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Abstract—The integrated sensing and communication (ISAC),
in which the sensing and communication share the same
frequency band and hardware, has emerged as a key technol-
ogy in future wireless systems due to two main reasons. First,
many important application scenarios in fifth generation (5G)
and beyond, such as autonomous vehicles, Wi-Fi sensing and
extended reality, requires both high-performance sensing and
wireless communications. Second, with millimeter wave and mas-
sive multiple-input multiple-output (MIMO) technologies widely
employed in 5G and beyond, the future communication signals
tend to have high-resolution in both time and angular domain,
opening up the possibility for ISAC. As such, ISAC has attracted
tremendous research interest and attentions in both academia
and industry. Early works on ISAC have been focused on the
design, analysis and optimization of practical ISAC technologies
for various ISAC systems. While this line of works are neces-
sary, it is equally important to study the fundamental limits
of ISAC in order to understand the gap between the current
state-of-the-art technologies and the performance limits, and pro-
vide useful insights and guidance for the development of better
ISAC technologies that can approach the performance limits. In
this paper, we aim to provide a comprehensive survey for the
current research progress on the fundamental limits of ISAC.
Particularly, we first propose a systematic classification method
for both traditional radio sensing (such as radar sensing and
wireless localization) and ISAC so that they can be naturally
incorporated into a unified framework. Then we summarize the
major performance metrics and bounds used in sensing, com-
munications and ISAC, respectively. After that, we present the
current research progresses on fundamental limits of each class
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of the traditional sensing and ISAC systems. Finally, the open
problems and future research directions are discussed.

Index Terms—Integrated sensing and communication, radar
sensing, localization, fundamental limits.

I. INTRODUCTION

FUTURE beyond 5G and sixth generation (6G) wireless
systems are expected to provide various high-accuracy

sensing services, such as indoor localization for robot nav-
igation, Wi-Fi sensing for smart home and radar sensing for
autonomous vehicles. Sensing and communication systems are
usually designed separately and occupy different frequency
bands. However, due to the wide deployment of the millimeter
wave and massive MIMO technologies, communication sig-
nals in future wireless systems tend to have high-resolution in
both time and angular domain, making it possible to enable
high-accuracy sensing using communication signals. As such,
it is desirable to jointly design the sensing and communication
systems such that they can share the same frequency band and
hardware to improve the spectrum efficiency and reduce the
hardware cost. This motivates the study of integrated sensing
and communication (ISAC).

The community has recognized that ISAC will become a
key technology in future wireless systems to support many
important application scenarios [1], [2], [3], [4]. For exam-
ple, in future autonomous vehicle networks, the autonomous
vehicles will obtain a large amount of information from
the network, including ultra-high resolution maps and near
real-time information to help navigate and avoid upcoming
traffic congestion [5]. In the same scenario, radar sensing in
the autonomous vehicles should be able to provide robust,
high-resolution obstacle detection on the order of a cen-
timeter [6]. The ISAC technology for autonomous vehicles
provides the potential to achieve both high-data rate commu-
nications and high-resolution obstacle detection using the same
hardware and spectrum resource. Other applications of ISAC
include Wi-Fi based indoor localization and activity recog-
nition, unmanned aerial vehicle (UAV) communication and
sensing, extended reality (XR), joint radar (target tracking and
imaging) and communication systems etc. Each application
has different requirements, limits, and regulatory issues. Fig. 1
illustrates some possible application areas for ISAC.
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Fig. 1. Illustration for the applications of ISAC.

Under this background, ISAC has attracted tremendous
research interest and attentions in both academia and industry.
For example, recently, there have been an increasing number
of academic publications on ISAC, ranging from transceiver
architecture and frame structure [3], [7], ISAC waveform
design [8], [9], [10], joint coding design [11], [12], [13],
temporal-spectral-spatial signal processing [14], [15], [16], to
experimental performance demonstrations, prototyping, and
field-tests [17]. The authors of this paper have also organized
IEEE WTC Special Interest Group (SIG) on ISAC and a work-
shop on ISAC in IEEE Global Communications Conference in
2020. Furthermore, in September and November 2019, IEEE
802.11 formed the WLAN Sensing Topic Interest Group and
Study Group, respectively, and formed a new official Task
Group IEEE 802.11bf in September 2020, with the objec-
tive of incorporating wireless sensing as a new feature for
next-generation WiFi systems (e.g., Wi-Fi 7).

Despite these early research efforts on ISAC, many impor-
tant problems about ISAC remain open, such as the unified
theoretical frameworks, the fundamental performance limits,
and the optimal ISAC schemes and signal processing algo-
rithms. In particular, characterizing the fundamental limits of
ISAC, including the distortion bounds for sensing parame-
ters as well as the channel capacity and capacity-distortion
tradeoff performance, is of great importance to make break-
through in ISAC technologies. On one hand, the fundamental
limits provide a performance bound for practical ISAC tech-
nologies, which reveals the potential gap between the current
technologies and the optimal solution. On the other hand, the
fundamental limits analysis also provides useful guidance and
insight for the design and analysis of practical ISAC systems.
Recently, a number of works have been dedicated to study-
ing the fundamental limits of ISAC, see, e.g., [18], [19].
However, many important questions remain open and need
further study. In this paper, we conduct a comprehensive sur-
vey on the fundamental limits of various sensing systems and
ISAC systems, and discuss the open problems and potential
research directions. We hope that this survey serves as a start-
ing point for interested researchers to work on this important
and challenging research area.

Note that generally speaking, the task of sensing is to
obtain awareness of the scene surrounding the sensor in
general, which includes the capability to detect, localize and
track objects, to form images and/or to extract features for
recognition/classification purposes, etc. In particular, spectrum
sensing and (blind) signal identification have been proposed
as important sensing technologies in communication systems
for cognitive radio and emerging intelligent radios [20], [21],
[22], [23]. Interesting readers may find some representative
works on spectrum sensing in [20], [21] and signal identifica-
tion in [22], [23], [24], respectively. However, the focus of this
paper is to investigate the performance limits for the estimation
of sensing parameters that are related to the spatial information
of a sensing target, such as the direction of arrival (DOA),
signal propagation time delay, Doppler frequency, position,
velocity etc., due to the following considerations:

• First, one major motivation for ISAC is to integrate the
function of communication and radar sensing using the
same hardware and spectrum. The core function of radar
sensing is to identify the position and velocity of a target
via estimating spatial information related parameters.

• Second, in ISAC, communication waveforms/signals are
used for sensing, and thus the sensing information can
only be extracted from the wireless sensing channel
between the sensing transmitter and the sensing receiver.
Since the multipath wireless sensing channel is mainly
determined by the DOA, signal propagation delay and
Doppler frequency of each channel path, it makes sense
to focus on the estimation of sensing parameters that are
related to the spatial information of the sensing targets.

• Third, many important sensing objectives such as the
localization and tracking of objects can be interpreted as
parameter estimation problems, and the capability to esti-
mate spatial information related parameters also provides
a foundation for more complicated sensing objectives
such as imaging, recognition and classification.

• Finally, the other sensing scenarios such as spectrum
sensing and signal identification are quite different from
the spatial information sensing considered in this paper
and it is very difficult to analyze the fundamental lim-
its of these sensing scenarios under a unified framework.
Indeed, most works on ISAC also focused on the estima-
tion of spatial information related sensing parameters.

The organization of this paper is illustrated in Fig. 2 and elab-
orated below. Section II discusses the related works and the
scope of this paper. Section III provides a systematic classifi-
cation of integrated sensing and communication, which helps
to understand the big picture of this research area. Section IV
presents some essential performance metrics for radio sens-
ing as well as integrated sensing and communication, which
provides fundamental information measures (e.g., mutual
information, Fisher information matrix, Cramer-Rao bound
and capacity-distortion function) for the performance limits
analysis in Sections V–VIII. Sections V–VIII present the cur-
rent research progress on the fundamental limits of the device-
free sensing, device-based sensing, and device-free/device-
based ISAC, respectively. In particular, the Cramer-Rao
bound (CRB) analysis in Sections V and VI for purely
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Fig. 2. The organization of the paper.

device-free/device-based sensing also provides the fundamen-
tal sensing limits for device-free/device-based ISAC systems
for given orthogonal communication and sensing resource allo-
cation. The capacity-distortion tradeoff analysis for ISAC in
Section VII provides fundamental limits for the more practical
ISAC systems in Section VIII where we discuss some designs
and performance analysis of ISAC systems tailored to different
application scenarios. Section IX discusses open problems and
future research directions in ISAC. Finally, we make our con-
clusions in Section X. The abbreviations and acronyms used
in this paper are summarized in Table I.

Notations: Matrices are represented by bold uppercase letters
(e.g., X), vectors are denoted by bold lowercase letters (e.g.,
x ), and normal font are used for scalars (e.g., x). tr(·), (·)T ,
(·)H and (·)∗ are the trace, transpose, Hermitian transpose and
complex conjugate operations, respectively. Re(·) and Im(·)
represent the real and imaginary parts of the argument.

II. RELATED WORKS AND SCOPE OF THIS SURVEY

Most related survey works only focus on purely sens-
ing problems. Recently, several notable works also give a
preliminary sketch for the landscape of ISAC research. We
categorize these works into: (i) pure overviews of sensing tech-
niques including device-free sensing and device-based sensing,
(ii) reviews of ISAC techniques. We summarize these ear-
lier efforts in Table II and discuss the most representative
publications in each class in the following two subsections,
respectively.

A. Overviews of Sensing Techniques

There are many survey papers for traditional sens-
ing technologies, including radar sensing [25], wireless
localization [26], [27], [28], [29], WiFi and mobile
sensing [30], [31], [32]. In [25], the authors reviewed the
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TABLE I
LIST OF ACRONYMS IN ALPHABETICAL ORDER

parametric modeling and methods for radar target detec-
tion. In [33], the authors reviewed a number of closed-form
Gaussian CRB expressions for the DOA parameter under a
unified framework. In [26], the authors reviewed the funda-
mental limits of wireless localization, including a mathemat-
ical formulation for wireless localization, an introduction of

equivalent Fisher information analysis, and determination of
the fundamental limits of localization accuracy. In [29], the
authors reviewed the fundamental limits of TOA-based wire-
less localization as well as different types of practical parame-
ter estimation algorithms. In [27], [28], the authors introduced
the signal processing techniques, technical classification and
application scenarios arising in wireless localization. As for
WiFi sensing, in [30], [31], [32], the authors introduced the
signal processing techniques, technical classification and appli-
cation scenarios for indoor localization, human sensing and
residential healthcare sensing, respectively. However, most sur-
vey works on traditional sensing focused on signal processing
and application aspects, and only a few works have discussed
the fundamental limits of traditional sensing. To the best of
our knowledge, there is also no survey paper that studied both
device-free (e.g., radar sensing) and device-based sensing (e.g.,
wireless localization) under a unified framework.

B. Overviews of ISAC Techniques

Recently, several works have also presented the recent
research progress on Joint Radar and Communication (JRC)
system and Dual Functional Radar and Communication
(DFRC) system, which can be viewed as a special case of
ISAC (device-free ISAC) considered in this paper. In [1],
the authors presented the applications, topologies, levels of
system integration, the current state of the art, and outlines
of future information-centric JRC systems. In [3], the authors
reviewed the application scenarios and research progress in
radar-communication coexistence and dual-functional radar-
communication systems. In [34], the author first reviewed the
works on coexisting communication and radar systems, then
provided a brief review for three types of JRC systems and
finally reviewed stimulating research problems and potential
solutions. In [4], [35], the authors introduced the concepts,
characteristics and advantages of JRC technology, presenting
the typical applications that have benefited from JRC technol-
ogy currently and in the future and explores the state-of-the-art
of JRC in the levels of coexistence, cooperation, co-design
and collaboration. In [36], [37], the authors reviewed the sig-
nal processing techniques for JRC\DFRC systems. In [38],
the authors introduced the concept of Integrated Sensing
and Communication in 6G, including motivations, user cases,
requirements, challenges and future directions. In [39], [40],
the authors reviewed recent works on coexistence between
radar and communication systems, including signal models,
waveform design, and signal processing techniques. Again,
most existing survey works on ISAC focused on signal pro-
cessing and application aspects, and only few works have
discussed some aspects of the fundamental limits of ISAC.
To the best of our knowledge, there is no survey paper that
provides a systematic overview on both device-free ISAC
(e.g., JRC\DFRC) and device-based ISAC (e.g., integrated
localization and communication) under a unified framework.

C. Our Scope

As discussed above, previous works on ISAC such as [1],
[3], and [34] mainly focus on the signal processing or design,

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 23,2022 at 08:29:10 UTC from IEEE Xplore.  Restrictions apply. 



998 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 2, SECOND QUARTER 2022

TABLE II
SUMMARY OF EXISTING SURVEYS RELATED TO SENSING AND ISAC

analysis and optimization of practical JRC systems, and there
still lacks a comprehensive survey on the fundamental limits
of ISAC. Our scope and contributions differentiate this paper
from existing works are summarized below.

• We propose a systematic classification method for both
traditional radio sensing technologies (such as radar sens-
ing and wireless localization) and ISAC technologies so
that they can be naturally incorporated into a unified
framework.

• Existing survey works on ISAC mainly focus on the joint
system design and integration, but pay little attention to
the fundamental limits of the integrated system. To our
best of knowledge, this is the first work to provide a
comprehensive survey on the fundamental limits of both
radio sensing and ISAC systems.

• We propose several typical ISAC channel topologies as
abstracted models for various ISAC systems, analogous to
traditional communication channel topologies. We point
out that the fundamental limits of ISAC channels can-
not be obtained by a trivial combinations of existing
performance bounding techniques in separate sensing and
communication systems.

• We provide new insight/vision to better understand the
fundamental limits of both device-free/device-based sens-
ing and ISAC. Specifically, we provide unified order-wise
expressions of the CRBs for device-free/device-based
sensing, discussed their physical interpretations, and
revealed the connections/differences between device-free
and device-based sensing. We also discussed the con-
nections between device-free/device-based sensing and
ISAC.

• We present a list of important open challenges and poten-
tial research directions on ISAC, many of which have not
been mentioned in the previous works.

III. CLASSIFICATIONS OF INTEGRATED SENSING AND

COMMUNICATION

Traditional radio sensing can be classified into two cat-
egories, namely, the device-free sensing and device-based
sensing.

• Device-free sensing means that the sensing targets (e.g.,
a bird) are not capable of transmitting and/or receiving
the sensing signal, or means that the sensing procedure
does not rely on the transmitting and/or receiving of the
sensing target (e.g., a target vehicle). A typical example
for device-free sensing is the radar sensing.

• Device-based sensing means that the sensing targets are
capable of transmitting and/or receiving the sensing sig-
nal, and the sensing procedure relies on the transmitting
and/or receiving of the sensing target. A typical exam-
ple is the wireless-based localization to localize mobile
devices.

Naturally, ISAC can also be classified into device-free ISAC
and device-based ISAC as it will be illustrated later. In this
section, we first briefly discuss the history of device-free and
device-based sensing/ISAC. Then we provide detailed clas-
sifications for each category, which are also summarized in
Fig. 3.

In terms of device-free sensing, the earliest radar can be
traced back to 1904 [44]. In 1950, the concept of phased-
array radar first appeared. Through decades of development,
the concept of MIMO radar is introduced in 2004 [45] and the
concept of phased-MIMO radar was proposed in 2010 [46].
As an attempt to integrate the radar and communication, the
concept of joint radar-communications (JRC) was proposed in
2006 [47].

In terms of device-based sensing, Global Navigation
Satellite System (GNSS) has been used to provide location
services initially. Owing to the poor performance of the GNSS
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Fig. 3. An overview of classifications of ISAC.

in indoor environments, the cellular-based localization was
proposed as a good alternative to GNSS. The first cellular-
based localization system is called E-911 used for providing
emergency services [48]. Starting from the second generation
(2G), wireless localization has been included as a compulsory
feature in the standardization and implementation of cellular
networks, with continuous enhancement on the localization
accuracy over each generation, e.g., from hundreds of meters
accuracy in 2G to tens of meters in the fourth generation (4G).
Nowadays, sub meter-level localization accuracy can even be
achieved in 5G by state-of-the-art techniques, e.g., millimeter
wave and massive MIMO.

However, the limited spectrum resource and hardware
infrastructure will eventually become a bottleneck for local-
ization. Furthermore, due to the fact that radio signals can
simultaneously carry data and location-related information of
the transmitters, a unified study on integrated localization and
communication tends to be a natural choice. In this paper,
integrated sensing and communication (ISAC) is proposed as
a more general concept including both the JRC and integrated
localization and communication as special cases, since they
can be viewed as the device-free ISAC and device-based ISAC,
respectively.

A. Device-Free Sensing

Since the majority of device-free sensing belong to radar
sensing, we will focus on the detailed classifications of radar
sensing in this subsection. As illustrated in Fig. 4, radar trans-
mits an omnidirectional or directional probing signal towards
the target. Then the probing signal is reflected by the target
and the radar echo is received by radar. Finally, the target
parameters can be estimated from the received echo.

Generally speaking, there are three radar system architec-
tures: phased-array radar, MIMO radar and phased-MIMO
radar. In this subsection, we will further divide these three
kinds of radar into different classes and discuss the structure
and characteristic of each class.

1) Phased-Array Radar: Phased-array antennas have been
an enabling technology for many systems in support of a

Fig. 4. Remote radar sensing of a single target.

variety of radar missions. Phased-array radar employs many
antennas placed together respectively for the transmit and
receive arrays. The spacing between the antennas within an
array is set in the same order of the wavelength of the sensing
signal. Each of the transmit antennas transmits a same base-
band signal and transmit beamforming is employed to steer a
high-gain beam in a particular direction [49].

As illustrated in Fig. 5(a), phased-array radar can be divided
into two classes according to whether the transmit and receive
arrays are placed together: mono-static phased-array radar and
bi-static phased-array radar.

Mono-static phased-array radar employs a system in which
the transmit and receive arrays are placed together. In many
cases, the same antenna array is exploited for both transmitting
and receiving. In this paper, we slightly extend this concept to
include radar systems where the transmit and receive antenna
arrays are co-located. The AoD (angle of departure) and AoA
(angle of arrival) are thus the same in this case, rendering fewer
parameters to be estimated. However, the interference from
the transmit array to the receive array is non-negligible and
needs to be eliminated. One common method for interference
elimination is to use pulsed waveforms so that the transmit and
the receive functions are performed at different time intervals
to avoid interference.

