

Abstract - Many real-time distributed collaborative applications are
emerging that require exchange of critical sensor data among
geographically distant end users under resource-constrained network
conditions. The QoS requirements, e.g., required bandwidth, latency,
acceptable data quality, and reliability are interdependent, and
critical to the operation of these applications. This paper presents an
AWON (Application-aWare Overlay Networks) architecture for
deploying application-aware services in an overlay network to best
meet the application requirements over the available overlay
networking infrastructure. An application programming interface
(API) is presented to facilitate development of applications within the
AWON architectural framework. The API supports the configuration
of overlay nodes for in-network, application-aware processing.
Application-defined plug-in modules are used to deploy application-
specific functionality at each overlay node. The API also enables
communication between application and the overlay routing protocol
for the desired QoS support. The effectiveness of the AWON
architecture and the API is demonstrated for a real-time weather
radar data dissemination application using planetlab. Experimental
results show that AWON-based application-aware services
significantly improve the quality of the content delivered to the end
users in bandwidth-constrained conditions.

1. Introduction

Distributed collaborative adaptive systems relying on the
Internet for connectivity are increasingly used for applications
such as weather monitoring, industrial environment
monitoring, and distributed target tracking [13, 16]. In many
of these applications, a variety of data must be distributed in
real time to multiple end users at distant geographical
locations. These data streams and end users may have
differing QoS requirements for the data based on the ultimate
use of the data. The data-dissemination infrastructure must
therefore be able to adapt in an application-specific manner to
meet these differing data requirements. Collaborative Adaptive
Sensing of the Atmosphere (CASA) [16], an example of these
emerging distributed collaborative adaptive systems, is based
on a dense network of weather radars that operate
collaboratively to detect tornadoes and other hazardous
atmospheric conditions. The underlying network infrastructure
itself may be affected by such adverse weather conditions, and
as such one cannot rely on ISP-provided QoS guarantees or
service-level agreements. CASA application software must
thus monitor the underlying network, link availability, link
quality, and other performance measures, and then use this
information to get the best possible service out of

the available network facilities. The use of an overlay network
paradigm is helpful in meeting such application needs.

Application-aware processing such as selective frame
discards for video streaming has shown promising results in
improving the content quality [9] under congested network
conditions. However, adaptive data-selection mechanisms in
traditional applications based on end-to-end data delivery
relied on end-host applications to adapt to network conditions
[2, 9, 21]. Active networks [20] introduced the concept of in-
network processing, where routers and switches of the network
perform customized computations on messages being
forwarded.

Overlay networks have been proposed to provide a range
of useful services for enhancing QoS for Internet applications
including bandwidth guarantees [1,3,11,19,22]. With overlay
networking, application-aware processing can be implemented
at intermediate nodes, thus significantly enhancing the ability
of the application to adapt to network conditions and improve
the QoS provided to the end users. Examples of these
functionalities include application-aware data forwarding and
data drops, as well as application-aware rate control during
network congestion at intermediate nodes [7]. It is often
desirable to use the same overlay infrastructure for multiple
simultaneous applications such as weather radar data
streaming, and video streaming to multiple end users. A
general-purpose overlay architecture that supports deployment
of application-aware services on the overlay nodes in the
network, and a programming interface required for such
services that can leverage such an overlay network
infrastructure to support application-specific QoS
requirements will significantly enhance the overlay-based
application deployment. This paper proposes the AWON
(Application aWare Overlay Networks) architecture for
application-aware overlay networking, and presents a general
purpose programming interface. The AWON architecture and
the API presented in this paper allows the applications to
regulate the flow of data through overlay nodes in an
application-aware manner, selecting data to be forwarded, and
extracting/repackaging data, taking application-specific
constraints into account.

