
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Machine Learning for Healthcare Radars: Recent
Progresses in Human Vital Sign Measurement and

Activity Recognition
Shahzad Ahmed and Sung Ho Cho Member, IEEE.

Abstract—The unprecedented non-contact, non-invasive, and
privacy-preserving nature of radar sensors has enabled various
healthcare applications, including vital sign monitoring, fall
detection, gait analysis, activity recognition, fitness evaluation,
and sleep monitoring. Machine learning (ML) is revolutionizing
every domain, with radar-based healthcare being no exception.
Progress in the field of healthcare radars and ML is comple-
menting the existing radar-based healthcare industry. This article
provides an overview of ML usage for two major healthcare
applications: vital sign monitoring and activity recognition. Vital
sign monitoring is the most promising healthcare application of
radar, as it can predict several chronic cardiac and respiratory
diseases. Activity recognition is also a prominent application
since the inability to perform activities may result in critical
suffering. The article presents an overview of commercial radars,
radar hardware, and historical progress of healthcare radars,
followed by the usage of ML for healthcare radars. Subsequently,
the paper discusses how ML can overcome the limitations of
conventional radar data processing chains for healthcare radars.
The article also touches upon recent generative ML concepts used
in healthcare radars. Among several interesting findings, it was
discovered that ML does not completely replace existing vital sign
monitoring algorithms; rather, ML is deployed to overcome the
limitations of traditional algorithms. On the other hand, activity
recognition always relies on ML approaches. The most widely
used algorithms for both applications are Convolutional Neural
Network (CNN) followed by Support Vector Machine (SVM).
Generative AI has the capability to augment data and is expected
to have a significant impact soon. Recent trends, lessons learned
from these trends, and future directions for both healthcare
applications are presented in detail. Finally, the future work
section discusses a wide range of healthcare topics for humans,
ranging from neonates to elderly individuals.

Index Terms—Healthcare Radars, deep-learning, vital sign
measurement, activity recognition.

I. INTRODUCTION

DUE to a rapid increase in the life expectancy, population
aged 65 years or above is expected to reach nearly 1.5

billion in 2050 which previously was 524 million in 2010 [1].
Consequently, age-related chronic diseases are also increasing
and the need for having detective and persuasive healthcare
solutions is more than it was ever. Elderly person either living
at home or old-care facility, should not be left unattended for
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a long period of time. Additionally, at a healthcare facility,
everyone regardless of age requires a continuous health mon-
itoring to prevent chronic sufferings such as cardiac arrest
and fall, and the hospitals in the developed countries are
already facing under-staff issue [2]. In addition to the usage
at healthcare facilities, ambient intelligence offered in non-
contact and non-invasive fashion can be used in the daily
living spaces since humans spends a sizeable amount of
time at home. For such scenarios requiring continuous or
at least frequent monitoring, a non-contact and non-invasive
sensor can provide a detective and persuasive system. Perhaps,
progresses in Machine Learning (ML) and low-cost off-the-
shelf (OTS) sensors can collectively complement the existing
detective and persuasive healthcare system.

Physiological and bio-medical signals measurement in non-
contact and non-invasive fashion can be accomplished with
several sensors such as a vision-based (camera) sensor, or a
radio sensor such as radar. Unlike vision-based sensors, radars
have no associated privacy issue, and the radar-acquired data
is not highly vulnerable to lightning and other environmental
factors [3].

Radar sensors embedded in the surroundings of a patient can
provide an ambient intelligence platform, capable of extracting
several health-related physical and physiological signals. In
radio detection (Radar), a transmitter sends a periodic signal
which is reflected by the target present within the radar-
cross-section (RCS). The signals reflected from the target are
collected at the receiver to extract the information related to
the target under consideration [4]. With human subjects as
a target in the RCS area, the radar returns can be analyzed
to extract information related to the health and well-being of
human subject under consideration. Fig. I (a) shows all the
physiological signals that can be measured using radar sensor.

While designing a healthcare solution with radar, radar-
extracted bio signal must be compared with a medically proven
gold standard technology. Hence, the signals from both the
sensors are extracted simultaneously to measure the correlation
between radar and the reference gold standard device. Fig. I
(b) outlines a few gold standard sensors being used alongside
the radar sensor. For instance, respiration belt, End-tidal Co2
mask and Electrocardiogram (ECG) sensor are considered as
a reference devices to measure the Breathing-Rate (BR) as
shown in Fig. I (b). Similarly, Electrocardiogram (ECG) sensor
is used as a reference sensor to measure the Heart Rate (HR).
Measuring BR and HR from the chest displacement is one
of the most promising applications being offered by radar
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No Movement Measurable bio-signal Movement 

Type

Gold-standard 

Sensor

1 Chest & lungs Heart Rate and Breathing Rate 

measurement 

Periodic ECG, oximeter, 

pressure belt

2 Carotid pulse Heart rate measurement and 

ECG signal construction

Periodic ECG sensor

3 Radial Pulse Heart rate and blood pressure 

measurement

Periodic PPG, ECG 

sensors

4 Head Assisted living Aperiodic Camera

5 Gait (leg) Fall prediction & Neural 

disorder detection

Aperiodic IMU, Camera, 

warble markers

6 Hand Assisted living Aperiodic Camera

7 Full body Fall and activity recognition Aperiodic Camera, IMU

(a) Summary of biomarkers and the corresponding biomedical signal measurement through radar.

(b) Reference gold standard sensors.
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(c) Popular radar-based healthcare applications.
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Fig. 1. (a) Healthcare-related physiological signals measurable with radar sensor, (b) the gold standard sensors for performance evaluation and (c) list of
few popular healthcare applications

[5]. Other than chest vibrations, the vibrations created by
carotid pulse around neck area are also used to extract the
Electrocardiogram (ECG) signal [6], as expressed in the Fig.
I (a). Radar sensor has also shown its effectiveness in the
radial pulse measurement [7], and the synchronized extraction
of carotid pulse signal and the radial pulse signal has enabled
radar to measure human blood pressure [7].

The prominent healthcare applications of radar enabled
by utilizing these biomarkers are listed in Fig. I (c). Each
application has independently been studied by several re-
searchers. At present, each of the applications has emerged
as an independent research domain.

Artificial Intelligence (AI) has widely been considered to
process radar-recorded physiological signals. Similar to any
other domain, AI is also revolutionizing the radar based digital
healthcare industry. Use of AI or more precisely, ML has made
it possible for radars to detect several chronic diseases such as
Arrhythmia [8], Alzheimer [9] and Apathy [10]. Perhaps the
ML has shown its footprints in every radar-based health related
applications discussed in Fig. I (c). Additionally, ML equipped
radar solutions are overcoming the existing limitations in the
healthcare industry. For instance, the radar-based Vital Sign
(VS) measurements are easily altered even with a slight body
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movement. ML approaches such as Support vector machine
(SVM) are deployed to detect and the body movement and
discard the measured VS containing body movement [11].

A. Motivation, Scope and Methodology of Our Review

Radar based healthcare systems are emerging at a rapid pace
and a considerable amount of work is underway currently. The
motivations of considering vital sign measurement and activity
recognition concurrently are as follow:

• Current research trend discussing these two topics to-
gether [12]–[18].

• Broad range of applications offered by healthcare radars,
posing challenges in comprehensive coverage of several
applications within a single paper.

• Vital sign and activity recognition are the most prominent
healthcare applications.

Recently, several papers have begun to discuss vital sign
measurement and activity recognition together [12], [13], [15],
[18]. It provides a holistic approach for health monitoring
by observing vital signs and activity recognition in living
environment, and the medical experts can obtain a detailed
overview of an individual’s health. The integration of data
from various sources into a unified view has emerged as
a prominent trend, with the utilization of recent Internet of
Things (IoT) advancements.

Each of the healthcare applications of radar shown in Fig.
I (c) has emerged as an independent research domain and a
considerable amount of work has been done. Simultaneously
reviewing all these fields will expand the scope of the article.
On that account, this article provides an overview of health-
care radars followed by in-depth review of two of the most
prominent applications which are human vital sign monitoring
and activity recognition.

VS monitoring is the most prominent and important radar-
based healthcare application which can provide early detection
for several chronic diseases. Human activity recognition on the
other hand, is always deciphered using ML system in litera-
ture. Moreover, activity recognition in context of healthcare
is of great importance since the inability to perform daily
living activities has greatly been associated with mortality of
elderly persons [1]. Specifically, aging societies require contin-
uous activity monitoring since aging brings several undesired
impairments to perform activities of daily life. Consequently,
these two examples are discussed in this paper.

The yearly breakdown of the vital sign and activity recog-
nition studies considered in this work is presented in Fig.
2. These studies are mentioned in Table I for reference.
According to our data scrapping, ML for these topics was
introduced around the year 2008. Consequently, the review
covers the studies between the years 2008-present, mainly
from the years 2017-2022. During the years 2008-present,
only studies related discussing VS and activity recognition
with ML are mainly considered. Topics other than ML based
VS Measurement and activity recognition are excluded due
to the richness of those topics. We tried to collect articles
from reputed publishers such as IEEE, Springer, Taylor and

TABLE I
SUMMARY OF ARTICLES CONSIDERED IN THIS REVIEW

Topic Count References

Related Reviews 21 [2], [15], [19]–[37]
Vital Signs 33 [8], [11], [12],

[38]–[67]
Activity recognition 92 [10], [68]–[158]
Total 143 -

Francis, Elsevier, MDPI, ACM, Nature, Optica, and Frontiers.
The considered keywords are:

• ’Radar vital signs’ and ’machine learning’
• ’Radar vital signs’ and ’deep learning’
• ’Radar vital signs’ and ’SVM/ CNN/ RNN’
• ’Radar vital body movement’ and ’Machine learning’
• ’Radar vital body movement’ and ’Machine learning’
• ’Radar human activity’ and ’Machine learning’
• ’Radar human activity’ and ’CNN/ SVM/ kNN/ Encoder/

Neural Network’
• ’Radar human activity’ and ’supervised/ unsupervised/

semi-supervised’.
• ’Radar vital body movement’ and ’Machine learning’
• ’Human activity/vital’ and ’reinforcement learning’
Next, we explain the existing reviews work related to

healthcare with radar.

B. Existing Reviews and Surveys

Few studies have previously reviewed the radar-based digital
healthcare applications (see Table II). The first review summa-
rizing the use of radar in healthcare industry was presented by
Lin in 1992 [19]. The author reviewed the studies related to the
non-invasive physiological measurements presented between
1960 to 1992. Later in 2002, Staderini [20] provided a short
review on UWB radar applications in medicine. The pervasive
health care applications were reviewed by Li and Lin [21].
Non-contact healthcare applications based on the Doppler
radar were reviewed by Li et al. [22]. Gu [23] summarized
the non-contact VS applications with radar. Ferreras and co-
workers [24] studied the progresses on multimodal, short
range, Continuous Wave (CW) radars for VS extraction.
Another work by Li et al [25] reviewed portable radar-based
applications such as human VS extraction, animal veterinary
monitoring and activity recognition. In these aforementioned
researched [19]–[21], [23]–[25], the use of DL in radar-based
healthcare industry was not discussed instead, the core focus
was centered around the detection and estimation of human
VS based on signal manipulation.

Radar-based healthcare applications specifically assisted liv-
ing, in context of Internet of things (IoT) were discussed by Le
and co-workers [26]. Persuasive healthcare applications based
on ML algorithms driven by the micro-Doppler spectrum
were briefly discussed. However, the discussion on ML was
too brief in their review. Shah et al. [28] reviewed assisted
living technologies such as radar, RFID, Wi-Fi. However,
only a few articles regarding radar-based activity recognition
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Fig. 2. Yearly breakdown of vital sign measurement and Activity recognition articles discussed in this work.

are considered since radar was not the main focus of this
study. Two studies presented by Fioranelli, et al. [15] and
Li et al. [27] summarized the usage of radar for activity
monitoring purpose only. In addition to that, the two studies
[15], [27] does not provide a radar-based activity recognition
tutorial and studies until 2018 were covered. Recent years
have shown frantic development for the related topic in recent
years. Recently, several researches are aiming to review a
specific topic of healthcare in context of radar sensor such
as sleep monitoring [32]. Another paper reviewed the signal
processing aspects of multi-human VS extraction approaches
[5]. The use of ML with wireless sensors was reviewed by
Saeed and co-workers [35]. However, the discussion on radar
was limited since the paper reviewed several different wireless
sensing technologies altogether. Similarly, activity recognition
with radar was briefly introduced in a tutorial published by
shastri et al. [161]. Additionally, their work focused mainly on
mm-Wave sensing and activity recognition was not discussed
in detail. Remainder of the details, strength and weaknesses
of existing reviews are summarized in Table II.

The shortcomings of the current review articles for both
topics can independently be summarized as:

1) Vital sign monitoring: To our knowledge, the existing
reviews and surveys only cover the conventional signal
processing methods for vital sign recognition [5], [19]–
[24], [29], [30], [159], [160]. A detailed survey and
tutorial for ML based vital sign studies is yet to be
discussed.

2) Activity Recognition: Table II suggests that few au-
thors have reviewed sensing technologies for activity
recognition in general, while quoting a few radar related
examples [162]. The existing dedicated reviews [27] for
activity recognition are not up to date since over forty
new articles have been published recently. In addition
to that, previous articles lack the discussion on the
current AI trends such as generative AI (in context of
radar-based activity recognition). Currently, generative

AI such as Generative Pre-Transformers (GPT) and
Generative Adversarial Networks (GAN) are gaining
huge attention and in fact, GANs have already begun
to show their footprints in the radar-based healthcare
applications. Another limitation of the previous articles
is the lack of a comprehensive summary regarding
the utilization of OTS commercial radar for activity
recognition (and healthcare industry in general). To our
knowledge, availability of OTS radars is one of the
main driving factors of radar-sensors adaptability in non-
military applications (See Section I-D).

3) Recent review covering both the activity and vital sign
simultaneously consists of less than fifty articles [163].

C. Our Review: Novelty and Organization

The research on the applicability of AI for activity-
recognition and VS measurement is progressing at a significant
pace. A considerable amount of work has been done in recent
years. A dedicated review is required for ML based VS mea-
surement and activity recognition which must cover the most
recent research work. Consequently, in contrast to the previous
reviews, this study aims to provide a detailed analysis of the
recent usage of ML in radar-based healthcare applications.
Main focus is exerted on the topic of VS measurement and
activity recognition. This article aims to familiarize the readers
with the basics and taxonomic details of ML, and how to use
them for radar-based VS monitoring and activity recognition.
The multi-fold contributions of this work are as follow:

• This review attempts to provide a detailed answer to
the question that how the integration of AI with radar
is overcoming the existing limitations for radar-based
healthcare applications.

• This article also aims to provide an answer to the
question that how ML is being used for the radar-based
healthcare industry, and what are the current challenges
to be solved for the two of the most widely discussed
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TABLE II
EXISTING SURVEY AND REVIEWS FOR RADAR BASED HEALTHCARE

Study Scope Limitation

Lin (1992) [19] Physiological signals measurement based on microwaves. Only pioneer studies were discussed since at that time,
ML was not yet developed.

Staderini (2002) [20] UWB radar based vital sign measurement and few
microwave radar prototypes.

Only UWB radars and signal processing based works are
presented. Machine learnig is not discussed at all.

Li and Lin (2010) [21] Vital sign extraction. Only legacy techniques were discussed. No discussion of
ML for vital sign or activity recognition is presented.

Li et al. (2013) [22] Review of different architectures, and radar systems for
vital sign extraction.

Only vital sign extraction is discussed. No discussion on
ML is presented at all for any of the topic.

