
 
Abstract - Many real-time distributed collaborative applications are 
emerging that require exchange of critical sensor data among 
geographically distant end users under resource-constrained network 
conditions. The QoS requirements, e.g., required bandwidth, latency, 
acceptable data quality, and reliability are interdependent, and 
critical to the operation of these applications. This paper presents an 
AWON (Application-aWare Overlay Networks) architecture for 
deploying application-aware services in an overlay network to best 
meet the application requirements over the available overlay 
networking infrastructure. An application programming interface 
(API) is presented to facilitate development of applications within the 
AWON architectural framework. The API supports the configuration 
of overlay nodes for in-network, application-aware processing. 
Application-defined plug-in modules are used to deploy application-
specific functionality at each overlay node. The API also enables 
communication between application and the overlay routing protocol 
for the desired QoS support. The effectiveness of the AWON 
architecture and the API is demonstrated for a real-time weather 
radar data dissemination application using planetlab. Experimental 
results show that AWON-based application-aware services 
significantly improve the quality of the content delivered to the end 
users in bandwidth-constrained conditions. 
 
1. Introduction 

 
Distributed collaborative adaptive systems relying on the 
Internet for connectivity are increasingly used for applications 
such as weather monitoring, industrial environment 
monitoring, and distributed target tracking [13, 16]. In many 
of these applications, a variety of data must be distributed in 
real time to multiple end users at distant geographical 
locations. These data streams and end users may have 
differing QoS requirements for the data based on the ultimate 
use of the data. The data-dissemination infrastructure must 
therefore be able to adapt in an application-specific manner to 
meet these differing data requirements. Collaborative Adaptive 
Sensing of the Atmosphere (CASA) [16], an example of these 
emerging distributed collaborative adaptive systems, is based 
on a dense network of weather radars that operate 
collaboratively to detect tornadoes and other hazardous 
atmospheric conditions. The underlying network infrastructure 
itself may be affected by such adverse weather conditions, and 
as such one cannot rely on ISP-provided QoS guarantees or 
service-level agreements.  CASA application software must 
thus monitor the underlying network, link availability, link 
quality, and other performance measures, and then use this 
information to get the best possible service out of  

 
the available network facilities. The use of an overlay network 
paradigm is helpful in meeting such application needs.  

Application-aware processing such as selective frame 
discards for video streaming has shown promising results in 
improving the content quality [9] under congested network 
conditions. However, adaptive data-selection mechanisms in 
traditional applications based on end-to-end data delivery 
relied on end-host applications to adapt to network conditions 
[2, 9, 21]. Active networks [20] introduced the concept of in-
network processing, where routers and switches of the network 
perform customized computations on messages being 
forwarded. 

Overlay networks have been proposed to provide a range 
of useful services for enhancing QoS for Internet applications 
including bandwidth guarantees [1,3,11,19,22]. With overlay 
networking, application-aware processing can be implemented 
at intermediate nodes, thus significantly enhancing the ability 
of the application to adapt to network conditions and improve 
the QoS provided to the end users. Examples of these 
functionalities include application-aware data forwarding and 
data drops, as well as application-aware rate control during 
network congestion at intermediate nodes [7]. It is often 
desirable to use the same overlay infrastructure for multiple 
simultaneous applications such as weather radar data 
streaming, and video streaming to multiple end users. A 
general-purpose overlay architecture that supports deployment 
of application-aware services on the overlay nodes in the 
network, and a programming interface required for such 
services that can leverage such an overlay network 
infrastructure to support application-specific QoS 
requirements will significantly enhance the overlay-based 
application deployment. This paper proposes the AWON 
(Application aWare Overlay Networks) architecture for 
application-aware overlay networking, and presents a general 
purpose programming interface. The AWON architecture and 
the API presented in this paper allows the applications to 
regulate the flow of data through overlay nodes in an 
application-aware manner, selecting data to be forwarded, and 
extracting/repackaging data, taking application-specific 
constraints into account. 

