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Abstract—Detection techniques for massive multiple-input
multiple-output (MIMO) have gained a lot of attention in both
academia and industry. Detection techniques have a significant
impact on the massive MIMO receivers’ performance and com-
plexity. Although a plethora of research is conducted using the
classical detection theory and techniques, the performance is
deteriorated when the ratio between the numbers of antennas
and users is relatively small. In addition, most of classical
detection techniques are suffering from severe performance loss
and/or high computational complexity in real channel scenarios.
Therefore, there is a significant room for fundamental research
contributions in data detection based on the deep learning
(DL) approach. DL architectures can be exploited to provide
optimal performance with similar complexity of conventional
detection techniques. This paper aims to provide insights on
DL based detectors to a generalist of wireless communications.
We garner the DL based massive MIMO detectors and classify
them so that a reader can find the differences between various
architectures with a wider range of potential solutions and
variations. In this paper, we discuss the performance-complexity
profile, pros and cons, and implementation stiffness of each
DL based detector’s architecture. Detection in cell-free massive
MIMO is also presented. Challenges and our perspectives for
future research directions are also discussed. This article is not
meant to be a survey of a mature-subject, but rather serve as a
catalyst to encourage more DL research in massive MIMO.

Index Terms—Massive MIMO, detection, deep learning, de-
tection networks, message passing, sphere decoding, cell-free
massive MIMO, deep convolutional neural networks

I. INTRODUCTION

communications systems are developed from the first to the
fifth generation (5G) and have propelled to the sixth generation
(6G) to offer advanced wireless communications services, such
as the autonomous driving and massive internet of things (IoT).
The total of 2.8 billion subscriptions are expected by the end of
2025 [1]. By 2022, the business IP traffic is expected to reach
more than 63 exabytes/month [2]. With the tremendous traffic
growth, systems with massive multiple-input multiple-output
(MIMO) have gained a lot of attention in both academia and
industry where a large number of antennas at the base station
(BS) is utilized to serve dozens of user terminals [3]. The
classical massive MIMO is an extension of the conventional
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small-scale MIMO technology that was implemented since
the third generation (3G) wireless systems where multiple
antennas are used at the transmitter and receivers to enhance
the spectral efficiency, the range, and the link reliability. In
the massive MIMO system operating below 6 GHz carrier
frequency, the total number of user terminals within the service
area is clearly smaller than the number of antennas at the
BS. The early massive MIMO technology assumed that the
scattering and multipath propagation in radio channels is rich.
The conventional matched filter (MF) based receivers were
considered to be approximately optimal due the interference
averaging. Recent works show that interference mitigation
in the receiver can improve the performance and enhance
the system capacity, in particular, when the massive MIMO
concept is generalized to the cell-free massive MIMO system
[4].

The receiver’s design is not a trivial task where advanced
signal processing is required when a large number of antennas
is utilized. Detection techniques for the massive MIMO tech-
nology have gained a lot of attention in last years. Detectors
based on linear/non-linear techniques, message passing, local
search, and other techniques have been proposed in literature.
The performance-complexity profile of each detection tech-
nique is highly affected by the number of antennas, the propa-
gation and environment, the modulation scheme, and the initial
solution. However, in any physical layer of communications
systems, there are always several challenges [5], [6] such as:

« Channel modeling in realistic scenarios: The efficiency of
wireless communications system depends significantly on
a channel model that characterize the complex scenarios,
imperfections, and non-linearities. It is also difficult to
characterize all the channel features by simple models.

« Fast and effective signal processing: Nonlinear imperfec-
tions could appear when low-cost hardware, such as low-
resolution analog-to-digital converters with low energy
consumption, is utilized. Increasing carrier frequencies to-
ward the millimeter wave (mmWave) and THz band make
the hardware (HW) imperfections even more complicated
to model.

o Block-structure of communications systems: The con-
ventional communications system includes a series of
blocks such as the coding, modulation, and detection.
The optimal performance of the entire communications
system cannot be guaranteed if each block is optimized
independently. In practice, rigid joint optimization is too
complex.

The optimal balance between the performance and computa-
tional complexity of the entire communications system can
be achieved with a channel modeling in realistic scenarios,



fast and effective signal processing, and block-structure of
communications systems. However, with increasing network
complexity and growing diversity, the need for automated
design and optimization of the processing is clear. Therefore,
embedding machine intelligence into future communications
systems is drawing unparalleled research interest.

Machine learning has been a key approach to minimize costs
and errors, and to increase the efficiency in many disciplines. It
is a sub-field of the artificial intelligence (AI) and is described
as “the programming of a digital computer to behave in
a way which, if done by human beings or animals, would
be described as involving the process of learning”™ [7], [8].
Based on learning aspects, machine learning is classified as
a supervised learning [9], unsupervised learning [10], semi-
supervised learning [11], and reinforcement learning [12]. In
the last few decades, machine learning has provided a signif-
icant improvement in many fields, such as image recognition
[13], speech recognition [14], drug discovery [15], biomedical
sciences [16], computer vision [17], signal processing, and
wireless communications [5], [6], [18]-[23]. In MIMO detec-
tion, machine learning was successfully applied. For instance,
the MIMO detection problem is converted into a clustering
problem which is then solved by expectation-maximization
algorithm [24]. In [25], the MIMO detection problem was
reformulated as a least absolute shrinkage and selection op-
erator (LASSO) problem. Then, it is optimized by a two-
stage alternating direction method of multipliers (ADMM).
Simulation results showed that this detector outperforms the
classical detectors. However, due to a limited learning capa-
bilities of the conventional machine learning algorithms and a
high computational complexity of handling physical channels,
conventional machine learning algorithms are not exploited
commercially in massive MIMO [6].

In the last decade, the availability of a large amount of
data, technological progress, the development of optimization
techniques, the availability of powerful graphical processing
units (GPUs), and huge amount of available memory have
jointly laid the basis to the deep learning (DL) revolution
[26] to achieve further improvements to the physical layer.
The DL is a "flagship approach” of the machine learning to
improve the learning process where machines/computers are
learned from experience and understand the world in terms
of a hierarchy of concepts [23], [27], [28]. In other words,
DL can learn features from raw data automatically and adjust
the model structures flexibly to improve the performance. In
massive MIMO detection, DL can be a promising approach
because:

o It has a superior algorithmic learning ability despite
the complex channel conditions [29]. Instead of rigid
mathematical models, the communications systems are
represented by learned weights in the deep networks
through training methods.

« It depends on distributed and parallel computing architec-
tures. Therefore, deep networks have a superior ability
to handle explosive growth of data volume and ensure
computation speed and processing capacity. In recent
years, GPUs have been shown to be energy efficient
with a high performance when leveraged by concurrent

algorithms. Therefore, DL structures are suitable for
running on GPUs [5].

« To deploy various DL architectures in wide applications,
various libraries/frameworks (TensorFlow, Theano, and
Caffe) have been established that accelerate experiments.

Therefore, DL architectures can be exploited for data detection
in realistic scenarios by unfolding specific iterative detection
techniques and for obtaining a balance between accuracy
and complexity. By leveraging flexible layer structures, data
detection becomes a simple forward pass through the deep
networks.
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Figure 1. Number of survey articles published concerning the massive MIMO
(data extracted from Scopus on October 2021).
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Figure 2. Number of survey articles published concerning the DL (data
extracted from Scopus on October 2021).

A. Relevant Prior Art

Figure 1 shows that the literature is rich with survey
papers related to massive MIMO technology [30], [31], [33]-
[44]. While these papers review the work in a number of
significant research areas of the massive MIMO, none of them
has extensively reviewed the role of DL in massive MIMO
detection techniques. In [30], the half-a-century history of
MIMO detection is recited and MIMO detection fundamen-
tals and concepts are presented. A comprehensive review of
the tree-search detectors, lattice reduction, probabilistic data
association, and semi-definite relaxation (SDR) detections is
illustrated. Ideas and lessons behind the design of complexity-
scalable MIMO systems are also presented. In addition, the



Table I
PRIOR RELEVANT SURVEYS

Reference | Linear Detectors Nonlinear Detectors Cell-free | FullyCon DetNet OAMP-Net WeSNet | MMNet | ScNet DCNN CNNLASS
[30] v v X X X X X X X X X
[31] 4 v X X X X X X X X X
[32] 4 v X X X X X X X X X
18] X X X X v v/ X X X X X
This work | v/ v v v v v v v v v v

paper has concluded that the conventional MIMO detection
algorithms might be infeasible with a certain massive MIMO
scenario. Although the article is extensive, the primary focus
was not in massive MIMO systems. We [31] garner the
massive MIMO detection algorithms and classify them so
that the reader can find the differences between various lin-
ear/nonlinear detection algorithms. The performance and com-
plexity trade-off and the practical implementation of detection
algorithms are comprehensively reviewed. Detectors based on
the local search, belief propagation (BP), BOX-detection, and
approximate/avoid matrix inversion methods are presented.
The article has also reviewed the pros and cons of each
detector based on the performance-complexity profile and the
implementation stiffness. Although the paper has mentioned
that the machine learning is a promising approach in the design
of massive MIMO detectors, it is not well-investigated and
only few research papers are cited. The paper has concluded
that massive MIMO detection techniques will remain a hot
research area in coming years and the DL approach will play
a crucial role in developing efficient massive MIMO receivers.

In [33], the measurement and modeling of massive MIMO
channels are classified and analyzed. The paper has surveyed
major techniques of both physical and network layers in
massive MIMO systems. The performance of massive MIMO
in real propagation environments is investigated in [45]. A
survey in [36] has summarized the requirements of channel
modeling and provided a review of channel measurement and
models. An extensive review of massive MIMO propagation
channels, channel modeling approaches, and characteristics
has been presented in [37]. The paper has concluded that
the massive MIMO propagation channels will remain a hot
research area in coming years and they are essential for
developing efficient massive MIMO technologies. In [38],
an overview of massive MIMO propagation characteristics
is discussed on the context of 5G channel modeling. A
comprehensive survey on the sources of pilot contamination
in massive MIMO is presented in [39]. In addition, the effect
of pilot contamination on the performance and complexity is
extensively discussed. Techniques to mitigate the pilot contam-
ination are categorized in pilot-based approach and subspace-
based approach. Various aspects of pilot contamination such
as advantages and limitations of different mitigation methods
are discussed in [41]. Moreover, numerical evaluation methods
of different decontamination methods are presented. In [40],
hybrid beamforming structures using instantaneous or average
channel state information (CSI) are comprehensively reviewed.
Constraints and limitations of mmWave bands due to propaga-
tion scenarios and hardware impairments are also discussed.
The paper has concluded that there is no single structure

that obtains the “best” balance between the performance and
the complexity in all applications. In [34], design issues and
practical implementations of linear precoding algorithms are
comprehensively discussed for downlink (DL) transmission
under both single-cell (SC) and multi-cell (MC) scenarios.
In [35], a frequency synchronisation in massive MIMO is
reviewed. The article studied the adjustment of the clock
frequency of local nodes to the clock frequency offset. Authors
provide an extensive classification of frequency synchroni-
sation where different antenna architectures and modulation
schemes are considered. It is concluded that frequency syn-
chronisation techniques are urgently required to make the
practical implementation of massive MIMO feasible.

Massive MIMO is currently a mature technology and has
made its way into the 5G standards. In order to improve
the user experience, guarantee a high connectivity, and re-
duce inter-cell interference, the concept of massive MIMO
is generalized to the cell-free massive MIMO system where
a large number of access points (APs) is distributed over a
large geographical area to jointly and coherently serve a much
smaller number of user equipments (UEs) on the same time-
frequency resource [46]-[48]. It enables coherent user-centric
transmission realized by distributed massive MIMO systems
[38], [49]. Therefore, cell-free massive MIMO is considered
as a promising technology for beyond 5G (B5G) systems with
its features such as higher spectral efficiency and superior
spatial diversity as compared to traditional MIMO systems
[50]. In [51], the phenomenology associated with precoding
techniques and power allocation algorithms in cell-free mas-
sive MIMO is discussed. In [4], a framework for scalable cell-
free massive MIMO systems is proposed where the complexity
and signaling at each AP is finite even when the number of
UEs goes to infinity. In [52], the performance of cell-free
massive MIMO systems with the minimum mean square error
(MMSE) algorithm and large scale fading decoding (LSFD)
receivers is investigated. A joint coherent signal processing
based on the MMSE algorithm for channel estimation and data
detection in cell-free massive MIMO systems is presented in
[53]. However, cell-free massive MIMO has several challenges
posed by several design aspects such as the detection com-
plexity, hardware implementation, channel estimation, channel
hardening, and security aspect [49], [54], [55].