Gu C. (2016) [23] Doppler radar-based vital sign extraction. Other radars were not discussed and discussion is limited
to vital signs only. No discussion of ML for vital sign or
activity recognition is presented.

Ferreras et al. (2017) [24] Radar-based human vital sign extraction and localization. No discussion of ML for vital sign or activity
recognition is presented.

Li et al. (2017) [25] Applications of short range radars. No discussion of ML based vital sign or activity
recognition is presented. Additionally, the healthcare
related applications are discussed too briefly.

Le et al. (2018) [26] Radar for assisted living. Brief (3 pages) discussion is proved for the topic of
assisted living.

Shah et al. (2019) [28] Assisted living based on RF technologies. Several sensors were discussed altogether and radar-
based activity recognition is briefly introduced only.

Fioranelli et al. (2019) [15] Dedicated article for vital sign extraction and activity
recognition.

Paper provides an overview consisting of twelve articles
only. historic progresses and current trends are not
discussed.

Li et al. (2019) [27] DL for activity recognition. Vital sign was not discussed. In addition, the field has
progressed a lot in 2019 onward which are not present in
this survey.

Zhu et al. (2019) [159] Review on random body movements cancellation while
measuring vital signs.

Discussed a single challenge related to vital signs in
a brief fashion. No discussion of ML for vital sign or
activity recognition is presented.

Peng and Li (2019) [29] Brief review on radar-based localization and life tracking
applications.

Only vital signs for life detection purposes are
reviewed. No discussion of ML for vital sign or activity
recognition is presented.

Gouveia et al. (2019) [30] Vital sign measurement and motion detection. Only reviewed studies related to movement detection and
compensation. Machine learning was not discussed at all.

Meng et al. (2020) [31] Activity recognition using non-contact sensors. Several sensors are discussed and as a result, the radar-
based activity recognition part is too brief.

Singh et al. (2020) [5] Multiple-subjects vital sign sensing with traditional
signal processing approaches.

Activity recognition and ML approaches are not
discussed.

Khan et al. (2020) [160] Signal processing based vital sign sensing. No discussion on ML was preseted at all.
Walid et al. (2021) [32] Sleep monitoring based on radars. Only sleep related studies were discussed.
Abdul et al. (2022) [34] DL for mm-wave radars. Several applications are reviewed the main focus is not

on vital sign and activity recognition.
Saeed et al. (2022) [35] Several different non-contact sensors were discussed

such as camera radar and other RF sensors.
Discussion on radar sensor is too brief since focus was
divided on several fields.

Shastri et al. (2022) [161] Sensing and localization using mm-Wave devices. The main focus of review was localization and activity
sensing were discussed as a use-case scenario only.

Hernandez et al. (2022) [162] Non-contact sensing through Wi-Fi Devices. Wireless sensing and activity recognition with Wi-Fi
devices is discussed.

Fioranelli et al. (2023) [163] Activity recognition and vital sign monitoring. Only few papers are discussed since the total count of
papers is less than 40.

healthcare applications which are VS monitoring and
activity recognition. Visualization of current trends and
learned lessons based on these trends are also presented
for these two applications.

• Based on literature survey, few open issues are presented
at the end. In addition to that, a few issues which are not
yet explored by healthcare radar research community are
also suggested.

• While the existing articles only discuss the discriminative
ML approaches, this article also provides a comprehen-
sive note on the usage of generative ML approaches for
healthcare-radars. A comprehensive note on generative
networks is also included in this article.

• Unlike the existing reviews, details regarding the current
usage of OTS radars along with the brief market statistics
are also included in this article. The availability of low-
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Fig. 3. Organization of this review article.

cost commercial radar sensors is one of the driving factors
contributing to the adoption of radars for non-military
applications.

The article is organized as explained in Fig. 3. The overview
of the topic, motivation, existing reviews, novelty of this
review, and the market statistics are covered in Section I.
Section II deals with the background of radar sensors from
hardware perspective. Details regarding available radar tech-
nologies and their strengths and weaknesses are discussed.
Afterwards, Section III explains the taxonomies, popular ML
algorithms and their usage for healthcare radars. ML aided VS
recognition and activity recognition are discussed in section IV
section V respectively. Section VI and VII present the current
trends and lessons learned respectively. Finally, Section IX
concludes the paper.

D. Market Statistics and OTS radars

During the period of 2020-2027, (military and non-military)
radars market is expected to register an overall Compound
annual growth rate (CAGR) of 17.8% [164]. The applications
of short and medium-range radars have become more diverse,
and the commercialization of short-range radar is already on

the go. In the year 2022, estimated radar market is of US
34.2 Bn with automotive radar being the biggest (non-military)
shareholder. In the healthcare industry, several studies have
used radar which were originally fabricated for automotive
applications at 77 Ghz band [141], [147]. Additionally, it is
expected that in the industrial revolution 4.0, which already
enforces the importance of AI, radar-based healthcare will
also play a critical role [165]. While the exact market trends
and future predictions related to the healthcare radar are yet
to be explored, Fig. 4(a) shows the trend of overall radar
sensor market in terms of CAGR. Fig. 4(b) shows the type
of radar being used in the reviewed articles. It can be seen
that most of the works are based on OTS radar. Instead of
focusing on designing radar hardware, ML based VS and
activity recognition research works are mainly algorithm-based
works. A Few biggest OTS radar vendors for the topic in
consideration are additionally shown in Fig. 4(c). The rest of
the popular OTS radars being in use for VS measurement and
activity recognition are listed in Table III, which includes the
radar model and operating frequency.
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measurement and activity monitoring tasks, and (c) OTS radars being used for vital sign monitoring and activity recognition purposes.

II. RADARS FOR HEALTHCARE: OVERVIEW AND
TAXONOMIES

A. Healthcare Radars: A Brief History

The use of radar for healthcare industry dates to 1960
when microwaves were used by Moskalenko [38] to quantity
the volumetric change caused by the movement of biological
objects. Later, Johnson and Guy in 1972 [39] confirmed
the capability of radar to measure the change in ventricular
volume of human heart by observing the transmission loss of
915 Mega Hertz (MHz) radar. This groundbreaking finding
laid the foundation of research related to VS measurement
using microwaves. Lung’s abnormalities detection [40] and
measurement of respiration rate [41] were the initial healthcare
related applications of radar.

Human motion and behavior monitoring studies gained
attention in 2000s where several authors used shallow ML
algorithm such as Multi-class SVM [126] to classify human
activities. For instance, shallow ML algorithms were also used
to classify fall and non-fall activity [166]. The reason behind
the popularity of shallow models was the fact that DL models
were not easy to train at that time. However, later CNN
based model gained huge attention in 2012. Afterwards, DL
based healthcare applications using radar gained most of the
attention. Nevertheless, shallow learning models are still in
practice for applications based on VS measurement [47] and
activity recognition [122].

B. Radar Taxonomy

Several taxonomies of radar-based hardware exist. In this
article we adopt the taxonomy based on the transmitted signal
shape which are [3]:

• Frequency Modulated Continuous Wave (FMCW) radar.
• Single Frequency Continuous wave (SFCW) radar.

• Pulsed radar.
As the name suggests, SFCW and FMCW transmit a

continuous signal whereas pulsed radar transmits the impulse
like, discrete signal. SFCW radar can be considered as a
mono-pulse radar having a fixed carrier frequency whereas
FMCW radar increases the frequency linearly with time for a
fixed bandwidth. One such modulated signal transmission is
known as chirp [50], [53]. A single FMCW frame consists of
several chirps. The frame of pulsed radar on the other hand
consists of several narrow time-domain pulses which have a
wide frequency spectrum. Consequently, these radars are often
termed as Impulse Radio-Ultra wide Band (IR-UWB) radars
[160]. Table IV shows the comparative summary of these radar
technologies.

In SFCW radar, the peaks in the frequency domain resolve
the Doppler velocity of the target. On the other hand, for the
case of UWB radar, the peaks in time domain of the received
signal resolves the range of the target. In contrast to SFCW and
UWB radars, FMCW radar can provide both the distance as
well as velocity of the target simultaneously. The transmitted
SFCW radar waveform can be expressed as:

xSFCW (t) = cos(2πft+ ϕ), (1)

where xSFCW (t) represents the transmitted signal, f repre-
sents the center frequency of radar, and ϕ represents the phase
of the transmitted signal.

UWB radar on the other hand transmits a discrete signal
which can be expressed as:

xUWB [n] =

N∑
n=1

s[n− nN ], (2)

where xUWB(t) represents the transmitted discrete signal, n
represents the delay between the two consecutive pulses within
a frame, and s represents the shape of transmitted signal.
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TABLE III
OTS RADARS USED IN RESEARCH WORKS SUMMARIZED IN THIS REVIEW.

Model Frequency Example studies

TI - xWR12xx 76 GHz [61]
TI - xWR14xx 76 GHz [8], [46], [65], [75], [83],

[86], [105], [114], [125]
TI - xWR16xx 77 GHz [135], [141], [147]–[149]
TI - xWR18xx 77 GHz [12], [57]
TI - xWR68xx 60 Ghz [50], [64], [73], [85], [121],

[154], [155]
TI - Unknown Model - [55], [63]
SAAB - SIRS 77TD 77 GHz [102]
SAAB - SIRS 6100TD 77 GHz [138]
Infinion - BGT24xx 24 GHz [68], [91], [94]–[96]
Infinion - BGT60xx 60 GHz [69], [77], [117]
Ancortek - SDR 2500 25 GHz [108], [120], [158]
Ancortek - SDR 580 5.8 GHz [70], [81], [87], [98], [103],

[106], [123], [142], [143],
[145], [146]

BumbleBee Radar 5.8 GHz [112]
Timedomain Co. - Puls
ON P220

3.2 GHz [129], [131]

Timedomain Co. -
PulsON P4xx

4.8 GHz [58], [82], [90], [100], [101],
[104], [107], [136]

Novelda Xethru 7 GHz [11], [48], [54], [66], [71],
[80], [99], [113], [122], [124]

Novelda - NVA 6100 6 GHz [74], [139]
TI - AWR 1243 77 Ghz [61]
WalaBot 3.3 – 10.3

GHz
[144]

RF Beam Swiss K-
MC1

24 GHz [47]

New-JRC, Tokyo, Japan - [60]
Imec Heverlee, Belgium 79 GHz [62]
Multiple OTS - [12], [51]

TABLE IV
COMPARISON OF DIFFERENT RADARS.

SFCW FMCW Pulsed

Transmission Continuous Continuous Discrete
Signal Single tone Modulating

frequency
Pulsed

Spectrum Narrow Wide/narrow Wide
Data-
Domain

Frequency Frequency Time

Range Res. - C / 2B C.τ / 2
Information Doppler/ radial

velocity
Range and
velocity

Fine Range.

C: Speed of light, B: bandwidth, τ : Pulse width.

Similarly, signal transmitted by FMCW radar can be ex-
pressed as:

xFMCW (t) = cos(2πft+
B

T
t2), (3)

where xFMCW (t) represents the transmitted FMCW signal
having modulation bandwidth B and time-period T . The
remainder of the similarities and differences of these radars
are summarized in Table IV. It can be seen in Table IV that

both FMCW and UWB radar have same bandwidth-dependent
range resolution which is c/2B.

III. ML TAXONOMIES AND USAGE FOR HEALTHCARE
RADARS

In this section, a brief history of AI is presented which is
followed by a brief introduction of commonly used machine
learning algorithms for activity recognition and VS measure-
ment.

A. Brief History of ML

The term AI was first proposed by McCarty in 1956 and
the term ML was first introduced by Arthur Samuel in 1952
[167]. The first 2D learning network named Neocognitron
[168] was proposed in 1980 which is a bit similar to today’s
convolutional networks. Multi-class SVM was first introduced
in 1992. Deep Learning (DL) which is the subset of ML,
has gained attention recently after 2010. There were several
training related issues which hindered the applicability of
DL in early 2000. In 2006 several research works (such as
[169]) provided solutions to these training related issues which
shifted the trends towards DL and resulted in several DL
models based on learning characteristics such as AlexNet,
ResNet and GoogleNet.

ML algorithms without considering DL approach requires
features engineering and one must be aware of the detailed
characteristics of input data. On the other hand, DL algorithms
can learn data characteristics by themselves. Next, we summa-
rize a few taxonomies of ML algorithms with examples related
to the considered topic.

B. Taxonomies of ML

ML based on the learning style and labeling strategy are
classified mainly into three classes which are:

• Supervised Learning
• Unsupervised Learning
• Semi-supervised Learning
Table V summarizes the definitions, strengths, and weak-

nesses of each learning type separately. Healthcare radar
examples are also included in Table V. Other than these afore-
mentioned classes, another class exists in between the semi-
supervised and unsupervised learning called as reinforcement
learning. Reinforcement Learning operates on the game theory
of positive or negative reward system. Reinforcement learning
has currently been used for several radar applications such
as scene adaptive target tracking of multiple targets [170]
automotive radar and spectrum allocation [171]. However, the
use of reinforcement learning for healthcare radar has not
yet been considered so far. The reminder of details which
include advantages, disadvantages and popular ML networks
are summarized in Table V. In addition to that, a radar-based
healthcare application is also included.

Considering the task-based taxonomies, the system can be
sub divided as:

• Classification
• Regression

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3334269

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE V
TAXONOMIES OF ML (BASED ON LEARNING TYPES)

Detail Supervised Unsupervised Semi-supervised

Definition During training, input data types are
known to the model

During training, input data types are
completely unknown to the model

Few samples are known to the model, and
most of the samples are unknown

Data Type Labeled data Unlabeled data Labeled and unlabeled both
Advantages Produce data output from previous

experiences
Helpful in finding patterns in data.
Perfect tool for data scientists

Minimize the amount of labeled data
needed

Disadvantages Requires data labeling which is time
consuming and tedious task

Less accurate, time-consuming process,
Not feasible for known tasks

Irrelevant input feature present training
data could furnish incorrect decisions

Popular models &
networks

CNNs, DNNs, RNN, LSTM Boltzmann Machines, Auto-Encoders
and GANs (Generative Adversarial
Network), RNN, and CNN

GANs, RNNs which include GRUs and
LSTMs, are used for semi-supervised
learning. Multi-view training, graph
methods, and generative models

Radar Data Example CNN based activity recognition [147] Markov chain based unsupervised
activity recognition [127]

Auto-encoder based activity recognition
with labeled and unlabeled samples [76]

• Clustering

Classification deals with dividing data into a few groups
based on features. In literature, with particular interest in VS
monitoring and activity recognition through radar, the classi-
fication task is mostly dealt as a supervised ML problem. For
instance, human activity classification using radar presented
by Noori et al. [124] presents classification of five human
activities in supervised fashion. Regression on the other hand
deals with predicting a quantity or quantities based on one
or more variables. For radar-based healthcare issues, missing
data in the VS measured using radar can be filled up using
a linear regression approach as demonstrated by Xie and
co-workers [54]. Clustering deals with grouping objects of
similar properties together. Unlike classification, the number
of groups in clustering can vary. Clustering is often achieved
with an unsupervised ML approach. In healthcare applications,
clustering has enabled several applications such as activity
recognition [127] and fall detection [172].

Based on the complexity of network, the ML systems can
be divided into two categories which are:

• Shallow Network: A single layer of non-linear features
transformation

• Deep network: Multiple layers of features transformation

In shallow network, all the learning and decision is made on
that single layer. A Neural network with a single hidden layer
will be a shallow network. Shallow architectures have shown
their usefulness in solving several well-constrained, simple
problems. However, since the complexity and modeling is
limited, dealing with complex real-world generalized problems
is difficult for a shallow network. On the other hand, DL
models operate on the principle of the human brain where the
information is processed in layered architecture. For instance,
human retina and camera sensor respectively act as an input to
the human brain and a ML model. This information is passed
through several layers in systems to make final decision.