Bi-static phased-array radar employs a system in which the
transmit and receive arrays are placed in different sites. Since
the AoD and AoA are different in this case, more parame-
ters need to be estimated. However, the interference from the
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Fig. 5. An overview of classifications of device-free sensing.

transmit array to the receive array is smaller due to the larger
distance.

2) MIMO Radar: MIMO radar was first proposed in [45].
Contrary to the phased-array radar, MIMO radar transmits
decorrelated probing signals from independent transmitters.
Since independent signals undergo independent fading, MIMO
radar can overcome target Radar Cross Section (RCS) scintil-
lations [45]. Moreover, the received signal in MIMO radar is
a superposition of independently faded signals, and thus the
average SNR of the received signal is more or less constant
[45]. MIMO radar can be divided into two classes: colocated
MIMO radar and distributed MIMO radar [45].

In colocated MIMO radar, the antennas in the transmit or
receive antenna array are placed together, and the spacing
between the antennas within an array is set in the same order
of the signal wavelength, as illustrated in Fig. 5(b). Note that

although the antenna placement of colocated MIMO radar is
similar to that of the phased-array radar, the transmit signals
are fundamentally different in these two radars, i.e., inde-
pendent signals in MIMO radar versus beamformed signals
in phased-array radar, as explained above. With decorrelated
signals transmitted from different transmitters and received
by different receivers placed together, the target has been
observed multiple times from the same direction, and each
observation is independent from each other. In this way, the
waveform diversity gain can be achieved to enhance the radar
sensing performance [50], [51], [52].

In distributed MIMO radar, the antennas in the transmit or
receive antenna array are widely distributed in different loca-
tions, and the spacing between any two antennas is far larger
than the wavelength, as illustrated in Fig. 5(c). With inde-
pendent signals transmitted from distributed transmitters and
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received by distributed receivers, the target has been observed
multiple times from different directions. Hence, the spatial
diversity gain can be achieved to increase the accuracy of
localization [53], [54], [55]. Note that there is no mono-static
distributed MIMO radar since the antennas in both transmit
and receive arrays are distributed in the space. However, each
node might implement both transmit and receive functions.

3) Phased-MIMO Radar: Phased-MIMO Radar was first
proposed in [56] and it achieves a tradeoff between phased-
array radar (beamforming gain) and MIMO radar (waveform
diversity gain). As illustrated in Fig. 5(d), the transmit array of
phased-MIMO radar is divided into different sub-arrays which
are allowed to have overlapping. Each subarray is composed
of any number of antennas ranging from 1 to M, and forms
a beam towards a certain direction. Different waveforms are
transmitted by different subarrays. Therefore, each subarray
can be regarded as a phased-array radar and all subarrays can
be jointly regarded as a MIMO radar. There is no specific
limitation imposed on the receive array, but a colocated receive
array is typically used [56]. As illustrated in Fig. 5(d), phased-
MIMO radars can be further divided into mono-static phased-
MIMO radars and bi-static phased-MIMO radars according to
whether the transmit and receive arrays are placed together.

4) Other Device-Free Sensing Scenarios: There are some
other device-free sensing scenarios that do not necessarily fall
into the above classes. For example, passive radar is another
technique for device-free sensing which has been investigated
for several decades, especially for defense applications [57].
This kind of radar is not intended to send radar probing signals
actively. It instead parasitically exploits the echoes from the
targets that are illuminated by pre-existing transmitters, being
intrinsically bistatic.

In particular, various communication transmitters might be
employed as illuminators of opportunity thus enabling differ-
ent applications. Radio and television broadcast transmitters
are usually preferred for long range surveillance applications.
On the other hand, WiFi access points might be employed for
local area monitoring [58], [59]. The passive radar can esti-
mate the desired parameters of the target from the passively
received signals. Passive radar has received renewed interest
for surveillance purposes because it allows target detection and
localization with advantages such as low cost, covert opera-
tion, no frequency allocation requirement, etc. However, the
sensing performance of the passive radar is totally subject to
the communication component. Consequently, its performance
is very sensitive to the characteristics of the received wave-
forms, which may vary significantly over time depending on
the requirements and the characteristics of the communica-
tion signals and channel. Therefore, advanced methodologies
and signal processing techniques have to be implemented to
improve the reliability of the resulting sensor against this
time-varying scenario [60].

B. Device-Based Sensing

For device-based sensing, we will focus on the wireless-
based localization. Though different localization systems exist,
e.g., GNSS, localization systems based on WLAN or cellular

Fig. 6. Wireless-based localization systems.

networks as shown in Fig. 6, they all aim to estimate the loca-
tion of the targeting object based on a set of wireless reference
signals propagated between the reference nodes and the tar-
geting object. The targeting objects with unknown locations
are often referred to as agent nodes, and the reference nodes
with known locations are often called anchor nodes. In most
cases, the agent receives reference signals from the anchors
to localizes itself. However, there are also cases in which the
anchors receive reference signals from the agents to localize
the agents. In this case, if the agent wants to obtain its own
position, the anchors will send the estimated position to the
agent via a communication link.

In this paper, unless otherwise specified, we will mostly
focus on the case when the target want to localize itself
based on the signals received from multiple anchors. The
localization problems in wireless networks can be classified
into two classes, namely, cooperative localization and non-
cooperative localization. With cooperation among neighboring
agent nodes, higher localization accuracy can be achieved,
which reveals different fundamental limits compared to the
non-cooperative localization, as will be elaborated below.

1) Non-Cooperative Localization: Consider a non-
cooperative localization network with Na agents and Nb
anchors, where each agent localizes itself based on signals
transmitted from neighboring anchors only. Fig. 7(b) illus-
trates a special case when Na = 2, Nb = 5. Agent A receives
reference signals from Anchor 1, 2 and 3, while Agent B
receives reference signals from Anchor 4 and 5. The position
of the agent can be inferred from different metrics of the
received signal, including time of arrival (TOA), angle of
arrival (AOA), angle of departure (AOD), time difference
of arrival (TDOA) and received signal strength (RSS), as
detailed below.

TOA or TDOA-based localization method extracts time-
based metric from received signals for localization. Generally
speaking, TOA-based method estimates the distance by multi-
plying the signal propagation delay with the light speed. Then,
based on trilateration relationship, the agent position can be
estimated. TOA-based method requires time synchronization
between the agent and all the anchors, which is quite difficult
to achieve in practical systems. To overcome this challenge,
the TDOA-based method, which only measures the differences
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Fig. 7. An overview of classifications of device-based sensing.

in the TOAs from several anchors, is proposed to get rid of
the requirement on the time synchronization between the agent
and the anchors. In this case, the relative distance is estimated
in contrast to the TOA-based absolute distances estimation.

AOA-based localization is another commonly used approach
that uses the angles (AOA/AOD) between anchors and the
agent node to achieve localization. The angle-based metric
can be extracted by an array of antennas. Based on the AOA
measurements, the agent can be localized by two anchors in
a 2D plane theoretically.

The RSS measurements can also be used for localization.
RSS-based localization method neither requires time syn-
chronization among different nodes nor relies on the LOS
signal propagation. However, this method has a fatal draw-
back, namely the poor localization accuracy. This is because
the RSS measurements highly rely on the characteristic of
the propagation environment. When the environment is harsh,
e.g., in destructive shadowing, the localization performance
will degrade severely.

It is also possible to combine the above metrics to fur-
ther enhance the localization performance by using a hybrid
method, e.g., based on both TOA and AOA. Nonetheless,
in real-life scenario, high-accuracy localization may not be
guaranteed by non-cooperative localization owning to lim-
ited anchor deployment, especially in harsh environments. For
example, some agents may not receive strong signals from a
sufficient number of anchors. In this case, it is important to
consider cooperative localization which also utilizes signals
from other agents, as elaborated below.

2) Cooperative Localization: In cooperative localization
networks, each agent localizes itself based on measurements
from both anchors and other agents. Specifically, as shown
in Fig. 7(a), the agents (A and B) receive signals from the
anchors (1, 2, 3, 4 and 5). Agent A is not in the ranging
range of Anchor 4 and 5, while Agent B is not in the rang-
ing range of Anchor 1, 2 and 3. Conventionally, each agent
needs at least three anchors to accurately localize itself based
on range measurements in a 2-D plane. Therefore, Agent B
cannot be well localized if it only receives localization signals

from two neighboring anchors. However, if we allow cooper-
ation between Agent A and B, it is possible for Agent B to
localize itself by also using the cooperative localization signals
from Agent A. Furthermore, the spatial cooperation mentioned
above can be extended to spatial-temporal cooperation, where
each agent can incorporate localization information both from
other agents (spatial cooperation) and its own localization
result in the previous time slot (temporal cooperation).

Based on cooperative localization, wider coverage and
higher accuracy can be achieved with the same number of
anchors as the non-cooperative case. The drawback is that in
cooperative localization, agents require for a stronger signal
processing ability and their location may be exposed to other
agents.

3) Other Device-Based Sensing Scenarios: Apart from
wireless localization scenarios mentioned above, many other
device-based sensing scenarios have been considered, e.g.,
fingerprinting-based localization, proximity-based localization
and visible light-based positioning (VLP) [61], [62], [63], [64],
[65], [66], [67]. In fingerprinting-based localization, unique
geotagged signatures, i.e., fingerprints, are extracted from the
data collected by the sensors firstly. Then the agent can be
localized by matching the online signal measurements against
the pre-recorded fingerprints. For fingerprint-based localiza-
tion, the fingerprints extracted from the signal measurements
usually correspond to the RSS, because RSS based metric
does not rely on the LOS assumption and performs better
in harsh environment. Compared with geometric-based local-
ization, fingerprinting-based localization is more robust in
cluttered environments. However, its offline training is time-
consuming and complex. In proximity-based localization, the
position of the anchor which has the strongest RSS is treated as
the position of the agent node. Obviously, high location accu-
racy cannot be guaranteed by this method. VLP is a promising
localization method based on transmitting visible light sig-
nals, and it has attracted increasing attention from industry and
academia recently [68], [69], [70]. However, VLP has severe
performance degradation in NLOS case and heavily relies on
special equipment.
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Fig. 8. An overview of classifications of Device-free ISAC topologies.

C. Device-Free ISAC

Device-free ISAC means that in the integrated system,
the sensing functionality is achieved by device-free sensing.
Device-free ISAC can be categorized according to different
ISAC channel topologies. In the following, we discuss several
typical device-free ISAC channel topologies, some of which
(or simplified versions) have been introduced in [1]. In all
these topologies, there are one base station (BS), K targets
and U users.

1) Multiple Access Channel With Mono-Static Sensing:
The multiple access channel (MAC) with mono-static sens-
ing refers to a device-free ISAC setup whose communication
channel topology is MAC and radar structure is mono-static
(i.e., colocated radar transmitter and receiver). In general, both
the BS and mobile users can act as the mono-static radar. Two
important special cases include the MAC with mono-static BS
sensing in which only the BS acts as a mono-static radar, and
the MAC with mono-static mobile sensing in which only the
mobile users act as mono-static radars.

In particular, a MAC with mono-static BS sensing is illus-
trated in Fig. 8(a), where the BS acts as both radar transceiver
and communication receiver, while the mobile user is a com-
munication transmitter. The BS aims to estimate the relevant
parameters of targets and decode the uplink messages from the
users. The challenge is that the uplink signals might collide

with the radar probing echoes at the BS, leading to a joint
estimation and decoding problem.

2) Multiple Access Channel With Bi-Static Sensing: The
MAC with bi-static sensing refers to a device-free ISAC
setup whose communication channel topology is MAC and
radar structure is bi-static (i.e., separate radar transmitter and
receiver). In general, both the BS and mobile users can act as
the bi-static radar sensor (radar receiver). Two important spe-
cial cases include the MAC with bi-static BS sensing in which
only the BS acts as the radar sensor, and the MAC with bi-
static mobile sensing in which only the mobile users act as
bi-static radar sensors.

In particular, a MAC with bi-static mobile sensing is illus-
trated in Fig. 8(b), where the BS acts as both radar transmitter
and communication receiver, while the user acts as both radar
receiver and communication transmitter. The users aim to esti-
mate the relevant parameters of the targets while the BS aims
to decode the uplink messages from the users. In this case,
the processing of uplink and radar signals are decoupled if
we do not consider the self-interference at the BS and user
sides. A probable circumstance is that the targets are part of
the scatters for the communication channels. In this case, the
challenge at user side is how to acquire partial Channel State
Information (CSI) from the radar signals and how to exploit
this side information for better uplink communication.
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3) Broadcast Channel With Mono-Static Sensing: The
broadcast channel (BC) with mono-static sensing refers to a
device-free ISAC setup whose communication channel topol-
ogy is BC and radar structure is mono-static. In general, both
the BS and mobile users can act as the mono-static radar. Two
important special cases include the BC with mono-static BS
sensing in which only the BS acts as a mono-static radar, and
the BC with mono-static mobile sensing in which only the
mobile users act as mono-static radars.

In particular, a BC with mono-static BS sensing is illus-
trated in Fig. 8(c), where the BS acts as both radar transceiver
and communication transmitter, while each user is a downlink
communication receiver. In general, a joint transmit waveform
can be used for both radar sensing and downlink communi-
cations. The BS aims to estimate the relevant parameters of
targets while the users aim to decode the downlink messages.
In this case, the processing of downlink signals and the radar
probing echoes are decoupled since the BS knows the trans-
mit data. The challenge is the joint design of the transmit
waveform for both the downlink signals and the probing radar
signals at the BS.

4) Broadcast Channel With Bi-Static Sensing: The BC with
bi-static sensing refers to a device-free ISAC setup whose
communication channel topology is BC and radar structure is
bi-static. In general, both the BS and mobile users can act as
the bi-static radar sensor (radar receiver). Two important spe-
cial cases include the BC with bi-static BS sensing in which
only the BS acts as a bi-static radar sensor, and the BC with
bi-static mobile sensing in which only the mobile users act as
bi-static radar sensors.

In particular, a BC with bi-static mobile sensing is illustrated
in Fig. 8(d), the BS acts as both radar and communication
transmitter, while the user acts as both radar and communica-
tion receiver. The users aim to estimate the relevant parameters
of targets and decode the downlink messages. In this case, the
processing of downlink signals and the radar probing echoes
are coupled. The user needs to jointly estimate the target
parameters and decode the downlink message. The challenges
are how to design the joint transmit waveform at the BS and
how to handle the superposition of the downlink signals and
the probing radar signals at the users.

Note that in the above descriptions, we have focused on
cellular network where we call the communication transmit-
ter in the BC or communication receiver in the MAC as the
BS. However, the above device-free ISAC channel topologies
can also be used to model more general ISAC scenarios. For
example, in a general ISAC scenario, we may rename the
“MAC with mono-static BS sensing” as “MAC with mono-
static Com-Rx sensing” since in this case, the communication
receiver serves as the mono-static radar sensor. Similarly, in a
general ISAC scenario, we may rename the “BC with mono-
static BS sensing” as “BC with mono-static Com-Tx sensing”
since in this case, the communication transmitter serves as a
mono-static radar sensor.

D. Device-Based ISAC

Device-based ISAC means that in the integrated system,
the sensing functionality is achieved by device-based sensing.

Device-based ISAC can also be categorized according to dif-
ferent ISAC channel topologies. In the following, we discuss
several typical device-based ISAC channel topologies.

1) Multiple Access Channel With Non-Cooperative
Localization: In the multiple access channel with non-
cooperative localization illustrated in Fig. 9(a), the users
are going to be localized or communicate with the BS. The
BS receives joint communication and localization signals
from the users and perform simultaneous localization and
decoding.

2) Broadcast Channel With Non-Cooperative Localization:
In the broadcast channel with non-cooperative localization
illustrated in Fig. 9(b), the BS transmits a shared waveform
to the users for both localization and communications. Each
user needs to eliminate interference from others and extract
localization information from the common signals indepen-
dently. So the role of joint waveform design at the BS is
highlighted, which has a huge impact on the performance of
both localization and communication.

3) Relay Channel With Cooperative Localization: In the
relay channel with cooperative localization illustrated in
Fig. 9(c), relays such as unmanned aerial vehicles (UAVs) are
used to aid both communication and localization. For exam-
ple, the UAV relay can be located by the ground BSs and then
be used as a new anchor node to assist the terrestrial local-
ization. In the meanwhile, the UAV-aided relaying can also
provide communication services.

4) D2D Channel With Cooperative Localization: In the
D2D channel with cooperative localization illustrated in Fig.
9(d), each user receives signals both from the BS and
other neighboring users for communication and localization.
Therefore, from communication perspective, there is a D2D
communication link providing a direct connection between
users. From the localization perspective, there is a cooperative
localization link in addition to the anchor-agent link.

In the above classification of ISAC, we take into account
different dimensions such as “behavior of target” and “system
architecture”, as well as the historic development of sensing
and ISAC systems. For example, sensing is classified into
device-free and device-based sensing according to the behav-
ior of target. Then the device-free sensing is classified into
phased-array radar, MIMO radar, and phased-MIMO radar
according to different system architectures. Finally, phased-
array radar is further classified into mono-static phased-array
radar and bi-static phased-array radar according to whether
the transmit and receive arrays are placed in the same site or
different sites. Therefore, each class in the classification tree
in Fig. 3 is further divided into sub-classes according to some
suitable dimension/property that is not only reasonable but also
fits the historic development of this class. Finally, in Table III,
we illustrate and summarize the most salient concepts that
appear in the above and following sections.

IV. PERFORMANCE METRICS

In this section, we present the key performance metrics that
are useful to characterize the fundamental limits of sensing,
communication and ISAC systems. In particular, for sens-
ing functionality, estimation-theoretic metrics are considered,
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Fig. 9. An overview of classifications of Device-based ISAC topologies.

TABLE III
IMPORTANT CONCEPTS FOR ISAC

while for communication functionality, information-theoretic
framework and metrics are considered. Estimation-theoretic
and information-theoretic metrics are then jointly considered
for ISAC systems.