In communications systems, machine learning is utilized
for a systematic mining and extraction of valuable informa-
tion from traffic data to automatically find the correlations
that would otherwise be too complex for human experts
[8]. Insights on current research on the machine learning in
communications networks with future research challenges are
comprehensively presented in [8]. In [23], a study of DL ap-



plications for mobile networks is illustrated. DL architectures
to enhance the performance of wireless networks are presented
in [21]. In addition, utilization of the DL to improve network
functions like network security and sensing data compression
is comprehensively discussed. Since 2017, it is shown that
the machine learning can also be exploited to enhance the
massive MIMO performance and computational complexity
[8]. Recently, DL models have attracted tremendous attention
from researchers in various fields such as medical imaging
[56], pattern recognition [57], biological data classification
[58], intelligent transportation [59], and industrial processes
[60]. It can also play a significant role in B5G networks such
as cell-free massive MIMO, beamspace massive MIMO, and
intelligent reflecting surfaces [61]. The concepts of DL models
in mobile networks are comprehensively discussed in [23]. In
[62], neural network is utilized in the physical layer to classify
the signals based on cyclic spectral analysis and pattern recog-
nition with and without prior knowledge of the bandwidth
and the carrier. In [63]-[65], neural network is exploited in
the channel modeling and identification. Recently, deep neural
network approaches are utilized in channel estimation for the
massive MIMO [66]—-[78]. In [42], a broad survey on security
for 5G and Beyond 5G (B5G) networks is presented. This
survey has discussed the security vulnerabilities and provided
solutions to specific threats. In [43], opportunities and advan-
tages to utilize the artificial intelligence and machine learning
in 5G network security are comprehensively discussed. It
is shown that most of the machine learning concepts are
taken from mature technologies such as robotics and computer
vision as it is and utilized in 5G networks, and hence, many
challenges are risen [44]. In [79], a fast and flexible denoising
convolutional neural network (FFDNet) for channel estimation
of cell-free massive MIMO is proposed to deal with multiple
noise levels. A DL architecture for limited-fronthaul cell-
free massive MIMO using a heuristic sub-optimal scheme
is exploited to convert the power allocation problem into
a standard geometric programme [80]. In [81], a cascade
of two DL networks is utilized for reciprocity calibration
and obtaining the complete channel estimate for precoding
purposes. In [82] [83], a DL network is exploited to perform
power allocation in the UL of a cell-free massive MIMO.

Figure 2 shows that there is a tremendous increase in the
number of published survey articles in DL approach. Despite
growing interest in the DL for 5G and BS5G, the existing
contributions are scattered across different research areas and
a comprehensive survey in the DL for detection techniques
in 5G/B5G is lacking. Up to our knowledge, this is the first
article to comprehensively study the DL approach in massive
MIMO networks. Table I presents the differences between
the current paper and other relevant prior surveys in data
detection for massive MIMO and DL architectures. Unlike
other surveys/tutorials, this paper is illustrating the detection
based on DL architectures. In addition, the role of conventional
linear and nonlinear techniques with DL architectures is also
illustrated. Data detection based on deep convolutional neural
networks (DCNN) is also considered.

B. Contribution and Outline

This paper presents a comprehensive survey on the DL
approach for massive MIMO data detection techniques. Our
particular focus is on performance, computational complexity,
and the potential of realization of data detection techniques
based on the DL. Although detection techniques for massive
MIMO are comprehensively illustrated in [31], there is a
paucity of reviews on advanced detectors based on the DL.
To our best knowledge, this is the first survey to explore
the DL approach for massive MIMO detectors. Although a
plethora of DL based massive MIMO detectors has been
proposed in the literature since 2017, it is not considered as a
mature-subject yet. This paper aims to serve as a catalyst to
encourage more DL research efforts in massive MIMO. The
major contributions of this article are summarized as:

o This paper presents the limitations of conventional mas-
sive MIMO detectors. It starts off with a dive into a
history of massive MIMO detection techniques and gives
an overview of conventional massive MIMO detectors
such as linear detectors, the BP, the conjugate gradient
(CG), and the sphere decoding (SD).

o This paper provides insights on massive MIMO detection
based on DL architectures to a generalist of wireless
communications. In this paper, we garner the massive
MIMO detectors based on the DL and their variations. We
present their performance-complexity profile, pros and
cons, and implementation stiffness so that a reader can
find a distinction between different detection techniques
from a wider range of possible DL architectures.

o This paper presents detectors based on multi-layer neu-
ral networks. It also demonstrates detectors based on
approximate message passing. The role of weights and
scaling parameters of neural networks is comprehensively
illustrated. In addition, sparse and convolutional neural
networks are presented. This paper reviews the alternating
direction method of multipliers (ADMM) deep networks
for massive MIMO detectors. Detectors based on the
trainable projected gradient are also discussed.

o The design of an efficient detector based on SD algorithm
and the selection of radius in SD algorithm based on the
DL are also presented.

o This paper also presents the role of deep convolutioanl
neural networks based ML detection (DCNN-MLD) and
likelihood ascent search (CNNLAS) in data detection.
Initial estimation of the DCNN architecture based on ZF,
ZF-S1IC, MMSE, and MMSE-SIC is also illustrated.

¢ Cell-free massive MIMO (or distributed massive MIMO)
is considered as a promising technology in 5G and B5G.
Thus, this paper surveys the detection techniques for cell-
free massive MIMO in respect to the DL architectures.

For smooth readability, the outline of the article is depicted
in Fig. 3. The most used acronyms are presented in full form
in Table II. Furthermore, Table IV presents the chronology of
DNN for MIMO detectors. In addition, to provide readers with
a big picture, significance, limitations, and the computational
complexity formulas of each architecture are summarized in
Table V and Table VI, respectively.
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Section II presents the overview of conventional detection
techniques for massive MIMO receivers. It also illustrates the
detection techniques for cell-free massive MIMO networks.
Section III describes comprehensively massive MIMO detec-
tors based on the DNN approach. Section IV describes com-
prehensively massive MIMO detectors based on the DCNN
approach. Section V illustrates challenges and open research
directions in DL based detectors. Section VI concludes the

paper.

II. OVERVIEW OF DETECTION SCHEMES IN MASSIVE
MIMO

This section aims to provide readers with a brief of data
detection concepts, overview of conventional algorithms, and
challenges. In addition, these algorithms are exploited later
with many DL architectures to achieve the target performance
and computational complexity.

Detection techniques for MIMO have gained a lot of at-
tention over the past decades [30]. The first massive MIMO
detector date back to 2008 where it has been realized that the
full potential of a small-scale MIMO (in terms of achieving
high capacity using large number of antennas) is not achieved
[84]. The main issue with utilizing a large number of antennas
is the high detection complexity involved. Researchers put
tremendous efforts in massive MIMO receivers’ design, thus,
several algorithms have been developed and adopted for mas-
sive MIMO detectors and a comprehensive survey is presented
in [31]. The purpose of signal detection methods is to estimate
the transmitted signal x from the received vector y at the BS
antennas and their relationship is described as

y = Hx + n, (1)

where H and n are the channel matrix and the Gaussian noise,
respectively. Although the concepts of detection algorithms are
comprehensively explained in [31], we briefly present them
here to provide readers with a big picture view before we
move to DL-based massive MIMO detectors.

A. Detection in conventional massive MIMO

1) Minimum mean square error: The mean-square error
(MSE) between the transmitted x and the estimated signal H”y
is minimized by the minimum mean square error (MMSE)
detector as

Al ise = in E|x—Hy|? 2

wse = arg  min | Bfjx—Hy|%, @

where IE is the expectation operator. The MMSE detec-
tor takes the noise effect into consideration as A%, o =

(H"H+ 2:1) " HY, where T is the identity matrix. The
output of the MMSE detector is obtained by Xpuseg =
S(AH seY). However, the MMSE based detector requires a
high-order matrix inversion which increases the computational
complexity. In addition, the inversion is computational unsta-
ble for high-order matrix [85].

2) Successive interference cancellation: The successive in-
terference cancellation (SIC) is a nonlinear detector where a
signal is selected and detected using a linear detector (i.e.,
zero-forcing (ZF) or MMSE) [86]. The signal is detected and
canceled from the remaining signals set, and so on. The detec-
tion and cancellation process will be repeated until all signals
are detected [87]. Performance of the SIC based detectors is
highly influenced by the first detected signal. Therefore, the
signal with highest signal-to-noise-plus-interference (SINR)
has to be detected first to obtain the best possible error rate
performance [88]. After that, the second strongest signal will



Table II

ACRONYMS AND CORRESPONDING FULL MEANING
Acronym Full Form
AP Access point
ADMM Alternating direction method of multipliers
AMP Approximate message passing
BS Base station
B5G Beyond fifth generation
BER Bit-error-rate
BP Belief propagation
CSI Channel state information
CG Conjugate gradient
CNNLAS Convolutional neural-network-based likelihood ascent search
CHEMP Channel hardening-exploiting message passing
DL Deep learning
DF Damping factor
DetNet Detection network
DNN Deep neural network
DLNet Deep learning based network
DNN- Deep neural network-simplified message passing detector
sMPD
DNN-dBP Deep neural networks-damping belief propagation
DNN-MS Deep neural networks-max-sum
DLBP Deep learning based on the BP algorithm
DCNN Deep convolutional neural network
DCNN- Deep convolutional neural network-based maximum likeli-
MLD hood detection
EP Expectation propagation
FullyCon Fully connected multi-layer network
FDL-SD Fast deep learning aided sphere decoding
FDL-MSD Fast deep learning aided M-best sphere decoding
FS-Net Fast-convergence sparsely connected detection network
GS Gauss-Seidel
GD Gradient descent
G-DCNN Generic deep convolutional neural network
HyperMIMO| Deep hyper-network-based uplink massive MIMO detection
ToT Internet of things
IW-SOA Iterative weighted sum-of-absolute value
JA Jacobi
LAS Likelihood ascent search
LA Lanczos
LDPC Low density parity check
LcgNet Learned conjugate gradient descent network
massive Massive multiple-input multiple-output
MIMO
MC Multi-cell
mmWave Millimeter wave
MSE Mean-square error
MMSE Minimum mean square error
MPD Message passing detector
ML Maximum likelihood
MEPD Modified expectation propagation-based MIMO detector
MEPNet Modified expectation propagation network
MMNet MM network
MLSD Maximum likelihood sequential detector
NI Newton iterations
OAMP-Net | Orthogonal approximate message passing networks
QLcgNet Quantized Learned conjugate gradient descent network
QuaDRiGa QUAsi Deterministic Radlo channel GenerAtor
RTS Reactive tabu search
RI Richardson
RE Residual
ReLU Rectified linear activation function
ResNet Residual neural network
SD Sphere decoding
SDR Semi-definite relaxation
SC Single-cell
SOR Successive over relaxation
ScNet Sparsely connected neural network
SIC Successive interference cancellation
SD-DL Sphere decoding based on deep learning
SD-IRS Sphere decoding with increasing radius search
SNR Signal to noise ratio
TPG Trainable projected gradient
TISTA Trainable iterative soft thresholding algorithm
‘WeSNet Weight-scaling neural network
ZF Zero-forcing
3G Third generation
5G Fifth generation
6G Sixth generation
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be detected and canceled from the remaining signals set. The
process is repeated until all signals are estimated.

3) Local search based detectors: The first massive MIMO
detector used likelihood ascent search (LAS) because of its
linear average per-bit complexity in number of users and its
ability to achieve near-maximum likelihood (ML) performance
[84]. A detector based on LAS starts with an initial solution
and iteratively searches the neighborhood for a better estima-
tion. Unfortunately, the bit-error-rate (BER) is significantly de-
teriorated in the scenario of high modulation order. In addition,
computation of the initial solution includes a matrix inversion
which increases the computational complexity. However, a
concatenated LAS detector with turbo codes is implemented
in [89] where a satisfactory balance between the performance
and the complexity is obtained. Reactive tabu search (RTS)
is another local search method where more restrictions are
introduced to avoid an early termination. It includes stopping
criteria parameters, initial tabu period, and maximum number
of iterations. Therefore, it usually outperforms the LAS de-
tector. Unfortunately, computational complexity of the RTS is
high and it also suffers from a high performance loss when a
high modulation order is used.

4) Belief propagation based detectors: In order to reduce
the complexity, most of proposed detectors during 2008-2013
had used local search algorithms and BP algorithms. The BP
algorithms, such as the message passing and the Bayesian
belief networks, iteratively search the optimal solution in a
space where the damping factor (DF) has to be carefully
optimized. In other words, the performance is remarkably
decreased when the DF is not appropriately selected. BP
algorithms are very sensitive to both the message update
rules and prior information. However, the BP based detector
achieves a high performance when the correlation between
channel elements is relatively small.

BP is an iterative search based algorithm where the optimal
solution is obtained in a reduced search space. It works by
passing the message in a graphical model. Popular examples
of exploiting the BP in MIMO detectors are Baysian belief
networks and Markov random fields, the turbo codes, the
low density parity check (LDPC) codes [90], [91] and the
message passing [92]-[94]. In last years, the BP has gained
a lot of attention in the research community to detect the
transmitted signal as shown in [93], [95], [96]. In [97], it
is exploited to recover the transmitted signal where MIMO
channel is presented as a factor graph. The factor graph
includes observation nodes correspond to y and variable nodes
correspond to X. In order to recover the transmitted data
using the BP, messages are iteratively passed between the
observation nodes and the variable nodes. Unfortunately, the
BP is not optimal and may fail to converge when the graph is
fully connected and contains many cycles. Detailed description
of the BP in massive MIMO can be found in [93], [97], [98].