A significant amount of research has been done on the 
design and development of overlay routing protocols to 
improve an underlay network’s resilience and performance 
[3,14,18]. Our work complements and takes advantage of such 
ongoing research effort of performing QoS-aware routing in 
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overlay networks such as RON[3]. OverQoS[19], an overlay-
based architecture can provide a variety of QoS-enhancing in-
network services in the intermediate nodes of overlay 
networks, such as eliminating the loss bursts, prioritizing 
packets within a flow, and statistical bandwidth and loss 
guarantees. Our work is motivated by the same vision of 
enhancing QoS support within the network without the support 
from IP routers. An important difference between the AWON 
and the OverQoS architectures is that in the AWON-based 
approach, quality of service provided to an application is 
enhanced by performing application-aware processing within 
the network. Moreover, the AWON architecture is highly 
flexible and can accommodate QoS requirements of large class 
of applications.  OCALA [10] and Oasis [15] enable the users 
of legacy applications to leverage overlay functionality 
without any modifications to their applications and operating 
systems. Opus [8], which is motivated by active networking, 
provides a large-scale common overlay platform and the 
necessary abstractions to service multiple distributed 
applications. In contrast to our work, Opus focuses on the 
wide-area issues associated with simultaneously deploying and 
allocating resources for competing applications in a large-scale 
overlay networks. XPORT[17] is a tree-based overlay network, 
which can create dissemination trees based on diverse 
performance requirements of the applications.  

Section 2 provides motivation for AWON and the 
programming interface for overlay networks. Section 3 
explains the AWON architecture for deploying application-
aware services in overlay networks. Section 4 describes the 
API. Section 5 describes the flow of API calls to support the 
AWON architecture. An example implementation is illustrated 
in Section 6. Section 7 presents Planetlab-based experimental 
results that demonstrate the effectiveness of the AWON and 
the corresponding API for weather radar data streaming. 
Conclusions are presented in Section 8. 
 
2. Motivation 
 
Applications relying on overlay-based implementations to 
achieve performance, reliability and other application specific 

requirements must be able to configure overlay nodes to 
perform in-network application-aware processing. A flexible, 
efficient approach for the deployment of QoS-sensitive 
applications using overlay networks should facilitate the 
monitoring of the QoS received by an application in the 
overlay network, and allow easy deployment of application-
aware processing at  intermediate overlay nodes. A framework 
is thus required for realizing such application-aware overlay 
networks. A programming interface is needed to facilitate 
development and deployment of applications within this 
application-aware framework. 

The API provides a layer of abstraction between an 
application and the underlying dynamics of the network 
infrastructure. It is desirable for the API to support 
application-aware adaptation in the overlay network, with each 
participating node possibly performing different application-
aware operations to meet the overall goals of the application(s). 
The API must support node configuration in an application-
aware manner, with each node being configurable to support 
multiple applications concurrently. There is also a need for 
communication between the application and the underlying 
overlay layers for supporting application-specific QoS 
requirements [3,4,19,22]. For this to be realized, the API must 
allow an application to specify its QoS requirements to the 
system. When the underlying system is able to accept the 
application with its QoS requirements, the API should be able 
to communicate this acceptance to the application. In Sections 
3 and 4, we describe AWON architecture and its API 
respectively. We consider a weather-monitoring network 
application to illustrate the need for an application-aware 
architecture and a programming interface for such overlay 
networks.  
 
3. Application Aware Overlay Network (AWON) 
Architecture  
 
Fig. 1 shows an application-aware overlay network for 
distributing data to multiple sink nodes with different end user 
requirements such as data quality and bandwidth requirements.  
Let us now illustrate the myriad roles overlay nodes may play 
in meeting application requirements.  

In Fig. 1 source nodes 1-3 may perform application-level 
packet-marking to indicate the usefulness of the data to a 
particular application; nodes colored blue (nodes 1-5) may 
perform packet forwarding/drop based on the marking done by 
the source node;  nodes colored green (multicast nodes 4, 7, 
and 8) may distribute data to multiple end users and perform 
independent congestion control for each end user in an 
application-aware manner. The multicast nodes combine the 
requests from the end users and send an aggregate upstream 
request to the specific source node.  

If the network experiences congestion, congestion-based 
packet (information) discard can be performed at the source or 
at intermediate nodes, according to the available bandwidth. A 
source node can thus mark packets based on the relative 
importance of the information sent to the multicast nodes 4, 7, 
and 8. This facilitates application-aware selective drops (rather  

Figure 1. Overlay network for application-aware data dissemination  
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than random drops) within the network. Intermediate 
forwarding nodes 1-5 may use this marking information at the 
time of forwarding during network congestion. Similarly node 
6, a fusion node, may combine data from multiple sources to 
reduce the downstream data bandwidth requirements.   

In addition to the packet handling functions discussed 
above, there are two other classes of functions a node may 
implement. First, there is a need to support multiple 
applications simultaneously on the same overlay network. 
Also, it may be necessary for an application to track 
performance of the underlying networking infrastructure in 
meeting the application requirements.  