A. Estimation-Theoretic Metrics for Sensing

1) Mean-Squared-Error and Relevant Lower Bounds: Let θ

be the true parameter vector and θ̂ be the estimated vector, both
of which are of dimension K × 1. To assess the performance
of an estimator, a commonly used metric is the mean-squared-
error (MSE) ε2 = E‖θ − θ̂‖2. Note that this MSE can also be
viewed as the trace of the following error covariance matrix
(a.k.a. MSE matrix in [71]) defined as

MSEθ = E

[(
θ − θ̂

)(
θ − θ̂

)H ]
, (1)

whose diagonal elements quantify the individual MSE for
parameters θk (k = 1, . . . ,K ). One seeks for the optimal esti-
mator that minimizes the MSE ε2 in general. However, such
an optimal estimator is often difficult to construct and the
minimum MSE (MMSE) is normally hard to characterize.

To gain more insights, a few lower bounds on MSEθ have
been proposed in the literature [71], [72], and [73]. The most
famous one is the Cramer-Rao Bound (CRB). This CRB
applies to an unbiased estimator and can be computed as

CRBθ = I−1(θ), (2)

where I (θ) is the Fisher’s information matrix (FIM) with
(i , j )-th element [I (θ)]ij = E[

∂ ln p(y ;θ)
∂θi

∂ ln p(y ;θ)
∂θj

] and
p(y ; θ) is the likelihood function associated with estimat-
ing the unknown deterministic parameter vector θ from the
measurements y . It is known that if an unbiased estimate

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 23,2022 at 08:29:10 UTC from IEEE Xplore.  Restrictions apply. 



1006 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 2, SECOND QUARTER 2022

θ̂ achieves the CRB, then it is the solution to the equation
∂ ln p(y ;θ)

∂θ
|
θ=θ̂

= 0. Therefore, the sensitivity of the log-
likelihood function ln p(y ; θ) to changes in θ determines the
minimum achievable MSE. The steeper the curvature of the
log-likelihood function is, the smaller the CRB is. While the
CRB accounts for local errors and is tight at high SNR, it per-
forms poorly in low SNR regime. This can be attributed to the
lack of the global information of the log-likelihood function
in the CRB, since it is only determined by the local curvature
of the log-likelihood function around the true parameter θ .

The CRB can also be extended to the case when the
parameters are random variables with a known prior distri-
bution [74], [75]. The CRB with the knowledge of prior
distribution is called the posterior CRB since it serves as
an MSE lower bound for the posterior mean estimator (or
equivalently, MMSE estimator). The posterior CRB is given by

CRB
post
θ =

(
IL + Iprior

)−1
, (3)

where IL = Eθ [I (θ)] is the FIM relevant to measurement
and Iprior is the FIM relevant to prior distribution p(θ) with

(i, j)-th element [Iprior ]ij = Eθ [
∂ ln p(θ)
∂θi

∂ ln p(θ)
∂θj

]. Note that
in this case, the FIM contains two components correspond-
ing to the contributions from the measurements (log-likelihood
function) and the knowledge of prior distribution, respectively.
Since the FIM I (θ) for a given parameter vector θ still cannot
capture the global information of the log-likelihood function,
the posterior CRB is usually loose in low SNR regime as well.

To improve the tightness, Bayesian lower bounds have been
later proposed by treating the parameters as random variables
each with known a prior distribution. Two representatives in
this category are the Weiss-Weinstein and Ziv-Zakai bounds.

In particular, the Weiss-Weinstein bound (WWB) further
extended the CRB by eliminating some regularity conditions
on the likelihood function and introducing free parameters s ∈
[0, 1]k×1 and H = [h1 h2 . . . hk ] ∈ R

K×k [73], where
k is the number of testing points. Specifically, consider the
following equation

E

{
k∑

i=1

ai

[
Lsi (y ; θ + h i , θ)− L1−si (y ; θ − h i , θ)

]

× [f (θ)− g(y)]

}

=
k∑

i=1

aiE
{
[f (θ − h i )− f (θ)]L1−si (y ; θ − h i , θ)

}
, (4)

where g(y) and f (θ) are arbitrary scalar functions of y and
θ , ai ’s are arbitrary scalars, and L(y ; θ , θ

′
) =

p(y ;θ)

p(y ;θ
′
)
.

Note that k is also a free parameter and as k increases, an
increasingly tighter lower bound is generated. Squaring equa-
tion (4) and applying the Schwartz inequality to the left hand

side gives

E

{
[f (θ)− g(y)]2

}
≥
(
aTw

)2
aTVa

, (5)

where a = [a1, a2, . . . , ak ]
T , w is a vector with i-th element

wi = E{[f (θ − h i ) − f (θ)]L1−si (y ; θ − h i , θ)} and V is a
matrix with the (i, j)-th element

Vij = E

{[
Lsi (y ; θ + h i , θ)− L1−si (y ; θ − h i , θ)

]

×
[
Lsj (y ; θ + h i , θ)− L1−sj (y ; θ − h i , θ)

]}
. (6)

Applying the Schwartz inequality again such that the right
hand side of equation (5) is maximized for the choice a =
V−1w . Substitution of f (θ) = uT θ and g(y) = uT θ̂ , the
WWB bound for the MSE matrix is given by

uTMSEθu ≥ uTHQ−1(s)HTu , (7)

where the (i, j)-th element of Q is given by

Qij =
Vij

E{L1−si (y ; θ − h i , θ)}E
{
L1−sj (y ; θ − h i , θ)

} .
(8)

The Ziv-Zakai bound (ZZB) [71] was developed by lower
bounding a quadratic form of the MSE matrix. The derived
lower bound starts from the following identity

uTMSEθu =
1

2

∫ ∞

0
Pr

(∣∣∣uT
(
θ − θ̂

)∣∣∣ ≥ h

2

)
hdh, (9)

where u is an arbitrarily vector and Pr(|uT (θ − θ̂)| ≥ h
2 )

can be lower bounded by

Pr

(∣∣∣uT
(
θ − θ̂

)∣∣∣ ≥ h

2

)

≥
∫
Θ
[pθ (ϕ) + pθ (ϕ + δ)]Pmin(ϕ, δ)dϕ, (10)

where δ can be any vector satisfying uT δ = h , and

Pmin(ϕ, δ)

=

∫
py (y)min

[
pθ |y (ϕ | y), pθ |y (ϕ + δ | y)

]
dy

pθ (ϕ) + pθ (ϕ + δ)
.

The lower bound in (10) is obtained by relating the MSE in
the estimation problem to the probability of error in a binary
detection problem, see [71] for the details. Selecting δ that
maximizes (10) leads to a tighter bound

Pr

(∣∣∣uT
(
θ − θ̂

)∣∣∣ ≥ h

2

)

≥ max
δ

∫
Θ
[pθ (ϕ) + pθ (ϕ + δ)]Pmin(ϕ, δ)dϕ. (11)

Applying the valley-filling function leads to the ZZB bound
as in (12) on the bottom of the page, where the valley-filling
function is defined as V{p(h)} � max

ξ≥0
p(h + ξ).

uTMSEθu ≥ 1

2

∫ ∞

0
V
{
max

δ

∫
Θ
[pθ (ϕ) + pθ (ϕ + δ)]Pmin (ϕ, δ)dϕ

}
hdh (12)
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TABLE IV
MSE’S LOWER BOUNDS

Both WWB and ZZB improve upon CRB over a wide range
of SNRs, however, they are harder to evaluate in general.

2) Equivalent Fisher’s Information Matrix (EFIM): In
many cases, the unknown parameters can be divided into two
subvectors as θ = [ θT1 θT2 ]T ∈ R

K×1, where the first sub-
vector θ1 ∈ R

m×1 is the parameter of interest and the second
subvector is the nuisance parameter. In this case, the FIM I (θ)
can be partitioned into submatrices as

I (θ) =

[
I (θ1, θ1) I (θ1, θ2)

I (θ1, θ2)
T I (θ2, θ2)

]
, (13)

where I (θ1, θ1) ∈ R
m×m , I (θ1, θ2) ∈ R

m×(K−m) and
I (θ2, θ2) ∈ R

(K−m)×(K−m). We only care about the CRB
of the first subvector θ1. One possible solution is to first cal-
culate the inverse of the FIM of the entire parameter vector
as I−1(θ) and then obtain the CRB of the first subvector by
extracting the submatrix [I−1(θ)]m×m at the left-top corner
of I−1(θ). A more efficient method is to directly calculate
the FIM of the first subvector by introducing the concept of
EFIM. Specifically, the EFIM for θ1 is defined as

Ie(θ1) = I (θ1, θ1)− I (θ1, θ2)I (θ2, θ2)
−1I (θ1, θ2)

T . (14)

Note that the EFIM Ie(θ1) retains all the necessary
information to derive the information inequality for the param-
eter θ1, since [I−1(θ)]m×m = I−1

e (θ1) and the MSE matrix
of θ1 is bounded below by I−1

e (θ1).
3) Other Performance Metrics: Other forms of

performance criterion have also been considered in the
literature. For instance, in radar sensing, the theory of radar
resolution has been developed to facilitate understanding
of the fundamental resolution limitations of radar systems.
A well known theoretical estimate of radar resolution is
ΔR = c

2B , where c is the speed of light and B is the
bandwidth [76].

In addition, a normalized cross-ambiguity function was
introduced in [77], and a multi-dimensional ambiguity function
has been proposed in [78] to characterize the tradeoff between
system parameters and resolution in range, angle (azimuth and
elevation) and Doppler. In particular, the concept of an ambi-
guity function has been obtained by introducing a physically
meaningful and mathematically tractable definition of a dif-
ference function between the two sets of signals produced
at the elements of a receiving aperture by two targets differ-
ing in range, angle (azimuth and elevation) or Doppler. Under
the narrow band assumption, this multi-dimensional ambigu-
ity function is factorized as the product of the range-Doppler
ambiguity function and the azimuth-elevation ambiguity func-
tion, where the overall resolution constant depends upon up
the effective area of the aperture [78].

There are also performance metrics for target detection. In
general, the task of detection is to decide whether a target
exists through a sequence of measurements. Two important
performance metrics for target detection are detection prob-
ability and false alarm probability. The former corresponds
to the probability of detecting a target when a target actu-
ally exists, while the latter corresponds to the probability of
detecting a target when a target does not exist [79].

In addition, considering each independent resolution cell
(e.g., range-angle-Doppler) as a binary information stor-
age unit, i.e., “0” = target absent, “1” = target present,
Guerci et al. introduced the notion of radar capacity [80] by
the Hartley capacity measure

CR = log2N , (15)

where N is the total number of independent radar resolution
cells given by

N ∝ Rmax

ΔR

2π

Δθ

PRF

Δfd
, (16)

where Rmax is the maximum range, ΔR is the range resolu-
tion, Δθ is the bearing resolution, PRF is the pulse repetition
frequency and Δfd is the Doppler resolution.

4) Summary: The MSE and its lower bounds have been
proposed to investigate fundamental limits of the parameter
estimation problem. The most commonly used bounds include
CRB, WWB and ZZB. The CRB is generally easier to com-
pute, but it does not adequately characterize the performance
in particular in the low SNR regime. WWB and ZZB are
Bayesian bounds and improves upon CRB but at the expense
of heavier computational complexity. Complementary to these
MSE bounds, in the context of radar sensing, the theory of
radar resolution has also been developed to quantify the limit
at which radar is able to separate two targets in the range,
angular or Doppler domain. The comparison of MSE’s lower
bounds are summarized in Table IV. In WWB, if we let
H = hI , k = K and h → 0, we will arrive at the expression
of CRB [73].

B. Information-Theoretic Metrics for Communication

The task of communication is to transmit message from
source to destination as reliably as possible. Channel capac-
ity, originally conceived by Shannon, is one of the most
important notions for assessing the fundamental limits of
a communication system. Shannon capacity measures the
maximum communication rate in bits per transmission such
that the probability of error can be made arbitrarily small
when the coding block length is sufficiently large. In what
follows, we first briefly review the channel capacity of a
time-invariant channel and then moves on to discuss two
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Fig. 10. An overview of performance metrics for fading channels.

important capacity definitions tailored to the time-varying
channel.

1) Channel Capacity of a Time-Invariant Channel: For a
single-user time-invariant channel, the Shannon capacity is
defined as the maximum mutual information I(X; Y) between
the channel input X and output Y, i.e., C = maxp(x) I (X ;Y )
bits per channel use (bcu). When specialized to a Gaussian
channel with additive white Gaussian noise and an average
transmit power constraint P on input X, the capacity C cor-
responds to the well-known Shannon’s formula: Cawgn =
log2(1+

P
σ2 ) bcu, where σ2 is the noise variance. The capacity

notion has also been applied to various multi-user time-
invariant channels, such as multiple-access channels (MAC),
broadcast channels, interference channels and relay chan-
nels [81], [82]. In particular, the capacity region of discrete
memoryless and Gaussian MAC is fully characterized, while
for other channel topologies, achievable rate regions have been
proposed and the capacity region is known for a limited class
of channels.

2) Ergodic and Outage Capacity of a Time-Varying
Channel: Considering wireless fading time-varying channels,
we can distinguish fast fading and slow fading and further
classify each case into subcases each with or without Channel
State Information at Transmitter (CSIT) and/or Channel State
Information at Receiver (CSIR), see Fig. 10. Two capacity
definitions are reviewed:

• Ergodic capacity: In the case of fast fading, the coding
block length spans a large number of channel coherence
time intervals. The channel is thus ergodic (i.e., each
codeword seeing all possible fading realizations) and has
a well-defined Shannon ergodic capacity. For a single-
user channel with perfect CSIR and CSIT, the ergodic
capacity is given by

CCSIR/CSIT = max
p(X |H ):E[|X |2]≤P

EH [I (X ;Y | H = h)],

(17)

which is attained by adapting the transmission power
and rate to the channel state, i.e., the input distribution
p(X | H ) depends on the channel state H. On the other
hand, if with perfect CSIR but without CSIT, no adaptive
transmission strategy is allowed and the ergodic capacity

reduces to

CCSIR = max
p(X ):E[|X |2]≤P

EH [I (X ;Y | H = h)]. (18)

In this case, the input distribution p(X) does not depend
on the channel state H anymore.

• Outage capacity: In the case of slow fading, the coding
block length is on the order of the channel coherence
time interval. The channel is thus no longer ergodic
and Shannon capacity is not well defined in this case.
However, if the system can tolerate a loss of a fraction
pout of the messages on average, reliable communication
can be achieved at any rate lower than an outage capac-
ity. For a single-user channel with perfect CSIR without
CSIT, the outage capacity is given by

Cout = max
p(X ):E[|X |2]≤P

R

s.t. p(I (X ;Y | H = h) < R) ≤ pout . (19)

The definitions above can also be generalized to the multiuser
scenario, leading to ergodic capacity region and outage capac-
ity region, see, e.g., [81], [82]. More information-theoretic
modeling and fundamental limits on the state-dependent chan-
nels can also be found in [83].

3) Summary: Shannon capacity serves as an ultimate limit
that a communication system can achieve. In addition to its
theoretical importance, the establishment of the capacity can
also guide the design of capacity-achieving structured codes
(such as LDPC and polar codes) and drive innovative trans-
mission strategy, such as adaptive power and rate transmission
in the ergodic fading case. However, Shannon capacity is
not always well defined in particular when the channel is
time-varying and the transmitter or receiver may or may not
access to all realizations or the full statistics of the channel
state. Alternative approaches, such as outage capacity here,
or adaptive capacity and broadcast capacity [81], [82] can
be useful in characterizing the performance bounds of such
a communication system.

C. Performance Metrics for ISAC

In the above two subsections, we have presented some
performance metrics for sensing and communication function-
alities, respectively. ISAC systems aim to integrate both func-
tionalities in a synergetic manner and therefore fundamental
communication-sensing performance tradeoff should be fully
understood. Towards this end, a unified capacity-distortion
performance metric is considered, where the capacity measures
the communication performance as presented in Section IV-B,
while the distortion notion slightly generalizes the MSE as
in Section IV-A to account for estimation of parameters of
finite alphabet and to accommodate arbitrary estimation cost
function. In the following, we review three approaches for rep-
resenting the capacity-distortion tradeoff in the literature. We
would like to point out that the existing performance metrics
for ISAC are still primeval and thus deserve further study.
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1) Estimation-Information-Rate Induced Approach: The
estimation information rate was introduced by [84] and repre-
sents an approximate mutual information between the obser-
vation Y and the true parameter θ. Specifically, consider θ is
Gaussian distributed with variance P and it is estimated as θ̂
with MSE distortion D. It is standard to establish the following
inequality chain

I (θ;Y ) ≥ I
(
θ; θ̂

)
≥ 1

2
log

(
P

D

)
, (20)

where the first inequality uses the Markov chain θ − Y − θ̂
and follows by the data processing inequality, while the second
inequality holds because

I
(
θ; θ̂

)
= h(θ)− h

(
θ | θ̂

)

≥ h(θ)− h
(
θ − θ̂

)

≥ h(θ)− 1

2
log

(
2πeE

[(
θ − θ̂

)2])
. (21)

This lower bound therefore converts the MSE distortion to an
estimation information rate for sensing. Hence one can exam-
ine the tradeoff between the communication information rate
and the estimation information rate both in the same unit for
ISAC systems.

2) Equivalent-MSE Induced Approach: Instead of deriv-
ing equivalent estimation information rate for sensing,
[85] proposed to derive the equivalent of communication
information rate to the MSE metric. In particular, consider a
Gaussian channel Y =

√
snrX +Z , where X ,Z ∼ CN(0, 1).

Then the MMSE of estimating input X from output Y is given
by: D(snr) = 1/(1 + snr). Therefore one can convert a given
communication capacity C(snr) = log(1 + snr) to a MSE met-
ric by DEquivalent = 2−C . In this way, one can examine the
tradeoff between the communication equivalent-MSE and the
estimation MSE both in the same unit for ISAC systems.

3) Capacity-Distortion Function Induced Approach: Rather
than converting the sensing metric into a communication-type
metric or vice versa, the third approach employs the capacity-
distortion function C(D) to represent the tradeoff between
communication capacity and sensing distortion. For instance,
when considering a point-to-point ISAC channel where the
transmitter wishes to send a message to its intended receiver
while estimating the channel state through the echo signal, the
capacity-distortion function is given by

C (D) = max
p(X )

I (X ;Y | S ), s.t. E

[
d
(
S , Ŝ

)]
≤ D , (22)

where X, Y are input and output symbol respectively, Ŝ is the
estimated sensing state and E[d(S , Ŝ )] is the average distor-
tion of an estimator. Further utility of this capacity-distortion
function can be found in Section VII and Section VIII.