5) Iterative methods to avoid/approximate matrix inversion:
In years after, due to not guaranteed convergence and imple-
mentation difficulties, a research on linear detectors based on
iterative methods to avoid/approximate the matrix inversion
is conducted. For instance, detectors based on the Neumann
series (NS) [99], Newton iterations (NI) [100], successive over



relaxation (SOR) [101], Gauss-Seidel (GS) [102], Jacobi (JA)
[103], Richardson (RI) [104], CG [105], Lanczos (LA) [106],
and residual (RE) methods are proposed in the context of
massive MIMO receivers. The CG algorithm is an effective
iterative method to solve the linear equations through k'
iterations [105], [107]. In the CG method, the solution depends
on scalar parameters. It is also refined iteratively where
the search is performed in the conjugate direction with a
movement towards the best solution [32], [108].In [109], a
detector based on the CG algorithm is implemented in Xilinx
Virtex-7 FPGA for a 128 x 8. It is also implemented using
a GPU platform [110]. The CG detector outperforms the NS
based detector in both the performance and complexity [107].
In [111], a revised incomplete Cholesky factorization pre-
condition method is utilized with the CG detector to reduce the
number of iterations, and hence, the computational complexity
is reduced. In [112], a recursive CG detector is proposed to
reduce the computational complexity and obtain a parallelism
for hardware implementation. Unfortunately, these detectors
suffer from a high performance loss and high computational
complexity when the massive MIMO size is large or the ratio
between the BS antennas and user antennas is close to 1.
Other detectors require a decomposition which increases the
computational complexity [113], [114]. Therefore, most of
proposed detectors are not feasible in implementation due to
a high computational complexity.

6) Sphere decoding: The SD algorithm searches only
through the constellation points that are restricted within
a sphere with a predefined radius “d” [115], [116]. The
optimum performance can be obtained and the computational
complexity is reduced by eliminating lattice points inside the
sphere as long as d is properly selected [117]. In addition, H
is decomposed by the QR decomposition to a unitary matrix
(Q) and an upper triangular matrix (R). However, the radius
can be selected based on the Babai estimation to guarantee
the existence of at least one lattice point inside the sphere
[118]. In literature, many variations of SD algorithms are
proposed to reduce the computational complexity [119]-[123].
For instance, SD with increasing radius search (SD-IRS) is
proposed in [124], [125].

B. Detection in cell-free massive MIMO

Most of existing signal processing algorithms are designed
for centralized massive MIMO systems. However, cell-free
massive MIMO network (or distributed massive MIMO) has
recently gained a lot of attention due to its potential to improve
the energy efficiency and spectral efficiency of wireless com-
munications systems. Although this paper provides insights on
DL based massive MIMO detectors, we present the detection
schemes for cell-free massive MIMO networks. While central-
ized massive MIMO has already been adopted for 5G, cell-free
massive MIMO is considered as a promising technology for
5G and B5G systems where a large number of individually
controllable antennas distributed over a large geographical
area are simultaneously serving much smaller number of user
equipments. Thus, the existing DL architectures for centralized
massive MIMO could be extended for cell-free massive MIMO
networks.

In cell-free massive MIMO, data detection is performed
locally at each AP, centrally at the central processing unit
(CPU), or partially first at each AP and then at the CPU.
Howeyver, it is not a trivial task to conduct the distribution of
such signal processing tasks [126]. It enables coherent user-
centric transmission realized by a distributed massive MIMO
systems [38], [49].

1) Challenges in cell-free massive MIMO: However, the
cell-free massive MIMO systems have several challenges
related to the network synchronization, high data rate, de-
tection complexity, hardware implementation, and low-latency
[49]. There are many obstacles to offer an optimal channel
hardening and favorable propagation conditions that owing
to some spatial channel correlation between cell-free massive
MIMO system’s antennas [49], [54]. In [46], [127], utilization
of a maximal-ratio detector is locally advocated at each AP
in cell-free massive MIMO systems where effects of spatially
correlated channels, imperfect CSI, and hardware impairments
are considered. Unfortunately, the spectral efficiency of a
maximal-ratio detector in cell-free massive MIMO is much
lower than the large-scale fading decoding in centralized
massive MIMO systems [128]. In [129], the user data rate is
significantly improved by optimizing receiver filter coefficients
at the CPU in cell-free massive MIMO systems. However,
this optimization is a non-convex problem which causes a
high computational complexity. In [130], a low-complexity
iterative soft-input soft-output (SISO) detection algorithm in
a distributed large-scale MIMO system based on an improved
MMSE iterative soft decision interference cancellation is pro-
posed and experimentally tested. The prototype system has
shown that a data rate of 10Gbps could be achieved by a
128 %128 cell-free massive MIMO with 100 MHz bandwidth.
In [131], a daisy chain topology exploiting the channel prop-
erty of asymptotic orthogonality is utilized to obtain a low
complexity distributed detection algorithm. In order to reduce
the system control overhead, a distributed sparse activity
detection algorithm is proposed in [132]. In [133], a joint
channel estimation and data detection algorithm for cell-free
massive MU MIMO is proposed to minimize the overhead of
pilot-based channel estimation for cell-free systems. In [134],
a MU cell free massive MIMO system with linear decoders
based on approximate matrix inversion methods is proposed. In
[135], polynomial expansion detectors and multistage Wiener
filters are exploited to propose a low complexity detector. The
only available utilization of neural network in cell-free data
detection is shown in [136] where ZF and DCNN algorithms
are used at the CPU.

2) Data detection in cell-free massive MIMO: Many
testbeds, such as the Argos, the LuMaMi, and the BigStation
are available to support the decentralized channel estimation
and data detection at antenna elements [137]. Unfortunately,
they rely on the maximum ratio combining (MRC) that reduces
significantly the spectral efficiency, and hence, prevents the
use of high-rate modulation and coding schemes. Therefore,
alternative BS architectures based on a decentralized approach
are proposed. A decentralized data detection method based on
the CG is proposed where the BS antenna array is partitioned
into clusters and each cluster is associated with independent



local radio-frequency (RF) elements and computing circuitry
[138]. It is demonstrated by mapping the detection method to
a Xeon Phi cluster. It is shown that the design with hundreds
or even thousands of BS antennas could be supported. Another
decentralized data detection based on alternating direction
method of multipliers (ADMM) [137], partially decentralized
(PD) and fully decentralized (FD) data detectors based on
the AMP are proposed [139]. The DBP is studied based on
free-matrix-inversion methods in different channel conditions
[140]. The FD architectures based on the coordinate descent
(CD) method and FD data detector based on recursive lease
square (RLS), stochastic gradient descent (SGD), and averaged
stochastic gradient descent (ASGD) have also been proposed
[141], [142]. The decentralized baseband processing (DBP)
architecture splits the BS antennas into different individual
clusters. Each cluster has an independent radio frequency
(RF) chain, analog-to-digital converters (ADC), and com-
puting hardware. The implementation was demonstrated on
a GPU cluster. The results show that it has a scalability
in massive MU-MIMO systems with thousands antennas.
Unfortunately, the proposed DBP is not tested in different
system configurations and realistic channel conditions. In
[143], a VLSI architecture based on approximate message
passing (AMP) of decentralized feed-forward and parallel
equalization is proposed. It depends on a high-level synthesis
(HLS). The results show that the proposed VLSI architecture
can achieve a competitive balance between the performance
and the computational complexity. In [144], a DBP based
on expectation propagation algorithm (EPA) is proposed for
signal detection in UL massive MIMO. The BS is partitioned
into multiple independent antenna clusters, each associated
with analog and digital modulation circuitry, RF chains, and
computing hardware where local channel estimation and signal
detection are executed.

Table III shows the pros and cons of several detection
methods. All of them are not achieving a satisfactory balance
between the performance and complexity when the ratio
between the number of antennas at the BS and user terminals
is small. They are also not achieving a good performance in ill-
conditioned environment as well as realistic channel scenarios.
Therefore, a significant room for fundamental research in
data detection based on a DL approach is introduced to
achieve a satisfactory balance between the performance and
complexity in realistic channel scenarios and different MIMO
configurations.

Owing to a powerful learning ability from the data and the
development of advanced optimization techniques and fast-
growing of computing power, there is a remarkable trend to
utilize the DL approaches in massive MIMO receiver’s design
where the most expensive process is the ”learning” which can
be completed off-line. However, it is noticed that there are
many attempts to do it on-line. Therefore, the DL is incorpo-
rated in many existing algorithms by adding some adjustable
and trainable parameters to improve the detector’s performance
and the computational complexity in real channel scenarios.
For instance, it is incorporated into the BP (i.e., orthogonal
approximate message passing (OAMP) and message passing
detector (MPD)), the SD, the SIC, and CG techniques. In

addition, DL approaches are still in its infancy for cell-free
massive MIMO systems. However, proposed DL architectures
for conventional massive MIMO can be considered as a base-
stone for a future research in DL for cell-free massive MIMO
networks.

III. DEEP NEURAL NETWORK BASED MASSIVE MIMO
DETECTION ARCHITECTURES

As shown in Section II, conventional detectors with their
variations suffer from mediocre performance under certain
circumstances. In addition, physical channels are playing a
significant role in achieving a high performance and low
computational complexity. Instead of the classical detection
theory, the DL is exploited to achieve the best performance-
complexity profile. It depends on the number of parameters,
training samples, initial solutions, and the architecture. The
earliest massive MIMO detector based on the DL date back
to 2017 where a projected GD is utilized in a single training
phase [145]. In literature, some architectures of DNN based
massive MIMO detectors have an effective online training
for varying channel realization and have a satisfactory per-
formance in realistic channel scenarios [146]. While other
architectures have a single training shot and have a satisfactory
performance over constant and Rayleigh fading channels only
[22], [145], [146], [147]. In this section, these two types are
described where pros and cons of each type are presented.

A. Single Channel Realization Architectures

1) Fully Connected Multi-Layer Network:: The fully con-
nected multi-layer network (FullyCon) architecture is one of
the earliest trials to employ the DL in massive MIMO detectors
[22]. It is a type of neural networks where all neurons in
current layer are connected to neurons in the next layer. The
FullyCon architecture consists of sequential L layers where
the output of the current layer is the input of the subsequent
layer and it only depends on the input y, and does not employ
the channel H [22]. It is presented as

q =Yy
QG =p©Vq+06) for k=1,...,L 3)
£=0}"q,+6,

where ( is the initial input of the first layer and equals to y,
qx is the iterative input of the next layers, and X is an estimated
vector of the unknown vector x. p is an activation function and
can be adopted as a rectified linear activation function (ReLU)
as p[x] = max(x,0) [22], where 6 is an optimized paramLeter
during the learning stage and consists of 0 = {@,((U,G,((z) }kil.
To obtain a robust detector, a loss function [ is presentedfas
(x; X (H, y; 0)) and determines the distance between the real
vectors X and estimated vector X. The parameter 0 is optimized
to minimize the loss function over the massive MIMO model
distribution as [22]

minlE {/(x;X(H,y:9))} = minE[|x — %|. (4)
X

In general, the FullyCon architecture is simple and has a small
number of optimized parameters. It is perfect for detection



Table I1I

CONVENTIONAL DETECTION METHODS FOR MASSIVE MIMO SYSTEMS

Method

Pros

Cons

Linear detectors (i.e., ZF and MMSE)

Work properly if columns of the propagation matrix
are nearly orthogonal.
Relatively simple to implement.

Suffer from a sever performance degradation and high
computational complexity in ill-conditioned environ-
ment.

MMSE obtains a significant performance loss in
highly loaded systems.

Approximate matrix inversions (i.e., NS,
NI, SOR, GS, JA, RI, CG, LA, and RE)

The optimal performance can be achieved.
If the initial solution is properly selected, the optimal
performance can be achieved within few iterations.

When the ratio between the BS antenna and the user
antennas is close to 1, approximate matrix inversion
methods suffer from a performance deterioration.
The convergence rate is highly affected by the initial
solution which could lead to a wrong estimation.

Sphere decoder (SD)

A satisfactory balance between the computational
complexity and the performance can be achieved

High computational complexity if the sphere radius
is not properly selected.

Successive interference cancellation

(SIC)

A good performance can be achieved when the num-
ber of BS antennas is greater than the number of user

The performance is highly affected by the initial
solution.

terminals.

« High computational complexity.

Belief propagation (BP)

« When the channel correlation is low, the maximum-
likelihood performance is obtained.

Optimal damping factor is not easy to obtain.
Performance is significantly degraded if a bad condi-
tioned factor graph is utilized.

« Not easy to guarantee the convergence.

over fixed channel where H is deterministic and fixed and the
channel is known within the training phase [22]. Numerical
results in [22] show that the FullyCon architecture over fixed
channel H can achieve a near optimal accuracy with a low
complexity. Unfortunately, the performance of FullyCon is
significantly deteriorated over real channels. The total error of

FullyCon1

Iterative Process

Ensemble Averaging

Figure 4. Model of the ELRID architecture

a DL based detection consists of variance, bias, and irreducible
error [148], [149]. The irreducible error is intractable to
remove, but the bias and the variance have an optimized trade-
off between them.