A significant amount of research has been done on the
design and development of overlay routing protocols to
improve an underlay network’s resilience and performance
[3,14,18]. Our work complements and takes advantage of such
ongoing research effort of performing QoS-aware routing in

An Architecture and a Programming Interface for Application-
Aware Data Dissemination Using Overlay Networks

Tarun Banka1, Panho Lee1, Anura P. Jayasumana1, Jim Kurose2

{leepanho, tarunb, anura}@engr.colostate.edu, kurose@cs.umass.edu
1Department of Electrical and Computer Engineering, Colorado State University,

Fort Collins CO 80523 USA
2Department of Computer Science, University of Massachusetts,

Amherst MA 01003 USA

This work is supported by the Engineering Research Center program of the National Science Foundation under NSF Award No. 0313747

 2

overlay networks such as RON[3]. OverQoS[19], an overlay-
based architecture can provide a variety of QoS-enhancing in-
network services in the intermediate nodes of overlay
networks, such as eliminating the loss bursts, prioritizing
packets within a flow, and statistical bandwidth and loss
guarantees. Our work is motivated by the same vision of
enhancing QoS support within the network without the support
from IP routers. An important difference between the AWON
and the OverQoS architectures is that in the AWON-based
approach, quality of service provided to an application is
enhanced by performing application-aware processing within
the network. Moreover, the AWON architecture is highly
flexible and can accommodate QoS requirements of large class
of applications. OCALA [10] and Oasis [15] enable the users
of legacy applications to leverage overlay functionality
without any modifications to their applications and operating
systems. Opus [8], which is motivated by active networking,
provides a large-scale common overlay platform and the
necessary abstractions to service multiple distributed
applications. In contrast to our work, Opus focuses on the
wide-area issues associated with simultaneously deploying and
allocating resources for competing applications in a large-scale
overlay networks. XPORT[17] is a tree-based overlay network,
which can create dissemination trees based on diverse
performance requirements of the applications.

Section 2 provides motivation for AWON and the
programming interface for overlay networks. Section 3
explains the AWON architecture for deploying application-
aware services in overlay networks. Section 4 describes the
API. Section 5 describes the flow of API calls to support the
AWON architecture. An example implementation is illustrated
in Section 6. Section 7 presents Planetlab-based experimental
results that demonstrate the effectiveness of the AWON and
the corresponding API for weather radar data streaming.
Conclusions are presented in Section 8.

2. Motivation

Applications relying on overlay-based implementations to
achieve performance, reliability and other application specific

requirements must be able to configure overlay nodes to
perform in-network application-aware processing. A flexible,
efficient approach for the deployment of QoS-sensitive
applications using overlay networks should facilitate the
monitoring of the QoS received by an application in the
overlay network, and allow easy deployment of application-
aware processing at intermediate overlay nodes. A framework
is thus required for realizing such application-aware overlay
networks. A programming interface is needed to facilitate
development and deployment of applications within this
application-aware framework.

The API provides a layer of abstraction between an
application and the underlying dynamics of the network
infrastructure. It is desirable for the API to support
application-aware adaptation in the overlay network, with each
participating node possibly performing different application-
aware operations to meet the overall goals of the application(s).
The API must support node configuration in an application-
aware manner, with each node being configurable to support
multiple applications concurrently. There is also a need for
communication between the application and the underlying
overlay layers for supporting application-specific QoS
requirements [3,4,19,22]. For this to be realized, the API must
allow an application to specify its QoS requirements to the
system. When the underlying system is able to accept the
application with its QoS requirements, the API should be able
to communicate this acceptance to the application. In Sections
3 and 4, we describe AWON architecture and its API
respectively. We consider a weather-monitoring network
application to illustrate the need for an application-aware
architecture and a programming interface for such overlay
networks.

3. Application Aware Overlay Network (AWON)
Architecture

Fig. 1 shows an application-aware overlay network for
distributing data to multiple sink nodes with different end user
requirements such as data quality and bandwidth requirements.
Let us now illustrate the myriad roles overlay nodes may play
in meeting application requirements.

In Fig. 1 source nodes 1-3 may perform application-level
packet-marking to indicate the usefulness of the data to a
particular application; nodes colored blue (nodes 1-5) may
perform packet forwarding/drop based on the marking done by
the source node; nodes colored green (multicast nodes 4, 7,
and 8) may distribute data to multiple end users and perform
independent congestion control for each end user in an
application-aware manner. The multicast nodes combine the
requests from the end users and send an aggregate upstream
request to the specific source node.