Fig. 2 shows the AWON architecture to support 
application-aware data-dissemination services. There are two 
key components of the AWON: (i) Application Manager, (ii) 
Application Plug-ins. Each of these components focuses on 
two different areas of functions with a common goal of 
providing best effort QoS services to the applications and 
providing a layer of abstraction to the application developers. 
Application developers are not required to be aware of other 
applications deployed on the same node. Moreover, they need 
not be aware of the implementation of the underlying overlay 
routing infrastructure. 
(i) Application Manager: The key responsibilities of the 
application manager are: 
1. De-multiplexing packets received for different 

applications at the same node 
2.  Logging QoS status information for each application 

and informing (when appropriate) the underlying 
overlay routing layer about the QoS status/requirements 
of the applications 

3.  Authorization of a new user in the system based on a 
local policy 

 

(ii) Application Plug-ins: In the application-aware paradigm, 
each application is required to configure its functionality in the 
participating overlay nodes. The AWON architecture supports 
application-specific plug-ins that implement the functions 
performed by the participating overlay nodes in the data 
dissemination. For a particular application, multiple nodes can 
play different roles, motivating the need to deploy relevant 
plug-ins on those nodes that implement particular functions. 
For an example, with a collaborative radar application [16], 
the source node in Fig. 1 has application plug-in 1 shown in 
Fig. 2 for supporting data selection and marking. Similarly 
nodes 1-5 in Fig. 1 may have application plug-in 2 to support 
application-aware forwarding based on the source’s marking. 
Nodes 4, 7, and 8 may have application plug-in 3 to support 
application-aware multicasting and congestion control. Note 
that the same node may have multiple plug-ins to support 
multiple functions performed by a node for a given application. 
For an example, in Fig. 1, node 4 acts as a forwarding node 
and a multicasting node for the same application. 

As seen in Fig. 2, the AWON architecture requires 
communication between application-manager and plug-ins, 
application manager and routing layer, and between plug-ins 
and routing layer. Section 4 describes the programming 
interface to support deployment of application-aware services 
using AWON. 
 
4. Application Programming Interface  
 
Following are the key goals of the application programming 
interface: 
 
(i) Enable deployment of application-aware services on the 

overlay network infrastructure. 
(ii)    Provide real-time monitoring of the QoS status of the 

application. 
(iii)    Facilitate communication between application-manager 

and plug-ins, application manager and routing layer, 
and between plug-ins and routing layer. 

 
There are three broad categories of the API calls to deploy 
applications within the AWON framework: 
1. API calls for node configuration 
2. API calls for communication between application plug-ins 

and application manager 
3.  API calls for communication with overlay routing layer 
 
4.1.   API calls for node configuration: As shown in Fig. 
1 and Fig. 2, each participating node from source to the 
destination may play a different role for a particular 
application. The app_config() API is used to perform node 
configuration for a particular application: 
 
int app_config (app_id, plug-in()): app_config() is used by 
the application developer to deploy application specific 
functionality at all the participating overlay nodes. For a given 
application, a unique application identification app_id is 
defined and is used as an input parameter. An app_id value of 

Figure 2. AWON architecture for application-aware data dissemination 
using overlay networks – An example node with multiple plug-ins 
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0 is reserved for the special case of the application manager 
module. It is important to note that app_id is a globally unique 
identifier for a given application deployed over the overlay 
network. However, the plug-in() function reference parameter 
may be different for different nodes. The functionality of the 
plug-in() function depends on the application-specific function 
to be performed by a particular node during data transfer.   

The API allows the same overlay node to be concurrently 
used for multiple applications. Therefore, app_config() can be 
called by different applications with different app_id 
parameter to configure the operation of the node to meet 
application-specific requirements. 
 
4.2. API calls for message exchange between user 
application and application manager: An API is required 
for three different types of messages that are exchanged 
between application plug-ins and the application manager as 
shown in Fig. 2:  
(i) Packets received by the application manager from the 

overlay routing layer for the user applications 
(ii) Authorization messages to allow new users in the 

system 
(iii) Periodic exchange of application-specific QoS 

messages  
 
We define three API calls for message exchange between an 
application and the application manager, message_send(), 
message_recv(), and recv_upcall(). 
 
int message_send(dest_app_id, msg_buff): As shown in Fig. 
2, the message_send () API is used by the application manager 
and the application plug-in module to send messages to each 
other within the same node. It accepts two input parameters, 
dest_app_id and msg_buff.  dest_app_id is a unique 
destination application identifier. msg_buff is the actual  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   
 

message sent to the destination node. It returns 1 when 
message is successfully transmitted otherwise it returns 0. 
 