2) Collaborative learning based detection techniques:: In
[150], [151], a machine learning method is proposed which is
known as a collaborative learning. It combines, in a strategic
manner, multiple models with their predictions and leanings,
to produce more optimal results. In addition, the collaborative
learning has an ensembling operation which leads to a near-
optimal performance by smoothing the variance from multiple
models with roughly fixed bias. Inspired by the collaborative
learning, authors in [152] proposed a collaborative learning

based detection technique with iterative process (ELRID). It
employs a collaborative learning with iterative prediction and
offers a robust and low complexity detector. As shown in
Fig. 4, the ELRID architecture ensembles B fully connected
architectures and employs iterative meta-predictor to reduce
the final estimation. It has significantly improved the per-
formance with a low computational complexity. In [153], a
fully-connected multi-layer DNNSs for joint channel estimation
and data detection of spatial modulation (SM) MIMO system,
called Deep spatial modulation (DeepSM), is proposed. The
DeepSM architecture operates in a data-driven approach and
obtains a BER performance close to that of the conventional
SM MIMO system over time-invariant channels with low
detection complexity.

3) Detection Network:: The detection network (DetNet)
for massive MIMO systems is proposed by Samuel er al.
[22], [145]. It has more expressive architecture and designed
specifically to address the challenges of varying channels
in FullyCon based detectors [22]. The DetNet architecture
performs well over both constant and Rayleigh fading chan-
nels with a single training shot [22], [154]. Furthermore, It
offers a near-optimal performance with low modulation orders
(i.e., BPSK and QPSK) [146]. The DetNet architecture is a
data-driven method that overcomes the performance of the
approximate message passing (AMP) and SDR algorithms
[155], [156]. It also offers the performance of SDR detec-
tion algorithm over independently and identically distributed
(i.i.d.) Gaussian channels while working 30x faster [146].
Furthermore, the DetNet architecture addresses challenges of
the vanishing gradients, initialization sensitivity, and saturation
of the activation functions [22] [157]. Unlike the FullyCon
architecture, the DetNet does not work directly with y. It uses
the compressed sufficient statistic as [22]

H'y =H"Hx+H'n. (5)



The DetNet architecture unfolds a projected GD algorithm for
the ML optimization that leads to an iterative form as

Rier1 = [][R— 0Hy + 6, H Hiy], (6)

where R, is the estimated vector at the k" iteration, 0 is a
gradient step size, and [][.] is a nonlinear projection function.
Each iteration in the DetNet architecture is carried out by a
single layer which composed of a linear combination of Xy,
H”y, and H' %, and a non-linear projection [22], [158]. The
performance can be enhanced when the step size 6; at each
step is considered as a learned parameter within the training
stage. Thus, the DetNet architecture is described as [22]

4 = %1 — 6, 'H y + 6" H' H
Oy 1 oY

Zy = P(®k g + 0, Vi +91(<5))
% =, (097, +0)) o
=0z +0"
%=0
Vo=0,

where 0 presents the optimized parameters during the learning
stage and W, is a piece-wise linear soft sign operator [145],
[159]. Where y; is used to approximate [][.] of the projected
GD algorithm [145], [159]. Parameter matrices @,@ and @,@
in (7) are m X n matrices where m > n, and employed in
the DetNet architecture to map the projection input to an
even larger dimension vector before mapping it again to a
vector with N; dimension [22] [146]. For example, the DetNet
architecture connection with 2x2 MIMO structure is depicted
in Fig. 5. Inspired by the aided classifiers in GoogLeNet
architecture [160], the DetNet architecture espouses a loss
function that considers the outputs of all of layers [22]. In
order to decrease the loss function values, it constrains the
layer output X; to be near to x. These constraints reduce
the ability of the deep network to compute sophisticated
features where the only information passed between layers
is estimated as Xx;. Thus, V; vector in (7) is added to the
network to allow passing unconstrained information between
layers [22]. Unfortunately, the DetNet based detector depends
heavily on a large amount of parameters, approximately 1-10
million parameters. Therefore, offline training is conducted
[146], [161]. It is also a data-driven method and requires a
large-training data and training procedure for three days on
a standard Intel i7-6700 processor [161] [162]. In addition,
it experiences a performance loss in a large-scale MIMO
systems with N; = N,. The heuristic behavior of the DetNet
makes it difficult to employ over realistic channel like QUAsi
Deterministic Radlo channel GenerAtor (QuaDRiGa) [146]. It
also does not employ known features of iterative algorithms,
and hence, incurs unnecessarily complexity. Accordingly, the
DetNet architecture, in contrast to DL based detectors that
utilize the straightforward non-linear denoiser, employs a non-
linear projection which is a fully-connected 2-layer neural
network [146].

Many research efforts are conducted to enhance the DetNet
architecture. In [163], a new architecture is proposed to

HTy
Vv
Vi, k+1
Xp Xk+1
T
H ka

Figure 5. The DetNet architecture Connection

improve the activation function in the DetNet by using a multi-
level-plateau sigmoid activation function. The modified Det-
Net architecture employs twin DL networks with various initial
values to simultaneously detect the transmitted signals. The
modified DetNet architecture achieves a near-optimal perfor-
mance with a reasonable number of parameters. In [158], au-
thors proposed a simplified version of the DetNet architecture
called as sparsely connected neural network (ScNet) where
the number of inputs and network layers are significantly
reduced by converting the DetNet architecture to a sparse
connectivity instead of a full connectivity. It is well known
that the square matrix is not reversible and matrix inversion is
a very complicated operation. Therefore, the loss function of
the network is optimized to avoid irreversible problems with
the matrix [158]. With these simplifications, complexity of the
DetNet architecture is reduced from O(64N?) to O(3N;). The
form of the ScNet architecture connection with 2x2 MIMO
structure are illustrated in Fig. 6. ScNet architecture is not only
reducing the computational complexity of the DetNet but also
has obtained a performance gain, especially with a large scale
antenna.

Another architecture known as a fast-convergence sparsely
connected detection network (FS-Net) is proposed in [164]. It
is acquired by optimizing the DetNet and ScNet architectures.
The FS-Net simplifies the network connections to reduce
the complexity. It improves the loss function by considering
the correlation between the output of each layer and the
desired solution to achieve faster convergence rate. The FS-
Net architecture has a significant performance improvement
with lower complexity in contrast to the DetNet and ScNet
architectures.

In [165], a DL based network (DLNet) for signal decoding
in massive MIMO systems is proposed. It considers time-
varying Gaussian random channel with a perfect CSI at the
receiver. The DLNet architecture has 50-layers DNN and is
based on the projected GD algorithm. The DLNet architecture
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is implemented in the TensorFlow [166] with the Adam
optimizer [167]. It is trained with 50000 iterations on a
standard intel Xeon 4114 10C/20T 2.2G 13.75M 9.6GT UPI
processors that took about 14 hours with 30x60 massive
MIMO system and about 8 hours with 20x30 massive MIMO
system. However, the DLNet offers a better BER performance
with 164 x faster in running speed and 9x less computational
complexity than the DetNet. Furthermore, the DLNet achieves
a comparable BER performance with the SDR algorithm and
28200x faster.

Inspired by the DetNet architecture, authors in [162] pro-
posed a novel learned conjugate GD network (LcgNet) and
quantized LcgNetV (QLcgNetV) network. The LcgNet archi-
tecture is implemented by unfolding iterative conjugate GD
detector. The distinctions lie in the step-sizes which are found
to be universal, instead of calculating the accurate values of
the scalar step-sizes, and can be learned within offline training.
Furthermore, the LcgNet can be enhanced by augmenting the
dimensions of these step-sizes. In addition, the matrix-vector
multiplication and division operations are replaced by some
prestored parameters which are fixed within online detections.
The QLcgNetV architecture is introduced in order to minimize
the memory costs. It quantizes the learned parameters by using
a low-resolution nonuniform quantizer (i.e., 3-bits or 4-bits).
The quantizer in the QLcgNetV architecture is based on an
adaptive designed soft staircase function which is structured
from a series of tanh(-) functions with adjustable parameters
to minimize the MSE loss function. The LcgNet and the
QLcgNetV architectures are implemented in Python using the
TensorFlow library with the Adam optimizer. The number
of learnable parameters in the LcgNet and the QLcgNetV
architectures is very limited compared with the FullyCon
and DetNet architectures. The LcgNet and the QLcgNetV
architectures are trained offline within 2 hours with Intel (i3-
6100) CPU running at 3.7GHz and 8GB RAM. Furthermore,
the LcgNet and the QLcgNetV architectures obtain a good
performance in realistic channel models (i.e., a spatial corre-
lated channel model) and low-order modulation scheme e.g.,
binary phase-shift keying (BPSK), quadrature PSK (QPSK) or
16-level quadrature-amplitude modulation (QAM).

A modified version of the DetNet architecture termed as

weight-scaling neural-network based MIMO detector (WeS-
Net) is proposed to reduce the computational complexity
[168]. The WeSNet architecture is realized by adjusting layer
weights within monotonic profile functions. It is mainly based
on the DetNet architecture by unfolding a projected GD
algorithm. The WeSNet architecture imposes constraints on
the layer weights in order to permit for entire layers to
be repealed in a controllable method within inference that
leads to a promising reduction in the model size and the
computational complexity with reasonable degradation in the
accuracy. Performance of the WeSNet architecture is im-
proved by dealing with weight profile functions themselves as
trainable parameters in order to prohibit vanishing gradients.
However, this improvement leads to a satisfactory performance
at the cost of increased memory due to an increment in the
number of parameters. It is implemented in TensorFlow 1.12.0
and evaluated under both 30x60 and 16x16 massive MIMO
systems with low-order modulation schemes (i.e., BPSK and
QPSK) under Rayleigh fading channel. It outperforms the
DetNet architecture and offers 51.43% reduction in complexity
and about 50% reduction in model size.

4) Orthogonal Approximate Massage Passing Deep Net-
work:: The OAMP-Net architecture is inspired by the OAMP
algorithm which is an extension of the AMP iterative algorithm
to be able to serve in correlated channels [169] [147]. The
OAMP-Net architecture aims to address a large amount of
trained parameters in the DetNet architecture [147]. It also
aims to achieve a satisfactory performance of the massive
MIMO detection over varying channels. Like the DetNet based
detectors, the OAMP-Net architecture is trained offline and
learns a single detector within a training stage [146] [147]. It is
a model-driven method and adds just two trainable parameters
(9,(<]>,9,((2)) to each iteration in the OAMP algorithm as [146],
[147]

ze=%— 60 B (HH + 1) (y—HX)  (®)
Rs1 = Ne(Ze3 07),
2

where v is proportional to the average noise power of the
denoiser output at k' iteration and can work out based on
the given signal-to-noise ratio (SNR) and system sizes. 9,(61)
is a first learning parameter used instead of a normalizing
factor y; in the OAMP algorithm. 9,({2) is a second learning
parameter used to balance the estimate of denoisers input noise
variance G]%. Nk(.) is the straightforward denoiser function
and can be computed based on the prior distribution of
the original signal x and is chosen to minimize the MSE
Ex {Hf(—xH% | zl by assuming the noise is independent and
Gaussian distributed. The number of learning variables is
independent of the system size. The OAMP-Net depends
on the number of layers. However, with only two learning
parameters, the training process in the OAMP-Net architecture
is significantly improved in the stability and convergence rate.
It also can be trained during a short time where few trainable
parameters are needed to be optimized [146]. In addition, it
can also offer soft decision, which is more appropriate in
modern wireless communications systems [146], [147]. The



OAMP-Net based detector outperforms the OAMP algorithm
and is considered as one of the best learning algorithms
[146]. Although the OAMP-Net architecture offers a good
performance under i.i.d. Gaussian channels, it suffers from
a significant performance loss under a realistic channel model
such as the QuaDRiGa [146], [147]. In addition, a matrix
inversion has to be computed, as in (8), which increases the
computational complexity.

Inspired by the trainable iterative soft thresholding algo-
rithm (TISTA) for sparse signal recovery [170], a modified
version of the OAMP-Net architecture, known as OAMP-
Net2, is proposed in [171]. Most of other existing DL-based
massive MIMO detectors [74], [145], [146], [162], [172],
[173], [174] just deal with an accurate CSI where the channel
estimation error is ignored. The OAMP-Net2 architecture is
mainly proposed to enhance the detection performance of
the OAMP-Net. It considers the characteristics of channel
estimation error and channel statistics. It uses the estimated
payload data to elucidate the channel estimation. The OAMP-
Net2 architecture unfolds the existing iterative OAMP al-
gorithm with additional learnable parameters. The OAMP-
Net2 architecture needs only four trainable parameters in each
layer to be learned which significantly reduces the training
time and the computing resources. The OAMP-Net2 obtains a
considerable performance gain.