4) Summary: The first two approaches above represent
very preliminary attempts at constructing a unified capacity-
distortion performance metric for ISAC systems. Each has its
own obvious limitations. The first approach assumes Gaussian
distributed sensing parameters and estimation errors and
requires to know the MSE of an estimator, while the second

approach also works only in a simple linear Gaussian chan-
nel modeling. The third approach seems to be a more natural
way to unify the analysis of the fundamental limits of ISAC
under the information-theoretic framework. However, the cur-
rent information-theoretic models considered in [19], [86] are
preliminary and cannot cover many important ISAC scenar-
ios. As such, new frameworks and more general approaches
are called upon for better characterizing the performance limits
of ISAC.

In the next few sections, we will show how to exploit the
aforementioned metrics to understand the fundamental limits
of the sensing and ISAC systems. In particular, both the CRB
analysis for device-free/device-based sensing in Section V/VI
and the capacity-distortion tradeoff analysis for ISAC in
Section VII are based on the information measure presented in
this section. For example, the CRB discussed in Section V/VI
is obtained from the fisher information matrix and the
capacity-distortion tradeoff function discussed in Section VII
is based on the mutual information and rate-distortion theory.
The capacity-distortion function and the CRB/channel capacity
are also used to bound the performance for joint-design-based
ISAC systems in Section VII and resource-sharing-based ISAC
systems in Section VIII, respectively. In addition, the CRB
analysis can be incorporated into the capacity-distortion func-
tion to simplify the capacity-distortion tradeoff analysis, as
will be explained in Section VII-A2.

V. FUNDAMENTAL LIMITS OF DEVICE-FREE SENSING

In this section, we will discuss the current research progress
on the fundamental limits of device-free sensing. In particular,
we will focus on the fundamental limits for different classes
of radar sensing as classified in Section III. For each class, we
will highlight several important works, and present the system
model, performance bounds and key insights learned from the
analysis of the fundamental limits.

A. Fundamental Limits of Phased-Array Radar

A few works have investigated the fundamental limits of
phased-array radar. In [79], the author studied the performance
limits of the mono-static phased-array radar system with a
single transmit antenna and N receive antennas. Assuming
that the target is quasi-static and the Doppler effect can be
ignored, the N-dimensional received signal for one radar pulse
is given by

Y (t) = αaR(θ)s(t − τ) + Z (t), (23)

where α is the reflection coefficient of the tar-
get, τ is the delay of the target, aR(θ) =

[ej
2π
λ
R1 sin θ, ej

2π
λ
R2 sin θ, . . . , ej

2π
λ
RN sin θ]T is the receive

steering vector with Rn denoting the locations of the n-th
antennas, s(t) is the transmit waveform with normalized
energy and Z(t) is the noise matrix, including the interfering
echoes from the clutters and the background noise. The noise
matrix has i.i.d complex Gaussian entries of zero mean and
variance σ2z . Under these assumptions, the CRBs of delay τ
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Fig. 11. Single-target sensing in the mono-static phased-array radar system.

and direction of arrival (DOA) θ are given by

CRBτ =
1

8π2SNRNβ2
, (24)

CRBθ =
6

(2π)2 d
2

λ2
cos2 θSNRN (N 2 − 1)

, (25)

where β2 =

∫∞
−∞ f 2|S(f )|2df−(

∫∞
−∞ f |S(f )|2df )2

∫∞
−∞ |S(f )|2df is the squared

effective bandwidth, S(f ) is the Fourier transformation of trans-
mitted baseband signal s(t), SNR =

|α|2
σ2
z

is the received SNR,
λ is the signal wavelength, and d is antenna spacing. Note that
if |S (f )| is symmetric with respect to zero, the right integral
representation

∫∞
−∞ f |S (f )|2df will become zero.

From (24) and (25), we conclude that the estimation
performance of both delay τ and DOA θ improves with the
increase of SNR and the number of receive antennas N. In
addition, the estimation performance of τ also improves with
the increase of the squared effective bandwidth β2, while the
estimation performance of θ improves with the increase of the
normalized antenna spacing d/λ.

The performance limits of the mono-static phased-array
radar system with multi-antenna transmit and receive arrays
was further studied in [87], in terms of CRB. The system
model is illustrated in Fig. 11. Uniform linear array (ULA)
is adopted as the transmit/receive array and the spacing d
between two adjacent antennas is assumed to be half of the
signal wavelength λ. Both transmit and receive antenna arrays
are assumed to have M antennas. Additionally, the target is
assumed to be static (i.e., there is no Doppler shift). In this
case, the target parameters are range r and DOA θ. The range
r is estimated from the time delay τ according to the relation-
ship r = τc/2, while the DOA θ is estimated directly based
on the received radar echo. Specifically, the M × 1 received
signal for one radar pulse is given by

Y (t) = αaR(θ)a
T
T (θ)ws(t − τ) + Z (t), (26)

where α is the reflection coefficient of the target, aT (θ) is
the transmit steering vector, and w = [w1, . . . ,wM ]T is the
beamforming vector. To facilitate the analysis, the beamform-
ing vector is assumed to be w = aT (θ) in [87] to obtain the
highest possible processing gain at the actual DOA θ.

Fig. 12. Single-target sensing via colocated MIMO radar.

Under the above assumptions, the CRB of r and θ is given
by [87]

CRBr =
3

2π2SNRM 3β2
, (27)

CRBθ =
1

2SNRM 3ξ2
, (28)

where β2 is the squared effective bandwidth and

ξ2 =
π2d2 cos2 θ(M 2 − 1)

3λ2
(29)

is the root mean square aperture width of the beampattern.
From (28) and (27), we can make similar conclusion as that

for the case of single transmit antenna. The main difference is
that the CRB in (28) and (27) for the case of M transmit anten-
nas has an additional factor of 1/M 2, which is contributed
by the transmit beamforming gain and that the total transmit
power increases with the number of transmit antennas M when
the transmit power of each transmit antenna is fixed.

B. Fundamental Limits of MIMO Radar

1) Colocated MIMO Radar for Single-Target Sensing: The
CRB of the sensing performance via colocated MIMO radar
has been studied in [50] for single-target sensing. The system
model is illustrated in Fig. 12. In the system model, a colocated
MIMO radar formed by M transmit antennas and N receive
antennas is used to detect a moving target. The MIMO radar
is assumed to be moving with the velocity vS and L radar
pulses are transmitted in a coherent processing interval (CPI)
for target sensing. At the radar receiver, a matched filter bank
is used to estimate the time delay first, and then the signals
after the matched filter bank are assumed to be sampled at the
perfect timing without any delay estimation error. Finally, the
discrete samples after matched filtering are used to estimate
the DOA θ and velocity v of the target. Specifically, after the
matched filter bank, the N × M received signal for the l-th
radar pulse is given by

Y (l) = αaR(θ)a
T
T (θ)ej2πfD l + Z (l), (30)

where α is the reflection coefficient of the target,
aT (θ) = [ej

2π
λ
T1 sin θ, ej

2π
λ
T2 sin θ, . . . , ej

2π
λ
TM sin θ]T

is the transmit steering vector and aR(θ) =

[ej
2π
λ
R1 sin θ, ej

2π
λ
R2 sin θ, . . . , ej

2π
λ
RN sin θ]T is the receive
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steering vector, Tm and Rn are the locations of the m-th
and n-th sensors for the transmit and receive antennas
respectively, fD = 2TP (vS sin(θ) + v)/λ is the normalized
Doppler frequency and TP is the radar pulse period, and Z(l)
is the noise matrix with i.i.d complex Gaussian entries of
zero mean and variance σ2z .

Assuming that the linear array is used, the CRBs of θ and
v are given by [50]

CRBθ =
1

2SNRπ2 cos2 θMNL(σ2R + σ2T )
, (31)

CRBv =
1

8SNRπ2MNL

(
3λ2

(L2 − 1)T 2
P

+
4v2S

σ2R + σ2T

)
, (32)

where SNR =
|α|2
σ2
z

is the received SNR, L is the number of

radar pulses in a CPI, σ2T and σ2R are the sample-variances
of the transmit and receive antenna positions, which are
defined as

σ2R =
4

Nλ2

(
κ̃R − κ2R

N

)
,

σ2T =
4

Mλ2

(
κ̃T − κ2T

M

)
,

where κ̃R =
∑N−1

n=0 R2
n , κ̃T =

∑M−1
m=0 T 2

m , κR =∑N−1
n=0 Rn and κT =

∑M−1
m=0 Tm .

Note that the sample-variances of the transmit and receive
antenna positions σ2R and σ2T are related to the root
mean square aperture width of the beampattern ξ2 in (29).
Specifically, if both the transmit and receive antenna arrays
are uniform linear arrays (ULAs) with M antennas and antenna
spacing d, we have

π2 cos2 θ
(
σ2R + σ2T

)
= O

(
π2d2 cos2 θM 2

λ2

)
,

which has the same order as ξ2. In this case, if L = 1, the
order of the CRB of θ in (31) is given by

CRBθ = O

(
1

SNRM 2ξ2

)
.

Compared to the order of the CRB of θ for the phased-
array radar in (28), i.e., O( 1

SNRM 3ξ2
), the CRB of θ for the

colocated MIMO radar decreases with M at the order of 1/M 2

instead of 1/M 3. This is not surprising since the phased-array
radar can focus its transmit energy on the direction of the
target to achieve a beamforming gain of O(M), while the colo-
cated MIMO radar cannot enjoy such beamforming gain since
it transmits independent waveforms from different antennas.
However, the advantage of MIMO radar is that its transmit
signal can cover the whole angular space and thus the initial
search time for a target can be reduced.

From (31) and (32), it can be observed that the the estima-
tion performance of the DOA θ and velocity v is positively
relative to SNR, the number of pulses L in a CPI, the product
of the transmit and receive antennas MN and the sample-
variances of the antenna positions σ2R, σ

2
T . The estimation

performance of the velocity also improves with the increase

Fig. 13. Multi-target sensing via colocated MIMO radar.

of the radar pulse period TP and the decrease of the radar
velocity vS and signal wavelength λ. However, the movement
of the radar has no impact on the estimation performance of
the DOA of the target.

In [51], the CRB of colocated MIMO radar using time
multiplexing is analysed. The obtained CRB shows that the
accuracy of the DOA estimators decreases in a MIMO radar
if the target moves with relative radial velocity, because the
motion causes an unknown phase rotation of the baseband
signal due to the Doppler effect.

2) Colocated MIMO Radar for Multi-Target Sensing:
In [52], the CRB analysis of the colocated MIMO radar is
extended to the multi-target case, as illustrated in Fig. 13.
There are K targets and the DOA of the k-th target is θk .
The transmit signal is narrowband and thus the time delay is
ignored in the system model. After the matched filter bank,
the N × M received signal for the l-th radar pulse is given by

Y (l) =

K∑
k=1

αkaR(θ
k )aT

T (θk )ej2πf
k
D l + Z (l), (33)

where αk is the reflection coefficient of the k-th target, aT (θk )
and aR(θ

k ) are the transmit and receive steering vectors
respectively, f kD is the Doppler shift associated with the k-th
target, and Z(l) is the noise matrix.

The target parameters are the DOAs θk ’s and velocities
vk ’s of the targets, where the velocity vk is estimated from
the Doppler shift f kD . In [52], the special case of two tar-
gets is studied in details. To facilitate analysis, intermediate
target parameters ϑ1, ϑ2, f 1D and f 2D are adopted, where
ϑ1 = sin(θ1) and ϑ2 = sin(θ2). CRB of these intermediate
parameters is deduced. Since the expression of the CRB is
very complicated, we do not give the exact expression. The
main conclusion is that the CRB of the DOAs and velocities
of the two targets only depends on the differences of their
DOAs and Doppler frequencies, i.e.,

CRBϑ1,ϑ2,f 1D ,f
2
D
= CRBϑ1,ϑ2,f 1D ,f

2
D
(Δϑ,ΔfD ) (34)

where Δϑ = ϑ1 − ϑ2 and ΔfD = f 1D − f 2D . The estima-
tion performance is better if the differences Δϑ,ΔfD between
the parameters of the two targets are larger. When Δϑ and
ΔfD are sufficiently large, the estimation performance for two
targets will approach that for a single target.
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Fig. 14. Single-target sensing via distributed MIMO radar.

3) Distributed MIMO Radar for Single-Target Sensing: The
CRB of the sensing performance via the distributed MIMO
radar has been studied in [53] for single-target sensing. As
illustrated in Fig. 14, the transmit and receive antennas are
placed symmetrically around the target so that the sensing
performance can be improved [53]. The lowpass equiva-
lent of the signal transmitted from the m-th transmitter is
sm(t), and the energy of the waveform sm(t) is normal-
ized to be one. Assume that the transmitted signals sm(t)’s
from different transmit antennas are approximately orthog-
onal and they maintain approximate orthogonality for time
delays and Doppler shifts of interest. Under these assump-
tions, the received signal model at receiver n due to the signal
transmitted from transmitter m is

yn,m (t) = αn,msm(t − τn,m )ej2πfn,m t + zn,m (t), (35)

where τn,m , fn,m and αn,m represent the time delay, Doppler
shift and reflection coefficients, respectively, corresponding to
the path between the m-th transmitter and the n-th receiver,
and zn,m (t) is noise.

The parameters of interest are the location and velocity
of the target, which are expressed in the form of coordi-
nates in rectangular coordinate systems as (x, y) and (vx , vy ).
These parameters are estimated from the time delays τn,m and
Doppler shifts fn,m , 1 ≤ n ≤ N , 1 ≤ m ≤ M , which can be
regarded as intermediate parameters.

Since the number of the intermediate parameters is large,
it is difficult to obtain a closed-form expression of CRB.
Nonetheless, we can analyse the order of the CRB for the
time delay and Doppler shift of the path between transmitter
m and receiver n, as given by

CRBτn,m = O

(
1

SNRn,mβ2m

)
, (36)

CRBfn,m = O

(
1

SNRn,mγ2n,m

)
, (37)

where β2m is the squared effective bandwidth of sm(t),

SNRn,m =
|αn,m |2
σ2
z

and

γ2n,m =

∫∞
−∞ t2|sm (t − τn,m )|2dt −

∣
∣
∣
∫∞
−∞ t |sm (t − τn,m )|2dt

∣
∣
∣
2

∫∞
−∞|sm (t)|2dt ,

are the received SNR and squared effective pulse length
for the (n, m)-th receive-transmit pair, respectively.
Furthermore, assume that SNRn,m = O(SNR), γ2n,m =

O(γ2), ∀n,m and β2m = O(β2), ∀m , where SNR =
1

NM

∑N
n=1

∑M
m=1 SNRn,m , γ

2 = 1
NM

∑N
n=1

∑M
m=1 γ

2
n,m

and β2 = 1
M

∑M
m=1 β

2
m are the average received SNR,

average squared effective pulse length and average squared
effective bandwidth, respectively. Then it can be shown that
the orders of the CRB for the position and velocity are
respectively given by [53]

CRB(x ,y) = O

(
1

SNRMN (β2 + γ2)

)
, (38)

CRB(vx ,vy ) = O

(
1

SNRMN γ2

)
. (39)

The key insights revealed from the CRB analysis in [53]
is that the estimation performance improves with the num-
ber of antennas M, N and SNR. Moreover, the estima-
tion performance of the position (x, y) improves with both
the squared effective bandwidth and squared effective pulse
length, while the estimation performance of the velocity
(vx , vy ) improves with the squared effective pulse length.

In [54], the CRB is also analyzed for directly estimating the
velocity of the target only. It is concluded that the estimation
performance of the velocity is also positively relative to the
SNR and the squared effective radar pulse length.

4) Distributed MIMO Radar for Multi-Target Sensing:
In [55], the CRB analysis of the distributed MIMO radar is
extended to the multi-target case. Under similar assumptions
as in [53], the received signal model at receiver n due to the
signal transmitted from transmitter m and the reflection of all
the K targets is

yn,m (t) =

K∑
k=1

αkn,msm

(
t − τkn,m

)
ej2πf

k
n,m t + zn,m (t),

(40)

where τkn,m , f kn,m and αkn,m represent the time delay, Doppler
shift and reflection coefficients, respectively, corresponding to
the path from the m-th transmitter to the k-th target and then
reflected to the n-th receiver.

The target parameters are the locations and velocities of
the targets, which are expressed in the form of coordinates in
rectangular coordinate systems as (x k , yk ) and (vkx , v

k
y ), 1 ≤

k ≤ K . These parameters are estimated from time delay τkm,n
and Doppler shifts f km,n , 1 ≤ m ≤ M , 1 ≤ n ≤ N , 1 ≤ k ≤
K , which can be regarded as intermediate parameters.

The key insights revealed from the CRB analysis in [55] is
that if the distances between the targets are large enough, the
interactions between the multiple targets can be ignored and
the performance of the multi-target sensing can approach that
of the single-target sensing.

C. Fundamental Limits of Phased-MIMO Radar

The existing works have been focusing on investigating the
performance limits of single-target sensing in the mono-static
phased-MIMO radar system. In [46], ambiguity function (AF)
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Fig. 15. Single-target sensing via phased-MIMO radar.

is adopted to analyse the performance of phased-MIMO radar.
The system model is illustrated in Fig. 15. In phased-MIMO
radar, the transmit array is divided into Q subarrays, while
each subarray contains P = M − Q + 1 adjacent antennas.
Meanwhile, the spacings between two adjacent antennas of
the transmit and receive arrays are assumed to be dT and dR ,
respectively. Additionally, the reflection coefficient is assumed
to be 1 and noise is ignored to simplify the analysis of AF.
Under these assumptions, the N × 1 received signal is given by

y(t , τ, fD , θ) = aR(θ)

Q∑
q=1

aT
q (θ)wqe

−j2πfcτq (θ) (41)

× sq (t − τ)ej2πfD te−j2π(fc+fD )τ ,

where τ is the round-trip delay for a target in the θ direc-
tion, fD is the Doppler shift, fc is the carrier frequency,
τq (θ) = qdT sin θ/c is the relative delay of the zeroth ele-
ment of the q-th subarray with respect to the zeroth element
of the zeroth subarray, aR(θ) is the receive steering vector,
aq (θ), sq (t) and wq are the transmit steering vector, transmit
waveform and transmit beamforming vector for the q-th sub-
array, respectively. Note that we have explicitly express the
received signal as a function of τ, fD , θ.