int message_recv(src_app_id, msg_buff): As shown in Fig. 
2, message_recv() is used by the application plug-in and the 
application manager to receive messages from each other. It 
accepts two arguments, src_app_id and msg_buff. src_app_id 
is the source application id of the message sender. If the 
source is the application manager then src_app_id is 0 
otherwise it is a positive integer when source is an application 
plug-in. msg_buff contains the copy of the message received 
from the sender side. Now we explain msg_buff format in 
detail as follows: 

Fig. 3(a) shows the format of the msg_buff. Following are 
the fields of msg_buff as shown in the figure: 
Application Id: This is the unique application id of the sender 
application.  
Message Type: There are three types of messages that are 
exchanged between application manager and the plug-in 
modules depending on the context. This field can be 
QosRequest, QosAccept, or QosStatus. 
Length:  The Length field indicates the size of the msg_buff 
that includes variable length message field. 
Message: The message field content varies with message_type. 
When the message type is QosRequest, the message field 
contains target_bw, minimum_bw, and latency requirement 
fields. Alternatively, when the message type is QosAccept or 
QosStatus, message field stores TRUE or FALSE flags.  
 
void recv_upcall(app_id, pkt_buffer, length): The 
recv_upcall() API is used by the application manager to 
deliver a received packet from the overlay routing layer to the 
appropriate application. It accepts three input parameters:  
app_id, pkt_buffer, and length. app_id refers to the application 
identifier of the application for which packet is received, 
pkt_buffer is the pointer to the packet received from the 
overlay routing layer, and the length field denotes the size of 
the pkt_buffer. 
 
4.3.  API calls for communication with overlay      

routing layer 
 
An API is also required to support communication between the 
overlay routing layer and the application plug-ins, and to 
support communication between the overlay routing layer and 
the application manager. As seen in Fig. 2, the AWON 
architecture requires the following communication support: 
(i) Packet delivery from an application plug-in to the 

overlay routing layer 
(ii)  Packet delivery from the overlay routing layer to the 

application manager 
(iii)  Exchange of an application’s QoS requirements with 

the overlay routing layer 
To support these requirements, we define three APIs under 
this category, onl_send(), onl_recv(), and onl_QoS(). 
 

(a) (b) 
Figure 3. (a) msg_buff format used for communication between 
application manager and application plug-ins. (b) pkt_buff format - 
an example 
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int onl_send(dest, pkt_buff, length): The onl_send() function 
is used by an application to transmit application data using the 
overlay routing protocol. It accepts three input parameters dest, 
pkt_buff, and length. dest refers to the destination address of 
the packet, pkt_buff is the pointer to the application packet 
buffer, and length indicates the size of the pkt_buff. It returns 1 
when packet is transmitted successfully and returns 0 
otherwise. 

The onl_send() selects the next hop for transmission based 
on the overlay routing protocol implementation. Alternatively, 
the application may use overlay source routing to route 
packets through pre-determined paths. Under most 
circumstances pkt_buff should contain app_id, source, and 
destination addresses. Fig. 3(b) shows a possible structure of 
the application packet, i.e., pkt_buff. All non-shaded fields are 
configurable and can be determined based on application-
specific characteristics and in conjunction with the overlay 
routing protocol used in the network. The different packet 
fields shown in Fig. 3(b) are as follows: 
Source: The unique address of the source node.  
Destination: The address of the remote sink node or the next 
hop in the path from source to the destination sink node. 
Application Id: The unique application identifier which is set 
by the application plug-in module at the time of transmission. 
Version:  Current version of the packet format. 
Application Packet Type: Depending on the application, this 
field is used to indicate the contents of the packet data. Some 
of the possible packet types are: DATA, ACK, REQUEST, 
TERMINATE. 
Routing Packet Type: Depending on the routing protocol 
implementation, this field is used to define different packet 
types that can be used by the routing protocol to select the next  
hop for routing the application packet. Some of the possible 
routing packet types are SOURCE_ROUTING, 
QOS_ROUTING. 
Total Length: The size of the packet in bytes. 
Application Data Length: The size of the Application 
Information field in the packet in bytes. The value of this field 
may vary from application to application, and can also vary 
from packet to packet within the same application.  
Routing Information: The contents of this field are defined 
based on the overlay routing protocol implementation. For 
example, when QoS-aware routing is supported, then an 
overlay routing protocol may store QoS requirements that 
should be considered for the next hop selection. When source 
routing is used, then this field includes the complete path to be 
followed between source and the destination node. 
Application Information: The content of this field is 
determined by the application transmitting the data. It may 
contain application-specific header and data payload. Some of 
the possible application-defined fields are sequence number, 
packet marking, QoS requirements, and metadata.  
 