Another (recent) type of taxonomy can be considered as
follow:

• Discriminative AI: Constitute the decision boundaries
between two or more classes of data.

• Generative AI: As the name implies, generative AI is
used to create new data points.

While detection and recognition are widely discussed previ-
ously in literature, generative AI is lately getting huge attention
as well. Generative adversarial networks (GAN) are a famous
DL based data augmentation approach introduced in 2014.
Current trend is showing a huge usefulness of AI in the field
of data generation such as Generative Pre-training Transformer
(GPT). The popular AI models and their use-cases example in
the field of radar based healthcare applications are shown in
Fig. 5.

C. ML for Healthcare Radars

Fig. 6 shows the standard steps to be carried out in radar
data processing chain. For each step, in context of healthcare
applications of radar, a few traditional and the ML based
approaches are also mentioned. It must be noted that all or
any one of the step can be carried out with ML approaches
discussed in Fig. 6.

Researchers have reported that ML based approaches can
overcome several limitations being imposed by the con-
ventional approaches. For instance, data scarcity [173] and
imbalanced nature of dataset [174] poses a huge challenge
for radar-based healthcare applications. Data augmentation is
often performed to overcome this issue. To generate new
samples from existing data, data transformation approaches
often rely on adding noise [174] or performing geometric and
spatial transformations [73]. Huang et al. [174] used Gaussian
noise to balance radar-based sleep monitoring dataset and Yu
et al. [73] used spatial transformation for activity recognition
dataset. However, these approaches may not generate statis-
tically independent samples for training [108]. As a result,
Generative AI is getting huge attention lately. Recently, GAN
(shown in Fig. 5) has emerged as a candidate solution for
several activity recognition works using radar. For example, by
using GAN data to train the radar-based activity recognition
algorithm, 14 % increase in accuracy was reported in reference
[108].

The second step shown in Fig. 6 deals with pre-processing
the radar data (fabricated with or without augmentation).
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Fig. 5. Basic architectures of well known shallow and deep learning models being used for heatlhcare radars.

Simple iterative low pass filters are extensively being used
to filter the static unwanted reflections, known as clutter [11],
[173], [175]. However, researches show that simple sources
separation fails when the unwanted signal to be segregated be-
comes complex [51]. For instance, removal of body movement
while measuring vital signs was demonstrated in reference
[51] where Auto-Encoder (AE) was used for source separation.
Similarly, [44] used DNN for similar research problems.

For features extraction, a vast number of studies have
demonstrated the dominance of DL techniques over the hand
crafted features [176]. In addition to that, we may not be
required to perform features engineering while using DL
techniques. In a similar way, unsupervised features reduction
methods are a common practice to efficiently reduce features
space. PCA has widely been considered for this purpose.

Fig. 6 shows the comparison of both the conventional
approaches as well as the machine learning approaches for

different radar data processing tasks. Their strengths and
weaknesses are also summarized as well. It must be noted
that DL can be opted at any or all of these steps. For instance,
if we have enough dataset, we may not require augmenting
the data.

After a brief introduction of ML techniques and their current
usage trend for radar-based healthcare applications, further
section presents detailed review of two of the most prominent
healthcare applications individually.

IV. ML AIDED VITAL SIGN MEASUREMENT

VS measurement is the most promising healthcare ap-
plication offered by radar. Decades long research for VS
measurement through radar has enabled the simultaneous
measurement of HR and BR in non-contact and non-invasive
fashion [160]. As stated earlier, VS measurement through radar
dates back to 1960s [19] and the field has evolved sufficiently.
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Step 1: Data Collection Step 2: Data Preprocessing Step 3: Features Extraction Step 4: Features Processing

Augmentation can be performed to

increase number of data samples

Traditional approaches

• Gaussian noise addition [173]

• Geometric Transformation [72]

Characteristics: Simple, does not 

require expensive computation

Limitation: May not generate 

statistically self-sufficient samples 

for training [12]

ML based approaches

• Generative AI’s

• GAN GPTs etc.

Characteristics: Learning 

approach to generate samples 

which are statistically independent 

[107], requires a huge computation

Noise & background subtraction

and target information extraction

Traditional approaches

• Loop Back filters

• Moving average filtering

• Smoothing filters

Characteristics: Low complexity 

and well suited to remove static 

clutter.

Limitations: Removes only linear 

noises

ML based approaches

• Auto Encoders

• DNN filtering

Characteristics: Can remove 

complex noises better than sources 

separation methods [49]. Huge data 

is required data for training 

Extraction of salient features of the

target

Traditional approaches

• Statistical features [111]

• Spectral features  [125]

Characteristics : Feature 

extraction is easy

Limitations: Features are affected 

by environmental conditions [69] 

and requires features engineering

ML based approaches

• CNN

• LSTM etc.

Characteristics: Rich features set 

in comparison to traditional 

approach [73]. However, it 

increases the hardware complexity 

Number of features can be reduced

to reduce classifier’s complexity

Traditional approaches

• Forward elimination backward 

elimination etc.

Characteristics: Simple 

mathematical appr

Limitations: Traditionally the 

features are ranked in supervised 

manner

ML based approaches

• PCA, LDA

• t-SNE

Characteristics:  Unsupervised 

approach to identify and remove 

less-effective features. There is 

chance of overtraining in features 

selection itself

Fig. 6. Radar data processing steps using traditional and ML based approaches (Quoting references form healthcare applications of radar).

Currently, several researches are being carried out to make
radar measurement more robust against the environmental
factors.

During breathing, the air enters and leaves the lungs which
causes contraction and relaxation of diaphragm. This di-
aphragm movement repeats at a rate of 8 to 25 times per
minute for a young healthy adult. The heart rate on the
other hand expands and contracts with a rate of 55-110 beats
per minute to ensure blood circulation in the body. Due to
these movement of lungs and heart, the chest also vibrates
periodically. Radar sensor, being sensitive to fine movements,
can effectively measure and quantify these movements to
extract the heart rate and breathing rate. However, since both
movements are superimposed on each other, a set of signal
processing techniques is required to extract the two quantities.

A. Performance Evaluation Methods of VS Measurement

As shown earlier in Fig. I, the data from radar and clin-
ical heart and breathing measurement sensor is captured in
simultaneous fashion. Several matrices exist to find correlation
between the two sensors. Mean absolute error (MAE), mean
error (ME) and mean-square error (MSE) are extensively used
to show the difference of beats captured through radar and
clinical sensors [55].

The difference between radar and reference sensor some-
times may not show the capability of radar to follow the heart
variations. Consequently, statistical plots such as correlation
plots and Bland-Altman plots are also being considered as well
[64]. These plots additionally show the correlation factors and
confidence range. The higher the Correlation factor, the higher
is the accuracy. Research works often use correlation factor
with based approach and conventional approach to quantify
the overall improvement of system [65].

B. Vital Signs Extraction with Radar (Baseline Method)

In order to demonstrate the VS extraction process, we
established an exemplary VS extraction setup using Pulsed and
CW (FMCW) radar as shown in Fig. 7(a). A human participant
wearing a respiration belt and ECG electrodes was sitting in
front of radar at a distance of 0.5 meters. We used Xethru
X4 Pulsed radar designed by Novelda, Norway and IWR-
6843 FMCW Radar designed by Texas, Instruments, USA. For
BR reference, GDX-RB respiration belt designed by Vernier,
Beaverton, USA was used, and for ECG measurement, PSL-
iECG2 ECG module developed by PhysioLab, Ltd., Korea was
used. As shown on the right side of Fig. 7(a), the breathing
and respiration movement scatter points are superimposed on
each other [177].

Fig. 7(b) shows the signal processing chain to extract VS
using both the pulsed and CW radars. For the case of pulsed
radar, the signal is processed in time-domain where the first
step is to remove the unwanted static reflections from the
received signal since received signal contains reflections from
the chest as well as surroundings. A clutter removal filter is
often deployed to reduce the background reflections [175].
Afterwards, the distance showing the maximum variance is
selected and FFT analysis is performed at the values observed
at that point to extract VS. The process for CW radars is
also similar however, the processing is being performed in
frequency domain. At the beginning, FFT of received raw
data is performed followed by clutter removal and human
detection blocks. Finally, the phase is unwrapped to extract
the VS signal.

While the initial processing in both radars differ slightly,
Fig. 7(b) suggests that the final stage of the extracting VS
are similar for both technologies. From the extracted and the
processed data of both radars, two separate band-pass filters
(BPF) ranging between 0.1 to 0.9 Hz and 1 to 2.5 Hz are
used to extract the breathing and heart signal respectively.
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Fig. 7. Vital sign extraction through radar: (a) Experimental setup and materials, (b) signal processing work flow and (c) the extracted vital sign and its
FFT analysis

Exemplary results based on signal processing chain shown
in Fig. 7(b) are demonstrated in Fig. 7(c).The two peaks for
UWB and CW (FMCW) radar provides the BR in both cases.
The demonstrated process is repeated with a sliding window
over the captured radar returns for a specific duration.

With a human subject at a distance of do from radar as
shown in Fig. 7, the mathematical model for radar-based VS
can be presented as:

d = do +∆d(t) = mb sin(2πfb) +mh sin(2πfh), (4)

where d represents the overall change in distance due to chest
vibrations, mb represent the breathing rate harmonic compo-
nent, and mh represents the heart rate harmonic component.
The corresponding breathing rate and heart rate frequencies
are represented by fb and fh respectively. As stated earlier,
two band-pass filters are used to independently extract the
breathing rate and heart rate.

C. Challenges Related to Vital Signs Extraction

Radar sensor-based framework shown in Fig. 7 facilitates
a user-friendly measurement of VS in comparison to the
competing (wearable) sensors. However, radar observations

are sensitive to several ambient conditions for the case of VS
measurements. The biggest challenges and research directions
currently considered for VS monitoring are:

1) Random body movement during data acquisition
2) Breathing harmonics distorting the heart-rate harmonics
3) Human detection (accurate range point selection)
4) Low signal to noise ratio of the extracted vital sign signal
5) Fast signal acquisition (reducing the observation window

for VS measurement)
6) Reconstruction of heart-beat waveform similar to ECG

sensor.
7) Application development exploiting radar-extracted vital

signs

As per our literature survey, it was observed that while VS
measurements are often performed with the traditional Fourier
Transform (FT) based signal processing approach shown in
Fig. 7, ML is deployed on top of it to reduce the error
encountered due to the aforementioned challenges.

D. ML Empowered Vital Sign Measurement and Processing

This section summarizes the usage of ML based systems to
overcome the aforementioned challenges.
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Fig. 8. Vital sign extraction (a) without body movement, and (b) under the influence of body movement adopted from [11]. (c) A DNN based regression
approach extract respiration signal under the influence of body movement [44].

1) Body Movement Cancellation: Since radar measures the
chest vibrations occurred due to heart and lungs movement,
any other movement will create inaccuracies in VS measure-
ment. In an ideal case, the human body should completely be at
rest during VS measurement. However, one can expect several
periodic and non-periodic body movements while acquiring
data with radar. These movements such as neck vibration or
hand movements are not linear in nature instead, they corrupt
both the amplitude and phase of chest vibrations [51]. In fact,
macro-movements such as limb movement alone will be a non-
linear phenomenon. Simple source separation algorithms such
as independent component analysis may not serve the purpose
here.

Fig. 8 (a) and (b) respectively represents the radar extracted
VS signals without and with the influence of body movement.
As seen in Fig. 8 (a) and (b), the body movement signal
appears as an abnormality in the extracted VS signal. Fig. 8(c)
represents an exemplary DL study based on DNN to segregate
body movement and respiration signal [44].

With the help of ML, several researchers have proposed
methods to detect and mitigate body movements during data
acquisition. For instance, Khan and co-workers [11] used a
DL model to classify the stationary heart rate signal from
the heart signal captured under the influence of random body
movements. Pulsed radar was deployed in this study to capture
data, and AlexNet was used to extract the features from

both the classes which served as an input to the binary
SVM classifier. The HR captured under body movement was
discarded while keeping the resting HR which resulted in
overall lower mean error.

In similar fashion, another research work [44] utilized Deep
Neural Net to cancel the body movement (as expressed in Fig.
8). Chest vibrations were captured with CW radar and random
body movements were added in the recorded signal. Later, a
DNN model consisting of an input layer, two hidden layers
and an output layer was trained to detect and quantify these
body movements. Afterwards, based on the DNN prediction,
the respiration signal was reconstructed successfully. A gen-
eralized DNN diagram can be seen in Fig. 5.

In reference [61], LSTM based model was proposed to solve
the movement artifact issue where the body movement power
and VS were analyzed to segregate the two quantities.

Performing regression on the radar extracted VS is another
approach to resolve the issue of missing VS data due to body
movement or any other reason. As expressed in Fig. 8 (b), the
measurement error often appears as an outlier— Regression
can be used to mitigate these errors. For instance, DeepVS, a
1D-CNN based regression model was trained to predict and
minimize the effects of body movement in reference [54].
Authors used a two stream 1D CNN to extract features from
both time and frequency domain. On a challenging data set,
mean error of 7.4 beat per minute was achieved which in
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case of simple signal processing approach was 11.4 beats per
minute.

Auto Encoders (AE) have also shown their effectiveness
in removing random body movement. For instance, the work
presented in reference [52] used a convolution based varia-
tional AE to reconstruct the VS from the mixture of signal
containing body movement along with VS. In their work,
simulated human movement data is mixed with a public VS
dataset to create a mixed signal representing VS measured
under the influence of body movement. Results suggest that
AE does reduce the effect of unwanted movement in the radar-
measured VS data. Another work presented by [178] extracts
only the respiration rate from non-static humans using AE. BR
while moving on treadmill, exercising on the same spot and
turning over are extracted in their work and the AE generated
respiration waveform was (more) close to the gold standard
reference sensor in comparison to the respiration waveform
extracted using only the signal processing methods (shown in
Fig. 7). Similarly, [51] used a DL based AE to separate the
components of body movement from the radar observed vital
signs. The reminder of the body movement mitigation works
are listed in Table VI along with other challenges.

2) Breathing Harmonics Cancellation: Harmonics of
breathing signal residing between 1 to 2.5 Hertz (Hz), distorts
the heart rate measurements since the amplitude of breathing
harmonics is sometimes higher than that of heart rate peak.
Table VI shows three studies related to breathing harmon-
ics cancellation using ML approaches (along with other VS
measurement challenges). Saluja and Lin [43] proposed a
supervised ML algorithm based on gamma filter to remove
the breathing harmonics from the signal.

In reference [180], convolutional sparse coding was used to
mitigate the low Signal-to-noise ration (SNR) and the issue of
breathing harmonics. Results showed above 95% accuracy in
HR extraction.

3) Human Range Point Detection: Another, biggest con-
cern is the fact that while measuring VS, human chest does
not appear as a rigid reflective point [177], instead, it contains
reflection from different portions of human abdomen as shown
at the top of Fig. 7(a) where yellow and red scatter points
represents the BR and HR respectively. Incorrect selection of
range bin may result in measurement inaccuracies. To resolve
this issue, Chang et al. [55] proposed a spatial correlation-
based scheme to accurately detect the range bin. Several
different range bins are selected, and a CNN based voting
scheme is implemented to find the best. Each candidate range
bins are considered as a class to be classified and CNN is used
in supervised fashion. Results suggest that MAE is reduced
from 3.95 to 2.70.