If the network experiences congestion, congestion-based
packet (information) discard can be performed at the source or
at intermediate nodes, according to the available bandwidth. A
source node can thus mark packets based on the relative
importance of the information sent to the multicast nodes 4, 7,
and 8. This facilitates application-aware selective drops (rather

Figure 1. Overlay network for application-aware data dissemination

 3

than random drops) within the network. Intermediate
forwarding nodes 1-5 may use this marking information at the
time of forwarding during network congestion. Similarly node
6, a fusion node, may combine data from multiple sources to
reduce the downstream data bandwidth requirements.

In addition to the packet handling functions discussed
above, there are two other classes of functions a node may
implement. First, there is a need to support multiple
applications simultaneously on the same overlay network.
Also, it may be necessary for an application to track
performance of the underlying networking infrastructure in
meeting the application requirements.

Fig. 2 shows the AWON architecture to support
application-aware data-dissemination services. There are two
key components of the AWON: (i) Application Manager, (ii)
Application Plug-ins. Each of these components focuses on
two different areas of functions with a common goal of
providing best effort QoS services to the applications and
providing a layer of abstraction to the application developers.
Application developers are not required to be aware of other
applications deployed on the same node. Moreover, they need
not be aware of the implementation of the underlying overlay
routing infrastructure.
(i) Application Manager: The key responsibilities of the
application manager are:
1. De-multiplexing packets received for different

applications at the same node
2. Logging QoS status information for each application

and informing (when appropriate) the underlying
overlay routing layer about the QoS status/requirements
of the applications

3. Authorization of a new user in the system based on a
local policy

(ii) Application Plug-ins: In the application-aware paradigm,
each application is required to configure its functionality in the
participating overlay nodes. The AWON architecture supports
application-specific plug-ins that implement the functions
performed by the participating overlay nodes in the data
dissemination. For a particular application, multiple nodes can
play different roles, motivating the need to deploy relevant
plug-ins on those nodes that implement particular functions.
For an example, with a collaborative radar application [16],
the source node in Fig. 1 has application plug-in 1 shown in
Fig. 2 for supporting data selection and marking. Similarly
nodes 1-5 in Fig. 1 may have application plug-in 2 to support
application-aware forwarding based on the source’s marking.
Nodes 4, 7, and 8 may have application plug-in 3 to support
application-aware multicasting and congestion control. Note
that the same node may have multiple plug-ins to support
multiple functions performed by a node for a given application.
For an example, in Fig. 1, node 4 acts as a forwarding node
and a multicasting node for the same application.

As seen in Fig. 2, the AWON architecture requires
communication between application-manager and plug-ins,
application manager and routing layer, and between plug-ins
and routing layer. Section 4 describes the programming
interface to support deployment of application-aware services
using AWON.

4. Application Programming Interface

Following are the key goals of the application programming
interface:

(i) Enable deployment of application-aware services on the

overlay network infrastructure.
(ii) Provide real-time monitoring of the QoS status of the

application.
(iii) Facilitate communication between application-manager

and plug-ins, application manager and routing layer,
and between plug-ins and routing layer.

There are three broad categories of the API calls to deploy
applications within the AWON framework:
1. API calls for node configuration
2. API calls for communication between application plug-ins

and application manager
3. API calls for communication with overlay routing layer

4.1. API calls for node configuration: As shown in Fig.
1 and Fig. 2, each participating node from source to the
destination may play a different role for a particular
application. The app_config() API is used to perform node
configuration for a particular application:

int app_config (app_id, plug-in()): app_config() is used by
the application developer to deploy application specific
functionality at all the participating overlay nodes. For a given
application, a unique application identification app_id is
defined and is used as an input parameter. An app_id value of

Figure 2. AWON architecture for application-aware data dissemination
using overlay networks – An example node with multiple plug-ins

o
n
l_
Q
o
S
()

o
n
l_
re
c
v
()

m
e
s
s
a
g
e
_
s
e
n
d
()

m
e
s
s
a
g
e
_
re
c
v
()