int onl_recv(pkt_buffer) : As shown in Fig. 2, the onl_recv() 
API call is used to receive data from the overlay routing 
protocol layer. It accepts one argument, pkt_buffer, which is a 
pointer to the packet received from the overlay routing layer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on the application id field in the received packet, the 
packet is demultiplexed to the appropriate application using 
recv_upcall() as explained earlier. When a packet is received 
successfully, onl_recv() returns length of the packet otherwise 
-1 is returned. 
 
void onl_QoS(app_id, bandwidth, latency): As shown in Fig. 
2, the onl_QoS() API is called by the application manager to 
inform the overlay routing layer of an application’s QoS 
requirements. It accepts three input parameters, app_id, 
bandwidth, and latency. app_id is the application id for which 
QoS requirements are specified, bandwidth is the minimum 
bandwidth requirement of a particular application, and latency 
is the maximum latency that an application may tolerate. 
 
5. Summary of API Calls  

 
Fig. 4 shows the API calls that may be made on an overlay 
node to support application-aware services. app_config() 
configures a particular overlay node by deploying application-
specific plug-in modules. An application plug-in module may 
call message_send() and message_recv() to exchange control 
information with an application manager. An application may 
send a QosRequest message to the application manager before 
accepting a request from any new user. A module may also 
periodically exchange application-specific QosStatus 
information with the application manager. As shown in Fig. 4, 
the application also uses the onl_send() to send packetsto the 
underlying overlay routing layer. 

As mentioned earlier, the application manager uses 
message_send() and message_recv() to exchange control 
information with the application plug-ins. In particular, the 
application manager sends authorization messages to the 
application plug-in for accepting or rejecting requests from 
new users. The application manager uses local policy to 
determine the type of authorization messages. The application 
manager communicates with the overlay routing layer using 
the onl_QoS() and onl_recv() interfaces. As shown in Fig. 4,  

                    Figure 4. API calls Example 
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when the application manager determines that the application 
is not meeting its QoS requirements, the onl_QoS() interface  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is used to request the overlay routing layer to adapt its 
operation for meeting application specific QoS requirements. 

The application manager uses the onl_recv() interface to 
receive a packet arriving at the overlay node from the network. 
As seen in the figure, a received packet is demultiplexed to the 
application plug-in module by calling recv_upcall() interface. 

 
6. AWON Implementation Example for the CASA 
Application  

 
To demonstrate AWON capabilities, let us consider a 

CASA application as shown in Fig. 1, where data from a 
radar source node is distributed to multiple end users with 
distinct bandwidth and data quality requirements. In this 
application, an application-aware multicast node receives data 
from the source node for further distribution to multiple end 
users. AWON architecture is used to perform application-
aware processing at source nodes and multicast node to best 
meet the QoS requirements of multiple end users.  

Fig. 5 shows the implementation details of a source node 
and a multicast node based on the AWON architecture. Both 
nodes use application-specific plug-ins to implement 
application-specific functionalities. The application manager 
implementation is same for all nodes in the overlay network. 

Figure 5. Implementation example based on AWON architecture. 
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Figure 6.  Application-aware framing and packet marking. 
Each non-white color represent rate for which packet is 
marked ,i.e., rate R1-R8 [12]. 



 7 

As shown in Fig. 5, the source node plug-in implements 
application-level packet marking and a rate-based congestion 
control algorithm. Packet marking determines the subset of 
the information that should be transmitted at a lower 
transmission rate for acceptable data quality at the receiver 
end. Fig. 6 explains the marking scheme used in the current 
implementation [12]. 