5) Belief Propagation Networks:: Similarities between the
BP factor graph and DNN have encouraged interested re-
searchers to conduct an extensive research on the DL based on
BP detection. In [74], [175], a DNN is employed to enhance
the BP detection algorithms for i.i.d. Rayleigh and corre-
lated fading massive MIMO channels with different antenna
configurations. The correction factors in the MPD detectors,
including damped BP (dBP) [95], [95], [176], max-sum BF
(MS) [177], and channel hardening-exploiting message pass-
ing (CHEMP) detectors are optimized within DL architectures
[178] where three DNNs are proposed to deal with a loopy fac-
tor graph and a high complexity of BP algorithms. These DNN
detectors are deep neural network-simplified message passing
detector (DNN-sMPD), deep neural networks-damping belief
propagation (DNN-dBP), and deep neural networks-max-sum
(DNN-MS) [74]. They optimize the damping factors of the
BP algorithms to enhance the convergence rate, and optimize
the normalized and offset factors of the BP algorithms to
further minimize the computational complexity. The training
is implemented in the TensorFlow library with the Adam
optimizer. They use one offline training for each antenna
configuration and can be used for multiple online detections
[74]. Compared to other message passing detectors and linear
detectors, DNN-sMPD, DNN-dBP, DNN-MS detectors can
offer lower BER with improved robustness in different an-
tenna configurations and channel conditions with the same
computational complexity. However, DNN detectors did not
consider high-order modulation schemes and realistic channel
scenarios. In addition, the DNN is trained for a small and
moderate-size MIMO system (i.e., 16 x16 and 8x32). How-
ever, the offline training needs a huge amount of data and
requires powerful computational and storage devices to store
the trained networks for multiple online uses. In addition,

DNN detectors depend on the range of the training data.
Detection performance of the DNN-dBP network deteriorates
due to differences in the channel correlation between training
and test where the optimal damping factors are changed
with the channel correlation [98], [179]. In [98], [179], a
node selection method is proposed to tackle the detection
performance deterioration in the DNN-dBP network.

In [180], a DL MIMO detector based on the BP algorithm
(DLBP) is proposed to address the convergence challenge of
the BP algorithm due to a fully connected factor graph. The
DLBP architecture unfolds the BP algorithm by employing
four-layers neural network. The DLBP achieved a low com-
plexity and a good BER performance in contrast to the BP
detector and the dBP detector. The training is implemented in
the TensorFlow library with the Adam optimizer. However,
the DLBP architecture is tested with an equal number of
transmitter and receiver antennas (i.e., 8 x 8 and 16 x 16),
low-order modulation scheme (i.e., BPSK), and through the
Rayleigh channel.

In [181], a modified expectation propagation (EP)-based
MIMO detector (MEPD) is proposed to tackle challenges of
the conventional EP detector which are incurred due to the
empirical parameter selection such as damping factors and
initial variance [182]. Furthermore, a modified EP network
(MEPNet) is proposed to offer the optimal damping factors and
initial variance by adopting a DL scheme and unfolding the
proposed iterative MEPD detector. The MEPNet architecture
is a model-based data-driven neural network. It is implemented
on the Google Tensorflow platform and is trained offline with
5 layers using Adam optimizer for various antenna scales
and modulation orders. The MEPNet architecture with two
learnable variables outperforms the MMSE-SIC, OAMPNet,
OAMPNet2, and conventional EP detector algorithms under
ii.d. Rayleigh MIMO channels. In addition, the MEPNet
architecture is more robust than the conventional EP detector
under correlated channels.

6) ADMM Deep Neural Network:: Inspired by the ADMM
algorithm [183]-[185] and by the DetNet architecture,
ADMM-Net based detector is proposed in [159] to tackle the
massive MIMO detection problem. In the ADMM-Net archi-
tecture, the first layer is excluded, and hence, the arithmetic
process in each layer requires matrix-vector multiplications
and/or simple element-wise multiplications. The number of
required learnable parameters in the ADMM-Net architec-
ture is smaller than that of the DetNet architecture [159].
It unfolds the conventional iterative ADMM algorithm by
untying its parameters and then maps them into a DNN
architecture. Accordingly, the ADMM-Net architecture re-
places the non-negative penalty parameter A in the ADMM
algorithm by A =V o®, where Vv is channel power vector,
\Y :J|h1||§,..., Iy, [15], and @ is a learnable parameter [159].
In addition, the ADMM-Net architecture unties the projection
function [] (21} in the ADMM algorithm by replacing it with

V() =Tp gy (x/1) = —B+ p(”tﬁof) _ P(x—tBot)’ o

where Yp,(x) is the projection operator, § is a learnable
parameter which is used to a piece-wise linear soft sign




operator ;(.) and to learn the clipping level of the projection
function. ¢ is also a learnable parameter of the linear soft sign
function [159]. The ADMM-Net architecture is presented as
[159]
7, =Yg, (K1 — 1)
W =Zg — R + Wy
X, = D(HTy—|— (o ov)o(zx+uy))
X(8) = Y14 (Xe)
subject to &g = 0,u9 = 0,v = diag(H' H),
D = (diag(wy ov)+H H)™!,

(10)

where %(0) is the output of network and based on 6 which
includes the learnable parameters, 6 = {{ml}lL:oa{Bk}ézl}-
The ADMM-Net architecture outperforms the ZF, SDR, and
DetNet based detectors with a small number of layers. It
also obtains a good performance in low-order modulation
schemes (i.e., BPSK and QPSK) over i.i.d. Gaussian channels.
Particularly, the ADMM-Net architecture for a 160 x 160
MIMO system and with 40 layers can achieve a quasi optimal
performance [159]. However, the ADMM-Net architecture
does not consider high-order modulation schemes and realistic
channel scenarios. In addition, it has an average run time
higher than that in the SD algorithm for a small-size massive
MIMO system.

7) DL-Based Sphere Decoding:: A SD algorithm based on
the DL (SD-DL) is proposed in [174], where the radius of
a sphere is learned through a DNN. It depends on both the
structure of H and the noise statistics. The DNN used in the
SD-DL architecture is a fully connected feedforward neural
network. Learnable radiuses lead to a remarkable reduction of
lattice points inside the sphere and hence, the computational
complexity is significantly reduced. Furthermore, the proba-
bility of failing to find a solution in the SD-DL architecture
is close to zero. The main idea of the SD-DL architecture
is to implement the SD-IRS algorithm with a small number
of learnable radiuses. The SD-DL architecture obtains g x 1
radius vector r, i.e., the g closest lattice points to vector y,
through the trained DNN as

P=D(z,0) = [f,Finy i, (11)

with
2= (R {y}, Sy}, R} S (e R w1 S {1
and 2
©200,0,...,0¢], (13)

where z is the input vector of the DNN and O is the vector
of all parameters of the SD-DL architecture. The SD-DL
architecture consists of two phases. The first phase is an offline
training phase where the DNN is trained independently for
each SNR value. The DNN which has three layers with one
hidden layer is considered for a 10 x 10 MIMO system with
16-QAM and 64-QAM. Clipped ReLu [174] is used as the
activation function in these hidden layers. In the second phase,
the estimated transmitted vector X is obtained through the
DNN [174]. The SD-DL architecture is implemented by a DL

Toolbox of MATLAB 2019a with the Adam optimizer. The
SD-DL architecture offers a significant performance enhance-
ment in i.i.d. Gaussian channels and a high-order modulation
scheme. Furthermore, it has a significant performance gain
in contrast to the MMSE algorithm and has a comparable
performance with the SD-IRS algorithm with a remarkable
complexity reduction.

In [186], a fast DL aided SD (FDL-SD) and a fast DL-
aided M-best SD (FDL-MSD) architectures are proposed to
accelerate the searching process in the SD and M-best SD
algorithms, respectively. Furthermore, the FDL-SD and FDL-
MSD architectures have more beneficial in both offline train-
ing and online decoding phases in contrast to the SD-DL
architecture. The main idea of the FDL-SD and FDL-MSD
architectures is to leverage the FS-Net architecture to produce
a highly dependable initial solution with a low computational
complexity. The initial solution generated by the FS-Net is
employed in layer ordering within the FDL-SD architecture
and in layer ordering with early rejection within the FDL-
MSD architecture. FDL-SD and FDL-MSD architectures are
not utilizing the conventional SD in the training phase.
Consequently, the FDL-SD and FDL-MSD architectures can
be trained with remarkably lower time and computational
resources in contrast to the SD-DL architecture. The FDL-SD
architecture, for a 24 x 24 MIMO system with QPSK, can
offer lower computational complexity by about 90% without
any performance loss in contrast to conventional SD schemes.
In addition, the FDL-MSD architecture achieves the same
performance of the conventional M-best SD algorithm, with
M= 256 survival paths, with just M=32 survival paths in
32x32 MIMO system with QPSK modulation scheme [186].

8) Trainable Projected Gradient:: A DL-aided iterative de-
coder known as a trainable projected gradient (TPG) detector
is proposed in [173], [187] for overloaded massive MIMO
systems. The TPG architecture is based on the data-driven
concept and on a projected GD for a total of L iterations
or layers {k=0,...,L—1}. It includes the GD and the soft
projection step. The TPG architecture has three learnable
parameters in each layer as

7 = X+ W (y — HXy)

o Zj
X1 = tanh <>
’ |6k |

where W=H' (HH" +aI) "

A

X0=0.

(14
1

The first parameter Y controls the size of the GD step,
the second parameter 6; controls the softness of the soft
projection, and the third parameter o in the linear MMSE
matrix W is optimized within the training phase. The vanishing
gradient problems are avoided in the TPG architecture by
using an incremental training. It is more scalable for massive
MIMO systems in terms of the computational complexity
than the FullyCon, DetNet, and OAMP-Net architectures. The
TPG architecture has a smaller number of trainable parameters
compared to FullyCon and DetNet architectures. In addition,
these parameters are not the MIMO size dependent which
makes the TPG architecture promoting fast and has a stable



training. In addition, the TPG architecture does not need to
initialize the MMSE matrix in each layer as that in the OAMP-
Net architecture. It also offers a comparable performance
with an iterative weighted sum-of-absolute value (IW-SOAV)
algorithm [188] which is known as one of the most effective
iterative algorithms for overloaded massive MIMO systems
with a low computational complexity. However, the TPG based
detector is dominated by a matrix inverse in each layer which
increases the computational complexity. In addition, it has
been designed for low modulation schemes and for a perfect
CSIL

B. Varying Channel Realization Architecture

1) MM Network:: The MM network (MMNet) is proposed
by Khani ef al. in [146] to tackle a poor performance of
the DetNet and OAMP-Net based detectors under realistic
channels and online training issues. The main concept of the
MMNet architecture is to offer a balance between the complex-
ity and flexibility in the linear and denoising ingredients within
each layer of the neural network [146]. It is designed based on
the theory of iterative soft-thresholding algorithms [189]-[191]
and leverages spectral and temporal correlation in realistic
channels to speed up training procedure. It has an effective
online training for varying channel realization in contrast to
the DetNet and OAMP-Net architectures that employ a single
detection model for all channels [146]. Furthermore, MMNet
based detector can offer better performance by 4-8 dB than
a traditional linear algorithms such as the MMSE detector
[146]. MMNet attains a near-optimal performance with a small
number of operations under i.i.d. Gaussian channels. It can
achieve the same performance of the DetNet and OAMP-Net
based detectors with low computational complexity. Under a
realistic channel model, the MMNet based detector obtains
the same performance of the OAMP-Net with 10x fewer
computational complexity and lower SNR by 2.5dB [146].

The MMNet architecture offers more freedom degrees and
has significantly more efficacious than the constrained OAMP-
Net algorithm [146]. The linear stages within the MMNet
architecture create appropriate conditions for the non-linear
denoisers by shaping the distribution of noise at the input of
denoisers to approach a Gaussian distribution. Furthermore, it
does not include any matrix inverse which reduces the com-
putational complexity. Compared to the DetNet architecture,
it has a simple architecture with two learnable parameter.
Unfortunately, the sequential online training within the MM-
Net architecture incurs latency [146]. MMNet requires to be
retrained on each channel realization which leads impractical
implementation scenario [192].

2) Hyper-Network:: In [192], a deep hyper-network-based
uplink massive MIMO detection (HyperMIMO) is proposed
to address the computationally demanding of the retraining
for each channel realization in the MMNet architecture. The
HyperMIMO architecture takes H as an input and generates
the weights of the MMNet architecture [193]. The Hyper-
MIMO architecture substitutes the training process that would
be needed for each channel realization by one inference of a
hypernetwork. It modifies the original MMNet architecture by

decomposing H !, and hence, the number of parameters are
reduced as

H=Q'R (15)
where Q is N, x N, orthogonal matrix and R is N, X N; upper
triangular matrix. Assume that N, > N;, then R = l})A and

Qa

Q= [QB
matrix By leveraging the QR-decomposition in the MMNet

architecture, the N; X N, trainable matrix @,((1), in [146], is
become N; x N, instead of N; x N,. In order to obtain a high
performance, the Ry and the channel noise standard deviation
¢ are considered as inputs of the hypernetwork. To further
decrease the number of hypernetwork outputs and inspired by
[194], the HyperMIMO architecture employs a relaxed form
of weight sharing. Figure 7 shows the model of HyperMIMO
architecture which composed of the hypernetwork and the
modified MMNet architecture. R2C is a layer to convert the
elements of Ry from complex-valued to real-valued. C2R is a

, where Ry is a N; X N, matrix, and Qy is a N, X N,

activation function is emplo ed in the last layer to guarantee
the positive values of the Gk parameters. The hypernetwork
has three dense layers where a number of units in the first
dense layer is matching the number of inputs. The second
dense layer has 75 units, and a number of units in the third
dense layer depends on the number of parameters needed
to the detector. The exponential linear unit (ELU) activation
functions are used in first two layers and linear activation
functions are used in the third dense layer.