A
p
p
li
c
a
ti
o
n
 A
w
a
re
 P
ro
c
e
s
s
in
g

O
v
e
rl
a
y
 R
o
u
ti
n
g

L
a
y
e
r

o
n
l_
s
e
n
d
()

o
n
l_
s
e
n
d
()

re
c
v
_
u
p
c
a
ll
()

`

Application Plug-in 1

Data Selection and

Marking

Congestion Control

Application Plug-in 2

Data Forwarding

Application Plugin 3

Multicasting

Congestion Control

Application

Manager

AWON Architecture of an Overlay Node

QoS

Manager

Select

Next

Hop

Select

Next

Hop

Transmit Packet Transmit Packet

 4

0 is reserved for the special case of the application manager
module. It is important to note that app_id is a globally unique
identifier for a given application deployed over the overlay
network. However, the plug-in() function reference parameter
may be different for different nodes. The functionality of the
plug-in() function depends on the application-specific function
to be performed by a particular node during data transfer.

The API allows the same overlay node to be concurrently
used for multiple applications. Therefore, app_config() can be
called by different applications with different app_id
parameter to configure the operation of the node to meet
application-specific requirements.

4.2. API calls for message exchange between user
application and application manager: An API is required
for three different types of messages that are exchanged
between application plug-ins and the application manager as
shown in Fig. 2:
(i) Packets received by the application manager from the

overlay routing layer for the user applications
(ii) Authorization messages to allow new users in the

system
(iii) Periodic exchange of application-specific QoS

messages

We define three API calls for message exchange between an
application and the application manager, message_send(),
message_recv(), and recv_upcall().

int message_send(dest_app_id, msg_buff): As shown in Fig.
2, the message_send () API is used by the application manager
and the application plug-in module to send messages to each
other within the same node. It accepts two input parameters,
dest_app_id and msg_buff. dest_app_id is a unique
destination application identifier. msg_buff is the actual

message sent to the destination node. It returns 1 when
message is successfully transmitted otherwise it returns 0.

int message_recv(src_app_id, msg_buff): As shown in Fig.
2, message_recv() is used by the application plug-in and the
application manager to receive messages from each other. It
accepts two arguments, src_app_id and msg_buff. src_app_id
is the source application id of the message sender. If the
source is the application manager then src_app_id is 0
otherwise it is a positive integer when source is an application
plug-in. msg_buff contains the copy of the message received
from the sender side. Now we explain msg_buff format in
detail as follows:

Fig. 3(a) shows the format of the msg_buff. Following are
the fields of msg_buff as shown in the figure:
Application Id: This is the unique application id of the sender
application.
Message Type: There are three types of messages that are
exchanged between application manager and the plug-in
modules depending on the context. This field can be
QosRequest, QosAccept, or QosStatus.
Length: The Length field indicates the size of the msg_buff
that includes variable length message field.
Message: The message field content varies with message_type.
When the message type is QosRequest, the message field
contains target_bw, minimum_bw, and latency requirement
fields. Alternatively, when the message type is QosAccept or
QosStatus, message field stores TRUE or FALSE flags.

void recv_upcall(app_id, pkt_buffer, length): The
recv_upcall() API is used by the application manager to
deliver a received packet from the overlay routing layer to the
appropriate application. It accepts three input parameters:
app_id, pkt_buffer, and length. app_id refers to the application
identifier of the application for which packet is received,
pkt_buffer is the pointer to the packet received from the
overlay routing layer, and the length field denotes the size of
the pkt_buffer.

4.3. API calls for communication with overlay

routing layer

An API is also required to support communication between the
overlay routing layer and the application plug-ins, and to
support communication between the overlay routing layer and
the application manager. As seen in Fig. 2, the AWON
architecture requires the following communication support:
(i) Packet delivery from an application plug-in to the

overlay routing layer
(ii) Packet delivery from the overlay routing layer to the

application manager
(iii) Exchange of an application’s QoS requirements with

the overlay routing layer
To support these requirements, we define three APIs under
this category, onl_send(), onl_recv(), and onl_QoS().