4) Fast Signal Acquisition: As discussed earlier, a window
of few seconds is required to process the data and the size of
window defines the time taken by the algorithm to predict VS.
Analysis on different window sizes suggest that the increase in
window size reduces the measurement error [182]. However,
in practice, some scenarios require the algorithm to converge
quickly. To meet this challenge, authors in [55] used DL to
reduce the acquisition time with FMCW radar. In addition, DL
based weighted scheme was introduced to find the best range-

point of human chest during data acquisition. Reference [43]
also reduced the acquisition time from 3 seconds to less than
1 second by utilizing supervised ML approach.

5) Accuracy Improvement: Few research works focused on
improving the overall accuracy of vital sign measurement
particularly by increasing the SNR of radar observations. As
expressed in Fig. 7, radar-based VS are measured by taking
the FFT of the extracted vital sign signal, however, Chang et
al. [46] used an iterative frequency estimation scheme named
as Newtonized Orthogonal Matching Pursuit (NOMP) instead
of FFT approach. However, the proposed technique requires
a high signal-to-noise ratio. As a result, authors proposed
a DL aided NOMP scheme to increase the VS accuracy in
comparison to the traditional scheme. The CNN model is
utilized in this work to increase the SNR.

The issue of low signal to noise was also discussed in [46].
Similarly, Czerkawski [52] also used (variational) AE for de-
noising the Doppler radar observations for VS measurement.
The authors in [12] have proposed a multi radar data fusion
network based on LSTM network to extract VS followed by a
discriminator block to optimize the heart rate detection. OTS
pulsed and FMCW radars were used together in this study.
Research presented in [50] also utilized a neural network based
regression model to increase the measurement accuracy.

6) Reconstruction of Heart-Beat Waverform Similar to ECG
Sensor: The radar extracted heartbeat waveform (in its raw
form) does not resemble greatly with the standard waveform
extracted using ECG sensor. A chain of signal processing is
required to process the radar-extracted heartbeat waveform.
For heartbeat waveform reconstruction, work presented by Ha
et al. [65] used FMCW radar and CNN based template match-
ing to transform radar waveform into a seismocardiography.
The radar extracted waveform is matched with a reference
ECG waveform while training. The correlation between the
reference HR waveform and the one extracted with CNN
based template matching was 0.72 whereas for the same
case, conventional FFT approach provided 0.66 only. Table
VI summarizes all the related works.

7) Heart Rate Variability Extraction: Radar sensors also
facilitate the Heart Rate Variability (HRV) extraction in non-
contact fashion. The R-R interval which defines the peak-
to-peak difference between consecutive heart beats in ECG
waveform is an extensively used parameter in identifying car-
diac diseases. AE has shown their usefulness in reconstructing
the heart waveform, permitting radar to extract a waveform
similar to that of ECG sensor. In practice, radar observed
HR waveform (similar to ECG) is not robust in practical
scenarios. Jang et al. [56] proposed an AE based approach
to reconstruct more robust ECG signal out of CW Doppler
radar measurements. The output of encoder-decoder pair was
used to detect the R-R interval. For the similar task, Temporal
convolutions network (TCN) based encoder was used by Chen
and co-workers [57].

8) Application oriented research works: A few authors
used the extracted breathing rate as an input to ML classifiers
for user authentication purpose (Table VII). For instance, [45]
used SVM classifier to classify six participants based on
the breathing waveform. Another study used several shallow
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TABLE VI
ML AIDED VITAL SIGN MEASUREMENT STUDIES USING RADAR (SORTED YEAR-WISE).

Study Algorithm Usage ML class Network Main Focus Radar Implementation details and performance improvement

[179]
(2018)

Gamma
filter

Regression Supervised Shallow Harmonics
cancellation

CW A supervised ML filter named as Gamma filter is
used which is a calibration-free filter.

[43]
(2019)

Gamma
Filter

Regression Supervised Shallow Breathing
Harmonics
and time
reduction

CW This work is a detailed and extended version
of the work presented in [179]. Accuracy
improvement of 1.2% and reduction in observation
window by 3 seconds is reported.

[180]
(2019)

Conv.
coding

Regression Unsupervised Deep Breathing
Harmonics

Pulsed Used the time domain sparsity to directly extract
the HR and improved the accuracy by 15%.

[44]
(2019)

DNN Regression supervised Deep Body
Movement
cancellation

CW Body movement was added in respiration signal
and DNN was trained

[49] CNN+LSTM Regression Supervised Deep HR and BR
Improvement

CW Used CNN+LSTM based regression to reduce HR
and BR measurement errors. Accuracy: DNN:
91%, CNN:94%, and CNN+LSTM:99%.

[53] CNN Regression Supervised Deep HR
Construction

FMCW This model can extract ECG waveform by
performing regression. R-R peak time error is
of proposed was 17 millisecond(msec) whereas
conventional approach provided 102.2 msec.

[65]
(2020)

CNN Classification Supervised Deep HR
Construction

FMCW Template matching is performed to extract HR
histogram. Conventional method yielded 0.66
correlation between radar and gold standard,
proposed method yielded 0.72.

[46]
(2020)

DNN Regression Supervised Deep Accuracy
improvement

FMCW Increased vital sign SNR by using DNN as
denoising agent and reported above 25% accuracy
improvement

[181]
(2020)

CNN+LSTM Regression Unsupervised Deep ECG recon-
struction

CW Network learned the temporal and spatial features
from radar and reference sensor to reconstruct HR
waveform.Comparison was performed only with
wearable sensors, not with the radar methods.

[50] DNN Regression Supervised Deep Accuracy
improvement

FMCW Performed regression increase the measurement
accuracy

[51] AE Regression
& classifi-
cation

Unsupervised Deep Body
Movement
and Range
detection

Any
radar

Encoder based sources separation method to
segregate vital signs and body movements. The
proposed method also provides a fast acquisition
mechanism. Compared results with [65] and
reported around 20% accuracy improvement.

[52] AE Classification Supervised Deep Body
movement

CW AE based body movement separation method is
provided

[55] CNN Classification Supervised Deep Data
Acquisition
time

FMCW For a short window length, the conventional vital
sign method showed 6.3% error whereas proposed
method showed 3.5%.

[56] AE Regression Unsupervised Deep HR
Construction

CW Used AE to reconstruct radar extracted ECG
waveform to find peak-to-peak differences (HRV).
Proposed model shows over 30% improvement.

[57] TCN Regression Unsupervised Deep HR
Construction

FMCW TCN to reconstruct ECG waveform.

[11] AlexNet
and
SVM

Classifier Supervised Deep
and
Shallow

Body
movement
Removal

Pulsed AlexNet to learn feature and SVM to classify body
movements and stationary vital signs.

[54] 1D CNN Regression Supervised Deep Body
Movement

Pulsed Performed regression at the output of radar
measurements. the error for HR and BR is 7.4 and
4.9 beats per inute (bpm) whereas non-learning
based competitor showed 11.8/7.3 bpm.

[67] SVM Classification Supervised Shallow HR
Construction

CW SVM and SVD are used to find HR & BR
waveforms.

classifiers such as SVM and kNN for identity authentication
during sleep [47]. Similarly, [48] assigned a unique breathing
pattern to each involved human volunteer and used CNN based
classifier to segregate each user. Rana et al. [58] used Doppler
(CW) radar and SVM to detect VS in a home at different
locations for surveillance purpose.

In the similar way, [60] proposed neural network based
dengue fever detection using radar-recorded VS. In reference
[59], the authors studied the feasibility of CNN to classify
four different radar acquired vital signals. In similar line,
an approach to segregate children based on age-group was
presented using OTS FMCW radar by Yoo et al. [64].
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TABLE VII
ML AIDED APPLICATIONS BASED ON RADAR-EXTRACTED VITAL SIGNS

Study Algorithm Usage ML class Network Main Focus Radar Implementation details and performance improvement

[45]
(2019)

SVM Classifier Supervised Shallow Application
Oriented

CW SVM Classifier to classify humans for identity
identification

[47]
(2020)

SVM
and kNN

Classifier Supervised Shallow Application
Oriented

CW Used SVM and several other classifier to classify
different human subjects

[48]
(2020)

CNN Classifier Supervised Deep Application
Oriented

Pulsed Used pre-defined unique breathing pattern for each
subject and detected the pre-defined breathing
pattern with CNN classifier

[183]
(2022)

Stacked
NN

Classification Supervised Deep Application FMCW Four different types of reparations are being
classified to monitor multi-human respiration
abnormalities

[8]
(2022)

DNN Classifier Supervised Deep Application
oriented

FMCW Used ECG sensor data to train DNN which was
tested on radar data for arrhythmia detection.

Since radar data is a scarce resource, to train a deep network
for heartbeat signals classification is a challenging task. Au-
thors in [63] proposed a Common Features Extraction Method
(CFEM) which extracts the features from ECG waveform
to train a model which works well with the radar recorded
heart waveform features. Next section explains the activity
recognition work based on ML.

E. Generative AI Concepts for Radar Based VS Measurement

The concept of generative AI is yet to be explored for
radar-based vital sign monitoring purposes. Nevertheless, a
preliminary study based on GAN was presented by [66] where
the authors tried to find the orientation of human body (while
measuring vital signs) using signal from multiple radars.

F. A Brief Competitive Analysis

In computer vision research domain, several open-source
datasets exist for benchmarking purpose such as ImageNet
[184] and COCO [185]. However, radar-based vital sign re-
searches does not often use public dataset which consequently
obstructs the comparative analysis among different algorithms.
Based on the available data a brief comparison is stated
here for VS measurement using radar. For body movement
mitigation, two prominent ML models appeared to be 1D
CNN and AE. 1D CNN showed an improvement of 4.4 and
2.3 beats per minute for HR and BR extraction respectively,
which approximately constitutes 35% and 40% performance
improvement [54]. In another study based on AE [51], 20%
improvement can be observed however, the data capturing
conditions were different in both the studies ( [51], [54]).
In addition to that, regression based approaches [44], [51],
[54] are able to mitigate the body movement unlike the
classification based approaches which can only detect random
body movement [11].

For breathing harmonics cancellation, supervised filtering
appeared to be a prominent solution [43]. For HR reconstruc-
tion, it was found that AE showed the 30% improvement in-
comparison to the conventional approach [56]. Template math-
ing based on CNN also achieved considerable improvement
as presented in work by ha et al. [65] where the correlation

betweeen radar and reference was increased to 0.72 which
previously was 0.6.

V. ML BASED HUMAN ACTIVITY RECOGNITION

This section discusses the second application of healthcare
radars. According to projections, the elderly population aged
65 years and above is expected to exceed 1.5 billion by the
year 2050, which is more than twice the current population.
Aging brings several undesired impairments to perform ac-
tivities of daily life. These activities are crucial to the ones
well-being and studies suggests that inability to perform daily
life activities have shown a five-fold rise in a yearly mortality
rate [186].

Automatic human activity recognition has brought us many
applications in the healthcare and smart living industries such
as remote patient monitoring [187] and indoor surveillance
[116]. More precisely, the focus can be shifted from cure
to prevention, which will reduce the work load of already
burdened healthcare infrastructure [2]. Due to the non-contact
and non-invasive nature, radar-based activity recognition has
become a hotly discussed research domain. As stated earlier,
unlike the other competing non-contact technologies such as
cameras, radar has no privacy concern.

To facilitate the activity recognition process, a set of activi-
ties are performed in the Radar Cross Section (RCS), and the
acquired signal is processed either using ML approach (such
as SVM [131]) or a simple signal processing approach such
as distance manipulation [188]. However, as per our survey,
radar-based activity classification studies with simple signal
processing approach are very rare.

Radar-based methodology for activity recognition with ML
is summarized in Fig. 9. First, the suitable radar sensor is
selected to create a dataset. As per our survey, with few excep-
tions [111], supervised ML is used which additionally requires
dataset-labelling [189]. Furthermore, as expressed in Fig. 9,
pulsed, CW and FMCW radars offer different type of data
representations. Suitable data representation scheme based on
the nature of activity to be recognized and radar sensor being
used, is selected to serve as input to the recognition algorithm.
Radar data representation plays an important role in the overall
performance of activity recognition framework. Few studies
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Radars used for activity recognition
1) Pulsed [33]
2) CW [12]
3) FMCW [12]
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Train suitable model

Adversarial Domain 
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Fig. 9. Radar based activity recognition framework

have utilized radar data from different domains with the same
ML algorithm for comparative analysis [83]. Afterwards, any
or all of these types of data representations can be used to
train a ML network. Several studies have used multi-domain
data to recognize human activities [152] and gestures [4].

A. Performance Evaluation Methods for Activity Recognition

Human activity recognition is often dealt as a multi-class
classification problem. Consequently, formation of confusion
matrix is a common way of evaluating the performances. Find-
ing true positive, false positive, true negative, false negative,
F-1 score, precision, recall, are also a common practice. The
confusion matrix is capable of extracting this information as
well (Refer to [190] for details). It must be noted that if the
data is highly imbalanced, accuracy must not be considered
as an evaluation criterion even for binary classification.

B. Nature of Activities Being Classified

Web search with related keywords suggest that researchers
are paying a huge attention on classifying activities of daily
living such as drinking, going to bed, sleeping. For instance,
Maitre et al. [80] classified fifteen such daily living activities.
Exercise related activities such as walking, squatting, jumping
crawling etc. are also being classified in several studies [105].
In addition to that, recognition of suspicious activities such
as boxing, crawling, jogging (in army style), jumping with
gun and throwing grenades etc. has also been considered in
literature [151]. Another categorization of the activities is the

activities performed at the same place and activities which
involve leaving the original position [139].

In literature, few studies have considered task or situation-
oriented studies such as store counter activities classification
[144] and bed-room related activities [125]. In addition to that,
preliminary results of toilet activity recognition using (FMCW)
radar has also been observed in literature [156]. A few authors
have attempted to classify the patient’s activities such as trying
to get out of bed, roll on bed, and walk in the room [83].

Next, we review different ML options available for activity
recognition.

C. CNN Based Classifiers
The pioneer study making use of DL for radar-based activity

recognition was based on CNN, where a three-layered CNN
was used to classify seven human activities using micro-
Doppler images with a success rate of 90.9% (Kim and
Toomajian [78], 2015). According to the claim made in the
paper, this was the first study employing DL model for
human activity recognition through radar [78]. Although the
activity recognition accuracy was same as the shallow (SVM)
classifier. the intention of this study was to show the usefulness
of CNN for activity recognition work. Perhaps, the model
was not tuned properly with different structural variations.
Later, the same authors also used a similar three-layered CNN
model for gestures recognition as well [191]. Afterwards, CNN
based classifiers were extensively used for activity recognition
using different types of radar data representation. Since CNN
considers image at the input, research work in reference
[68] used short-time Fourier transform (STFT) of the CW
radar data to train a classifier consisting of five (hidden)
convolutional layers.

Work presented by Axelsson and Gueorguiev [97] also used
CNN and micro-Doppler images acquired by FMCW radar to
classify three activities with 97.50% average accuracy. A three-
layered CNN architecture to classify six activities recorded
with OTS pulsed radar (which is also being used in reference
[139]) was presented in [74]. Since algorithm was trained and
tested for activities performed at three different incident angles
which are 0, 15 and 30 degrees, an argument was made in
their studies that range resolution is more robust than velocity
resolution presented earlier by Kim et al [78].

Exercise activity classification has also attracted the atten-
tion of a few researchers. A work in this line was presented by
Tiwari et al. [149] using FMCW radar and CNN. The exercises
involved in the study were the usual gym exercises.