If the matched filters at the receivers are matched to the
received signal with a different set of parameters τ ′, f ′D , θ

′,
then the output of the matched filters combined together can be
expressed as in (42) on the bottom of the page. The first term
on the right-hand side of (42), i.e., aH

R (θ′)aR(θ), represents
the spatial processing in the receiver and is independent of the
transmit waveforms sq (t), 1 ≤ q ≤ Q . The second term on
the right-hand side of (42) is defined as the AF [46], which
shows the sensitivity of the output of the matched filter to the
error of the estimation of the parameters. The maximum of
the AF is achieved when τ ′ = τ , f ′D = fD and θ′ = θ. The
narrower the curve of the AF is, the better the estimator is
expected to be.

In contrast to MIMO radar systems in which the ambigu-
ity function is fixed, we can adapt the ambiguity function by
changing the size of subarrays and the number of subarrays
in the case of phased-MIMO radar [46]. Meanwhile, adopting
the linear frequency modulation (LFM) waveform can improve
the delay resolution but it is accompanied by the penalty of
delay–Doppler coupling [46].

D. Summary and Insights

In existing works, CRB and AF have been used as the
performance metrics for device-free sensing, among which
CRB is the most widely used performance metric. The tar-
get parameters to be estimated usually include the time delay
τ , the DOA θ and the Doppler frequency fD . The other target
parameters such as its location and velocity can be inferred
from these intermediate parameters. In Table VI, we sum-
marize the system model, assumptions and main results of
existing representative studies on the fundamental limits of dif-
ferent device-free sensing categories, where β2 is the squared
effective bandwidth, σ2T and σ2R are the sample-variances of
the transmit and receive antenna positions, γ2n,m is the squared
effective pulse length, Tx/Rx means transmit/receive, Txs/Rxs
means transmit/receive antennas, ↑/↓ means increase/decrease
and ⇒ means “lead to”.

It can be generally concluded that for all classes of radars,
the estimation performance of all target parameters improves
with the increase of SNR (power resource), the number of
antennas (spatial resource) and the number of pulses in a CPI
(time resource), since the increase of these system resources
increases the effective SNR and the number of observations
for parameter estimation.

Specifically, the order of the CRB for the estimation of the
time delay τ can be expressed in a unified expression as

CRBτ = O

(
1

SNRNM aLβ2

)
, (43)

where M and N are the number of transmit and receive anten-
nas respectively, L is the number of pulses in a CPI, β2 is
the squared effective bandwidth and the exponent a depends
on the type of radar. For example, a = 1 for MIMO radar
and a = 2 for phased-array radar due to the additional trans-
mit beamforming gain. Clearly, the estimation performance
of the time delay τ also improves with the squared effective
bandwidth β2.

The order of the CRB for the estimation of the DOA θ for
colocated antennas can be expressed in a unified expression as

CRBθ = O

(
1

SNRNM aL cos2(θ)
(
σ2R + σ2T

)
)
, (44)

where σ2T and σ2R are the sample-variances of the transmit and
receive antenna positions and a depends on the type of radar.

∞∫

−∞
yH (

t , τ ′, f ′D , θ
′)y(t , τ, fD , θ)dt = aH

R

(
θ′
)
aR(θ)

∞∫

−∞

Q∑

q=1

(
wH

q a∗
q (θ)sq

(
t − τ ′

)) Q∑

q=1

(
aT
q (θ)wqsq (t − τ)

)
ej2π(fD−f ′

D)tdt

(42)
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TABLE V
COMPARISON OF DIFFERENT CLASSES OF RADARS

TABLE VI
SUMMARY OF FUNDAMENTAL LIMITS OF DEVICE-FREE SENSING

For example, a = 1 for MIMO radar and a = 2 for phased-
array radar. Clearly, the estimation performance of the DOA
θ also improves with the sample-variances of the transmit and
receive antenna positions σ2T and σ2R .

It is further noted that the CRB order in (44) is obtained
for a ULA. The CRB for the DOA θ also depends on the spe-
cific antenna geometry and the DOA θ. For example, a linear
array lying along the x-axis can resolve the azimuth direc-
tion θ only. But it cannot distinguish physical path coming
from θ versus 2π − θ. When the DOA θ is 90◦, the sig-
nal path is perpendicular to the ULA and a small change
in θ will cause the largest change in the phase difference
between any two antenna elements, and therefore the esti-
mation performance is the best in this case. However, when
the DOA θ is 0◦, the signal path is horizontal to the ULA
and the derivative of the phase difference between any two
antenna elements w.r.t. to θ is zero, and therefore the estima-
tion performance is the worst in this case. On the other hand,
a planar array lying on the xy-plane is able to resolve both
azimuth direction θ and elevation direction φ, and the order
of the CRB for a planar array would be different from that
for a ULA.

The order of the CRB for the estimation of the Doppler
frequency fD can be expressed in a unified expression as

CRBfD = O

(
1

SNRNM aLγ2

)
, (45)

where γ2 is the squared effective pulse length and a depends
on the type of radar. For example, a = 1 for MIMO radar
and a = 2 for phased-array radar. Clearly, the estimation
performance of the Doppler frequency fD also improves with
the squared effective pulse length γ2.

From the above unified expressions, we can conclude that
the SNR, the number of transmit (receive) antennas M (N),
and the number of pulses in a CPI are the common influ-
ence factors on the estimation of time delay τ , the DOA θ
and the Doppler frequency fD , while the estimation of τ , θ
and fD are also determined by β (effective bandwidth), σ2R
and σ2T (antenna geometry), and γ (effective pulse length),
respectively.

To summarize, the comparison of order-wise performances
of different classes of radars and their pros and cons are listed
in Table V. There are two additional comments to the CRB
order in Table V. First, for the distributed MIMO radar, the
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order of the CRB is given for the intermediate parameters
associated with the path between one transmit and receive
antenna pair. However, the final estimation for the position
and velocity of the target is obtained from the estimates of
intermediate parameters of the paths between all transmit and
receive antenna pairs. It can be shown that the estimation
performance of the position and velocity in the distributed
MIMO radar actually has the same order as that in the colo-
cated MIMO radar [50]. Second, in Table V, we follow the
convention in the literature on the fundamental limits of radar
sensing and assume a per-antenna power constraint where the
transmit power of each antenna is fixed. In this case, the total
transmit power increases with the number of transmit antennas
M. If a total power constraint is assumed, the CRB order for
the phased-array radar and colocated MIMO radar should be
multiplied by a factor of M.

For multi-target MIMO radar, the CRB can be improved if
the distances between the targets are larger. In particular, if the
targets are sufficiently far away from each other, the param-
eters of different targets can be estimated independently and
the performance of the multiple-target sensing can approach
that of the single-target sensing.

VI. FUNDAMENTAL LIMITS OF DEVICE-BASED SENSING

In this section, we will discuss the current research progress
on the fundamental limits of device-based sensing. In par-
ticular, we will focus on the fundamental limits for dif-
ferent classes of wireless-based localization as classified in
Section III. For each class, we will highlight several impor-
tant works, and present the system model, performance bounds
and key insights learned from the analysis of the fundamental
limits.

A. Non-Cooperative Wireless Localization

1) TOA-Based Localization: The TOA-based localization
is the most widely studied wireless localization method. In
the following, we first give a brief historical review of the
key works on the fundamental limits of the TOA-based local-
ization. Then we discuss the signal model of the TOA-based
localization, the fundamental limits and the associated key
insights. In [88], Qi and Kobayashi first derived the CRB
of the TOA-based localization in the presence of non-line-of-
sight (NLOS) environment where a single path propagation
(either a single LOS or NLOS path) is assumed. The authors
concluded that NLOS signals do not contribute to the localiza-
tion performance when no prior NLOS statistics are available.
Furthermore, the CRB is inversely proportional to the square
of effective bandwidth and depends on geometric configura-
tion of agent/anchor nodes. When prior information of NLOS
signals is attained, the NLOS signals can also provide useful
information for localization and the localization accuracy can
be improved [89]. In [90], the authors further extended their
previous work from the single path propagation case to the
multi-path propagation case.

Later, further analysis was developed by Shen and Win [91]
when the prior knowledge of the agent’s position is available in

Fig. 16. An illustration of TOA-based localization.

addition to the NLOS statistics. In [91], the concepts of equiv-
alent FIM (EFIM) and squared position error bound (SPEB)
were introduced to develop a general framework for the anal-
ysis of the fundamental limits of device-based localization.
Besides, map information of the environment can be regard as
a special form of prior information to the agent, which helps to
improve the estimation accuracy by exploiting some features
of the map (e.g., its shape and area) [92].

Furthermore, dynamic scenarios with moving agents are
also investigated in [93], [94]. In [93], the performance limit is
derived in both static and dynamic scenarios. In the dynamic
scenario, the Doppler shift contributes additional direction
information with intensity determined by the speed of the
agent and the root mean squared time duration of the trans-
mitted signal. In [94], Li et al. proposed a posterior CRB
(P-CRB) for the fundamental limit analysis with dynamic
sensor networks.

To reveal more insights into fundamental limits of the
TOA-based localization, we consider a general TOA-based
localization scenario studied in [26], [91]. In this case, con-
sider a multi-path environment which commonly exists in
wireless network and the wireless network consists of Na

agent nodes and Nb anchor nodes in a 2-D plane, as illustrated
in Fig. 16. We define Na = {1, . . . ,Na},Nb = {1, . . . ,Nb}
as the set of agent nodes and anchor nodes, respectively. The
signal transmitted from anchor j ∈ Nb and received by agent
k ∈ Na can be written as

yk ,j (t) =

Lk,j∑
l=1

α
(l)
k ,j s

(
t − τ

(l)
k ,j

)
+ zk ,j (t), (46)

where Lk ,j is the number of multipath components, α(l)k ,j and

τ
(l)
k ,j are the complex gain and delay of l-th path, s(t) is a

known waveform whose Fourier transform is denoted by S(f ),
zk ,j (t) represents the observation noise modeled as additive
white Gaussian processes with variance σ2z . The relationship
between the delays and the agent position can be expressed as

τ
(l)
k ,j =

1

c

[∥∥pk − pj
∥∥+ b

(l)
k ,j

]
, (47)
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where c is the propagation speed of the signal, pk� [xk yk]
T

is the node position, and the range bias b
(l)
k ,j > 0 for NLOS

propagation while b
(l)
k ,j = 0 for LOS propagation.

Since the estimation of individual agent’s location is inde-
pendent, the analysis can be focused on one agent briefly, e.g.,
p1. Define the range information (RI) from an anchor at direc-
tion φ as λJr(φ), where λ is a non-negative number called
the range information intensity (RII), and Jr(φ) is a 2 × 2
matrix named the ranging direction matrix (RDM) with angle
φ, given by

Jr(φ) �
[
cos2 φ cosφ sinφ
cosφ sinφ sin2 φ

]
. (48)

When the prior knowledge of the agent position and range
biases b

(l)
k ,j ’s are unavailable, the EFIM for the agent 1’s

position is

Je(p1) =
∑

j∈Nb,LOS

λ1,j Jr
(
φ1,j

)
, (49)

where φ1,j = tan−1 y1−yj
x1−xj

is the angle from anchor j to agent

1, λ1,j = 8π2β2

c2
(1 − χ1,j ) SNR

(1)
1,j is the RII from anchor j,

Nb,LOS denotes the set of LOS links in Nb , χ1,j ∈ [0, 1) is
called path-overlap coefficient (POC), β is the effective band-

width given by β � (

∫+∞
−∞ f 2|S(f )|2df
∫+∞
−∞ |S(f )|2df )1/2, and SNR

(1)
1,j is the

receive SNR of the agent 1.
The CRB of the position p1 can be obtained by the

matrix inverse J−1
e (p1). Therefore, the EFIM in (49) reveals

significant insights into the fundamental limits of wireless
network localization. Specifically, the performance of local-
ization relies on the NLOS condition, multipath propagation,
network topology and signal bandwidth, as elaborated below.

• When no prior knowledge of range biases is available,
NLOS signals make no contribution to the EFIM for the
agent position. This is because the relation between delay
and the agent position is affected by the unknown range
bias as shown in (47).

• The POC χ1,j characterizes the effect of multipath prop-
agation for localization, which is determined only by the
waveform s(t) and the NLOS biases of the multi-path
components (MPCs) in the first contiguous cluster [91],
as illustrated in Fig. 17. Obviously, the multipath prop-
agation degrades the localization accuracy compared to
single-path propagation, since MPCs interfere the estima-
tion of the arrival time of the first path. Moreover, χ1,j
is independent of all the amplitudes. Specially, when the
first path is resolvable from the rest paths, χ1,j = 0 and
the RII reduces to that in the single-path propagation.

• The RII λ1,j is proportional to the SNR of the first path
in the receiver (agent 1) and the squared effective band-
width β2. Moreover, due to the connection with POC
χ1,j , larger bandwidth also improves the resolvability of
the MPCs.

• The EFIM is the canonical form of a weighted sum of
the RDM from individual anchors. Anchor j can pro-
vide only 1-D RI at the direction ϕ1,j with intensity
λ1,j for agent 1. Therefore, the localization performance

Fig. 17. An illustration of the first contiguous cluster (containing paths) in
a LOS signal. The first contiguous cluster is defined to be the set of paths
{1, 2, . . . , l} such that |τi − τi+1| < Ts for i = 1, 2, . . . , l − 1, and
|τl − τl+1| > Ts where Ts is the duration of s(t).

not only depends on the RII λ1,j ’s but also the rang-
ing direction ϕ1,j ’s from the anchors. When there are
anchors contributing RI from diverse ranging directions
ϕ1,j ’s, the localization performance tends to be better.
This phenomenon can be characterized using the nota-
tion of information eclipse introduced in [95]. Please refer
to [95] for more detailed discussions.

When prior knowledge of the range biases b(l)k ,j ’s are available,
the EFIM for the agent’s position can also be written as a
weighted sum of RDMs from individual anchors, given by

J̃e(p1) =
∑

j∈Nb,LOS

λ̃1,j Jr
(
φ1,j

)
+

∑
j∈Nb,NLOS

λ̃1,j Jr
(
φ1,j

)
,

(50)

where the first and second term on the right-hand side (RHS)
indicates the RI of the LOS and NLOS signals, respectively.
Moreover, the prior knowledge increases the RII of both LOS
and NLOS signals. The RII of NLOS signals can be strictly
positive and thus contributes to EFIM in contrast to the case
without prior knowledge.

Furthermore, when both prior knowledge of the range biases
and the agent’s position is available, the EFIM for the agent’s
position is given by

J̄e(p1) = Ep1

{
J̃e(p1)

}
+ Jp(p1), (51)

where Jp(p1) denotes the additional information from the
prior position knowledge [91].

2) AOA-Based Localization: In the AOA-based localiza-
tion, the position of the agent is inferred from the AOAs of
the LOS paths, which are extracted from the signals from
the anchors. The main method of the AOA estimation via
antenna arrays is that the differences between the incident sig-
nal’s arrival times at different antenna elements contain the
angle information. The basic AOA estimation models can be
classified into narrowband and wideband models:

1) In the narrowband model, the signal bandwidth W is
much less than the center frequency fc , and time differ-
ences among different antennas can be represented as
phase shifts. Hence, phased arrays can be applied to the
beam-steering process.
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2) In the wideband model, the signal bandwidth W is much
larger than the center frequency fc . In this case, since a
unique phase value cannot represent a time delay for
a wideband signal, time delayed lines (timed arrays)
are used for the beam-steering, which is the process to
form a beam in a specific direction by assigning specific
weights at each array antenna elements [96]. Then, some
typical scenarios will be discussed in details below.

First, consider the AOA-based localization under narrowband
assumption [97], which can be written as

y(t) = A(θ)s(t) + z(t), (52)

where t = 1, 2, . . . ,L is the snapshot index, A(θ) =
[a(θ1), a(θ2), . . . , a(θK )] ∈ C

N×K with a(θk ) denoting the
steering vector associated with AOA θk from the k-th source
(anchor), y(t) ∈ C

N×1 is the samples of the received signals,
s(t) ∈ C

K×1 is the source signals, and z(t) ∈ C
N×1 denotes

the additive noise vector with covariance matrix σ2z I . When
K < N, the CRB is given by

CRBθ =
σ2z
2L

{
Re
[{

DH
[
I −A(AHA)−1AH

]
D
}]}−1

,

(53)

where D = [
da(θ1)
dθ1

· · · da(θK )
dθK

] denotes the derivative of
the steering vectors. For getting more insights into the
CRB of AOA, assume N, L are sufficiently large and the
receiver array being a uniform linear array with a(θk ) =
[ 1 eiω(θk ) · · · ei(N−1)ω(θk ) ]T , where ω(θk ) = 2πd sin θk/λ
is a function of θk . Then, the CRB for ω(θk ), k = 1, . . . ,K
can be briefly given by

CRBω =
6

N 3L

⎡
⎢⎣
1/SNR1 0

. . .

0 1/SNRK

⎤
⎥⎦, (54)

where SNRk = 1/σ2z is the receive SNR associated with the
k-th source signal (note that both the transmit power of each
anchor and channel gain are normalized to be one in [97]).
From (54), we can observe that the CRB for the AOA θk is
on the order of

CRBθk = O

(
λ2

SNRk N
3Ld2 cos2 θk

)
. (55)

Then, wideband signal model is also studied in [26], [98].
The anchor has a single antenna with normalized transmit
power and the agent has N antennas. The AOA estimation
is based on time delay difference between inter-neighboring-
element and can be viewed as a particular version of TDOA
under far-field assumption. The channel between the anchor
and agent is assumed to have a single LOS path. In this case,
the CRB of AOA is given by

CRBθ =
3c2

2π2d2(N − 1)N (2N − 1)β2SNR cos2 θ
, (56)

where β is the effective bandwidth, and SNR is the receive
SNR. Note that in the limit when B

fc
→ 0, the CRB of AOA

becomes

CRBθ = O

(
λ2

SNRN 3d2 cos2 θ

)
,

which is consistent with the CRB for the narrowband case
in (55).