(a) (b)
Figure 3. (a) msg_buff format used for communication between
application manager and application plug-ins. (b) pkt_buff format -
an example

Application Id

Message Type

Length

Message

Message Format

 5

int onl_send(dest, pkt_buff, length): The onl_send() function
is used by an application to transmit application data using the
overlay routing protocol. It accepts three input parameters dest,
pkt_buff, and length. dest refers to the destination address of
the packet, pkt_buff is the pointer to the application packet
buffer, and length indicates the size of the pkt_buff. It returns 1
when packet is transmitted successfully and returns 0
otherwise.

The onl_send() selects the next hop for transmission based
on the overlay routing protocol implementation. Alternatively,
the application may use overlay source routing to route
packets through pre-determined paths. Under most
circumstances pkt_buff should contain app_id, source, and
destination addresses. Fig. 3(b) shows a possible structure of
the application packet, i.e., pkt_buff. All non-shaded fields are
configurable and can be determined based on application-
specific characteristics and in conjunction with the overlay
routing protocol used in the network. The different packet
fields shown in Fig. 3(b) are as follows:
Source: The unique address of the source node.
Destination: The address of the remote sink node or the next
hop in the path from source to the destination sink node.
Application Id: The unique application identifier which is set
by the application plug-in module at the time of transmission.
Version: Current version of the packet format.
Application Packet Type: Depending on the application, this
field is used to indicate the contents of the packet data. Some
of the possible packet types are: DATA, ACK, REQUEST,
TERMINATE.
Routing Packet Type: Depending on the routing protocol
implementation, this field is used to define different packet
types that can be used by the routing protocol to select the next
hop for routing the application packet. Some of the possible
routing packet types are SOURCE_ROUTING,
QOS_ROUTING.
Total Length: The size of the packet in bytes.
Application Data Length: The size of the Application
Information field in the packet in bytes. The value of this field
may vary from application to application, and can also vary
from packet to packet within the same application.
Routing Information: The contents of this field are defined
based on the overlay routing protocol implementation. For
example, when QoS-aware routing is supported, then an
overlay routing protocol may store QoS requirements that
should be considered for the next hop selection. When source
routing is used, then this field includes the complete path to be
followed between source and the destination node.
Application Information: The content of this field is
determined by the application transmitting the data. It may
contain application-specific header and data payload. Some of
the possible application-defined fields are sequence number,
packet marking, QoS requirements, and metadata.

int onl_recv(pkt_buffer) : As shown in Fig. 2, the onl_recv()
API call is used to receive data from the overlay routing
protocol layer. It accepts one argument, pkt_buffer, which is a
pointer to the packet received from the overlay routing layer.

Based on the application id field in the received packet, the
packet is demultiplexed to the appropriate application using
recv_upcall() as explained earlier. When a packet is received
successfully, onl_recv() returns length of the packet otherwise
-1 is returned.

void onl_QoS(app_id, bandwidth, latency): As shown in Fig.
2, the onl_QoS() API is called by the application manager to
inform the overlay routing layer of an application’s QoS
requirements. It accepts three input parameters, app_id,
bandwidth, and latency. app_id is the application id for which
QoS requirements are specified, bandwidth is the minimum
bandwidth requirement of a particular application, and latency
is the maximum latency that an application may tolerate.

5. Summary of API Calls

Fig. 4 shows the API calls that may be made on an overlay
node to support application-aware services. app_config()
configures a particular overlay node by deploying application-
specific plug-in modules. An application plug-in module may
call message_send() and message_recv() to exchange control
information with an application manager. An application may
send a QosRequest message to the application manager before
accepting a request from any new user. A module may also
periodically exchange application-specific QosStatus
information with the application manager. As shown in Fig. 4,
the application also uses the onl_send() to send packetsto the
underlying overlay routing layer.