Normal practice of extracting features (using shallow or
deep model) utilizes one or more radar-data-representation
schemes as an input to the model (see Fig. 9). However, Ye
and Li [94] proposed a unique idea of using CNN as an end-to-
end framework. Raw radar returns of three activities were fed
to a 1D CNN for features extraction. These extracted features
further served as input to a 2D CNN network for training and
classification. This research work demonstrated the feasibility
of using a DL model on raw data without extracting any other
information. The considered activities in this study are moving
and boxing, only boxing, sitting, crawling, falling forward,
falling aside, and walking with a stick.
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TABLE VIII
CNN BASED ACTIVITY RECOGNITION WORKS

Study Usage ML class Radar Data Data Details

[78] (2015) Classifier Supervised Time-Freq. CW A three layered CNN architecture was used to classify seven activities
[68] (2016) Classifier Supervised Time-Freq CW STFT images used as input to 5 Layered CNN architecture
[97] (2017) Classifier Supervised Time-Freq FMCW Micro Doppler signatures were used to classify three activities using CNN
[74] (2017) Classifier Supervised Time-Range Pulsed Data at different arrival angles was also tested and accuracy of 93.3% is

reported
[72] (2018) Classifier &

generator
Supervised Time-Doppler CW 371 fake samples were created using 1129 by utilizing GAN. CNN was used

for classification
[108] (2019) Classifier &

generator
Semi
supervised

Time-frequency CW Generate synthetic time-frequency plots for eight different human activities.

[157] (2019) Classifier Supervised Time-Doppler CW Data being generated by GAN is used as input to DCNN classifier
[81] (2019) Classifier Supervised Time-Doppler FMCW Classification of 6 activities with several different classifiers (GoogleNet, SVM

based on alexnet)
[88] (2019) Classifier Supervised Time-Doppler Pulsed

Doppler
An open set classification is proposed based on GAN. Classification is
performed using CNN classifier.

[94] (2019) Classifier supervised Raw-Data
directly

CW Used 1D CNN on raw-data directly (without extracting Doppler frequency)

[119] (2020) Classifier supervised Range-Doppler FMCW Authors suggested that the use of multi dimensional data yields higher
accuracy.

[70] (2020) Classifier Supervised 4 different
domains

FMCW For 6 activities, Range-time & Doppler, amplitude & phase representations
were used

[147] (2020) Classifier Supervised 3D positioning FMCW Forked CNN: Range azimuth and elevation are used to draw human pose.
Proposed mythology is aimed to replace voxel based approach

[148] (2020) Classifier Supervised Range-Angle FMCW Range-azimuth and range-elevation maps are used as input to CNN to extract
the pose of human

[71] (2020) Classifier Supervised Time-Range Pulsed First moving direction is extracted using k-NN algorithm followed by CNN to
classify 12 activities with 98% accuracy.

[152] (2020) Classifier Supervised Range-Doppler-
time

FMCW 3D network known as pointNET is proposed based on range-doppler-time
maps

[10] (2020) Classifier Supervised Time-Doppler CW Used doppler images and CNN as binary classifier to detect Apathy
(preliminary results).

[96] (2021) Classifier Supervised Time-Freq. CW STFT of captured data was taken and two separated 1D CNN networks were
used together to perform classification

[149] (2021) Classifier Supervised Range-Doppler FMCW Classified seven exercise activities using rang-doppler features
[116] (2021) Classifier Supervised Time-Frequency CW MS-CNN features and AE output was concatenated together to to classify 6

activities
[123] (2021) Classifier Supervised Time-Doppler FMCW Six activities are classified using ResNet classifier on public dataset (accuracy

= 96%)
[77] (2021) Classifier

& domain
adoption

Supervised Time-Doppler
and Range

FMCW Data with different FMCW radars having different settings is collected for
domain adoption purpose since change in radar setting affects the classification
outcomes

[95] (2021) Classifier Supervised Time-Doppler FMCW Attention mechanism is added in 1D CNN to increase its accuracy. For 6
activities, proposed network showed 98% accuracy which is higher than the 1D
baseline accuracy of 97%.

[79] (2021) Classifier Supervised Time-Range Pulsed A through-the-wall public dataset of three different activities is proposed and
CNN classifier example is also shown with 99% accuracy

[142] (2021) Classifier Supervised Time-Doppler FMCW A tower CNN consisting of a parallel input layer is used to classify six
activities.

[146] (2021) Classifier Supervised Time-Doppler FMCW On an open dataset, six activities were classified using GooglNET.
[91] (2022) Classifier Supervised Time-Doppler CW Used few shots and many shots learning to classify seven different activities.
[73] (2022) Classifier Supervised 3D Positioning FMCW Posture was created from radar point cloud using voxels.
[83] (2022) Classifier Supervised Range-Doppler FMCW Key finding: range-Doppler features are most robust than time-Doppler

features.
[69] (2022) Classifier &

Generator
Supervised Time-Doppler &

Range
FMCW An approach to create synthetic radar data is introduced and CNN is used for

classification purpose.
[98] (2022) Classifier Supervised 3D range-time-

doppler
FMCW A 3D map is used to train a 3D CNN which is generalizes better than 2D

images based classifiers. Images were created using wavelet transforms instead
of STFT.

[103] (2022) Classifier Supervised Time-Doppler FMCW With an improved PCA features, a modified version of VGG net is used to
classify six activities with accuracy of 96.3% which is 4.2% higher than the
conventional PCA and VGGNET

[151] (2022) Classifier Supervised Time-Doppler CW Six (suspicious) activities were classified using NN. Open dataset is also
provided by the authors

[84] (2018) Classifier Supervised Time-Doppler CW used DNN Synthetic data based on Synthetic data approach is used to train
DNN model. Testing is being performed with real radar data.

Several variants of CNN exist to the date and have shown
their usefulness in different research domains. One such vari-

ant was used in reference [123] where the authors trained
ResNet model to classify six activities and achieved 96%
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accuracy. In the similar way, GoogleNET has also shown
its effectiveness to recognize six activities [146]. For the
same dataset, ResNet with time-Doppler as input showed 85%
accuracy [123] whereas GoogleNET with phase and amplitude
of time-Doppler map as input showed 86% accuracy.

Recently, Yu et al. [73] proposed a four component frame-
work consisting of 1) de-noising radar point cloud, 2) vox-
elization, 3) augmentation and 4) DCNN algorithm for clas-
sification. The authors compared the result on public data set
proposed by singh et al. [105] and showed the dominance
of voxel-based CNN approach over the simple CNN+RNN
approach.

Kim and Seo [98] demonstrated that a FMCW radar-based
range–time–Doppler maps can better train the CNN based
classifiers in comparison to the similar classifier trained with
range-Doppler maps only. A 3D map is used to train a 3D
CNN which as stated by the authors, generalizes better than
2D images-based classifiers. In addition to that, images were
created using wavelet transforms instead of STFT.

Another way of providing multi-domain radar to a CNN
features extractor is presented by Helen et al. [142] where a
tower CNN consisting of parallel input layer was used in their
work.

The use of stepped frequency CW radar to capture time-
range maps at different frequencies was reported by Jia et
al. [116]. These multiple time-range images were used as
input to a Multi-Stream CNN based classifier which yielded
96.42% accuracy. Table VIII summarizes the activity recogni-
tion works based on CNN.

Transfer learning deals with the studies where a model
trained at one task is used as a beginning point for another
task. As stated in earlier section, capturing radar data is a
challenging task and open data sources are scarce, researchers
realized the need of generating activity data synthetically. Sey-
fioglu and co-workers [84] used a similar MOCAP approach
to generate synthetic radar data to train DNN model. Models
train on MOCAP data were transferred to the real radar data.
Another transfer learning approach was discussed in [81] and
data was classified with GoogleNET classifier.

D. SVM based classification
Table IX summarizes all the works related to activity

recognition based on SVM, the second most widely discussed
classification approach. The first use of ML for (CW) radar-
based activity recognition was demonstrated in 2009 which
used SVM trained on six time-frequency features to classify
seven human activities [126]. Similarly, in reference [137],
features-based on Principal Component Analysis (PCA) are
used to classify activities based on FMCW radar. Another
SVM based early implementation is presented in reference
[138], where the authors have extracted similar features as
discussed in [126] to train SVM. However, unlike the previous
work [126], FMCW radar was used. Zenaldin and Narayanan
[128] also used SVM to extract indoor and outdoor activities
where STFT images of six activities were used to extracted
features.

Authors in reference [102] used simulated human micro-
Doppler data generated using infrared and video Motion Cap-

ture (MOCAP) approach. While the training was performed
on synthetic data, the system was later tested with real data
captured using a commercial radar to validate the findings.

The fist instance of ML usage for radar-based activity
recognition was based on SVM and perhaps, Table IX suggest
that the SVM is still in use. SVM based classifier can even
consider the features extracted by DL models such as CNN
and its variants [141].

E. RNN and LSTM Based Classification

CNN processes the grid shaped data and extracts the spatial
patterns and hierarchical representations, suitable for image
data and lacks the ability to process the sequential data.
RNN can handle sequential data and make decisions based
on the present input and past decision. RNN has also been
used for activity classification. Noori et al. [124] used pulsed
UWB radar to classify five activities using RNN with an
overall accuracy of 99.6%. The proposed network was also
tested on a public UWB-gestures dataset [173], which yielded
98% accuracy. In addition, the authors also implemented
discriminatory analysis and principal component analysis to
reduce the features set. DL networks often require a huge
amount of processing, and deployment of the DL model with
radar is a challenging issue. In this context, Brabants et al.
[125] proposed a method which first performs forward RNN
at the device-premises and later, the processed information
is again utilized at server with backward RNN for accurate
prediction. Fourteen activities were considered in their work.

Traditional RNN was suffering from vanishing gradiant
issue which gave rise to another sub-class of RNN known as
LSTM, introduced in the earlier sections. LSTM has shown
its effectiveness for the activity recognition task. Cheng et
al [115] used LSTM based classifier on time-range maps
extracted with stepped frequency CW radar and achieved
96.7% accuracy for five through the wall activities.

Since radar sensor specializes in sensing movement, most
research works rely on the detection of dynamic movement
being performed while pursuing the activity. Nevertheless, few
studies have proposed posture recognition to recognize the
activity [147], [148]. For instance, forked RNN based posture
classification using range-angle (both azimuth and elevation)
is presented in reference [147] (2020). It is needless to say that
MIMO radar was used since angle of arrival requires multiple
receiving antennas. Remainder of the studies related to RNN
and CNN are summarized in Table X.

F. CNN+RNN Based Classification

To introduce recursion in the CNN extracted features, a
combination of CNN and RNN can be used as shown earlier in
Fig. 5. LSTM is often considered as a special case of RNN.
In reference [105], features extracted from two CNN layers
were used as input to a bi-LSTM to introduce recurrence in
CNN features which yielded 90.4% accuracy (2% higher than
LSTM only based features). Five different exercise activities
are being classified. Another similar approach is presented by
Du et al. [92] where CNN features are used by a gated RNN
to classify six activities.
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TABLE IX
SVM BASED ACTIVITY RECOGNITION STUDIES

Study Usage ML class Radar Data Data Details

[126] (2009) Classifier Supervised Time-
Frequency

CW Classified seven activities using six micro Doppler features

[129] (2010) Classifier Supervised Time-Range Pulsed Classified seven activities using six micro Doppler features
[132] (2010) Classifier Supervised Time-

Frequency
CW A two class classifier was used to detect fall as an activity

[131] (2012) Classification Supervised Time-Range Pulsed Used PCA based features to train SVM classifier to
distinguish eight different activities

[130] (2012) Classifier Supervised Time-
Frequency

CW Six features were extracted from Time-Doppler (frequency
plot)

[133] (2014) Classifier Supervised Time-
Frequency

CW A strategy was presented to classify activities even at non-
line of sight condition

[137] (2014) Classifier Supervised Time-
Doppler

FMCW SVM driven by PCA features was used for classification
purpose

[136] (2014) Classifier Supervised Time-range Pulsed SVM optimized by genetic algorithm was used in this study
[138] (2015) Classifier Supervised Time-

Doppler
FMCW This study used same features extracted by [126]. However,

radar is FMCW in this work instead of CW
[128] (2016) Classifier Supervised Time-

Doppler
CW Used STFT images from six activities to extract features

[140] (2017) Classifier Supervised Time-
Velocity

FMCW Classified two datasets consisting of seven and ten activities
which yielded accuracy of 93 & 76 respectively

[139] (2018) Classifier Supervised Time-range Pulsed Used weighted time-range frequency patterns to classify 12
activities using different shallow classifiers

[134] (2019) Classifier Supervised Time-
Frequency

CW Performed through wall activity recognition

[118] (2014) Classifier Supervised Time Range Pulsed Used energy, variance, skewness and kurtosis as features
[141] (2022) Classification Supervised Range-

Doppler
FMCW Features were extracted from RDM using PCA and

VGGNet to perform classification with SVM and KNN
(separately)

TABLE X
RNN AND LSTM BASED ACTIVITY RECOGNITION STUDIES

Study Usage ML class Radar Data Data Details

[106] (2019) Classifier Supervised Time-Doppler FMCW Wearable and wireless sensor data is combined to provide a sensor
fusion approach which yields 96% accuracy for six activities.

[115] (2020) Classifier Supervised Time-Range Stepped
CW

Four activities in through wall condition are classified with accuracy
of 96.7%

[124] (2021) Classifier Supervised Time-range Pulsed Five activities were classified using a Neural Network. Data was
collected in home environment

The concept of Hybrid model based on CNN and RNN
was also deployed by Ding et al. [87] (2021), where 1D CNN
output was used as input to the RNN network. Authors used
time-Range, angle and Doppler maps extracted by FMCW
radar to classify six activities with an average accuracy of
93%. Maitre and co-workers [80] also used same hybrid
CNN+LSTM approach with pulsed radar to classify fifteen
daily-living activities.

Recently, Zhu et al. [107] used multiple CNN blocks and a
single LSTM block to learn features. A radar sensor network
consisting of five radars was used to collect data, and a single
CNN network processed each radar data independently to
extract features. Later, these features were combined to form
a concatenated output for LSTM network. For nine activities,
accuracy of 90.8% is reported.

Wang et al. [86] created images from both dynamic move-

ment and static postures using 3D radar point-cloud map.
The extracted point-cloud map comprising of (2D) range-angle
was used to generate images using voxelization approach—a
concept of clustering data-points into a geometric mesh.

The idea of using CNN+LSTM combination is also adopted
in study presented by Gorji et al [85]. Combination of CNN
and LSTM with a 3D data cube consisting of time-range-
Doppler images as training input was used in their study. Two
additional features, which are Doppler energy dissipation and
temporal variation history, were also used as input feature
to the multi-view network. Authors reported that the use of
tracking feature will additionally increase 5% classification
accuracy.

In the similar line, authors in reference [104] utilized pulsed
(Doppler) radar-based time-Range information to train a hy-
brid CNN and LSTM based network to classify six activities.
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TABLE XI
CNN+RNN/LSTM BASED ACTIVITY RECOGNITION STUDIES

Study Usage ML class Radar Data Data Details

[105] (2019) Classifier Supervised 3D range
angle

FMCW CNN + LSTM Generated a point cloud image to classify 5 exercise
activities

[92] (2020) Classifier Supervised Time-Doppler Pulsed CNN features are processed with gatted RNN to classify 6 activities
with 88.19% accuracy.

