he was a
Visiting Academic with ETHZ, also in Switzerland. He was a General Co-
Chair of the IEEE SiPS in 2020 and a Local Chair of Euro-Par in 2021. He is a
member of the IEEE Signal Processing Society of the IEEE TRANSACTIONS

ON COMPUTERS on Design and Implementation of Signal Processing Systems
(ASPS) and a Full Member of the HiPEAC Network of Excellence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