 Consider an example as shown in Fig. 6, where a sensor 
node generates 8 application data units (ADU) within the 
bounded time at rate R1. The ADU is defined as a 
fundamental application data entity that can be used by an 
end user algorithm for processing. Each row in Fig. 6 shows 
the subset of ADUs that are selected for transmission at a 
lower transmission rate when a higher rate cannot be 
supported because of bandwidth constraints. The subset of 
data selected at lower rate depends on the end user data 
quality requirements. For example, certain end users need 
uniformly spaced ADUs when only a subset of the data can 
be selected for transmission. Alternatively, other end users 
prefer a contiguous group of ADUs when bandwidth is 
constrained. Consider the case when the source node 
transmits data at rate R1, and as seen in the figure the data 
transmitted at lower rates is a subset of the data transmitted at 
rate R1 and ADUs are selected uniformly at lower rates. The 
packet containing ADU 1 is marked with different color flags 
corresponding to different rates, i.e. rates R1-R7. Similarly 
packet containing ADU 3 is marked with different colors 
corresponding to different rates, i.e., R1, R2, R4, and R5. As 
shown in the Fig. 6, every packet contains a flag for each rate 
for which it is transmitted indicated by different colors. Note 
that multiple flags can be set to indicate suitability of the 
packet for multiple transmission rates.  

The QoS monitoring component of the plug-in monitors 
the quality of the service received by the application users at a 
source node. Currently, the component monitors whether end 
users’ bandwidth requirements are met. The multicast 
application plug-in supports application-aware rate control 
using a token-bucket scheme and on-the-fly forwarding of data 
based on the packet marking. More information on the packet-
marking and token bucket scheme used for the implementation 
can be found in [12]. This application-specific plug-in selects 
data for forwarding based on the available network bandwidth 
and the packet marking for multiple end users. Note that the 
packet marking performed at the sender node determines the 
priority of the packet to be forwarded at the multicast node. In 
such systems, each end user may need a different subset of the 
data from the radar source based on the intended use of the 
data [6,7]. During network congestion, overlay nodes can 
perform a better job by selectively dropping [2,7,9,21] packets 
(information) instead of dropping randomly within the 
network, taking into account end-user requirements for 
different subsets of the data. Similarly, other nodes 
participating in the data transmission can play different roles 
and thus may have different plug-in implementations. For 
example, if a node is configured as a simple forwarding node 
for a particular application, then the application plug-in 
forwards the data to its overlay routing layer for further 

processing. The overlay routing layer may then select the next 
hop for the transmitted packet based on the local policy. If 
QoS-aware routing is supported, the next hop may be selected 
based on the application’s QoS requirements. Alternatively, 
when source routing is used, the routing protocol would select 
the next hop based on the path information included in the 
packet. 

 
7. Performance Evaluation 
 
In this section, we demonstrate the effectiveness of AWON 
architecture and the API for implementing and deploying real-
time applications on overlay networks such as planetlab [23]. 
Application: We consider a mission-critical CASA [16] 
application for the performance evaluation. One of the 
requirements of CASA application is to distribute high 
bandwidth real-time weather radar data to multiple end users 
[7] with distinct critical bandwidth and data quality needs.  For 
such applications, it is not only important to meet the 
bandwidth and latency requirement, it is also important to 
meet the minimum content-quality requirement for the proper 
operation of the system. For example, each CASA end user 
may specify its critical minimum rate (MR) requirement that 
should be met for the proper operation of the system. 
Moreover, each end user may also dictate a target rate (TR), 
i.e., the maximum rate at which data can be received by the 
end user. A source node periodically generates a block of 
digitized radar data, referred to as a DRS block [5, 6]. Each 
end user specifies its content-quality requirement in terms of 
tolerance towards bursty losses or uniform losses within the 
DRS block. In the current implementation, we consider a case 
in which all end users prefer uniform drops of information 
instead of bursty drops within a DRS block. In case of our 
CASA application, during network congestion, the desired  
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Figure 7. Planetlab test-bed for application-aware multicasting 
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rates are between MR and TR and the desired packets are 
those that contain subset of the DRS block of data with 
uniform drops. All these selected packets are marked for rate 
between MR and TR at the source node. We implement this 
application using the AWON architecture, as it enables 
application-aware processing within overlay nodes to enhance 
the QoS under dynamic resource-constrained conditions. 
Overlay Network Topology: Fig. 7 shows the Planetlab- 
based overlay network topology used for application-aware 
data distribution and performance evaluation. It consists of 11 
overlay nodes, each configured to perform application-specific 
tasks to meet the overall QoS requirements of the application. 
In Fig. 7, there are four different types of nodes that are 
present in the overlay network - a source node, a multicast 
node, a forwarding node, and an end user node. The source 
node performs selective data drop during network congestion 
as well as application-aware packet marking based on the end 
user’s data quality requirement as explained in Section 6. The 
goal of the marking scheme is to deliver the most appropriate 
subset of data for the end user under congested network 
conditions. The forwarding node may decide to forward a 
packet based on a packet’s marking and the available 
downstream link bandwidth. The multicast node performs on-  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the-fly selection of the data for forwarding based on packet 
marking to the respective end users at the current transmission 
rate. The multicast node uses TRABOL (TCP-Friendly Rate 
Adaptation Based On Losses), a UDP-based rate-based 
congestion control algorithm [5,6], to independently determine 
the transmission rate for each end user. The end-user node 
performs content quality evaluation using application-specific 
performance metrics and provides periodic feedback to the 
multicast node about its current receive rate. In Fig. 7, six 
different end-user nodes 1-6 at geographically different 
locations receive weather radar data streams from the source 
node at MIT, Cambridge at their required TR and MR over the 
planetlab. The source node generates data at a constant rate of 
10Mbps. End user nodes 1-3 make their data request with the 
desired TR and MR requirement to the multicast node at Ohio. 
Similarly end-user nodes 4-6 make data requests with their 
desired TR and MR to the multicast node at Purdue. After 
requests are received from the end users, both multicast nodes 
independently send aggregate bandwidth requests to the source 
node at MIT. A single stream of radar data is delivered from 
MIT to the Ohio node for further distribution to end user nodes 
1-3. Similarly, a single stream from the MIT source node is 
delivered to the multicast node at Purdue for further 
distribution to end user nodes 4-6.  