[86] (2021) Classifier Supervised 3D Range map FMCW Voxelization based image was created from point cloud as input to
the model. CNN+RNN

[80] (2021) Classifier Supervised Time-Range Pulsed 15 different activities are classified. CNN+LSTM An additional vot-
ing system is used to increase the robustness (overall accuracy=90%)

[87] (2021) Classifier Supervised Time-Range,
angle, Doppler

FMCW Used 1D CNN followed by RNN to combine multi-domain data
using feature concatenation. 93% accuracy for six different activities
is reported

[125] (2022) Classifier Supervised Time- Velocity FMCW Forward & Backward RNN are performed at device and server
respectively to divide computation burden

[85] (2022) Classifier Supervised Range,
Doppler, Time

FMCW Features and data was used to train the CNN+LSTM. It was
reported that adding tracking features and Doppler energy increases
generalization accuracy by 5%

[99] (2022) Classifier Supervised Time-Range Pulsed Features extracted from CNN and LSTM are concatenated together
to classify 15 different activities (accuracy = 96%)

[104] (2020) Classifier Supervised Time-Range Pulsed
Doppler

Convolultional LSTM is used to classify six activities. Main focus is
fall detection

[107] (2022) Classifier Supervised Time-Range Pulsed
Doppler

Outputs of multiple CNN blocks from multiple radars are combined
to make feature map for 9 activities (accuracy=90.8%)

The solution was mainly optimized for fall detection purposes.
In the similar line, another work used pulsed radar for the

hybrid CNN and LSTM based network for features extraction,
which yielded 96% classification accuracy on fifteen different
activities [99]. Refer to Table XI for the remaining studies.

G. AE Based Classification

While most of the earlier attempts extracted features using
CNN with different radar types and data modalities, few
authors presented a contrary approach based on AE (Table
XII). Since, AE tries to learn the non-linear data representation
of input sample to reconstruct same sample at the output, the
learned information contains a rich set of features related to
the input sample—these features can be used as an input to
classifier as well. Kanoci and Amin [120] presented similar ap-
proach of using a pair of stacked AE based on DNN to extract
features. The authors demonstrated fall detection capability
of FMCW radar and results suggest that the accuracy was
higher than the traditional ML approaches. With fall-detection
being the main focus of the study, four human activities were
considered in their work. A sparse auto-encoders followed
by logistic regression classifier was opted, which resulted in
classification accuracy of 97%. OTS FMCW radar developed
by Ancortek Inc. (SDR 2500) was used in this work.

H. Miscellaneous Classification Approaches

Few studies have recently considered semi-supervised learn-
ing approach which requires a few amount of labelled training
data. For instance, reference [76] proposed a semi-supervised
learning method where a small portion of labeled and a huge
portion of unlabeled data was used for training purposes.

Statistical features-based k-NN has also shown its effective-
ness for recognizing activities using pulsed Doppler (Bumble-
bee) radar [112]. Another work utilized k-NN to classify seven
activities with time-Doppler features [140].

Recently, graph CNN (or GNN) was employed to classify
through the wall activities using stepped frequency CW radar
data [153]. Another work presented by Zhen et al. [79]
classified three activities in through the wall condition using
CNN and provided a public dataset as supplementary material.

Aziz et al. [93] (2022) introduced Metric Learning approach
for classification based on multi-domain target information in
time-Doppler and time-Angle domains. For eight activities,
82% accuracy is achieved.

Lee and Kim [114] (2022) used GNN on the dataset pro-
vided by [105] to classify five activities. Another public dataset
named MARS [192] was also used to evaluate the algorithm.
In reference [109], authors reported that a fast computation
approach for activity recognition is Hyper Domain Computing
(HDC) which can provide accuracy similar to CNN.

Aziz et al. [93] (2022) introduced Metric Learning approach
for classification based features extracted in time-Doppler and
time-Angle domains. For eight activities, 82% accuracy is
achieved.

I. Generative AI and similar data sources
1) Generative AIs: As introduced earlier, generative AI

such as GAN have shown a huge success in generating new
data samples from a small dataset. Table XIII presents the
studies utilizing GAN for radar-based activity recognition
topic. GAN uses a generator and a discriminator block to
generate new data samples from the input data distribution
(see Fig. 5). One such example of the real and GAN generated
radar data sample for human walking is shown in Fig. 10.
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TABLE XII
AE BASED ACTIVITY RECOGNITION STUDIES

Study Usage ML class Radar Data Data Details

[120] (2017) Classifier Supervised Time-
Frequency

FMCW Four activities were classified. The main focus was detection of fall
event

[70] (2020) Classifier Supervised 4 different
domains

FMCW Considered AE, SVM, CNN to recognize 6 activities. Range-time &
Doppler, amplitude & phase representations were used

[116] (2021) Classifier Supervised Time-
Frequency

CW MS-CNN, AE MS-CNN features and AE output was concatenated
together to to classify 6 activities

[76] (2022) Classifier Semi-
supervised

Time-Doppler CW Both labelled & unlabeled data was used for training purpose
enabling a semi-supervised learning.

[145] (2022) Classifier Supervised Time-Doppler FMCW Used the dataset proposed in [105] to extract 3D point cloud with
graph neural network (GNN)

TABLE XIII
USE OF GENERATIVE AI FOR RADAR-BASED ACTIVITY RECOGNITION

Study Augmented Data Radar Details

[72] (2018) Supervised Time-
Doppler

CW 371 fake samples were created using 1129 by utilizing GAN. CNN was used
for classification

[108] (2019) Semi
supervised

Time-
frequency

CW Generate synthetic time-frequency plots for eight different human activities.

[157] (2019) Supervised Time-
Doppler

CW Data being generated by GAN is used as input to DCNN classifier

[88] (2019) Supervised Time-
Doppler

Pulsed
Doppler

An open set classification is proposed based on GAN. Classification is
performed using CNN classifier.

[89] (2022) Semi-
supervised

Time-
Doppler

CW GAN based model capable of considering labelled and unlabelled data
simultaneously was trained

[101] (2022) Supervised Time-
Doppler

Pulsed
Doppler

Using a two-stage domain adaptation, a generalized system is proposed where
system designed on simulated dataset is tested on real data

[114] (2022) Supervised 3D Range FMCW Used the dataset proposed in [105] to extract 3D point cloud with graph
neural network (GNN). Posture based approach is presenteds

[150] (2022) Supervised Time-
Doppler

FMCW Used GAN to generate augmented data samples

In the real world, the human subject under the test may
perform activities which may be out of the distribution of the
data used for training. Most of the studies deal with the closed-
set classification where the training and test set have the same
activities. Open-set classification deals with the classification
of classes which are not present in training set. The issue of
open set for radar is discussed by Yang and co-workers [88].
GAN is used to create a negative activity class that is to say,
the activity class other than the designated activity set.

Transfer learning based on GAN for activity recognition
was performed by Shi and co-workers [72]. A total of 371
additional training samples were created from 1129 real radar
spectrogram using GAN, and DCNN was used for classi-
fication purposes. In reference [108], researchers also used
GAN to generate synthetic time-frequency plots for eight
different human activities. Similarly, Ding et al. [89] used
GAN to achieve semi-supervised activity recognition with
micro-Doppler spectrum.

Recently, a study to generate simulated radar activity data
using Kinect sensor followed by GAN to augment the data
was presented in [150].

2) Simulation Based Data Generation: Few studies are
utilizing synthetic data based on simulations for activity gen-

eration work. In this regard, MOCAP provides a simulation-
based method to generate micro Doppler behavior syntheti-
cally. In this kind of approach, infrared sensors are placed
on human body parts (or in the ambience), and distance-
variation with time are recorded to generate human micro-
Doppler spectrograms. A low-cost approximation of MOCAP
can be achieved by using Microsoft Kinect sensor, which
is markerless approach. Several works have confirmed the
validity of Kinect sensor based MOCAP approach to generate
activities data similar to radar [102]. Studies have used this
(synthetic) MOCAP generated radar data to train shallow
learning classifiers [102] as well as DL based classifiers [84].

In reference [100], an unsupervised adversarial domain
adaptation (ADA) approach is proposed for radar micro-
Doppler images to classify five activities. Authors considered
two domains consisting of same activities and possessing
similar feature space. A source domain is simulated dataset
generated using MOCAP which is used for training. The
trained model is tested on a real radar dataset (the target
domain), and an accuracy of 81.6% is achieved. Similarly,
domain adoption can be performed to train a network for
different radar settings.

Recently, the issue of limited radar data is also discussed
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Real Radar Data GAN Generated Data
(a)

(b)

Real Radar Data GAN Generated Data

Fig. 10. Real and GAN (augmented) radar data for (a) bending down and
(b) walking around (adopted from [108])

in [101] where a two-stage domain adaptation approach is
provided for a generalized solution. Few samples are collected
with OTS radar whereas few samples are generated using
MCOAP dataset. Later the data is randomly paired together
to be used as a pair input for GAN model. In reference [152],
authors used range-Doppler information to create a point cloud
map to classify eight activities using Mult-Layer Perceptron
(MLP).

As stated earlier, few synthetic approaches to generate
activity data exist. Hernangome and coworkers [69] generated
a simulated radar returns for different activities using video
camera. The joints information extracted using a computer
vision approach was processed to get the simulated range-
Doppler map. However, the simulated and the captured im-
ages had few differences. A DL based image transformation
network was used to overcome these differences. Afterwards,
CNN was used for classification purposes.

J. A Brief Competitive Analysis

For activity recognition, it is hard to provide a direct answer
to the question that which ML model has higher accuracy due
to below factors:

• Lack of having a benchmark dataset causing variations in
test environments: Unlike image processing, researchers
exploring radar-based activity recognition often collect
dataset first followed by training ML algorithm.

• Fairness in comparison: Few ML models converge on
small datasets showing high accuracy on small amount
of data. On the other hand, few models (deep-structured
models in particular,) requires a huge amount of data
however, the overall accuracy might be higher. Radar-
based healthcare topics lack this kind of studies, making

it hard to compare different models in terms of perfor-
mance.

• A high set of intra-model variations such as number of
(hidden) layers, learning rate, optimizer and activation
functions.

Nevertheless, it was observed that a few research works uti-
lized the same dataset in their investigations. Since, reference
[94] used raw radar returns, Zhu et al. [96] used the STFT
of captured data to train (lightweight) 1D CNN. Two separate
1D CNN networks are being used together to classify seven
activities. This study used Mobile-Edge computing to provide
a lightweight network. The activities were same in these two
aforementioned studies ( [94] and [96]), and the accuracy
of [96] was 1% higher in comparison to [94]. However,
lightweight DL model was used in reference [94] to achieve
low-latency algorithm. On the same dataset, another study by
Liu et al. [91] used few shots learning based CNN to classify
same seven activities. Few shots learning uses less training
data in comparison to conventional learning algorithms. With
five samples in each of the considered class, 91.6% accuracy
is achieved.

On a same dataset, ResNet with time-Doppler as in-
put showed 85% accuracy [123] whereas GoogleNET with
phase and amplitude of Time-Doppler map as input showed
86% accuracy. Kim and Seo [98] demonstrated that a
range–time–Doppler maps can better train the CNN based
classifiers in comparison of range-Doppler map only. A 3D
CNN model generalizes better than 2D images based classi-
fiers.CNN with range-Doppler maps were more robust and
efficient in comparison micro-Doppler spectrum. Later the
same data was used with CNN+LSTM network.

VI. CURRENT TRENDS

A. Vital Sign Measurement

Fig. 11 outlines the current research issues related to VS
and their candidate solutions based on ML. For instance, body
or any other unwanted movement can either be detected, or
detected and discarded at the same time. The former solution
reduces the amount of extracted VS data while reducing
the overall MAE whereas the latter will reduce the overall
MAE only. Similarly, for other limitations and challenges,
corresponding solutions from literature are quoted in Fig. 11.
Next, we present the survey of VS studies.

1) Radar Hardware Usage: As demonstrated in Fig. 11, we
found that all the radar hardware are equally being utilized for
ML based VS measurement (See Table XIV for references).
However, since the VS measurement heavily relies on con-
ventional methods whereas we have summarized the usage
ML only, this finding cannot be generalized for the overall
VS measurement topic. As explained earlier, several radar
hardware choices exist and each hardware has its own strength
and weakness, Table XIV provides a categorization from radar
hardware perspective. Since this review considers the studies
related to VS extraction using ML only, Table XIV can be
used to study usage of ML for particular hardware. Note that
the study presented by [51] can be used with any radar type.
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Fig. 11. Summary of research works being performed for ML based vital sign measurement through radar.

2) Algorithmic Details: Table XIV also presents the sum-
mary of the techniques being used in VS extraction. Readers
can get an insight about how ML techniques are currently
being deployed for VS measurement through Table XIV. Table
XIV suggests that CNN is most widely being used so far
followed by SVM. AE have also a huge potential since AE
has shown its effectiveness as to de-noise images and several
other types of data. In similar way, AE based models have a
huge potential in de-noising the based radar measured VS.

Table VI suggests that ML offers several approaches to
improve VS measurement and reduce the error between radar
and reference gold standard devices. For instance, it can
be observed that a supervised classifier can be deployed to
classify the radar-recorded VS signal with and without body
movement [11]. Currently, the measurement of VS under
voluntarily and involuntarily body movements is getting huge
attention. Similarly, regression analysis has also been proposed

to increase accuracy of VS measurement.

B. Activity Recognition
This section summarizes the activity recognition works

being carried out using ML algorithms. The hardware and
software related research trend for the activity recognition
works are shown in Table XV.

1) Radar Hardware Usage: As per our survey, FMCW
radar is the most widely used radar for recognizing human
activities (Fig. 12). One of the core reasons is the fact that
a MIMO FMCW radar can provide range, Doppler (velocity)
and angle information simultaneously in contrast to pulsed
and CW radars. In addition to that, FMCW radar usage is
increasing in recent years in comparison to the other radars
which were famous in 2010-2015. One of the reasons is the
availability of several OTS FMCW radars which can be used
directly for activity recognition.
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Fig. 12. Summary of current trends in radar based activity recognition.

2) Learning Style: Next analysis shown in Table XV
summarizes the learning styles of algorithms being used for
activity recognition through radar. ML algorithms have been in
practice since 2009 whereas DL has emerged after 2015. Yet
the overall count of using DL is higher than ML algorithms
which suggests that the trend has shifted towards the use of
DL for activity recognition with radar.

Shallow learning models are here to stay since a few
recent studies are still deploying shallow models for activity
recognition [134], [134], [141]. A recent work confirmed the
effectiveness of SVM for through-wall activity recognition
[134]. Another recent work presented in reference [113] (2020)
used kNN to classify activities using IR-UWB radar.

The detailed study of related articles suggests that fewer
features are used in shallow learning in comparison to DL ap-
proach. For instance, [126] used only six features from micro-
Doppler pattern of different actuates. Such shallow networks
also require less radar data samples in comparison to deep
networks. Unlike the computer vision research area, there are
few open-source datasets available for radars. Capturing data
with radar sensor and creating labelled dataset is a challenging
task. Few public radar-based datasets exist such as UWB-
gestures [173] and [105]. A DL model would get over-trained
with less amount of data. On the other hand, a shallow learned

classifier may not be robust against different environmental
conditions. DL model learns the hidden data hierarchy in more
complex way in comparison to shallow models [176].

In general, shallow networks are considered to deal with
small-scale data [193] driven with hand-crafted features and
possesses lower generalization capability [194]. For radar-
based activity recognition case, it was reported in one of the
studies that the performance of SVM degrades significantly
when the training and testing is done in separate environment
whereas, the performance of CNN is more consistent and
environment independent [70]. Nevertheless, shallow Learning
models are still in use for radar-based activity recognition.