The HyperMIMO based MIMO detector offers a per-
formance near to that of the MMNet based detector and
outperforms the OAMP-Net based detector. In addition, the
HyperMIMO architecture is robust to user mobility within a
certain range which is desired in a practical implementation.
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Figure 7. The design model of the HyperMIMO architecture

'In the HyperMIMO [192], the notation of N, is used to denote the
number of antennas at the BS and N;\N, to denote the number of antennas
at user terminals.



IV. DEEP CONVOLUTIONAL NEURAL NETWORK

The DNN based massive MIMO detectors incur a per-
formance loss in implementation and real scenarios. Hence,
the correlation features between symbols over frequency or
time domain cannot be exploited especially in vehicle MIMO
systems. However, the DCNN has the ability to invest the
correlation features between symbols and performs well in
vehicle MIMO systems. Motivated by this, the DCNN is
employed for detection in massive MIMO systems.

A. Deep Convolutional Neural Network Based ML Detection

A joint framework of DCNN-based ML detection (DCNN-
MLD) is proposed by X. Junjuan et al. in [195] to investigate
the conventional detection problem for vehicle networks with
MIMO systems and to suppress the interference by exploiting
the correlation features. Practical communications scenarios
are considered where interfering signals, which may arise
because of aggressive reuse of frequency resources, are corre-
lated over time or frequency. In general, the DCNN-MLD tack-
les the inability of the ML detection, DetNet, OAMP-Net, and
MMNet, to invest the correlation between different symbols
over frequency or time domain, where these architectures fail
to perform well with a practical correlated interference. The
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Figure 8. The structure of the DCNN-MLD architecture

DCNN-MLD architecture is used in order to tackle limitations
of the optimal ML sequential detector MLSD [195], where the
symbol-by-symbol ML detector and the DCNN network are
jointly used with K iterations between ML detector and the
DCNN network. The structure of the DCNN-MLD architecture
is depicted in Fig. 8. At each iteration, the ML detector firstly
produces the estimation of the transmitted signal %(n). Then,
%(n) is used to obtain the initial estimate of the interference
w(n) as

W(n) = y(n) H(n) X(n). (16)

The DCNN network, based on W(n), produces a more precise
estimation of the interference W(n) by exploiting the char-
acteristics inherent in the interfering signals, essentially about
the local correlation through different signals. w(n) is fed back
into ML detector, and input signal of the ML detector for next
iteration §(n) can be obtained as

§(n) = y(n) —W(n)
= H(n) X(n) + W(n) —W(n)
= H(n) %(n) +2(n),

where w(n) is the additive interfering signal and z(n) is the
effective residual interference.
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Figure 9. The structure of the DCNN network

Figure 9 shows the structure of DCNN network which is
composed of L convolutional layers: the input convolutional
layer, (L —2) hidden convolutional layers, and the output
convolutional layer. The input layer is convolved by Fj filters,
with filter size of R denoted by filter(1, f1)|f1 € [1,F1]. Con-
sequently, the input layer produces F| feature maps within the
convolutional operation, and send it to a second convolutional
layer which is composed of F, filters with filter size of R,
and denoted by filter(2,f2)|f1 € [1,F2]. Generally, I'" layer
(1 <1< L) is convolved by F; filters with a filter size of R;
and denoted by filter(l, f;)| fi € [1,F;]. Consequently, the [
layer obtains the F;_; feature maps which are produced by the
previous layer and then produce F; feature maps for the next
layer. This procedure is repeated until the final output layer is
applied. The output of the convolutional layer is convolved by
just one filter and the output feature maps have the dimension
of the input data. Overall, the structure of the DCNN network
has the following parameters {L;R|,Ry,...,R.;F1,Fs,....,FL}.
The DCNN-MLD attains a good performance in the presence
of correlated interference (i.e., Jakes model) over time or
frequency and naturally in i.i.d. Gaussian channels. It outper-
forms the OAMP-Net based detector. Unfortunately, DCNN-
MLD is just tested with an equal number of transmitter
and receiver antennas, symmetric MIMO system, and with
low-order modulation scheme. It also considers only sup-
pressing the interfering signals with ignoring the distribution
of the residual interference within the training procedure.
Subsequently, performance of the DCNN-MLD architecture
is deteriorated with a non-Gaussian interference.

However, authors in [195] have proposed an improved
DCNN network to deal with non-Gaussian distribution case
by forcing the residual interference to be near to the Gaus-
sian distribution by devising the loss function through the
cross-entropy of the detection. In [196], a generic DCNN-
based linear detectors (G-DCNN) for MIMO systems over
correlated noise environments is proposed. Instead of using
the ML, the G-DCNN architecture is employed with the
ZF, ZF-SIC, MMSE, and MMSE-SIC, to generate an initial
estimate of transmitted signals. The G-DCNN architecture has
substantially improved the performance in comparison with the
conventional linear detectors.



B. Convolutional Neural-Network-Based Likelihood Ascent
Search

In [197], a convolutional neural-network-based likelihood
ascent search (CNNLAS) detection architecture and a graph-
ical detection model are proposed for uplink multiuser (MU)
massive MIMO systems. The proposed detector depends
on the Vertical Bell Layered Space-Time (VBLAST) sys-
tem where hundreds of centralized BS antennas received
the signals from tens of users through the uplink channel.
Compared with other competitive algorithms (i.e., MMSE,
SDR, and DetNet), the CNNLAS architecture has a solid
robustness against the channel estimation errors. In particular,
the CNNLAS architecture, in presence of channel estimation
errors, needs a significantly lower average received SNRs to
acquire better BER performance. Furthermore, it offers a high
spectral efficiency with a low computational complexity and
with a significant low average received SNRs, both for low and
high order modulation schemes (i.e., I6QAM and 64QAM).
Particularly, performance of the CNNLAS based detector is
evaluated in N; = N, and N; < N,. For instance, the BER
of 1073 can be attained at SNRs of 5 dB, 12 dB and 14
dB for QPSK, 16-QAM and 64-QAM modulation schemes,
respectively, with N; = N, = 288. However, the CNNLAS
architecture is just tested over i.i.d. Gaussian channels [197].

In [198], a DL-based MIMO receiver architecture known as
DeepRX for massive MIMO detection is proposed to improve
the BER performance of the conventional linear MMSE re-
ceivers with perfect and imperfect CSI and over tapped delay
line channel model. The DeepRx architecture consists of a
residual neural network (ResNet)-based convolutional neural
network [199]. The DeepRx architecture facilitates a detection
mechanism in MIMO systems, which needs a separation of
various overlapping spatial streams within the equalization and
symbol detection stage. To reduce the complexity of DeepRx
architecture, two novel transformation layers are proposed.
First transformation layer is the maximal ratio combining-
based transformation and depends on expert knowledge. Sec-
ond transformation layer is a fully learned transformation that
employs learned multiplicative layers.

The chronology of the DNNs for MIMO detectors is pre-
sented in Table IV where the efforts to exploit the DL in
massive MIMO detection was started in 2017 when DetNet
was proposed. Furthermore, the significance and limitations
of the DNN detection algorithms in massive MIMO systems
are comprehensively reviewed in Table V. The computational
complexity of such detectors is illustrated in Table VI. Most
of proposed algorithms suffer from a significant performance
loss when high modulation scheme is used. In addition, the
performance is deteriorated in realistic channel scenarios.

As shown in Tables VI and V, the detection process in the
DNN-single channel realization architectures expect some of
simplified versions of the DetNet architecture (i.e., LcgNet
and QLcgNetV architectures) is not affected by instanta-
neous channel realization. In other words, these architec-
tures experience a performance loss with a realistic channel
(e.g., the QuaDRiGa channel). In addition, the DNN-single
channel realization architectures cannot invest the correlation
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between different symbols over frequency or time domain. The
OAMP-Net or the OAMP-Net?2 architecture of the DNN-single
channel realization architectures have a high computational
complexity (i.e., O(N?)). While, the DetNet, FS-Net, LcgNet
architectures have a relatively high computational complexity
(i.e., O(N?)). The remaining architectures of the DNN-single
channel realization architectures have lower computational
complexity (i.e., O(N;)) such as the ELRID, ScNet, BP and
TPG architectures. Although the BP architectures has a low
order of computational complexity, its computational com-
plexity has linearly increasing with the order of modulation.
The DNN-varying channel realization architectures come to
overcome the inability of the DNN-single channel realization
architectures to offer a well performance with a realistic
channel. In addition, the DNN-varying channel realization ar-
chitectures like MMNet architecture has O(N?)) computational
complexity and offers 10-15x less computational complexity
than the OAMP-Net and DetNet architectures. Nevertheless,
the DNN-varying channel realization architectures still have
inability to invest the correlation between different symbols
over frequency or time domain. The DCNN architectures (i.e.,
DCNN-MLD, G-DCNN-MMSE, and CNNLAS architectures)
are mainly proposed to deal with an inability of the DNN
architectures to invest the correlation between different sym-
bols over frequency or time domain. Unfortunately, the DCNN
suffers from a high computational complexity. The DCNN-
MLD architecture has a very high computational complexity
and its computational complexity increases exponentially with
the size of MIMO system and the order of modulation. The
DCNN-MLD architecture has O(N;)) computational com-
plexity. The CNNLAS architecture has O(N?)) computational
complexity which is comparable with the computational com-
plexity of the DetNet architecture. It is worth to note that
most of the DNN and DCNN architectures suffer from a
performance loss when a high order of modulation is utilized.

V. DISCUSSION AND FURTHER RESEARCH DIRECTION

The research in DL for massive MIMO and cell-free mas-
sive MIMO detectors is still in its infancy and there is a
significant room for fundamental research contributions in data
detection and channel estimation such as:

A. Online Training

Instead of the classical detection theory to obtain the best
estimate of unknown vectors, DL architectures could be ex-
ploited to choose the best algorithm to be applied. As shown
in Section III, most of the DL based detection architectures
were learned offline to exhibit a satisfactory performance over
unfolding detection algorithms (i.e., the GD and AMP based
detectors). Unfortunately, the training process is very complex
and time consuming. Although the offline training was con-
duced to reduce the time consumption, it still consumes several
days in some computing architectures. The time-consuming
overhead depends on two factors: (i) the total number of re-
quired training samples (i.e., batch size), and (ii) the size of the
model. On other hand, employing of the online training in DL
based detection architectures need to be optimized for every



Table IV
CHRONOLOGY OF DEEP NEURAL NETWORK FOR MIMO DETECTORS

Year | Summary of work performed Channels MIMO size

2017 | Introduction of deep network (DetNet) where unfolding a projected GD method is utilized. It is | Random i.i.d. Gaus- | 30x60
designed to handle multiple channels simultaneously with a single training phase. The training is | sian channels
implemented in TensorFlow [145].

2018 | An architecture is proposed to improve the activation function in the DetNet architecture by using | Random ii.d. Gaus- | 8x8
a multi-level-plateau sigmoid activation function. The modified DetNet architecture employed twin | sian channels
DL networks with various initial values to simultaneously detect the transmitted signals [163].

2018 | A simplified version of the DetNet architecture called sparsely connected neural network (ScNet) | Random ii.d. Gaus- | 20x30 & 40x80
is proposed. The simplification is done by reducing the number of inputs, reducing the number of | sian channels
network layers, and optimizing the loss function [158].

2018 | An OAMP-Net, a model-driven DL network, is proposed. It adds some adjustable parameters to the | Rayleigh channels 4x4 & 8x8 &
existing iterative method, OAMP. It is designed for a perfect CSI. The training is implemented in 64 x64
TensorFlow [166] [147].

2018 | A DL based BP detector is proposed. The structure of proposed detector contains a four-layers | Rayleigh channels 8x8 & 16x16
neural network to minimize the loss function. Simulations are implemented in TensorFlow [166]

[180].

2019 | A joint detector based on linear and non-linear algorithms is utilized. The structure of neural networks | Typical channel | 8x8 & 32x32 &

is proposed to decrease the number of mapping between inputs and outputs [200]. model as proposed in | 64x64
[201]

2019 | The fully connected multi-layer network (FullyCon) and modified DetNet architecture are proposed, | Channels with covari- | 20x30 & 30x60
where a relatively small number of parameters are required to optimize. In FullyCon, the output of | ance matrices of a | & 15x25
each layer is the input of the next layer. the DetNet architecture applies a projected GD method for | uniform linear array
detecting the signal. The training is implemented in TensorFlow [166] [22]. based on the one-ring

model in [202]

2019 | A DL based sphere decoding (DL-SD) detector is proposed. Prior to decoding, the hypershpere | Rayleigh block-fading | 10x10
radius is learned by the DNN. A sequence of learned radiuses at its output layer is mapped into a | channels
sequence of the fading channel matrix entries by the DNN. The training is implemented using the
DL Toolbox of MATLAB 2019a and Adam optimizer [174].