Figure 8. Impact of application-aware architecture on the content quality delivered to the end user s (a) Standard deviation of data for  
end user 5 with low bandwidth requirement TR=4, MR=2, (ii) Standard deviation of data for end user 1 with high bandwidth requirement 
TR=7, MR=4. (c) Marked packet frequency for end user 5, (d) Marked packet frequency for end user 1 
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Performance Metrics: The effectiveness of the AWON 
architecture and the programming interface can be evaluated 
by measuring the quality of the content delivered to the end 
users under different network congestion conditions. For most 
real-time applications, application-specific metrics are used to 
measure quality of the content; for multimedia applications, 
these metrics include PESQ [1,19] for voice quality and PSNR 
[19] for video streaming. For the CASA application we use the 
standard deviation of the estimated sensed values (specifically, 
reflectivity and wind velocity) to evaluate quality of the radar 
data [6,7]. A lower standard deviation indicates better radar 
data quality. A minimum standard deviation, i.e., the highest 
content quality, is achieved when all the data from the source 
node is delivered to the end users. Alternatively, we also 
evaluate the content quality by measuring the frequency of the 
desired packets at the receiver node based on their markings. 
For better quality of the data, it is necessary to receive more 
packets with the desired markings. For an application with TR 
and MR bandwidth requirements, the “most appropriate” 
packets are marked to result in data rates between MR and TR.  
Methodology: We demonstrate the effectiveness of the 
AWON architecture for application-aware processing within 
the overlay network by performing three sets of experiments.  

In the first set of experiments, experiment 1, no 
application-aware processing is performed in the network, i.e., 
the source node randomly selects data from a DRS block of 
radar data for transmission, without considering end-user loss 
tolerance requirements. Packet marking is performed but 
packet marks are not used at the forwarding nodes or at the 
multicast nodes for on-the-fly selection of packets for 
transmission. In experiment 2, the source node performs 
application-aware selective drop during network congestion 
and marks packets at the time of transmission. However, 
packet marking is not used at forwarding nodes and multicast 
nodes for on-the-fly selection of data for transmission to the 
end users. Experiment 2 is equivalent to a network that 
supports limited application-aware processing at end hosts 
without the support of AWON architecture. Experiment 3 is an 
example of the AWON-based implementation that enables in-
network processing by performing different application-
specific tasks within the network. In Experiment 3, the source 
node at MIT performs application-aware selective drops and 
packet marking.  The multicast nodes at Ohio and Purdue use 
token-bucket based rate control scheme along with packet 
marking to select appropriate packets on-the-fly for 
transmission to individual end users at their respective 
transmission rate. At present, in experiment 3, nodes at 
Houston and Denver act as simple forwarding nodes and do 
not make use of packet marking when forwarding packets.  
  Fig. 8 shows the result of experiments 1-3. Performance is 
compared by measuring the quality of the content delivered to 
the end users for different experiment scenarios under 
different network congestion conditions. For lack of space we 
show results for two end users, End user 1 and End user 5. As 
mentioned earlier, data is generated at 10Mbps at the source 
node but end user 1 requests for TR=7Mbps and MR=4Mbps. 
End user 5 has relatively lower bandwidth requirement with 