3) Data Analysis and Processing Approaches: Activity
recognition with radar has mostly been considered as a classi-
fication problem and supervised ML algorithms are being used
[27] which additionally requires data labeling. To the best of
our knowledge, only two papers used unsupervised learning
approach for activity classification using k-means [111] and
HMM [110]. Additionally, semi-supervised learning for ac-
tivity recognition is proposed in references [76], [89], [143].
The rest of the studies mainly relied on supervised learning
approach for classification. Unsupervised learning have a huge
potential in future applications and must be considered. In
addition to that, few unsupervised features reduction and
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TABLE XIV
SUMMARY OF VS BASED STUDIES USING ML

VS Radar Hardware

Pulsed [11], [42], [48],
[54], [66], [178],
[180]

CW [46], [50], [53],
[57], [64], [65], [67]

FCMW [46], [50], [53],
[55], [57], [64], [65]

Any Hardware [51]

VS Algorithms

CNN [48], [53]–[55], [64],
[65], [180]

SVM [11], [45], [47],
[58], [67]

DNN [46], [50]
Gamma Filter [43]
AE [52], [56], [178]
HMM [42]
TCN [57]
CNN+LSTM [49]
GAN [66]

Learning Style

Unsupervised [51], [56], [57],
[180], [181]

Supervised [8], [11], [43]–
[50], [52]–[55], [65],
[179], [183]

clustering approaches have been used in literature such as
unsupervised PCA for features reduction [117] and DB-Scan
clustering [73] to reduce noise.

4) Algorithm Usage Trend: As stated earlier, our analysis
shows that initial studies were based on shallow classifiers
[42], [129]–[133], [137], [138]. Afterwards, deep models such
as CNN started to gain huge attention [68], [74], [78], [97] and
CNN showed dominance over SVM in terms of classification
accuracy. Few studies showed the dominance of CNN+RNN
over other models on public datasets [105] however, the note
on fine tuning the network and grid search is not discussed
in details. CNN based deep architectures such as GoogleNet
have also been considered in literature.

Recently, AE has shown its effectiveness for activity recog-
nition works [70], [116], [120]. A work presented by [145]
suggests that AE reduce the features space in comparison to
the CNN architecture since AE has the ability to compress the
data.

To show the overall trend of algorithms being used, data
shown in Table XV is plotted in Fig. 12. It is evident that
CNN algorithm is by far the widely used algorithm for activity
classification. Note that the count for CNN based studies
also contains the variants based on CNN such as ResNet
and GoogleNet as well. SVM is the second most widely
discussed classification algorithm. As stated earlier, multi-class
SVM classifier is the first ML based approach to recognize
activity through radar sensor [126]. To the date, few examples
of SVM based activity recognition exist [141]. The use of
reinforcement learning for radar-based healthcare applications
has not been observed so far.

5) Simulation and Public Data Sources: Owing to the fact
that capturing data using a radar might be difficult, simulation-
based datasets can further elevate the generalization to avoid
over fitting by providing a rich data distribution. Following
methods are found in literature to create simulation-based

dataset:
• MOCAP: Motion captured using RGB-D camera such

as Microsoft-Kinect can be used to generate radar data
[84], [102]. To our knowledge, this is the most widely
used method for data synthesis.

• Kinematic Model: This approach is similar to MOCAP
based approach where the joints movement is used to
generate synthetic Doppler effect [72].

• Data expansion through GAN: GAN is a powerful tool
to expand radar data, verified by many studies

• Direct conversion of videos into Radar data This method
provides a DL based framework to generate Doppler data
from video sequences [135] .

6) Radar Data Representation Scheme: Final survey shown
in Table XV for activity recognition work is related to the
the use of different radar-data as input to the ML classifiers.
Several different types of data-representation schemes have
been used. It can be seen that Time-Frequency or the Time-
Doppler map which can be extracted with any CW radar,
has been used in several researches. The Time-Range map
which can be extracted from FMCW and Pulsed radar data
has also been used extensively in literature. Several com-
binations of radar data such as ’Time-Doppler and Time-
range’, ’Time-range, Time-Doppler and Time-Angle’ has also
been discussed. The rest of the combination and detailed are
summarized in Table XV. The overall trends are visualized in
Fig. XV for convenience.

VII. LESSONS LEARNED

The history of artificial intelligence dates to 1940s [167]
whereas the first radar-based bio-medical signal was measured
in 1960s [38]. Radar sensing is also getting integrated with
the existing communication network [195]–[198]. Progress in
both fields is complimenting each other to overcome traditional
limitations. Reviewing the state-of-the art literature reveals
that non-contact (radar) sensors are getting integrated into
the healthcare industry at a rapid pace, and one may expect
commercial-graded medical devices based on radar sensor
very soon. Perhaps, a United States Food and Drug Authority
(US-FDA) cleared radar sensor for HR monitoring is already
in the market [199]. The overall summary of the survey
being conducted in this work is presented in Fig. 13. The
application being reviewed is shown in the middle whereas
left and right sides represent the radar-sensor and ML network
taxonomies. Here are a few learned lessons for the two topics
in consideration.

A. Vital Sign Measurement

• According to our survey, the use of ML for radar-based
VS monitoring is still at the initial stage. VS measure-
ments is mainly performed using conventional way with
ML being a helping tool. Currently, research is being
carried out to overcome the limitations and restrictions
being imposed by the conventional VS measurement
approach.

• As shown in Fig. 11, CNN is the most widely used
network followed by SVM. Regarding hardware usage,
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TABLE XV
SUMMARY OF ACTIVITY RECOGNITION WORKS BASED ON MACHINE LEARNING.

Radar Hardware
Pulsed [71], [74], [79], [80], [88], [90], [92], [99]–[101], [104], [107], [112], [113], [118],

[122], [124], [129], [131], [136], [139], [144]

CW [10], [67], [68], [76], [78], [84], [89], [91], [94], [96], [102], [108], [110], [111],
[126]–[128], [130], [132]–[134], [150], [151], [157]

FCMW
[69], [70], [73], [75], [77], [81]–[83], [85]–[87], [93], [95], [97], [98], [103], [105],

[106], [109], [114], [117], [119]–[121], [123], [125], [135], [137], [138], [140]–[143],
[145]–[149], [152], [154]–[156], [158]

Learning style
Shallow (28 works) [82], [90], [102], [110]–[113], [117], [118], [121], [122], [126]–[134], [136]–[141],

[144], [156]

Deep (63 works) [10], [68]–[81], [83]–[89], [91]–[101], [103]–[109], [114]–[116], [119], [120],
[123]–[125], [135], [142], [143], [145]–[152], [154], [155], [157]

Algorithms

CNN
CNN: [10], [68], [69], [71], [73], [74], [77]–[79], [81], [83], [84], [91], [97], [98],
[103], [114], [116], [119], [123], [142], [146]–[149], [151], [152], [155] 1D- CNN:

[94]–[96]
NN NN [117], [118] DNN [120], [154]

SVM [126]–[134], [136]–[141], [144]
LSTM [106], [115], [124]
GAN [72], [88], [89], [101], [108], [114], [150], [157].
AE [70], [76], [145]

HMM [110]
RNN / LSTM [106], [115], [124]

k-Means & k-NN k-NN: [90], [102], [112] k-Means: [111]
CNN+LSTM/RNN CNN+LSTM: [80], [85], [99], [104], [105]. CNN+RNN: [86], [87], [92], [107], [125]

Random Forest [113], [121], [122], [156]

Misc
Metric Learning: [93] Domain Adoption: [100] GNN & GCN: [75], [153] HDC:
[109] HMM: [110] Transfer learning with CNN [143] Features based Softmax:

[82]

Radar Data
Representation

Time-Range [70], [71], [73], [74], [79], [80], [90], [99], [104], [107], [113], [115], [118], [122],
[124], [129], [131], [136], [139], [155], [156]

Time-Frequency /
Time-Doppler

[10], [68], [72], [76], [78], [81], [84], [88], [89], [91], [92], [95]–[97], [100]–[103],
[106], [108]–[112], [116], [123], [125]–[128], [130], [132]–[134], [137], [138], [140],

[142], [143], [145], [146], [150], [151], [157]
Range Doppler [82], [83], [119], [120], [141], [149]

Time-Doppler &
Time-Range [69], [77], [117]

Time-Range, Doppler
& Angle [87], [121]

2D, 3D localization
& point maps [75], [86], [105], [114], [147]

Others

Time-Doppler& Angle: [93]. Raw-Data: [94] Range-Angle: [148] Range Time
Doppler: [98] Range Time Doppler: [98] Time-Doppler & Time-Range &

Range-Doppler: [85].

Fig. 11 suggests that all types of radars are being used
equally.

• For body movement cancellation, if the work focuses only
on detecting and discarding body movement instances,
CNN and SVM are good candidate solutions [11]. How-
ever, if the algorithm is trying to make measurements
even under the influence of body movement, regression
such as DNN based regression [44] can be performed.
Similarly, an auto-encoder (based on DL) tries to learn
the statistical properties for encoding purposes often used
in compression. The learned properties (or features) are
often used to learn normal breathing patterns. Hence can
be used to detect and mitigate the body’s movement
accordingly.

• For the issue of breathing harmonics, several harmonics
cancellation filtering approach exist such as comb filters
or gamma filters [43]. However, these filters require high
SNR and DL based filter such as DNN filter can be used
accordingly.

• To extract heartbeat waveform showing R-R peaks, radar-
extracted vital signs must be pre-processed since the
radar extracted waveform often looks like a sinusoidal
waveform [160]. Conventional CNN may not serve the
purpose, instead template matching based on CNN [65]
can be performed. In addition to that, unsupervised AE
can be trained to transform radar extracted vital signs into
ECG alike waveforms.

• To find accurate range-point, any ML algorithm providing
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Radar Hardware Healthcare Application Learning Taxonomy

Fig. 13. High level summary of research works being reviewed in this article. Type of radar, application and learning style are summarized
.

a suitable voting scheme to select optimum range-bin
can be used. Authors in reference [55] used CNN based
voting scheme.

• A few applications oriented studies also exist such as
usage of radar extracted vital signs for security and
surveillance purposes [37], [45]. These algorithms require
sophisticated classifiers such as CNN and SVM to detect
and classify the individual person.

• Researchers have not yet utilized the potential of gener-
ative AI. To our knowledge, only one work has utilized
generative AI for VS measurement [66].

B. Human Activity Recognition

Literature survey suggests that activity recognition topic is
dealt using ML only. Simple classifications based on signal
manipulation are very rare. Consequently, the number of
research works employing machine learning for this topic are
considerably higher than VS measurement research works.
Here are the few learned lessons based on the existing works:

1) Usage of DL based classifiers is significantly higher than
ML based classifiers.

2) First ML algorithm used for activity recognition was
based on SVM ( [126], 2008) and first DL classifiers
was CNN ( [78], 2015)

3) CNN is the most widely used algorithm, followed by
SVM and LSTM (Fig. 12).

4) Shallow model may show higher performances however,
the deep models show consistent performances in differ-
ent environments [70].

5) Considering multimodal data together such as range,
time, and doppler simultanuously for features learning
instead of range-Doppler only increases classification
accuracy [98].

6) Fusion of radar and camera shows better precision in
comparison to radar and camera alone [119].

7) Efficient algorithms can decrease need of having big
dataset: Using FMCW radar, Zhao et al. [103] reported

that the efficient algorithms can decrease the required
data samples for training purpose. With an improved
PCA, dimensional reduction is performed and a modified
version of VGG net is used on the dataset provided by
[81]. An overall accuracy of 96.3% is achieved which is
4.2% higher than the conventional PCA and VGGNET.

8) Shallow networks are still being used. For instance, we
witnessed a two-stage classification approach based on
random forest recently [121]. Another recent attempt
utilizing random forest classifier to recognize fifteen
activities of daily living [122]. In addition to that, shal-
low SVM and shallow NN are recently being used for
activity classification in references [141]. Similarly, K-
means clustering based unsupervised classification was
also used recently in reference [111].

9) Currently, a pre-selected activity set is being considered,
and the start and the finish instances of these activities
are already determined. However, practical scenarios
may require the detection of start and end time in
autonomous fashion.

10) Comparative analysis on studies utilizing same dataset
suggests that 1D-CNN with attention mechanism has
higher accuracy in comparison to end-to-end-1D CNN,
mobile-edge based lightweight CNN. However, few
shots learning which requires very less labelled data
samples, decreases the accuracy [91], [94]–[96].

11) The performance of shallow learning models (SVM in
particular), degrades when training and test is performed
in separate environment whereas DL model shows con-
sistent performance [194].

12) Using FMCW radar, Zhao et al. [103] reported that effi-
cient algorithms can decrease the required data samples
for training purposes.

13) It has also been observed that efficient features extrac-
tion scheme and classifier can reduce the need of having
big dataset [103]. Consequently, the small-scale dataset
must be treated with efficient classification approaches.
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Refer to Section IV for subtopics.

ML aided VS 

measurement 

Accuracy improvement

ML based early detection of cardiac 

disorders

HRV, Irregular Heartbeat, arrhythmias, myocardial 

infarction, congestive heart failure, Stress and Emotional 

State recognition.

Personalized solutions

Continuous monitoring
Interactive dashboard for remote risk assessments

ML based early detection of 

Respiratory  disorders

Sleep apnea detection, sleep stage classification, Chronic 

obstructive pulmonary diseases, breathing cessation etc.

Blood pressure variability detection Measure the stability of blood pressure

Using MIMO for multi-human vital 

sign detection

ML based sources separation & MIMO can used to find 

out vital signs of multiple co-located humans

Mechanical Heart movement Mechanical movement detection to see heart pumping

Fig. 14. Few Open Issues for VS Measurements.

14) Unlike vision-based activity recognition, public datasets
are very scarce for radar-based activity recognition
works.

C. Integrated Well-Being Tracker Based on These two Appli-
cations.

As stated earlier, several research works are currently con-
sidering both the vital sign measurement and activity recog-
nition in a holistic fashion [12]–[18]. Recently, concepts like
activity-aware vital sign measurement [18] have been receiving
increased attention. This is because a compact health monitor-
ing system that can measure multiple physiological quantities
simultaneously can offer integrated and personalized well-
being tracking. For example, monitoring vital signs following
a critical event, such as a fall, can help quantify the severity
of the incident. Low vital signs observed in an elderly person
after a fall can indicate an emergency situation.

VIII. FUTURE DIRECTIONS

A. Vital Sign Measurement

Survey suggests that the use of ML for radar-based VS is
very recent and still in the preliminary stage, suggesting a
considerable amount of room for new research. Each of the
VS related challenges mentioned earlier can be considered as
an open research topic. Fig. 14 shows a list of future directions
for VS measurement. We conclude that a huge importance
must be given to the early detection of cardiac and respiration
anomalies in future. As shown in Fig. 14 both these vital signs
can be used to build a wide range of detection and prevention
systems.

Unlike activity recognition, VS measurements lacks the
studies discussing generative ML concepts for training and
testing. The only study using generative ML is based on where
the data from multiple radar is fused together using GAN to
find the orientation of human body while capturing vital signs

[66]. We suggest the use of GAN to generate additional heart
and respiration waveform signals based on radar sensors.

Section V suggests that most of the VS studies mainly focus
on the extraction of breathing rate and heart rate. A similar
mechanism can be applied to find out the heart mechanical
movements as well. For instance, calculation of the point of
maximal (heartbeat) impulse near chest can lead us to find out
the size of heart. These topics are not yet been considered by
the researchers.

B. Activity Recognition

The future works related to activity recognition are summa-
rized in Fig. 15. The discoveries may have shown huge success
rate in research environment, the actual patients and clinicians
are required to trust these findings which suggest that clinical
and pre-clinical trials must be performed. Research works still
lack the clinical and pre-clinical trials for radar-based activity
recognition.

With few exceptions [154], activity from single human
subjects are being classified all the time. The issue of multi-
human activity recognition remains an open challenge.

Semi-supervised learning has great potential in this field as
it can reduce the burden of labeling datasets. In addition to
that, although the set of activities being classified is always
pre-decided and fixed, unsupervised learning can also enable
several novel applications. The addition of new activity by
users can be accomplished using this approach.