In [26], the authors unified the analysis of the narrow-
band and wideband array localization systems where the
agent equips N antennas. Specifically, the authors derived the
EFIM of AOA-based localization, which is the form of a
weighted sum of the RDM with direction information inten-
sity (DII) from individual anchors [26]. The EFIM can be
approximated as

Je(p1) ≈ N

⎛

⎝
∑

j∈Nb,LOS

λ1,j Jr
(
φ1,j

)
+ μ1,j Jr

(
φ1,j +

π

2

)
⎞

⎠,

(57)

where λ1,j and μ1,j are the RII and DII from anchor j,
respectively.

Before getting more insights in (57), we note that the
squared effective bandwidth of the transmitted RF signal s(t)
can be decomposed as β2 = β20 + f 2c , which contributes to
the RI and direction information (DI), respectively. The first
term in the summation (57) represents the TOA information
(or RI) from the received signals with the RII proportional to
the effective bandwidth of the baseband signal β20 . So only the
baseband signal contributes to such information. The second
term in the summation (57) represents the AOA information
(DI) from the received signals with the DII proportional to f 2c .
Furthermore, in wideband array localization systems, the car-
rier phases cannot be used for measuring the TOA information
due to an unknown initial phase in the phase measurements,
hence only the baseband part makes sense, i.e., μ1,j → 0, ∀j
as B

fc
→ ∞. Conversely, in narrowband array localization

systems, the phase differences between the signals received at
the array antennas can eliminate the unknown initial phase and
consequently the carrier part provides extra AOA information.

Recently, millimeter wave and massive MIMO, which are
both significant features for 5G communication networks,
are also enabling technologies for more accurate AOA-based
localization and device orientation estimation [96], [99], [100].
In [100], the authors studied the fundamental limits of local-
ization in a narrowband millimeter wave MIMO system, where
only the LOS path was considered. In contrast, the effect of
the delays of different paths was considered in [99] for local-
ization in a millimeter wave MIMO system. In [96], a 3-D
localization scenario is considered and both the transmitter and
receiver employ massive antenna array with M and N anten-
nas, respectively, as shown in Fig. 18. Based on the derivation
of CRB, the author studied the effect of array structure, band-
width and synchronization error on the localization accuracy.
Specifically, an example for a planar timed array configura-
tion was considered when both arrays lying in the XZ-plane
and being located one in front to the other with poisitions
pt = [0, 0, 0]T and pr = [x = 0, y , z = 0]T . The CRB for
the receiver position pr is given by

CRBx = CRBz =
12κ0

SM (N − 1)
,

CRBy = κ0
1

MN
, (58)
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Fig. 18. Localization in a massive MIMO system [96].

where κ0 = c2

8π2SNR(β2+f 2c )
denotes the CRB using a single

antenna, which is determined by the receive SNR, effective
bandwidth β, and carrier frequency fc , S = Arx/y

2 denotes
the ratio between the receiver array area Arx and the squared
TX-RX distance y2. From (58), we observe a huge gain
obtained from massive arrays. Compared to the CRB with
a single antenna κ0, the CRB in (58) is reduced by a factor
of MN, where M accounts for the SNR enhancement due to
the beamsteering process while N accounts for the number of
independent measurements available at the receiver.

3) RSS-Based Localization: RSS is also a popular signal
metric for localization, especially in fingerprinting-based and
proximity-based localization schemes [101], [102]. For nar-
rowband signals, attenuation of the signal strength through
a mobile radio channel is caused by three nearly independent
factors: path loss, log-normal shadowing, and multipath fading
(or fast fading). In RSS-based localization, time-averaging is
commonly used to estimate the mean received signal strength.
For wideband signals, the mean signal strength is evaluated by
summing powers of multipath in a power delay profile. The
mean signal strength is conventionally modeled in dB scale as

P = P0 − 10α log10 dn + eRSS ,n , (59)

dn =

√
(xn − x )2 + (yn − y)2,n = 1, 2, . . . ,Nb, (60)

where (xn , yn ) denotes the known position of anchor n, (x, y)
denotes the agent’s position, eRSS ,n ∼ N(0, η2n ) is a Gaussian
random variable representing the log-normal fading, and α is
the path loss exponent.

The squared position error bound (SPEB) of the RSS-based
localization is expressed as
(
ln 10

10α

)2 ∑Nb
i=1 η

−2
i d−2

i∑Nb
i=1

∑i−1
j=1 η

−2
i η−2

j d−2
i d−2

j sin2
(
φi − φj

) ,
(61)

where φi = tan−1 y−yi
x−xi

is the angle determined by the
positions of i-th anchor and the agent. As can be observed
from (61), the accuracy of RSS-based localization depends

heavily on the channel parameters, namely the path loss
exponent α and the shadowing variances η2n , wherein the
SPEB is proportional to η2n and inversely proportional to the
square of α. Furthermore, the effects of NLOS propagation
are implicitly included in the RSS signal model.

4) Hybrid Scheme: Besides the schemes using a single sig-
nal metric for localization, many hybrid schemes have been
proposed for localization. In [103], the author derived the CRB
based on hybrid RSS-TOA measurements. Reference [104]
derived the CRB based on a hybrid DOA-TOA localiza-
tion scheme. Moreover, for the purpose of eliminating the
dependence of estimation accuracy to the specific anchors’
geolocation, the anchor locations were modeled as Poisson
Point Processes (PPP) in [105] to study the average local-
ization performance over the spatial PPP distribution. The
derived average CRB bound acts on the expectation of the
MSE with respect to the random anchor locations depending
on the network statistics.

In the following, we elaborate the CRB analysis in [104] for
the hybrid DOA-TOA localization scheme. Consider a far-field
scenario with single-path LOS propagation where the agent is
equipped with an uniform linear array (ULA) of N elements
for receiving the reference signal from an anchor with a single
transmit antenna. First, the CRB of TOA and DOA estimates
are derived respectively as follows:

CRBτ =
1

8π2NSNRβ2
, (62)

CRBθ =
3λ2

4π2d2SNRcos2 θ(N − 1)N (2N − 1)
, (63)

where β2 denotes the squared effective bandwidth of the
unit-energy transmitted signal s(t), d is the antenna element
separation, θ is the DOA and λ is the wavelength of the
planewave signal. Apparently, the CRB of TOA is dominantly
determined by the effective bandwidth β, while that of DOA
is mainly affected by array configuration parameters N and d.

Then, the CRB of the location estimate is derived based on
that of the TOA and DOA estimates according to the chain
rule. The relation can be written as

CRBx = c2τ2 cos2 θCRBθ +c2 sin2 θCRBτ

CRBy = c2τ2 sin2 θCRBθ +c2 cos2 θCRBτ (64)

where CRBx and CRBy denote the CRB of the agent posi-
tion in x-axis and y-axis of the 2-D plane. The MMSE of the
location estimate is given by

MMSE = CRBx +CRBy = c2τ2 CRBθ +c2CRBτ . (65)

From the final result, we can conclude that the loca-
tion accuracy depends on the SNR, antenna element number,
antenna element separation, squared effective bandwidth, and
the relative position between the anchor and the agent. When
the relative distance cτ is large, the destructive effect of the
estimation errors of DOA for localization will be magnified.

B. Cooperative Wireless Localization

1) Spatial Cooperation: In spatial cooperation, the agents
also transmit reference signals to aid the localization of the
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neighbor agents. In this case, the localization accuracy of all
agents can be potentially enhanced. A few works have stud-
ied the fundamental limits of spatial cooperation. In [106],
the authors derived the performance bound based on the sig-
nal metrics (e.g., TOA and DOA) extracted from the received
signals. However, such performance bound may not be the
fundamental limit since signal metrics may not contain all
useful information for localization. Hence in [95], the authors
extended their prior work [91] to the spatial cooperation
scenario and derived more general fundamental limits of coop-
erative wireless localization based on received waveforms
rather than signal metrics. Furthermore, in [107], the authors
considered an anchorless cooperative localization scenario for
diminishing the effect of network topology on the performance
bound. Under this assumption, the localization performance is
mainly determined by the number of nodes in the network and
the signal metric used. Also, in [108], the authors considered
an AOA-based cooperative localization scheme.

For the scenario of spatial cooperation, the EFIM and RI
method introduced in [91] can also be applied similar to
the non-cooperative scenario for whatever the signal metric
used, e.g., TOA, TDOA, AOA, RSS or received waveform
itself. Hence, for getting more insights into the cooperative
localization, we next present the fundamental limit analysis
in [95].

In the spatial cooperation considered in [95], the signal
model is the same as (46). The only difference is that the
agents also transmit reference signals, i.e., agent k receives
localization signals from all the other nodes, including both
anchors and the other agents. Suppose there are a set of Na

agents denoted as Na and a set of Nb anchors denoted as Nb .
The EFIM for the agent positions P = [pT1 pT2 · · · pTNa

]Tin
this case is a 2Na × 2Na matrix, which can be written as

Je(P) = JAe (P) + JCe (P), (66)

where JAe (P) and JCe (P) denote the information from anchors
and agent spatial cooperation respectively. The detailed for-
mulation is given by (67) on the bottom of the page,
where

JAe (pk ) =
∑
j∈Nb

λk ,j Jr
(
φk ,j

)
,

Ck ,j = Cj ,k =
(
λk ,j + λj ,k

)
Jr
(
φk ,j

)
, j ∈ Na\{k}, (68)

where λk ,j is RII corresponding to the reference signal from
node j to agent node k, φk ,j is the angle from node j to agent
k, and Jr(φ) is the RDM defined in (48).

Note that the RI λk ,j Jr(φk ,j ) from an anchor node j has
the same form of that in the non-cooperation localization,
but the RI (λk ,j + λj ,k )Jr(φk ,j ) from an agent node j is

slightly different because the RI between two agent nodes
is obtained by measuring the TDOA instead of TOA, since
it is difficult to achieve time synchronization between two
agents. Nevertheless, the RI is still determined by the SNR and
effective bandwidth of the received waveform, and the POC.
Also, each RI corresponds to an individual received wave-
form and is a basic building block of the EFIM. From (67),
we can observe that JAe (pk ) is the sub-matrix in the block-
diagonal, which indicates that the localization information
from anchors is not interrelated among agents. Besides, JCe (P)
is a non block-diagonal matrix, implying that the localization
information from agents’ cooperation is highly interrelated.
This is expected since the effectiveness of the localization
information provided by a particular agent depends on its
position error.

2) Spatio-Temporal Cooperation: In [26], the spatial coop-
eration is further extended into spatio-temporal cooperation,
which incorporates the intra-node measurements to further
enhance the localization performance by exploiting the tempo-
ral correlation of the localization parameters. In this case, the
EFIM for the positions can be decomposed into two parts, i.e.,
the information obtained from spatial cooperation and tempo-
ral cooperation. Specifically, the EFIM of spatial cooperation
is a block-diagonal matrix of which each block has the same
structure as (67). However, the EFIM of temporal cooperation
is a non-block-diagonal matrix because the intra-node mea-
surements are relevant to the agent positions at two consecutive
instants. A more detailed description can be found in [26].

C. Summary and Insights

In existing works, CRB and EFIM have been used
as the performance metrics for device-based sensing. The
two performance metrics are closely related to each other.
Specifically, the CRB can be obtained by the inverse of the
EFIM. As such, it is in general more difficult to obtain a
closed-form expression for the CRB. In this sense, EFIM can
better reveal insights about the structure of the information that
contributes to the sensing/localization performance. All exist-
ing wireless localization schemes explicitly/implicitly utilize
three signal metrics for localization, namely, the TOA/TDOA,
the AOA and the RSS of the reference signals transmitted over
the wireless channel.

In Table VII, we summarize the system model, assump-
tions and main results of existing representative studies on
the fundamental limits of different device-based sensing cat-
egories, where β2 is squared effective bandwidth of the
localization signal, and χ1,j is the path-overlap coefficient.
In all cases, the localization performance improves with the
increase of SNR (power resource) and the number of antennas

Je(P) =

⎡
⎢⎢⎢⎢⎣

JAe (p1) +
∑

j∈Na\{1} C1,j −C1,2 · · · −C1,Na

−C1,2 JAe (p2) +
∑

j∈Na\{2} C2,j · · · −C2,Na

...
...

. . .
...

−C1,Na
−C2,Na

· · · JAe (pNa
) +

∑
j∈Na\{Na} CNa,j

⎤
⎥⎥⎥⎥⎦ (67)
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(spatial resource), since the increase of these system resources
increases the effective SNR and the number of observations
for parameter estimation.

Specifically, in TOA-based schemes, the localization accu-
racy is affected by the network topology, multipath environ-
ment, the signal effective bandwidth, the SNR at the receiver,
the NLOS condition, and the prior information about channel
parameters or the agent’s position. When there are M trans-
mit antennas at the anchor with a fixed per antenna transmit
power, N receive antennas at the agent, and only two paths
with delays τ1 and τ2 in the multipath environment, the order
of the CRB for the intermediate TOA parameter τ1 associated
with each anchor-agent link is given by

CRBτ1 = O

(
1

(1− ρ(|τ1 − τ2|))MNβ2SNR

)
, (69)

where ρ(|τ1−τ2|) denotes a function of relative delay |τ1−τ2|,
β denotes the effective bandwidth, SNR denotes the receive
SNR of the first path. Compared to the case of single-target
device-free sensing using MIMO radar, there is a slight differ-
ence since the CRB of delay for different paths is coupled as
reflected in the term ρ(|τ1−τ2|). A similar coupling term also
exists in the multi-target device-free sensing case between the
parameters of different targets.

In AOA-based schemes and under narrowband assumption,
the localization accuracy is affected by the the sample-variances
of the transmit and receive antenna positions σ2T and σ2R , the
SNR at the receiver, and the antenna element number. When
the anchor is equipped with a ULA of M transmit antennas
and the agent is equipped with a ULA of N receive antennas,
the order of the CRB for the intermediate AOA parameter θ
associated with each anchor-agent link is given by

CRBθ = O

(
1

MN cos2 θSNR
(
σ2T + σ2R

)
)
. (70)

From (70), we can observe that AOA estimation accuracy
depends on geometric relation among the agents and the
anchors. When the antenna array and the target happen to lie
on a straight line, e.g., θ = π

2 , the CRB will become infinitely
large. Note that the CRB order of the AOA parameter is the
same as that of the MIMO radar with a single radar pulse (i.e.,
L = 1). In (69) and (70), we have assumed that the anchor has

no prior information about the agent position and thus there
is no transmit beamforming gain towards the agent. With per-
fect transmit beamforming towards the agent, the CRB in (69)
and (70) can be reduced by an additional factor of M.

In RSS-based schemes, the localization accuracy is affected
by the network topology, propagation environment, e.g., path
loss exponent and shadowing effects, and the distance between
the agent and the anchor.

When multiple signal metrics are used for localization,
the estimation accuracy for the agent position will be
improved. Furthermore, cooperation among agents can signif-
icantly improve localization accuracy and reduce localization
outage probabilities, and the localization information from
agents’ cooperation is highly interrelated. Agent can treat the
information coming from anchors and other cooperating agents
in a unified way, since anchors can be seen as an agent with
infinite prior position knowledge. Moreover, no matter what
kind of cooperation is, the EFIM of the agent position can
be expressed as a weighted sum of RDMs, and the weight is
called the RII, which measures the strength of the information
from a node at a specific direction.

Finally, we would like to point out that there is a deep con-
nection between the fundamental limits of the device-free and
device-based sensing. In fact, the order-wise expressions of the
CRBs for device-free/device-based sensing can be unified and
have the same physical interpretations. For example, the CRBs
of both device-free/device-based sensing are inversely propor-
tional to the SNR (power resource), the number of anten-
nas (spatial resource) and the number of pulses/pilots (time
resource). The CRBs of the delay τ and angle θ in both device-
free/device-based sensing are inversely proportional to the
squared effective bandwidth β2 and the sample-variances of
the transmit and receive antenna positions σ2T and σ2R , respec-
tively. Moreover, with the transmit beamforming towards the
target/agent, the CRBs for both device-free/device-based sens-
ing can be reduced by an additional factor of M due to the
transmit beamforming gain.

VII. INFORMATION-THEORETIC LIMITS OF

JOINT-DESIGN-BASED ISAC

There are two basic approaches for ISAC: the resource
sharing approach and the joint design approach. In the
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Fig. 19. The system model of point-to-point channel with mono-static sensing
(generalized feedback).

resource sharing approach, the time/frequency resource is par-
titioned into the communication resource and sensing resource.
In this case, dedicated time/frequency resource is used for
device-free/device-based sensing, and the performance lim-
its in Sections V and VI for purely device-free/device-based
sensing also apply to such device-free/device-based ISAC
systems for given orthogonal communication and sensing
resource allocation. On the other hand, in the joint design
approach, the communication and sensing functions are jointly
designed to achieve a better tradeoff between communication
and sensing performance. In this case, the fundamental tradeoff
between communication and sensing performance is usually
characterized by the capacity-distortion function defined in
Section IV.

In what follows, we will thus focus on the joint design
approach and present new information-theoretic modeling and
capacity-distortion tradeoff limits for several important ISAC
building blocks. We start with a few studies on device-free
ISAC and then move on to the studies on device-based ISAC.

A. Capacity-Distortion Tradeoff for Device-Free ISAC
Memoryless Channels

In the device-free ISAC systems, the sensing node, equipped
with a mono-static/bi-static radar, wishes to transmit/receive
message to/from its intended receivers/transmitters and simul-
taneously estimate the state parameters of interest upon
observing the echo signal. By viewing this echo signal as gen-
eralized feedback, References [18], [86], [109], have proposed
information-theoretic models for several device-free ISAC
building blocks and investigated the corresponding capacity-
distortion tradeoff.

1) Device-Free ISAC Over Memoryless Point-to-Point
Channels With Mono-Static Sensing: Reference [86] first con-
sidered a point-to-point channel with mono-static sensing,
where the ISAC transmitter wishes to send message W to
the receiver while simultaneously estimating the channel state
via output feedback, as illustrated in Fig. 19. The output
feedback can be used to model the radar echo signals in prac-
tice. Assume that the channel is memoryless with i.i.d. state
sequence sn (the i-th element si ∈ S) in a coding block of
length n, and the receiver knows the state sequence. With
input/output alphabet X,Y and Z, given input Xi = x ∈ X,
the channel produces outputs (Yi ,Zi ) ∈ Y×Z according to a
given transition law PYZ |XS (., .|x , s) for each time instance i.

Fig. 20. The capacity-distortion tradeoff when P = 10 dB [86].