2019 | A trainable project gradient detector (TPG-detector) is proposed based on the GD step and the soft | Flat Rayleigh fading 32x50 &
projection step. Internal parameters are optimized by DL techniques. The training is implemented 64x100 &
in PyTorch 0.4.0 [203] [173], [187]. 96 x 150

2019 | A comprehensive summary of unfolded learned algorithms for massive MIMO detection algorithms | Rayleigh and corre- | 8x8
is presented. In this paper, several future research directions have been mentioned such as the need | lated channels
of acceleration methods, the convergence of the training method, on-line and off-line training, and
hardware implementation [204].

2019 | The recent advancements in model-driven DL approaches in physical layer communications (i.e., | Random i.i.d. Gaus- | 32x32
DL based detectors, transmission schemes, receiver design, and channel information recovery). In | sian channels
addition, various open research areas are highlighted [154].

2019 | A DNN is employed to enhance message passing detectors (MPDs) for MIMO systems is proposed. It | i.i.d. Rayleigh and | 8x32 & 64x128
is based on modified MPDs including damped BP (dBP), max-sum (MS) BP, and simplified channel | correlated fading
hardening-exploiting message passing (CHEMP). The training is implemented in TensorFlow [166] | channels
and Adam optimizer [167] [175].

2019 | A detector based on alternating direction method of multipliers network (ADMM-Net) is proposed | Random Gaussian | 30x60 & 40x60
for the BPSK and QPSK constellation cases. The training is implemented in TensorFlow [159]. channels & 160x 160

2020 | A fast-convergence sparsely connected detection network (FS-Net) is proposed. It approximates the | Random i.i.d. Gaus- | 32x32 & 32x64
initial solution of a DL-aided tabu search (TS) algorithm and it is acquired by optimizing the DetNet | sian channels
and ScNet architecture. The training is implemented in TensorFlow [166] and Adam optimizer [167]

[164].

2020 | A DL network (DLNet) is proposed where exact knowledge of channel parameters is assumed. The | Random ii.d. Gaus- | 30x60 & 20x30
DNN layers depend on projected GD. The training is implemented in the TensorFlow library with | sian channels
the Adam optimizer [165].

2020 | Two model-driven networks, namely learned CG network (LcgNet) and quantized LcqNet (QL- | Rayleigh fading chan- | 32x32 & 32x64
cqNetV), based on the learned CG descent have been proposed where each layer is considered as | nel & 32x128
one iteration with additional parameters. The training is implemented in Python using the TensorFlow
library with the Adam optimizer [162].

2020 | This paper proposes a framework for systematic complexity scaling of DNN, called as weight- | Rayleigh fading chan- | 30x60 & 16x16
scaling neural-network (WeSNet), for massive MIMO detection. This work introduced the concept | nels
of monotonic non-increasing profile function to allow the network to dynamically learn the best
attenuation strategy for its own weights during the training. Training was performed using the
TensorFlow [168].

2020 | An OAMP-Net2 is proposed. It is a development of OAMP-Net architecture in [147] where some | Rayleigh fading chan- | 8x8 & 16x16 &
new trainable parameters are considered. Unlike the OAMP-Net architecture, it is designed for | nels 32x32
imperfect CSI and channel estimation is improved by a data-aided scheme. It contains a linear and
a nonlinear estimators. The training is implemented in TensorFlow [166] [171].

2020 | A low complexity symbol detection technique based on iterative meta-predictor aided collaborative | Random i.i.d. Gaus- | 50x256
learning is proposed for symbol detection in massive MIMO with large number of users. The training | sian channels
is implemented in Adam optimizer [152].

2020 | A DNN based on unfolding MPD is proposed. The DNN structure is exploited to optimize the | i.i.d. Rayleigh and | 8x128
damping and correction factors. The training is implemented in TensorFlow [166] and Adam | correlated fading
optimizer [74], [167]. MIMO channels

2020 | A model-driven DL method is proposed by unfolding an iterative algorithm in [205]. Two auxiliary | i.i.d. Gaussian chan- | 8x128 & 8x64

parameters at each layer are introduced. The first parameter generates the residual error vector while
the second parameter adjusts the relationship among previous layers. The training is implemented
in Adam optimizer [167] [161].

nels




2020 | A DNN is exploited to calculate the optimal damping factor (DF) where it is trained off-line for | ii.d. Rayleigh-fading | 16x16
each antenna configuration. The training is implemented in Adam optimizer [167] [179]. channels

2020 | A DNN is exploited to improve the detection performance deterioration due to the mismatches of | i.i.d. Rayleigh-fading | 16x16
the channel correlations between training and test in the deep neural network-based damped BP | channels
(DNN-dBP). In addition, the convergence property of the BP algorithm is enhanced by applying
the node selection method. It is trained off-line for each antenna configuration and implemented in
Adam optimizer [167] [98].

2020 | MMNet is proposed to overcome the challenges in DetNet and OAMP-Net architectures. It is based | 3GPP 3D MIMO | 16x32 & 16x64
on iterative soft thresholding algorithm and is implemented in QuaDRiGa channel simulator. The | channels as
training is implemented in Adam optimizer [167] [146]. implemented in

QuaDRiGA

2020 | A HyperMIMO-based detector replaces the training process required by MMNet architecture for | Channel spatial corre- | 6x12
each channel realization by a single inference through a trained hypernetwork. It also reduces the | lation matrices
number of parameters of MMNet architecture. Training was performed using the Adam optimizer
[192].

2020 | A convolutional-neural-network based likelihood ascent search (CNNLAS) based on a graphical | i.i.d. Gaussian chan- | 288x288 &
detection model is proposed for uplink MU massive MIMO systems is proposed. It is trained off- | nels 32x48
line [197].

2021 | A modified expectation propagation (EP)-based MIMO detector (MEPD) is proposed to tackle | i.i.d. Rayleigh-fading | 32x32 & 16x16
the challenges of the conventional EP detector [182] which are incurred due to the empirical | channels & 64x64 &
parameter selection such as damping factors and initial variance. Furthermore, an modified EP 128x128
network (MEPNet) is proposed to offer the optimal damping factors and initial variance by adopting
a DL scheme and unfolding the proposed iterative MEPD detector. It is trained off-line with 5 layers
and implemented in TensorFlow [166] and Adam optimizer. [167] [181].

2021 | A fast DL aided SD (FDL-SD) and a fast DL-aided M-best SD (FDL-MSD) architectures are | Highly correlated | 32x32 & 16x16
proposed to accelerate the searching process in the SD and M-best SD algorithms. Furthermore, | channels and i.i.d.
these proposed architectures have more beneficial in both off-line training and on-line decoding | Rayleigh channels
phases in contrast to the SD-DL architecture [174] [186].

2021 | A fully convolutional neural network based receiver MIMO receiver architecture known as DeepRX | A 5G physical up- | 4x16
for MIMO detection is proposed. The DeepRx architecture consists of a ResNet-based convolutional | link shared channel
neural network and has a significant higher BER performance than convention linear MMSE receivers | (PUSCH) scenario
with perfect and imperfect CSI and over tapped delay line channel model [198].

2021 | A DNN based SDR detection algorithm is proposed on the basis of the graphical detection model | Flat fading channels 128256 &
[206]. 128128 &

256x256

2021 | A model-driven DL based massive MIMO detector is proposed by improving the approximate | i.i.d. Rayleigh fading | 32x64 & 32x48
expectation propagation algorithm. It is constructed by adding learnable parameters to enhance | channels
the performance and the convergence robustness through the DL approach. The proposed detector
is is trained by Adam optimizer with 150 iterations [207].

realization of the channel instead of using a fixed detector
for a wide variety of channels. However, online training is
mostly dominated by the cost of computational complexity
for each new realization of the channel which depends on the
channel coherence time. Furthermore, the majority of the DL
based detection architectures have a significant difficulty to be
trained online due to the stringent performance requirements
(i.e., the number of learnable parameters, wide SNR range,
and the number of iterations). Therefore, an online training
should be carefully considered in the future work.

One of the major challenges in applying machine learning,
Al and DL in communications systems design relates to the
training complexity and the generalization capabilities of the
trained models. The initial results in the literature suggest
that deep unfolding methods, which efficiently capitalize the
known structure of the problem, tend to be more often prac-
tically feasible than purely data based approaches. This is
of no surprise, because the efficient use of model structure,
when known, outperform the purely data based ones. The
strength of machine learning based approaches is in solving
inference problems for which precise models are not available.
The other key strength is in approximating computationally
complex operations by a DNN. Further work is needed in
understanding this general trade-off in practical MIMO and
cell-free networks with realistic channel and hardware models.

Sections II & III show that most existing detectors were
initialized using the linear MMSE which is diagonally domi-
nant and has a high complexity because of the matrix inverse.

Therefore, approximate/avoid matrix inversion methods, such
as the GS, the SOR, the RI, the JA, and others, could be
considered in the initialization to reduce the computational
complexity. In addition, the MMSE is diagonally dominant,
and hence, most of the existing linear MMSE detectors are
using the diagonal matrix which may not converge in some
scenarios. In our recent work [208], it is shown that the
utilization of a stair matrix, instead of a diagonal matrix,
impacts greatly the convergence rate, the performance, and the
computational complexity. Therefore, the work in [208] can be
extended to test the efficiency of a stair matrix in DL based
detectors. On the other hand, instead of doing a straightforward
matrix inversion, several matrix decomposition methods can
be utilized which are more numerically stable. Matrix de-
composition algorithms have been extensively utilized for the
matrix inversion procedure of a small-scale MIMO detection
[114], [209]. They provide better numerical stability over
straightforward inversion methods. As shown in Section III,
QR decomposition was exploited in few works. However, the
LDL and Cholesky decomposition algorithms were not well
investigated in the context of DL based detectors.

B. Real Channel Scenario

As shown in Section I, an optimal balance between the
performance and computational complexity of the entire com-
munications system can be obtained with channel modeling
in realistic scenarios and effective signal processing. Although
most DL based detection architectures demonstrated a strong