TR=4Mbps and MR=2Mbps. Both end users can tolerate 
uniform drop of data within the DRS block. Both end users 
compute reflectivity [6] using raw data received from the radar 
source node. Fig. 8(a) and 8(b) show the standard deviation of 
reflectivity for all three experiments. In this radar application, 
each end user computes reflectivity for multiple gates [6].  (In 
radar terminology, a gate refers to a volume in the atmosphere 
at a particular distance from the radar source node for which 
data is collected by a radar.) Fig. 8 thus shows content quality, 
i.e., standard deviation for subset of gates. As seen in Fig. 8(a) 
and 8(b), experiment 1, with no application-aware processing 
support within the network, has highest standard deviation and 
hence has the worst data quality among three cases. In 
experiment 2, when limited application-aware drops are 
performed at the source node, the quality of the data improves 
in comparison to experiment 1, as indicated by decrease in 
standard deviation. Experiment 3, which has support for 
application-aware drop at the source node and marking-based 
selective drop at the multicast nodes, delivers data with the 
highest quality, i.e., with the smallest standard deviation. It is 
important to note that under high loss conditions, the AWON 
architecture is very effective in improving the quality of the 
data as shown in Fig. 8(b). Indeed, the standard deviation of 
the AWON case approaches that of the base case standard 
deviation, which corresponds to a scenario when all data from 
the source node generated at 10Mbps is delivered to the end 
users. Note that in experiments 1-3, end users receive data at 
approximately the same rate, but the content quality is 
different. For an example, in Fig. 8(b), end user 1 receives data 
at 3.88Mbps, 3.85Mbps, and 3.87Mbps for experiment 1, 2 
and 3 respectively. However, the application-level quality of 
data delivered to the end users is significantly different for all 
gates. The gain in performance in terms of content quality is 
achieved because AWON modules deliver the most 
appropriate application-specific content to the end user within 
the available bandwidth resources. This is made possible by 
performing application-aware processing of the data as it 
traverses the network.  
 Fig. 8(c) and 8(d) show the impact of the three experiment 
scenarios on the delivery of most appropriate information to 
the end user at a given rate. Packets are marked for different 
rates for which it is most suitable for transmission as explained 
in Section 6. When an end user receives more packets with 
markings corresponding to the desired rate, this is an 
indication of a higher quality of received data. 
Aforementioned, for CASA end users, the desired rates are 
between MR and TR and the desired packets are those that are 
marked for rates between TR and MR. In Fig. 8(c) and 8(d), 
we show the number of packets delivered with the marking 
corresponding to rates between TR and MR requirements of 
the end users. Fig. 8(a) and 8(c) both measure content quality 
using different metrics and corresponds to the same end user 1. 
Fig. 8(b) and 8(d) illustrate the content quality for end user 5. 
As seen in the Fig. 8(c), and 8(d), experiment 1 with no 
application-awareness, delivers fewer packets with the desired 
marking. Alternatively, the frequency of the packets with 
desired marking increases with experiment 2 resulting in a 
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higher content quality. In the case of experiment 3, the 
frequency of desired marked packets is the maximum over all 
three cases. As seen in Fig. 8(d), during high network 
congestion, AWON based architecture is able to deliver 50% 
more desired packets than the case when no application-aware 
processing is done in the network. These results corroborate 
the results shown for data quality in Fig. 8(a) and 8(b), which 
used the standard deviation quality metric for end user 1 and 
end user 5 respectively. 
 The above experiments demonstrate that the AWON 
architecture enables the deployment of application-aware 
services in the overlay networks and that such overlay services 
can be very effective in improving the performance of an 
application in resource-constrained conditions.   
 
8. Conclusions 
 
The AWON architecture and a programming interface for the 
application-aware data dissemination has been proposed and 
implemented. Planetlab experiments demonstrate the 
suitability of the AWON architecture and the programming 
interface for the deployment of application-aware services in 
overlay networks. We have seen that in resource-constrained 
conditions and network congestion, an AWON-based data 
dissemination application can deliver better quality data to the 
end users than a data-quality-oblivious implementation while 
using a similar amount bandwidth. The AWON architecture 
and programming interfaces are generic and are not limited to 
a particular application. It can thus be used to deploy 
applications that need application-specific processing within 
the network to meet its QoS requirements. Future work 
includes validation of the architecture and the programming 
interface in a large-scale deployment of application-aware 
services.  
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