For this channel model, the capacity-distortion tradeoff has
been established in [86, Th. 1]:

C (D) = max
PX

I (X ;Y |S ), s.t. E[d(S , Ŝ )] ≤ D (71)

where the maximum is taken over all input distributions PX
satisfying the average distortion E[d(S , Ŝ )] ≤ D , and the joint
distribution of SXYZ Ŝ is factorized as

P
SXYZŜ

(s , x , y , z , ŝ)

= PS (s)PX (x )PYZ |XS (y , z |x , s)PŜ |XZ
(ŝ |x , z ) (72)

The estimator P
Ŝ |XZ

(ŝ |x , z ) for S is chosen such that

E[d(S , Ŝ )] is minimized for given input distribution PX . It
can be seen that the optimal input is constrained by the estima-
tion distortion required. In the case of unconstrained distortion
(i.e., D = ∞), the result above reduces to the capacity for a
memoryless channel with i.i.d. random states where the state
is available only at the receiver.

To further illustrate the capacity-distortion tradeoff, consider
the following fading channel:

Yi = SiXi + Ni , i = 1, . . . ,n, (73)

where Xi is the input satisfying average power constraint
1
n

∑
i E[|Xi |2] ≤ P and both Si and Ni are i.i.d. Gaussian

with zero mean and unit variance. The generalized feedback
is assumed to be perfect, i.e., Z = Y.

Fig. 20 plots the capacity-distortion tradeoff when
P = 10 dB. On one extreme, when D = 1, C(D = 1) reduces
to the unconstrained capacity (note that the distortion D = 1
can be achieved by setting Ŝ = 0 no matter what the input
distribution is), while on the other extreme, when D = 0.1,
positive capacity C(D = 0.1) = 0.733 bcu is still achievable.
In general the joint transmission design as proposed in [86]
outperforms a communication and sensing separation-based
approach.

2) Device-Free ISAC Over Memoryless Multiple-Access
Channels With Mono-Static Sensing: Reference [18] instead
considered a two-user multiple-access channel where the k-th
(k = 1, 2) ISAC transmitter wishes to send message Wk
to the receiver while simultaneously estimating its chan-
nel state via output feedback, as illustrated in Fig. 21.
The channel is memoryless with i.i.d. state sequence snk
(sk ,i ∈ Sk ) in a coding block, and the receiver knows

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 23,2022 at 08:29:10 UTC from IEEE Xplore.  Restrictions apply. 



1022 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 2, SECOND QUARTER 2022

Fig. 21. The system model of multiple-access channel with mono-static
sensing.

both sn1 and sn2 . With input/output alphabet Xk ,Y and Zk ,
given input Xk ,i = x ∈ Xk , the channel produces outputs
(Yi ,Z1,i ,Z2,i ) ∈ Y × Z1 × Z2 according to a given transi-
tion law PYZ1Z2|X1X2S1S2

(., ., .|x1, x2, s1, s2) for each time
instance i.

For this ISAC MAC model, outer and inner bounds on
the capacity-distortion region have been established, see
[18, Ths. 1 and 2]. The inner bound exploits the feedback-
induced cooperation between the transmitters and is achieved
by block Markov encoding and backward decoding, in which
three auxiliary random variables U ,V1,V2 are introduced.
Specifically, U is the common decoded message from the
previous coding blocks through feedback Z1,Z2, V1 is the
partial message transmitted by the current coding block of user
1 which can be decoded by user 2 through feedback Z2, and
V2 is the partial message transmitted by the current coding
block of user 2 which can be decoded by user 1 through feed-
back Z1. Consequently, the estimation of s1 at Transmitter 1
is based on x1, v2, z1 and the optimal estimator ψ∗

1(x1, v2, z1)
for S1 is given by

ψ∗
1(x1, v2, z1) = argmin

ψ1

∑
s1∈S1

PS1|X1V2Z1
(s1 | x1v2z1)

× d1(s1, ψ1(x1, v2, z1)) (74)

where d1 is the distortion function at Transmitter 1. Given
X1 = x1,V2 = v2, the estimation cost for S1 is

c1(x1, v2) = E
[
d1

(
s1, ψ

∗
1(x1, v2, z1)

) | X1 = x1,V2 = v2
]

(75)

The optimal estimator ψ∗
2(x2, v1, z2) for S2 and the corre-

sponding estimation cost c2(x2, v1) can be obtained similarly.
For given average distortion constraints E[c1(X1,V2)] ≤

D1,E[c2(X2,V1)] ≤ D2, the inner bound R(D1,D2)
achieved by the above block Markov encoding and backward
decoding scheme consists of all rate pairs (R1,R2) satisfying

R1 ≤ I (X1;Y | X2V1US ) + I (V1;Z2 | X2U )

R2 ≤ I (X2;Y | X1V2US ) + I (V2;Z1 | X1U )

R1 + R2 ≤ min{I (X1X2;Y | S ), I (X1X2;Y | SV1V2U )
+ I (V1;Z2 | X2U ) + I (V2;Z1 | X1U )} ,

(76)
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Fig. 22. Tradeoff between sum rate and distortion for ps = 0.7 [18].

where V1X1−U −V2X2 and UV1V2−X1X2−YZ1Z2 form
Markov chains.

To gain insights on the resultant rate-distortion tradeoff,
consider the following state-dependent MAC channel:

Y = S1X1 + S2X2, (77)

with binary input X1 and X2, i.i.d. states S1 and S2 Bernoulli
distributed with parameter p(Sk = 1) = ps , k = 1, 2 and
output feedback Z1 = Z2 = Y .

Fig. 22 plots the sum rate-distortion tradeoff when D1 =
D2 = D and ps = 0.7, where the x-axis denotes the dis-
tortion and the y-axis denotes the sum capacity. There exists
gap between the inner bound and the outer bound, however,
when the distortion is small, the proposed scheme achieves
near-optimal performance. In general the joint transmission
design as proposed outperforms a communication and sensing
resource sharing approach.

Note that to calculate the capacity-distortion tradeoff
function, we need to calculate the minimum distortion∑
s1∈S1

PS1|X1V2Z1
(s1 | x1v2z1)d1(s1, ψ

∗
1(x1, v2, z1)). When

the distortion function d1(·) is chosen to be the MSE, the
minimum distortion is given by the MMSE, i.e., the variance
of the posterior distribution PS1|X1V2Z1

(s1 | x1v2z1) of the
sensing parameter s1. It is in general very difficult to calcu-
late the MMSE. In this case, the CRB analysis in Sections V
and VI can be used to provide a tractable lower bound for the
MMSE of the sensing parameters in the capacity-distortion
tradeoff function.

3) Device-Free ISAC Over Memoryless Broadcast
Channels: A more recent work [109] studied a two-user
broadcast channel where the ISAC transmitter wishes
to send message Wk to the k-th (k = 1, 2) receiver
while simultaneously estimating its channel state via out-
put feedback, as illustrated in Fig. 23. The channel is
memoryless with i.i.d. state sequence snk (sk ,i ∈ Sk ) in
a coding block, and each receiver knows its own state
sequence snk . With input/output alphabet X,Yk and Zk ,
given input Xi = x ∈ X, the channel produces outputs
(Y1,i ,Y2,i ,Z1,i ,Z2,i ) ∈ Y1 × Y2 × Z1 × Z2 according to
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Fig. 23. The system model of broadcast channel with mono-static sensing.

a given transition law PY1Y2Z1Z2|XS1S2
(., ., ., .|x , s1, s2) for

each time instance i.
In [109], the capacity-distortion tradeoff region was fully

characterized for the physically degraded ISAC broadcast
channel. In addition, outer and inner bounds on the tradeoff
region was established for the general ISAC broadcast channel.
As an example of the physically degraded case, consider the
following broadcast channel with multiplicative binary states:

Yk = XSk , k = 1, 2, (78)

where the joint state probability mass function P(S1 =
0,S2 = 0) = 1 − q , P(S1 = 0,S2 = 1) = 0, P(S1 =
1,S2 = 1) = qγ and P(S1 = 1,S2 = 0) = q(1 − γ)
with q , γ ∈ [0, 1], and output feedback Z = (Y1,Y2). The
capacity-distortion tradeoff region is depicted in [109, Fig. 2]
for γ = 0.5 and q = 0.6. Again in general the joint transmis-
sion design as proposed outperforms a resource-sharing (or
separation-based) approach that splits the resource either for
sensing or communication.

B. Capacity-Distortion Tradeoff for Device-Based ISAC
Memoryless Channels

For the device-based ISAC system, the receiver aims to
simultaneously decode the message and estimate some ran-
dom parameters of interest from its received signal. By
modeling the parameter as a random state, [19] presented an
information-theoretic framework of joint communication and
state estimation.

Consider a point-to-point memoryless channel. With
input/output alphabet X and Y, given input Xi = x ∈ X,
the channel produces output Yi ∈ Y according to a given
transition law PY |XS (.|x , s) for each time instance i. Assume
that the state sequence sn to be estimated is i.i.d with
P(sn) =

∏n
i=1 pS (si ) and is unknown to the transmitter.

For the model considered, the capacity-distortion function is
established in [19, Th. 1].

C (D) = max
PX∈PD

I (X ;Y ), (79)

where PD = {PX :
∑
x∈X

PX (x )d∗(x ) ≤ D}. Here, d∗(x ) is

the estimation cost function due to signaling with x ∈ X.
In other words, d∗(x ) is the minimum distortion that can be
achieved for a given signaling x ∈ X. PD regulates the input
distribution so that the signaling is estimation-efficient. When
D = ∞, C(D) reduces to the classic unconstrained channel
capacity.

To gain insights on the resultant capacity-distortion trade-
off here, consider the following state-dependent Gaussian
channel [19]:

Yi = Xi + Si + Zi , (80)

where Si ∼ CN(0,Q), Zi ∼ CN(0,N ) and Xi is subject to an
average power constraint P. The system achieves the following
tradeoff

C (D) =

{
log
(
1 + P

Q+N

)
D > QN

Q+N

0 D ≤ QN
Q+N

(81)

It can be seen that a non-zero communication rate is achieved
only when the estimation distortion required is not very strin-
gent and above the threshold QN/(Q + N). This demonstrates
the cost of achieving finer estimation at the receiver.

The study is also extended to a two-user multiple access
channel with device-based sensing and the corresponding
capacity-distortion region is the union of all rate pairs (R1,R2)
satisfying

R1 ≤ I (X1;Y | X2,Q),

R2 ≤ I (X2;Y | X1,Q),

R1 + R2 ≤ I (X1,X2;Y | Q), (82)

over PQ (q)PX1|Q (x1|q)PX2|Q (x2|q)PY |X1,X2
(y |x1, x2) that

satisfies

D ≥
∑

(q,x1,x2)

PQ (q)PX1|Q (x1 | q)PX2|Q (x2 | q)d∗(x1, x2).

(83)

C. Summary

Information-theoretic state-dependent channels with gen-
eralized output feedback have been shown to be useful in
modeling and assessing the performance of joint-design-based
device-free ISAC systems. The capacity-distortion tradeoff has
been fully characterized for a point-to-point channel under
some simplified assumptions, while inner and outer bounds on
the capacity-distortion region have been proposed for multiple
access and broadcast ISAC channels. The benefit of joint-
design approach over separation-based (or resource-sharing)
approach is clearly evident for the illustrative examples con-
sidered. In general, the sensing echo signals not only allow the
sensing nodes to estimate the state of interest, but also allow
partial decoding of messages by the other nodes and induce
advanced block Markov coding schemes or cooperative trans-
mission for better communication. However, the results are
derived under some restrictive assumptions, such as the state
sequence is i.i.d. or/and channel state and sensing state are
the same. New modeling and bounding techniques shall be
developed for memoryless device-free ISAC channels under
more realistic assumptions.

Similar to device-free ISAC, device-based ISAC also
embraces performance tradeoff between communication and
sensing. Information-theoretic state-dependent channels with
receiver state estimation have been proposed to establish
the fundamental capacity-distortion tradeoff in device-based
ISAC. In particular, the optimal tradeoff has been fully
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TABLE VIII
SUMMARY OF INFORMATION-THEORETIC LIMITS OF JOINT-DESIGN-BASED ISAC

characterized for a point-to-point channel and a two-user MAC
channel with i.i.d. state sequence. It can be seen from the
point-to-point channel that positive capacity is still achievable
if the requirement of estimated state distortion is not very
strict. However, the exact tradeoff is model-dependent. This
framework can in theory be generalized and applied to more
complicated channel topologies, such as broadcast channels,
which are worth further studies.

Finally, in Table VIII, we summarize the system model,
assumptions and main results of existing representative studies
on the information-theoretic limits of joint-design-based ISAC.

VIII. DESIGN AND PERFORMANCE ANALYSIS OF

PRACTICAL ISAC SYSTEMS

In Section VII, we focus on information-theoretic modeling
of ISAC systems. Since resource-sharing schemes usually can-
not achieve the information-theoretic limits of ISAC channels,
the achievable schemes in Section VII are all based on the joint
design approach. However, for practical ISAC systems consid-
ered in this section, both joint design and resource-sharing
schemes have been studied in the literature. Although the
resource sharing approach is usually not the optimal for ISAC,
it is still widely used in practical ISAC systems due to its sim-
plicity and better compatibility to the current communication
systems. In this section, we discuss the design of practical
ISAC systems that are not based on the information-theoretic
modeling and performance analysis of ISAC systems tailored
to different application scenarios. Similar to the previous sec-
tion, we first focus on the device-free ISAC and then go on
to the device-based ISAC.

A. Design and Performance Analysis of Some Device-Free
ISAC Applications

1) Application of MAC With Mono-Static BS Sensing:
The first application considered is a joint radar-communication
system as shown in Fig. 24. The base station is sensing K
targets of interest while serving an uplink communication user.
Therefore, the echo signals reflected by the targets will be
superimposed on the uplink communication signal. This is a
MAC with mono-static BS sensing. For K targets, the observed

Fig. 24. An uplink communication system with mono-static BS sensing.

complex baseband signal at the BS is given by

y(t) =
√
Pcomαcusc(t) +

√
Prad

K∑
k=1

αrk sr (t − τk ) + z (t),

(84)

where Pcom is the communication transmit power, Prad is the
radar transmit power, αcu is the channel gain for the u-th user,
αrk is the RCS of the k-th target, τk is the delay of the k-th
target and z(t) is the additive Gaussian noise.

For this application scenario, various resource-sharing
schemes that involve bandwidth partitioning and power allo-
cation have been proposed and their associated performance
bounds have been established for each scheme, see
[110, Sec. IV]. Therein, the performance of estimating τk is
quantified by the notion of estimation information rate as
discussed in Section IV in this paper.

Fig. 25 compares the tradeoffs between communication
information rate and estimation information rate under differ-
ent schemes. Outer bounds on communications and radar are
indicated by the red lines. Successive interference cancellation
(SIC) bound for the communications rate is indicated by the
green dashed line. The linear interpolation between SIC ver-
tex and the radar-free data rate bound is indicated by the gray
dashed line. The water-filling inner bound is indicated by the
blue line. It can be seen that the water-filling bound generally
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Fig. 25. The tradeoffs between communication information rate and
estimation information rate under different schemes [110].

Fig. 26. A point-to-point communication system with mono-static sensing.

outperforms the other inner bounds, because it advocates flex-
ible sub-band partitioning (one for communications only and
the other for both radar and communications) and optimized
power allocation between the sub-bands.

2) Application of Point-to-Point Channel With Mono-Static
Sensing: The second application considered is a point-to-point
channel with mono-static sensing in vehicular networks as
shown in Fig. 26. Specifically, a source vehicle sends an adap-
tive IEEE 802.11ad single-carrier physical layer frame to a
target vehicle and uses the reflections from the target vehicle
to derive its range and velocity. Each frame has K symbols in
total, with α = Kc

K fraction of them for data and the rest for
preamble.

For the system considered, the effective maximum achiev-
able communication spectral efficiency depends on α and is
expressed as

reff = α log(1 + SNRc) = log(1 + SNRc)
α, (85)

where SNRc represents the communication SNR that accounts
for the path-loss.

As for sensing, in case of velocity estimation using the
preamble of the IEEE 802.11ad frame, the CRB is given
by [85]

CRBv =
6λ2

16π2(1− α)3K 3T 2
s SNRr

, (86)

where SNRr is the radar SNR, λ is the wave-length and Ts

is the symbol duration. On the other hand, the CRB for the

Fig. 27. Performance bound of OFDM and OTFS compared with FWCW.

range estimation of a target vehicle is given by

CRBd =
c2

32π2B2
rms(1− α)K SNRr

, (87)

where Brms is the root-mean square bandwidth of the Fourier
transform of the preamble and c is the speed of the light.

It can be seen from (85) - (87) that both radar and commu-
nication performance metrics are dependent on α. In addition,
the communication rate reff can be derived to its equivalent
MSE metric as MMSEeff = 2−reff as discussed in Section IV.
Therefore, one can optimize α through the following weighted
optimization problem:

min
α

ωd log(CRBd ) + ωv log(CRBv )− ωc log(MMSEeff)

s.t. 0 ≤ α ≤ 1, (88)

to achieve the optimal tradeoff between communication and
radar sensing performance.

3) Sensing Abilities of Practical Communication
Waveforms: It is expected that the waveform design for
future ISAC systems will be based on the communication
waveforms. Orthogonal frequency division multiplexing
(OFDM) waveform has been widely used in 4G, 5G and
other practical communication systems. On the other hand,
orthogonal time frequency space (OTFS) waveform has
recently been proposed for high mobility communication
scenarios and is also a potential candidate for new waveforms
in next generation communication systems. Therefore, it
is important to study the sensing abilities of OFDM and
OTFS. In [111], [112], the performance limits of device-free
sensing using OFDM and OTFS waveforms are investigated
based on the CRB analysis. As shown in Fig. 27, it is
proved that both OFDM and OTFS modulations can acquire
range/velocity estimation as accurate as frequency modulated
continuous wave (FMCW), while achieving their full achiev-
able communication rate [111], [112]. To compare these
two types of modulations, OTFS can handle larger Doppler
shifts and longer range, but it requires more complex radar
detector [111].
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Fig. 28. An uplink communication system with localization.