ML system requires a massive data to create rules and adjust
its parameters (automatically) for a generalized solution having
negligible bias. This suggests the need to have a public dataset
which additionally provides a competing platform for different
algorithms as well. Regarding radar-data representation and
type, comparative analysis is very rare. Research is required
to compare the accuracy and robustness of different radar-data.
Multi sensor data fusion can also be a future direction where
radar sensors fused with other sensors such as camera or lidar
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Clinicians and general public must trust these solutions which 

suggest testing systems beyond laboratories.

ML aided 

Activity 

recognition

Clinical and preclinical trials of ML 

based systems

Multi human activities recognition Activity recognition at multi-human environments

Semi-Supervised approaches

Open datasets

To reduce the burden of labeling radar datasets

Reinforcement learning 
Reinforcement learning has not been applied to the topic so 

far. 

To overcome the scarcity of datasets.

Continuous monitoring and 

personalized solutions
Interactive dashboard for remote monitoring purpose

Recognizing specific activities 

related to diseases 

Focus must be exerted to recognize activities related to 

mental disorder such as stress, anxiety, dementia, Parkinson, 

ADHD and behavioral disorders

Multi-Radar as well as single radar 

multi-domain data combination

finding the suitable data representation for specific activity 

and the method to combine multiple radar data

Making humans adopt radar technology in their living spaces.Ethical concerns

Interference mitigation How the radar will act in the presences of other radio devices 

in living spaces.

Fig. 15. Few Open issues and Future Directions for Human Activity Recognition.

• Fitness and exercise activity monitoring

• Security and surveillance related activity 

monitoring such as suspicious activity 

recognition.

• Patterns based human identification

• Vital sign measurement for fatigue analysis.

• Blood pressure measurement

• Non-contact asthma detection.

• Dementia and Alzheimer's

• Gait analysis for fall risk assessment

• Gait analysis for dementia detection

• Personalized dashboard for an overall health 

monitoring considering activity recognition, sleep 

blood pressure etc. 

• Detection of inability to activities of the perform 

daily life

• Vital sign monitoring of infants 

and newborns.

• Sleep wake monitoring

• Neonatal heart rate variability 

• Pulse rate

• Movement disorders and 

behavior disorders detection

• Baby movement quantification

Fig. 16. Cradle to grave healthcare applications in nutshell: Overall Future potential of healthcare radars from a broad application perspective..

can complement the existing of each other. We already have
witnessed a few works previously [106].

As defined earlier, the activities are often performed in
discrete fashion. More work is required in future to recognize
activity in a continuous set of motions being performed by the
participants.

Another future challenge can be the situation based activity
recognition aiming for elderly healthcare and well-being.
For instance, radar-based medication reminder system can be
proposed where the human subject must be reminded to take
medicine while going to bed. However, the subject will not
be reminded to take medicine while in living room. In the
similar way, owing to the benefits of privacy preserving nature

of radar, sensor can be deployed in the home environment to
ensure that elderly patient is performing the medical doctor’s
recommended exercises (such as strokes rehabilitation exer-
cises recommended by Phillips research [200]).

C. Overall Healthcare Applications of Radar
Since healthcare radar applicability is not limited only to

activity recognition and VS measurement, several other open
issues are listed in Fig. 16. The health monitoring topics also
vary based on age. For instance, neonates require vital sign
monitoring and movement quantification which has already
been attempted based on radar sensor by a few authors [201],
[202]. The young and middle aged person may require fitness
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monitoring systems and fortuitously as stated earlier radar
based fitness activity monitoring and vital sign systems already
exist [50], [105]. The integration of these system is yet to be
considered. In the similar way, elderly population often suffer
form neurological disorders such as alzheimer, apathy, and
dementia. Few others have discussed a vague applicability of
radar to detect these issues [8]–[10]. However, an integrated
radar-based solution using applications such as vital sign
monitoring, sleep monitoring, activity recognition is yet to be
proposed.

IX. CONCLUSION

Fueled by the availability of OTS radars, an upsurge has
recently been observed in non-military applications of radar,
with healthcare industry being one of the beneficiaries. ML
empowered healthcare-applications are breaking the traditional
limitations, making radar-based healthcare more practical and
robust. While the list of related applications is vast, in this
article, a detailed overview of ML based VS measurement
and activity recognition is presented.

We conclude that for the case VS measurement, the re-
searchers are trying to use ML as an additional helping tool
to increase the accuracy and robustness of the conventional
algorithms. ML classifiers are often used to detect the abnor-
malities in the VS which are either discarded or recovered.
To recover the distorted VS, regression using shallow and
deep learning models has shown its usefulness. Auto-encoders
based de-noising have also been used. ML has also enabled the
measurement of VS while the human subject is non-stationary.
In addition to that, the radar extracted VS can further be used
to train ML systems to develop several novel applications
such as non-contact user authentication by breathing and
robust HRV extraction. However, the research works are still
at the preliminary stages, suggesting a research gap in the
corresponding field.

For activity recognition, we conclude that activity recogni-
tion is an application which is always being resolved using
the ML approach. Most of the time, supervised leanring ap-
proach is considered, leaving a roam for semi-supervised and
unsupervised learning approaches. The reinforcement learning
based solutions are yet to be discussed. FMCW radar is the
most widely used radar for activity recognition, particularly in
recent years. A few public datasets also exist however, no such
dataset exist which can be used to compare the performance
of different radars. Unlike VS, activity recognition still lacks
clinical and pre-clinical evaluation.
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[30] Carolina Gouveia, José Vieira, and Pedro Pinho. A review on methods
for random motion detection and compensation in bio-radar systems.
Sensors, 19(3):604, 2019.

[31] Zhaozong Meng, Mingxing Zhang, Changxin Guo, Qirui Fan, Hao
Zhang, Nan Gao, and Zonghua Zhang. Recent progress in sensing
and computing techniques for human activity recognition and motion
analysis. Electronics, 9(9):1357, 2020.

[32] Brahim Walid, Jianhua Ma, Muxin Ma, Alex Qi, Yunlong Luo, and Yi-
hong Qi. Recent advances in radar-based sleep monitoring—a review.
In 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Com-
puting, Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pages
759–766. IEEE, 2021.

[33] Alessandro Davoli, Giorgio Guerzoni, and Giorgio M Vitetta. Machine
learning and deep learning techniques for colocated mimo radars: A
tutorial overview. IEEE Access, 9:33704–33755, 2021.

[34] Fahad Jibrin Abdu, Yixiong Zhang, Maozhong Fu, Yuhan Li, and
Zhenmiao Deng. Application of deep learning on millimeter-wave radar
signals: A review. Sensors, 21(6):1951, 2021.

[35] Umer Saeed, Syed Yaseen Shah, Jawad Ahmad, Muhammad Ali Imran,
Qammer H Abbasi, and Syed Aziz Shah. Machine learning empowered
covid-19 patient monitoring using non-contact sensing: An extensive
review. Journal of pharmaceutical analysis, 2022.

[36] Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun,
Gang Wang, and Jun Liu. Human action recognition from various
data modalities: A review. IEEE transactions on pattern analysis and
machine intelligence, 2022.

[37] Md Islam, Sheikh Nooruddin, Fakhri Karray, Ghulam Muhammad,
et al. Human activity recognition using tools of convolutional neural
networks: A state of the art review, data sets, challenges and future
prospects. arXiv preprint arXiv:2202.03274, 2022.

[38] Iu Ye Moskalenko. Application of centrimetre radio waves for non-
contact recording of changes in volume of biological specimens.
Biophysics, 5(2):259–264, 1960.

[39] Curtis C Johnson and Arthur W Guy. Nonionizing electromagnetic
wave effects in biological materials and systems. Proceedings of the
IEEE, 60(6):692–718, 1972.

[40] CHARLES Susskind. Possible use of microwaves in the management
of lung disease. Proceedings of the IEEE, 61(5):673–674, 1973.

[41] James C Lin. Noninvasive microwave measurement of respiration.
Proceedings of the IEEE, 63(10):1530–1530, 1975.

[42] Yogesh Nijsure, Wee Peng Tay, Erry Gunawan, Fuxi Wen, Zhang Yang,
Yong Liang Guan, and Ai Ping Chua. An impulse radio ultrawideband
system for contactless noninvasive respiratory monitoring. IEEE
Transactions on Biomedical Engineering, 60(6):1509–1517, 2013.

[43] Justin Saluja, Joaquin Casanova, and Jenshan Lin. A supervised
machine learning algorithm for heart-rate detection using doppler
motion-sensing radar. IEEE Journal of Electromagnetics, RF and
Microwaves in Medicine and Biology, 4(1):45–51, 2019.

[44] Changzhan Gu, Jian Wang, and Jaime Lien. Deep neural network based
body movement cancellation for doppler radar vital sign detection. In
2019 IEEE MTT-S International Wireless Symposium (IWS), pages 1–3.
IEEE, 2019.

[45] Shekh MM Islam, Ashikur Rahman, Narayana Prasad, Olga Boric-
Lubecke, and Victor M Lubecke. Identity authentication system using
a support vector machine (svm) on radar respiration measurements.

In 2019 93rd ARFTG Microwave Measurement Conference (ARFTG),
pages 1–5. IEEE, 2019.

[46] Hsin-Yuan Chang, Chia-Hung Lin, Yu-Chien Lin, Wei-Ho Chung,
and Ta-Sung Lee. Dl-aided nomp: a deep learning-based vital sign
estimating scheme using fmcw radar. In 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), pages 1–7. IEEE, 2020.

[47] Shekh MM Islam, Ashikur Rahman, Ehsan Yavari, Meheran Baboli,
Olga Boric-Lubecke, and Victor M Lubecke. Identity authentication
of osa patients using microwave doppler radar and machine learning
classifiers. In 2020 IEEE Radio and Wireless Symposium (RWS), pages
251–254. IEEE, 2020.

[48] Seong Kyu Leem, Faheem Khan, and Sung Ho Cho. Remote au-
thentication using an ultra-wideband radio frequency transceiver. In
2020 IEEE 17th Annual Consumer Communications & Networking
Conference (CCNC), pages 1–8. IEEE, 2020.

[49] Yu-Chiao Tsai, Shih-Hsuan Lai, Ching-Ju Ho, Fang-Ming Wu, Lindor
Henrickson, Chia-Chien Wei, Irwin Chen, Vincent Wu, and Jyehong
Chen. High accuracy respiration and heart rate detection based on
artificial neural network regression. In 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 232–235. IEEE, 2020.

[50] King Leong Li, Shih-Hsuan Lai, Kyle Cheng, Lindor Henrickson, Irwin
Chen, Vincent Wu, and Jyehong Chen. Exercise vital signs detection
employing fmcw radar and artificial neural networks. In CLEO:
QELS Fundamental Science, pages JW1A–149. Optica Publishing
Group, 2021.

[51] Zhe Chen, Tianyue Zheng, Chao Cai, and Jun Luo. Movi-fi: Motion-
robust vital signs waveform recovery via deep interpreted rf sensing.
In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, pages 392–405, 2021.

[52] Mikolaj Czerkawski, Christos Ilioudis, Carmine Clemente, Craig
Michie, Ivan Andonovic, and Christos Tachtatzis. Interference mo-
tion removal for doppler radar vital sign detection using variational
encoder-decoder neural network. In 2021 IEEE Radar Conference
(RadarConf21), pages 1–6. IEEE, 2021.

[53] Daiki Toda, Ren Anzai, Koichi Ichige, Ryo Saito, and Daichi Ueki.
Ecg signal reconstruction using fmcw radar and convolutional neural
network. In 2021 20th International Symposium on Communications
and Information Technologies (ISCIT), pages 176–181. IEEE, 2021.

[54] Zongxing Xie, Hanrui Wang, Song Han, Elinor Schoenfeld, and
Fan Ye. Deepvs: a deep learning approach for rf-based vital signs
sensing. In Proceedings of the 13th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics, pages
1–5, 2022.

[55] Hsin-Yuan Chang, Chih-Hsuan Hsu, and Wei-Ho Chung. Fast ac-
quisition and accurate vital sign estimation with deep learning-aided
weighted scheme using fmcw radar. In 2022 IEEE 95th Vehicular
Technology Conference:(VTC2022-Spring), pages 1–6. IEEE, 2022.

[56] Young In Jang, Jae Young Sim, Jong-Ryul Yang, and Nam Kyu Kwon.
Improving heart rate variability information consistency in doppler
cardiogram using signal reconstruction system with deep learning for
contact-free heartbeat monitoring. Biomedical Signal Processing and
Control, 76:103691, 2022.

[57] Jinbo Chen, Dongheng Zhang, Zhi Wu, Fang Zhou, Qibin Sun, and
Yan Chen. Contactless electrocardiogram monitoring with millimeter
wave radar. IEEE Transactions on Mobile Computing, 2022.

[58] Soumya Prakash Rana, Maitreyee Dey, Robert Brown, Hafeez Ur
Siddiqui, and Sandra Dudley. Remote vital sign recognition through
machine learning augmented uwb. 2018.

[59] Seong-Hoon Kim and Gi-Tae Han. 1d cnn based human respiration
pattern recognition using ultra wideband radar. In 2019 International
Conference on Artificial Intelligence in Information and Communica-
tion (ICAIIC), pages 411–414. IEEE, 2019.

[60] Xiaofeng Yang, Koki Kumagai, Guanghao Sun, Koichiro Ishibashi,
Nguyen Vu Trung, Nguyen Van Kinh, et al. Dengue fever screening
using vital signs by contactless microwave radar and machine learning.
In 2019 IEEE sensors applications symposium (SAS), pages 1–6. IEEE,
2019.

[61] Jian Gong, Xinyu Zhang, Kaixin Lin, Ju Ren, Yaoxue Zhang, and
Wenxun Qiu. Rf vital sign sensing under free body movement. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(3):1–22, 2021.

[62] Shuqiong Wu, Takuya Sakamoto, Kentaro Oishi, Toru Sato, Kenichi
Inoue, Takeshi Fukuda, Kenji Mizutani, and Hiroyuki Sakai. Person-
specific heart rate estimation with ultra-wideband radar using convo-
lutional neural networks. IEEE Access, 7:168484–168494, 2019.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3334269

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 33

[63] Haoyu Zhang. Heartbeat monitoring with an mm-wave radar based on
deep learning: A novel approach for training and classifying heteroge-
neous signals. Remote Sensing Letters, 11(11):993–1001, 2020.

[64] Sungwon Yoo, Shahzad Ahmed, Sun Kang, Duhyun Hwang, Jungjun
Lee, Jungduck Son, and Sung Ho Cho. Radar recorded child vital
sign public dataset and deep learning-based age group classification
framework for vehicular application. Sensors, 21(7):2412, 2021.

[65] Unsoo Ha, Salah Assana, and Fadel Adib. Contactless seismocardio-
graphy via deep learning radars. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking, pages
1–14, 2020.

[66] Xiuzhu Yang, Yibo Yu, Hongyu Qian, Xinyue Zhang, and Lin Zhang.
Body orientation and vital sign measurement with ir-uwb radar net-
work. In 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), pages 485–488.
IEEE, 2020.

[67] Hoang Thi Yen, Masaki Kurosawa, Tetsuo Kirimoto, Yukiya Hakozaki,
Takemi Matsui, and Guanghao Sun. A medical radar system for non-
contact vital sign monitoring and clinical performance evaluation in
hospitalized older patients. Biomedical Signal Processing and Control,
75:103597, 2022.

[68] Tyler S Jordan. Using convolutional neural networks for human
activity classification on micro-doppler radar spectrograms. In Sen-
sors, and Command, Control, Communications, and Intelligence (C3I)
Technologies for Homeland Security, Defense, and Law Enforcement
Applications XV, volume 9825, pages 47–55. SPIE, 2016.
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