Table V
PROS AND CONS OF DEEP NEURAL NETWORK FOR DETECTION ARCHITECTURE IN MASSIVE MIMO SYSTEMS
Architecture Significance Limitation
o I has.has a small number of optimized parameters [22]. o Over varying channels, FullyCon has poor performance and did not manage
« It achieves a near-optimal accuracy over the fixed channels [22].
FullyCon e to learn how to detect properly [22].
o It is fast [22].
o It performs very well in case of i.i.d. complex Gaussian channel matrices ° ;tlfulzz:?)lrﬁ 4165] unstable for realistic channels (i.e., QuaDRiGa channel
and low-order modulation schemes (i.e., BPSK and 4-QAM) [146]. s C . e
- . ) . « DetNet’s performance on correlated channels is not satisfactory [195].
« It performs well over both constant and Rayleigh fading channels with a oo N (e
. . « Due to a large number of tuning parameters, it has a poor scalability (in large
single training shot [22], [154]. . MIMO size and high modulation scheme). In other words, it is prohibitively
DetNet « It overcomes the performance of the AMP and SDR algorithms [155], [156]. . . . . ?
. . expensive to train on-line [161], [162].
« The BER performance is comparable with the M—best SD [22]. I .
. . X o It performs poorly for a larg-scale MIMO systems with N, = N, [161].
o It offers the performance of the SDR detection algorithm, with 30x faster . : .
[155], [156] o It does not employ known features of iterative algorithms [22].
’ : « It employs a single detection model for all channels [146].
« It achieves a good performance and a low complexity in i.i.d. channels [165].
o It offers a better BER performance with 164X faster in running speed and e .
DLNet 9% less computational complexity than the DetNet architecture [165]. ° Esli l::; tgsEeed%ir?::glitgzvz;a[nl:;]énvironment [165]
« It achieves a comparable BER performance with the SDR algorithm, with * :
28200x faster [165].
o It has a very limited number of learnable parameters compared with the
Fullycon and DetNet architectures [162].
« The matrix-vector multiplication and division operations, are replaced by . . .
. . . . « It suffers from a considerable performance loss when higher order modulation
some prestored parameters which are fixed during on-line detections [162]. .
LcgNet . . is used [162].
o It has an universal step-sizes [162].
« It has a good performance in realistic channel models (i.e., a spatial correlated
channel model) and low-order modulation scheme [162].
o It has a very limited number of learnable parameters compared with the
Fullycon and DetNet architectures [162].
« It reduces the memory costs brought up by the storage of the step-sizes with
llmll:or perfofmanc]e loss U 62]‘] 2 « It suffers from a considerable performance loss when higher order modulation
QLcgNetV o It has an universal step-sizes [162]. is used [162]
o It quantizes the learned parameters by using a low-resolution nonuniform :
(i.e., 3-bits or 4-bits) quantizer [162].
« It has a good performance in realistic channel models (i.e., a spatial correlated
channel model) and low-order modulation scheme [162].
o The neural network architecture is self-adjustable to the detection complexity
[168].
« It deals with the weight profile functions themselves as trainable parameters
in order to prohibit vanishing gradients [168].
« It achieves a good performance with low-order modulation schemes (i.e.,
BPSK and 4-QAM) [168]. o It is designed for low-order modulation schemes [168].
WeSNet o The detector is evaluated under asymmetric and symmetric channels [168]. o It is not tested in a realistic channel scenario (i.e., QuaDRiGa simulator)
o It outperforms the DetNet and OAMP-Net architectures [168]. [168].
o It outperforms the DetNet architecture with offering 51.43% reduction in
complexity and about 50% reduction in model size [168].
« It outperforms the OAMP-Net architecture and offers detection accuracy sim-
ilar to the SDR algorithm with about 10x lower computational complexity
[168].
« It does not generalize to realistic channels with a spatial correlation [146],
« It addresses the large amount of trained parameters in the DetNet architecture [147].
[147]. o It is very restrictive where a strict assumption has to exist (i.e., unitarily-
o It has just two trainable parameters in each layer. invariant channel matrices). The performance degrades significantly when
o It offers a soft decision [146], [147]. the channel matrices do not conform to this assumption [146].
OAMP-Net o It significantly overcomes the OAMP algorithm [146]. o It has a high computational complexity and it is dominant by the matrix
o It is considered as the next-best learning algorithm [146]. inverse in each layer [146], [147].
« It has a very good performance in i.i.d. Gaussian channels and low-order « It employs a single detection model for all channels [146].
modulation scheme [146], [147]. o It cannot exploit the correlation among different symbols over time or
frequency domain [146], [195].
« It enhances the performance of the OAMP-Net architecture [171].
o It considers the characteristics of channel estimation error and statistics of
channel [171]. .
. . . o It suffers from a large performance loss over the realistic channel [171].
+ Itis designed for imperfect CSI [171]. It has a high computational complexity and it is dominant by the matrix
OAMP-Net2 o It has strong robustness to SNR, channel correlation, modulation scheme, * inverse in eé':lch la Er [71] P Y Y
and MIMO configuration mismatches [171]. Y :
« It needs only four trainable parameters in each layer [171].
« It outperforms the OAMP and the LMMSE algorithms [171].
« It tackles a poor performance of the DetNet and OAMP-Net architectures
under realistic channels [146].
« It is designed to be trained on-line for each realization of H. In other words, . . . ..
. . . « It incurs latency due to the sequential on-line training [146].
the receiver parameters are continually adapted as new H is observed [146]. . . .
. . . . o Its performance degrades of high modulation scheme (i.e., 64QAM) [146].
o It offers a balance between complexity and flexibility in the linear and . .
L T o It performs the symbol-by-symbol detection, and cannot exploit the correla-
denoising ingredients within each layer [146]. . . ) ) . . 2
MMNet ) X . . tion among different symbols over time or frequency domain [146].
o It does not require any matrix inverse operation [146]. . . . . .
. N X . « It needs to be retrained on each channel realization, which makes its practical
« It achieves a near-ML performance with 10-15x less computational complex- implementation challenging [146], [192]
ity than the OAMP-Net and DetNet architectures [146]. P ing ? :
« It offers a better BER performance by about 4-8 dB than a traditional linear
algorithm such as MMSE algorithm [146].
o It reduces the number of parameters of the MMNet architecture and weight
sharing and hence, a low computational complexity is required [192].
o It s'ubst_llutes the training process that would be needed for each channel « Tt achieves SER slightly worse than the MMNet architecture [192].
realization by one inference of the hypernetwork neural network [192]. It needs to be re-trained when the channel statistics change significantl
HyperMIMO o It outperforms the OAMP-Net architecture and LMMSE based detector ° 8¢ sig y

[192].
It has a practical implementation where it is robust against user mobility
[192].

[192].
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DCNN-MLD

It has a good performance in ii.d. Gaussian channels, and low-order
modulation scheme (i.e., QPSK) [195].

It has a good performance in the presence of correlated interference (i.e.,Jakes
model) over time or frequency [195].

It outperforms the performance of the conventional ML detector and has
significant better performance than the OAMP-Net architecture [195].

It considers practical communications scenarios and deals with an aggressive
reuse of frequency resources [195].

It tackles the inability of the ML detection, DetNet, OAMP-Net, and MMNet
to invest the correlation between different symbols over frequency or time
domain [195].

It is just tested with an equal number of transmitter and receiver antennas,
symmetric MIMO system, and with low-order modulation scheme (i.e.,
QPSK) [195].

Its performance is deteriorated for non-Gaussian interference [195].

It experiences a high computational complexity of the ML detection [195],
[196].

It ignores the distribution of the residual interference within the training
procedure [195].

G-DCNN

It is designed for correlated noise environments (i.e., Jakes model) [196].
It has a good performance in low-order modulation scheme (i.e., BPSK)
[196].

It employs a low complexity detectors (i.e., ZF, ZF-SIC, MMSE, and MMSE-
SIC) instead of ML detector [196].

The initialization has a matrix inverse component, and hence, the computa-
tional complexity is increased [196].

It is just tested with an equal number of transmitter and receiver antennas,
symmetric MIMO system, and with low-order modulation scheme (i.e.,
QPSK) [196].

CNNLAS

It has a solid robustness with the channel estimation errors [197].

It is based on a graphical detection model [197].

It outperforms the performance of the MMSE, and SDR algorithms [197].
It outperforms the performance of the DetNet architecture [197].

It has a very good performance in i.i.d. Gaussian channels, and low-order
and high-order modulation scheme (i.e., 16QAM and 64QAM) [197].

It just tested over i.i.d. Gaussian channels [197].

ADMM-Net

It needs just matrix-vector multiplications and/or simple element-wise mul-
tiplications in each layer [159].

It has a lesser number of trainable parameters than that in the DetNet
architecture [159].

It outperforms the performance of the ZF, SDR, and DetNet based detectors
with a small number of layers [159].

It can achieve a good performance in low-order modulation scheme (i.e.,
BPSK and QPSK) [159].

It has a good performance in i.i.d. Gaussian channels [159].

It has a relatively high computational complexity [159].

It is designed for low-order modulation schemes [159].

It is not taking into consideration the realistic channel scenario [159].
Its average run time is higher than the SD algorithm [159].

DL-SD

Its learnable radiuses lead to a remarkable reduction of lattice points inside
the sphere [174].

It significantly reduces the computational complexity of the SD algorithm
[174].

Its probability of failing to find a solution is close to zero [174].

It has a very good performance in i.i.d. Gaussian channels and high-order
modulation scheme (i.e., 64QAM) [174].

It has a significant performance gain in contrast to the MMSE algorithm and
has a comparable performance with the SD-IRS algorithm with a remarkable
complexity reduction [174].

It is designed based on a fully connected feedforward neural network [174].
It includes a matrix inversion [174].
It needs an off-line training for each SNR value [174].

TPG

It is suitable for overloaded massive MIMO systems [173], [187].

It requires just three trainable parameters in each layer [173], [187].

The number of trainable parameters does not depend on the MIMO size
[173], [187].

It can avoid the vanishing gradient problems by using an incremental training
[173], [187].

It has a more scalability in terms of the computational complexity than the
FullyCon, DetNet, and OAMP-Net architectures [173], [187].

It does not need to initialize the LMMSE matrix in each layer as that in the
OAMP-Net architecture [173], [187].

It offers a comparable performance with IW-SOAV algorithm [173], [187],
[188].

It has a very good performance in i.i.d. Gaussian channels and low-order
modulation scheme (i.e., QPSK) [173], [187].

It is designed for a perfect CSI [173], [187].
It is dominant by the matrix inverse in each layer [173], [187].
It considers just an i.i.d. Gaussian channels [173], [187].

performance in both i.i.d. Gaussian and small-sized correlated
with perfect CSI, the detection performance of these architec-
tures deteriorates with a realistic channel (e.g., the QuaDRiGa
channel) or with an imperfect CSI. In other words, most exist-
ing detectors are not adaptable to changes in channel statistics
and realizations. They were designed based on simple channel
models. In addition, most existing detectors are designed for
low modulation orders and they are not performing well when
a high modulation order is used. Therefore, realistic channel
scenarios and high modulation orders should be considered in
future proposals.

C. Cell-free Massive MIMO

Cell-free massive MIMO has a potential to play a crucial
role in 5G and B5G systems. It is not a trivial task to efficiently
conduct distributed signal processing tasks. Therefore, DL

architectures could be a solution to reduce the complexity.
Although the DL has been utilized to address the power
allocation and channel estimation in cell-free massive MIMO,
it is not yet exploited in detection algorithms [81], [210], [211].
The literature has shown a paucity of employing DL archi-
tectures for detection in decentralized and cell-free massive
MIMO systems. DL architectures could be exploited in cell-
free massive MIMO networks to obtain the best estimate of
unknown vectors. The high traffic load on the fronthaul and
backhaul is one core problem in the cell-free network. DL
with federated learning could reduce that for the control and
learning side, while the actual data sharing may still be needed.

We would also like to note that the approximate inversion-
based detectors might not be suitable for cell-free massive
MIMO systems. The approximate inversion-based detectors
utilize the channel hardening property where the diagonal
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Table VI
THE COMPUTATIONAL COMPLEXITY OF DL BASED DETECTOR ARCHITECTURES

Architecture Computational Complexity Notes Reference
ELRID O(N,N; + N;)N;) - [152]
DetNet O(36N7 +4N,)L) - [22], [162]
ScNet O(3N,L) - [158]
FS-Net O((8N} +8N, L) - [164]
LcgNet O(4N? +6N,)L) - [162]

OAMP-net O(N?L) - [171]
OAMP-net2 O(N/L) - [171]
DNN-dBP O(MN;N,L) M is the order of the modulation scheme. [74]
DNN-MS O(MN;N,L) M is the order of the modulation scheme. [74]
DNN-sMPD O(MN,N,L) M is the order of the modulation scheme [74]
TPG O(N;N,L) - [173], [187]

O(bN/L) b is the batch size [146]

DCNN-MLD O((K+1)MN +YE |(F_\RIN:F}))

F is the number of feature maps, R is the
filter size and M is the order of the
modulation scheme

[195]

G-DCNN-MMSE O(K+ 1N +XF | (F-1RINF))

F is the number of feature maps and R is the

filter size [195]

CNNLAS O(N? +N? +N?)

N, is the total number of convolutional filters

and N is the total number of the 3-D
graphical signal matrices.

[197]

terms of the Gram matrix H”H become significantly more
dominant than the off-diagonal terms. The APs of a cell-free
system is distributed over a large geographical area. The AP
antennas are not co-located like conventional massive MIMO
systems, but rather distributed over the geographical area of a
cell. Therefore, it is still unclear whether the cell-free massive
MIMO systems will inherit the channel hardening property
from a conventional massive MIMO system. In [212], the
authors used stochastic geometry to investigate this issue. The
authors concluded that having many distributed antennas does
not necessarily lead to channel hardening. The channel harden-
ing criterion is strongly affected by the number of antennas per
AP and the propagation environment. This result is significant
in the MIMO detection context due to the fact that most low
complexity detectors utilize the channel hardening property. If
channel hardening is not reliable, then the highly complex
non-linear detectors, such as sphere decoder or successive
interference cancellation, could be the appropriate solution
in cell-free systems. The DL detectors cannot compete with
approximate-inversion based detectors in terms of complexity.
However, the DL detectors can be a competitive solution in
comparison to sphere decoders or SIC. The DL solutions are
also not inferior to any nonlinear solutions in terms of error-
rate performance.

There has been a tremendous and reinvigorating interest on
DL techniques, circuits and platforms during this decade. Ma-
jor semiconductor industries have invested heavily to develop
platforms supporting DL algorithms. It is highly likely that the
future base stations will have generic hardware accelerators
to support different DL algorithms. Therefore, the complexity
of DL based MIMO detectors will be less relevant as it is

currently, but the focus will shift on utilizing these DL hard-
ware accelerators by configuring them for different computa-
tion intensive applications, such as uplink MIMO detection.
Regardless of that the learning approaches utilizing the data
as efficiently as possible reduce the training complexity and
cost.

VI. CONCLUSION

A remarkable research dedicated to the massive MIMO
receiver’s design was conducted. In this paper, a review of
various detection techniques based on DL architectures was
provided to achieve optimal and quasi-optimal performance.
Unfortunately, optimal performance was achieved in expenses
of a high computational complexity. We covered detectors
based on FullyCon, DetNet, and OAMP-Net and their vari-
ations. In addition, deep hyber networks, WeSNet, and ScNet
were comprehensively illustrated. The architecture and impact
of DCNN, generic DCNN architecture, and CNNLAS were
also discussed. This paper also reviewed the ADMM networks,
SD with radius selection and TPG detectors based on the DL
are presented. The HyperMIMO based detector can achieve a
satisfactory performance in real scenarios. Although most of
proposed detectors were not tested in real scenarios and high
order modulation schemes, there is a room for contributions to
develop the DL based detectors in centralized, decentralized,
and cell-free massive MIMO systems.
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