B. Design and Performance Analysis of Some Device-Based
ISAC Applications

1) Performance Analysis for Point to Point Communication
With Localization: In [113], Dammann et al. introduced a
parametric positioning waveform design which provides a
scalar parameter for controlling the distribution of the PSD.
When the single-carrier transmission scheme is considered,
the signal which has more power concentrated at the edges
of the spectrum leads to a larger equivalent signal bandwidth,
resulting a lower CRB in positioning. However, for commu-
nication, the optimal signal PSD scheme is to concentrate the
signal power at the central of the mainlobes. Consequently,
there is a trade-off for waveform design between localization
and communication.

Besides the study of waveform design, the power-partitioning
scheme for satisfying different localization and data-rate require-
ments is also researched in the millimeter wave network [114].
Ghatak adopted the Bayesian CRB and Rate Coverage
Probability as the performance metrics of localization and com-
munication respectively to be satisfied. Apparently, as more
transmit power allocated for data services, the rate coverage
probability will improve while the localization accuracy will
degrade. In [115], Destino and Wymeersch also considered a
millimeter wave wireless network, which utilized a beam training
period for localization. Different from the RSS measurements
used by [114] for localization, the TOA-based beam alignment
scheme is considered, which reveals a trade-off between localiza-
tion accuracy and effective communication rate. Nevertheless,
only an exhaustive search strategy is considered and without
the consideration of beam misalignment error.

2) Performance Analysis and Optimization for Multiple
Access Communication With Localization: In [116], the
prior work [115] is extended to multi-user scenario. The
author considered a millimeter wave based multi-user single-
input-multiple-output (SIMO) wireless uplink system with an
N-antenna BS and U single-antenna mobile stations (MSs) as
shown in Fig. 28, and orthogonal resource allocation for different
MSs is assumed, e.g., by using time-division-multiple-access
(TDMA) or frequency-division-multiple-access (FDMA). In
this system, a joint localization and data transmission scheme
was proposed. In each transmission block of fixed duration Tf ,
the training phase of duration Tt is used for beam alignment
and localization while the data phase of duration Td is used
for data transmission as shown in Fig. 29.

Fig. 29. Joint localization and data transmission scheme.

During the training phase, an exhaustive beam alignment
strategy is used. Specifically, for each user, the BS sequentially
trains each of the beam in the codebook set W and find the
best one that maximizes the beamforming gain of this user.
Assuming LOS channels for all users, the received signal at
the BS for training the k-th MS can be written as

yk (t) = αkw
H aR(θk )xk (t − τk ) + wH n(t), (89)

where αk and θk are the complex gain and AOA associated
with the LOS path of the k-th MS, w ∈ W is the receive beam-
forming vector, aR(θk ) is the receive array response vector
with AOA θk , xk (t) is the reference signal, τk is the delay of
the LOS path, and n(t) is the additive white Gaussian noise.

For a fixed frame duration Tf , one can expect that there
is a trade-off between communication QoS and localization
accuracy, which are quantified by effective data-rate Rk and
Position Error Bound (PEB) Qk

Rk = B
Td

Tf
fk log2

(
1 +

SNRk

fk

)
, (90)

Qk = tr

⎛
⎝∑

w∈W
Jk,w

⎞
⎠, (91)

where fk ∈ (0, 1) denotes the fraction of Td resources allo-
cated to the k-th MS, SNRk denotes the receive SNR, B
denotes the signal bandwidth, and Jk ,w denotes the FIM asso-
ciated with a single beam w. The PEB is calculated by the
summation of the FIM over all beams in codebook set W
used in the exhaustive beam alignment strategy. Since the
receive beamforming vector remain fixed for the complete data
reception phase, a compromise receive beamforming vector is
adopted by the superposition of best receive beam of each MS.
Then an optimization problem is formulated to find the optimal
resources allocation scheme based on the optimization vari-
ables fk and Tt with the objective of maximizing the minimum
data rate of MSs subject to the PEB constraints.

The simulation results indicate that more time spent for
beam training (i.e., larger Tt ) leads to better beam alignment
and localization accuracy. However, this would reduce the
time left for data transmission (i.e., smaller Td ). Hence, there
exists an optimal training overhead that strikes the balance
between the effective achievable sum rate and the localization
performance.

3) Performance Analysis and Optimization for Broadcast
Communication With Localization: In [117], Jeong et al.
considered a MISO broadcast network with multiple BSs
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TABLE IX
SUMMARY OF DESIGN AND PERFORMANCE ANALYSIS OF PRACTICAL ISAC SYSTEMS

and MSs. Specifically, different BSs occupy orthogonal time-
frequency resources and thus there is no interference between
BSs. Each MS receives signals from all neighboring BSs, from
which it not only extracts location-aware information based on
the pilot sequence but also decodes the data streams. For this
model, a beamforming optimization is then formulated to min-
imize the overall power expenditure, subject to minimum rate
and localization constraints at all MSs as given by:

min
W

∑
j∈NB ,k∈NM

∥∥wj ,k

∥∥2

s. t .
∑

j∈NB

rj ,k
(
Wj

) ≥ Rk ,

tr
(
J-1k (W)

)
≤ Qk , ∀k ∈ NM . (92)

In (92), j and k denote the index of BS and MS from
the set NB and NM , respectively. wj ,k is the beamform-
ing vector from BS j to MS k, W = {W j }j∈NB

and
W j = {w j ,k}k∈NM

. rj ,k is the effective data-rate con-
strained by lower bound Rk and Jk (W) is the EFIM for
the position of MS k constrained by upper bound Qk . Then
a robust beamforming design was proposed to account for
imperfect system parameters, such as imperfect CSI, where
the optimization problem is formulated by adopting a min-max
robust approach.

4) Other Performance Analysis: There are other applica-
tions that involve broadcasting, relaying or D2D communi-
cation, as discussed in Section III. For relay channel with
cooperative localization, the relay can assist communication
and localization, the typical infrastructure of which is the
unmanned aerial vehicles (UAV). The UAV can be located by
the ground BSs and then can be used as a new anchor node to
assist the terrestrial localization. Meanwhile, the aerial mobile
networks can also provide communication services via UAV-
aided relaying. Hence, there are two links between the BS and
the user, therein the BS-User direct link and the BS-Relay-
User link, both of which can provide data communication and
positioning functionalities. Apparently, the performance bound
for relay channel will be more sophisticated than the single
link channel topology. Moreover, the ISAC problem is stud-
ied under RIS-aided wireless network, where a beamforming
design was studied for integrated localization and commu-
nication [118]. In D2D channel topology, the user receives

waveforms both from the BS and other neighboring users,
which can be either communication signals or localization
reference signals. The user needs to achieve accurate position-
ing by cooperation with other users and D2D communication
simultaneously. Different from the relay or RIS aided channel,
the indirect link between the BS and the user is connected by
another user.

C. Summary

The typical application of device-free ISAC is for joint
radar and communication. Two specific resource-sharing-based
designs that involve mono-static sensing have been reviewed in
this section. Estimation-information-rate induced approach and
equivalent-MSE induced approach as presented in Section IV
have been shown to be useful in establishing achievable
bounds on the sensing-communication performance tradeoff.
While these optimized resource-sharing schemes achieve rel-
atively good performance, they still generally fall short in
unleashing the full potential of ISAC systems. There exists
obvious gap between resource-sharing inner bounds and the
outer bound, as evident from the study of MAC with mono-
static BS sensing.

On the other hand, the typical application of device-based
ISAC is for joint communication and localization. A num-
ber of past studies have focused on optimizing the resource
allocation in either power, time or spatial domain to strike a
good balance between the achievable data rate and localization
accuracy. To further improve the performance, the concept of
relay-aided (static relay, or mobile relay such as UAV) cooper-
ative communication and localization has also been explored
yet in a very preliminary manner. Very few performance limits
were reported in this case, which deserves further study.

Finally, in Table IX, we summarize the system model,
assumptions and main results of existing representative stud-
ies on the design and performance analysis of practical ISAC
systems.

IX. OPEN PROBLEMS AND FUTURE RESEARCH

DIRECTIONS

The research on the fundamental limits of device-free and
device-based sensing (especially those based on the EFIM
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and CRB analysis) is relatively mature. However, the fun-
damental limits of many ISAC scenarios remain open. For
example, even for the simplest scenario of point-to-point chan-
nel with mono-static sensing, a complete characterization of
the communication capacity and sensing distortion region
(capacity-distortion region) is still unknown for non-i.i.d.
channel/sensing states. There are many other ISAC network
topologies that have not been studied before. It is also impor-
tant to study the fundamental limits under more practical
considerations such as the imperfect CSI, frequency offset and
timing synchronization error, different mobility models, etc.,
and optimize the system performance based on the fundamen-
tal limits analysis. In the following, we will discuss some of
these open problems and future research directions in details.

A. More General Modeling and Tighter
Information-Theoretical Bounds for Capacity-Distortion
Region of ISAC

In classic sensing scenarios, the parameter estimation is per-
formed based on a known waveform send by the transmitter,
and the prior distribution of the parameters is given and can-
not be controlled by the sensing scheme. In this case, the CRB
provides a lower bound for the MSE performance of unbiased
estimators. However, in ISAC scenarios, the estimation is usu-
ally performed based on communication signals, which can be
encoded signals. The receiver needs to recover the communi-
cation message and the sensor needs to estimate the parameter
from the encoded communication signals. In this case, we need
to characterize the capacity-distortion region, which is funda-
mentally different from the classic sensing or communication
scenarios. In general, we cannot separately analyze the com-
munication capacity and the sensing performance using the
classic bounds such as CRB. We have to derive new inner and
outer bounds for the capacity-distortion region, based on novel
information-theoretical bounds.

1) More General Modeling and Tight Bounds for
Memoryless ISAC Channels: In Section VII-A, we have
presented some existing inner and outer bounds for a few sim-
ple memoryless ISAC channels, where both the channel state
and sensing state are assumed to be i.i.d. and ergodic over one
codeword. However, only in some special cases, the inner and
outer bounds coincide with each other and part of the capacity-
distortion region can be determined. The optimal achievable
scheme and the associated capacity-distortion region remain
unknown for most cases.

In addition, the current information-theoretical bounds for
the memoryless ISAC channels are obtained under some
restrictive assumptions. For example, in [18], [86], [109],
the channel state and sensing state are assumed to be the
same. In [19], the receiver is assumed to know the perfect
channel/sensing state. However, in practice, the channel and
sensing states are usually different but correlated with each
other, and the receiver usually does not have the channel
state information to begin with. Therefore, an important future
research direction is to derive tighter bounds for memoryless
ISAC channels under more realistic assumptions. To achieve
this, we need to develop new state-dependent models, joint

sensing and channel coding schemes as well as new bounding
techniques that can work with more realistic assumptions (e.g.,
with different channel and sensing states, and without perfect
channel state information at the receiver) and can close the
gap between the inner and outer bounds. For example, when
perfect CSI is absent from the receiver, it is possible to exploit
the sensed state at the transmitter to improve the joint sens-
ing and channel coding scheme and improve the achievable
region (i.e., inner bounds of the capacity-distortion region). In
addition, the potential of leveraging node cooperation for joint
sensing and communication is also worth pursuing.

2) Information-Theoretical Bounds for Block-Varying ISAC
Channels: In many practical applications, the channel and
sensing states are not i.i.d. but block-varying, i.e., the chan-
nel/sensing state (approximately) remains constant over one
codeword. There still lacks studies on the fundamental limits
of such block-varying ISAC channels.

One major challenge of characterizing the capacity-
distortion region for the block-varying ISAC channel is as
follows. In traditional communication scenario, the block-
varying ISAC channel reduces to the block fading channel.
In this case, the Shannon capacity region is well defined
under the assumption of perfect CSI at the transmitter (CSIT).
However, in block-varying ISAC channels, it may not make
sense to assume perfect CSIT, especially when the commu-
nication channel is also part of the sensing channel. In this
case, the transmitter may learn some imperfect CSIT via self-
sensing or CSI feedback from the receiver. As such, we may
need to incorporate the overhead of CSIT acquisition/state
sensing and the effect of imperfect CSIT in the analysis of the
capacity-distortion region, which is very challenging. In fact,
the Shannon capacity may not be well defined under imperfect
CSIT. In this case, how to properly define and characterize the
capacity-distortion region of block-varying ISAC channels is
still an open problem and deserves further study.

B. Fundamental Limits of Emerging ISAC Scenarios

The study of the fundamental limits of ISAC is still at an
early stage, and many ISAC scenarios have not been inves-
tigated. In the following, we discuss several important ISAC
scenarios that have not been considered before.

1) More Complicated ISAC Network Topologies: One
interesting research direction is to study the fundamental lim-
its for other important ISAC network topologies obtained
by merging the sensing network topologies with communi-
cation network topologies. For example, we may consider
mono-static interference networks where there are multiple
communication transmitter-receiver pairs interfering with each
other and each communication transmitter also serves as a
radar transmitter to detect some moving targets. Furthermore,
we may introduce cooperation between the transmitters to
enhance both the communication and sensing performance,
which is a useful ISAC scenario for 6G cellular networks
where the BSs can perform cooperative communication and
sensing via backhaul/fronthaul connections.

2) Intelligent Reflecting Surface (IRS) Aided ISAC: IRS-
aided ISAC is another ISAC scenario deserving further study.
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The IRS can be used to change the communication/sensing
channel and thus has the potential to enhance the communi-
cation and sensing performance. For example, the IRS may
create NLOS paths with known scatter locations (the IRS
serves as a scatter with known location). In this case, the
NLOS paths created by the IRS can provide useful information
to both localization and communications, and thus enhance the
coverage and performance of communication and localization
services. In some device-free sensing scenarios, it is possible
to equip an IRS at the target surface (e.g., when the target
is an autonomous vehicle) to enhance the target estimation
performance via passive beamforming at the target IRS. Since
the IRS-aided ISAC systems have the ability to adjust the com-
munication/sensing channel through passive beamforming, the
analysis of fundamental limits of IRS-aided ISAC systems is
completely different from the conventional ISAC systems.

3) Environment Side Information Aided ISAC: When envi-
ronment side information such as map information is avail-
able, we can exploit this prior information to enhance the
performance of ISAC systems. On the other hand, the spa-
tial information sensed by the ISAC system can also be
used to update the map information. Therefore, as time goes
on, the ISAC system can learn more information about the
map/environment, which can better aid the communication and
sensing. This is similar to the idea of simultaneous localiza-
tion and mapping (SLAM) and we may call it simultaneous
ISAC and mapping. A new information-theoretical framework
is needed to incorporate the map information and study the
fundamental limits of simultaneous ISAC and mapping.

C. Fundamental Limits of ISAC Under Practical
Considerations

Most existing works on the fundamental limits of ISAC have
ignored some important practical issues, such as the channel
estimation error, the frequency offset and timing synchroniza-
tion error, the mobility, etc. In the following, we shall point
out several important practical issues that should be taken into
account in future studies.

1) Channel Estimation Error: In practice, the channel state
information is never perfect due to the channel estimation
error, CSI feedback delay and CSI quantization error. As
already mentioned before, it is important to study how to
incorporate the overhead of CSI acquisition and the effect of
imperfect CSI in the analysis of fundamental limits of ISAC.

2) Frequency Offset and Timing Synchronization Error:
Due to the hardware impairments, there always exist frequency
offset and timing synchronization error between different
sensing or communication transceivers. Unlike the traditional
communication systems which have relatively low require-
ment on the frequency offset and timing synchronization error,
the sensing performance of ISAC is very sensitive to the
frequency offset and timing synchronization error especially
for future ISAC systems with a high requirement on the sens-
ing accuracy. For example, 6G communication systems are
expected to achieve a positioning accuracy at the subcentime-
ter level [119]. In this case, a small timing synchronization

error of 0.1 nanosecond will lead to a localization error of sev-
eral centimeters. Therefore, the future ISAC systems must take
this problem into account. We notice that several works have
studied the fundamental limits of radar sensing/localization
under the consideration of frequency offset and timing syn-
chronization error [26], which is however, not the case for
ISAC.

3) Tracking Performance Analysis Under Different Mobility
Models: The channel and sensing states usually change
smoothly over time following certain dynamics induced by
the mobility pattern. Therefore, it is of great importance to
study the tracking performance of channel/sensing state under
different mobility models. Some initial tracking performance
analysis has been conducted in [70] for visible light-based
positioning, where the conditions under which the tracking
process is stable (i.e., the state tracking error is bounded as
time goes to infinity) is derived, and the converged state error
is also analyzed. We may leverage the tools therein and study
the fundamental tracking performance limits in more general
ISAC systems.

D. Artificial Intelligence (AI)-Aided ISAC

AI is expected to be foundational and natively integrated
into 6G systems. The powerful data-driven AI algorithms pro-
vide new opportunities not only for wireless communications
but also for ISAC technologies. In data-rich and complex
ISAC application scenarios, especially for poor indoor and
urban outdoor channel conditions, there exist a large number
of multi-modal, indirect and noisy observations, and the physi-
cal properties of non-linear signal characteristics of the system
are possibly unknown or difficult to model [120]. Traditional
mathematical models and signal processing techniques alone
are unable to solve the challenging joint communication and
sensing problems in such complex ISAC application sce-
narios. In this case, we may utilize AI methodologies to
model the system behaviors, including complicated commu-
nication/sensing channels, the surrounding environment and
different uncertainties of the system. Based on these AI mod-
els, we may design more efficient and robust ISAC systems by
combining the advantages of the data-driven and model-driven
approaches. On the other hand, the ISAC systems can provide
abundant input data for AI model training/learning using its
powerful sensing and communication abilities. Therefore, it
is interesting to study the interplay between communication,
sensing and AI in AI-aided ISAC systems.

X. CONCLUSION

In this work, a survey of recent studies on the fundamen-
tal limits of integrated sensing and communication has been
provided. According to whether the sensing targets participat-
ing the sensing procedure by transmitting and/or receiving,
we first classify the ISAC related technologies into four major
categories: device-free sensing, device-based sensing, device-
free ISAC and device-based ISAC, and then each category
is further divided into different cases. For each case, we
highlight several important works, and present the system
model, performance bounds and key insights learned from the
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analysis of the fundamental limits. In particular, we propose
several typical ISAC channel topologies as abstracted models
for various ISAC systems, and present the current research
progress on the fundamental limits for each ISAC channel.
We show that the fundamental limits of ISAC channels cannot
be obtained by a trivial combinations of existing performance
bounding techniques in separate sensing and communication
systems. Finally, we present a list of important open challenges
and potential research directions on ISAC, many of them have
not been mentioned in the previous works.
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