As mentioned earlier, the application manager uses
message_send() and message_recv() to exchange control
information with the application plug-ins. In particular, the
application manager sends authorization messages to the
application plug-in for accepting or rejecting requests from
new users. The application manager uses local policy to
determine the type of authorization messages. The application
manager communicates with the overlay routing layer using
the onl_QoS() and onl_recv() interfaces. As shown in Fig. 4,

 Figure 4. API calls Example

 6

when the application manager determines that the application
is not meeting its QoS requirements, the onl_QoS() interface

is used to request the overlay routing layer to adapt its
operation for meeting application specific QoS requirements.

The application manager uses the onl_recv() interface to
receive a packet arriving at the overlay node from the network.
As seen in the figure, a received packet is demultiplexed to the
application plug-in module by calling recv_upcall() interface.

6. AWON Implementation Example for the CASA
Application

To demonstrate AWON capabilities, let us consider a

CASA application as shown in Fig. 1, where data from a
radar source node is distributed to multiple end users with
distinct bandwidth and data quality requirements. In this
application, an application-aware multicast node receives data
from the source node for further distribution to multiple end
users. AWON architecture is used to perform application-
aware processing at source nodes and multicast node to best
meet the QoS requirements of multiple end users.

Fig. 5 shows the implementation details of a source node
and a multicast node based on the AWON architecture. Both
nodes use application-specific plug-ins to implement
application-specific functionalities. The application manager
implementation is same for all nodes in the overlay network.

Figure 5. Implementation example based on AWON architecture.

QoS

Monitor

Sensor

Data

Application

-Aware

Framing &

Marking

Select

Frames

Select & TX

Frames

User

Data

Determine

Current

Rate

Application

Manager

Application Plug-in for Server

User QoS Request

Authorization

Periodic QoS Status Report

P
a
c
k
e
t
R
x

Q
o
S
 R
e
q
u
e
s
t

A
p
p
li
c
a
ti
o
n
 P
a
c
k
e
t

QoS Manager

&

Select Next Hop

Receive Packet &

Generate

Feedback

Application

Manager

User List

QoS

MonitorMarking Based

Selection and

Token Bucket Rate

Control

Application Plug-in for Multicast

SOURCE NODE MULTICAST NODE

User QoS Request

Authorization

Periodic QoS Status Report

P
a
c
k
e
t
R
x

Q
o
S
 R
e
q
u
e
s
t

A
p
p
li
c
a
ti
o
n
 P
a
c
k
e
t

Feedback

R
e
q
u
e
s
t
P
a
c
k
e
t

A
p
p
lic
a
tio
n
-a
w
a
re
 P
ro
c
e
s
s
in
g

O
v
e
rla
y
 R
o
u
tin
g
 L
a
y
e
r

User

AuthorizationUser

Authorization

QoS Manager

&

Select Next Hop

Figure 6. Application-aware framing and packet marking.
Each non-white color represent rate for which packet is
marked ,i.e., rate R1-R8 [12].

 7

As shown in Fig. 5, the source node plug-in implements
application-level packet marking and a rate-based congestion
control algorithm. Packet marking determines the subset of
the information that should be transmitted at a lower
transmission rate for acceptable data quality at the receiver
end. Fig. 6 explains the marking scheme used in the current
implementation [12].

 Consider an example as shown in Fig. 6, where a sensor
node generates 8 application data units (ADU) within the
bounded time at rate R1. The ADU is defined as a
fundamental application data entity that can be used by an
end user algorithm for processing. Each row in Fig. 6 shows
the subset of ADUs that are selected for transmission at a
lower transmission rate when a higher rate cannot be
supported because of bandwidth constraints. The subset of
data selected at lower rate depends on the end user data
quality requirements. For example, certain end users need
uniformly spaced ADUs when only a subset of the data can
be selected for transmission. Alternatively, other end users
prefer a contiguous group of ADUs when bandwidth is
constrained. Consider the case when the source node
transmits data at rate R1, and as seen in the figure the data
transmitted at lower rates is a subset of the data transmitted at
rate R1 and ADUs are selected uniformly at lower rates. The
packet containing ADU 1 is marked with different color flags
corresponding to different rates, i.e. rates R1-R7. Similarly
packet containing ADU 3 is marked with different colors
corresponding to different rates, i.e., R1, R2, R4, and R5. As
shown in the Fig. 6, every packet contains a flag for each rate
for which it is transmitted indicated by different colors. Note
that multiple flags can be set to indicate suitability of the
packet for multiple transmission rates.

The QoS monitoring component of the plug-in monitors
the quality of the service received by the application users at a
source node. Currently, the component monitors whether end
users’ bandwidth requirements are met. The multicast
application plug-in supports application-aware rate control
using a token-bucket scheme and on-the-fly forwarding of data
based on the packet marking. More information on the packet-
marking and token bucket scheme used for the implementation
can be found in [12]. This application-specific plug-in selects
data for forwarding based on the available network bandwidth
and the packet marking for multiple end users. Note that the
packet marking performed at the sender node determines the
priority of the packet to be forwarded at the multicast node. In
such systems, each end user may need a different subset of the
data from the radar source based on the intended use of the
data [6,7]. During network congestion, overlay nodes can
perform a better job by selectively dropping [2,7,9,21] packets
(information) instead of dropping randomly within the
network, taking into account end-user requirements for
different subsets of the data. Similarly, other nodes
participating in the data transmission can play different roles
and thus may have different plug-in implementations. For
example, if a node is configured as a simple forwarding node
for a particular application, then the application plug-in
forwards the data to its overlay routing layer for further

processing. The overlay routing layer may then select the next
hop for the transmitted packet based on the local policy. If
QoS-aware routing is supported, the next hop may be selected
based on the application’s QoS requirements. Alternatively,
when source routing is used, the routing protocol would select
the next hop based on the path information included in the
packet.

7. Performance Evaluation

In this section, we demonstrate the effectiveness of AWON
architecture and the API for implementing and deploying real-
time applications on overlay networks such as planetlab [23].
Application: We consider a mission-critical CASA [16]
application for the performance evaluation. One of the
requirements of CASA application is to distribute high
bandwidth real-time weather radar data to multiple end users
[7] with distinct critical bandwidth and data quality needs. For
such applications, it is not only important to meet the
bandwidth and latency requirement, it is also important to
meet the minimum content-quality requirement for the proper
operation of the system. For example, each CASA end user
may specify its critical minimum rate (MR) requirement that
should be met for the proper operation of the system.
Moreover, each end user may also dictate a target rate (TR),
i.e., the maximum rate at which data can be received by the
end user. A source node periodically generates a block of
digitized radar data, referred to as a DRS block [5, 6]. Each
end user specifies its content-quality requirement in terms of
tolerance towards bursty losses or uniform losses within the
DRS block. In the current implementation, we consider a case
in which all end users prefer uniform drops of information
instead of bursty drops within a DRS block. In case of our
CASA application, during network congestion, the desired

TR
=8
, M
R
=4

TR
=9
, M
R
=5

TR
=4, M

R
=2

Figure 7. Planetlab test-bed for application-aware multicasting

 8

rates are between MR and TR and the desired packets are
those that contain subset of the DRS block of data with
uniform drops. All these selected packets are marked for rate
between MR and TR at the source node. We implement this
application using the AWON architecture, as it enables
application-aware processing within overlay nodes to enhance
the QoS under dynamic resource-constrained conditions.
Overlay Network Topology: Fig. 7 shows the Planetlab-
based overlay network topology used for application-aware
data distribution and performance evaluation. It consists of 11
overlay nodes, each configured to perform application-specific
tasks to meet the overall QoS requirements of the application.
In Fig. 7, there are four different types of nodes that are
present in the overlay network - a source node, a multicast
node, a forwarding node, and an end user node. The source
node performs selective data drop during network congestion
as well as application-aware packet marking based on the end
user’s data quality requirement as explained in Section 6. The
goal of the marking scheme is to deliver the most appropriate
subset of data for the end user under congested network
conditions. The forwarding node may decide to forward a
packet based on a packet’s marking and the available
downstream link bandwidth. The multicast node performs on-

the-fly selection of the data for forwarding based on packet
marking to the respective end users at the current transmission
rate. The multicast node uses TRABOL (TCP-Friendly Rate
Adaptation Based On Losses), a UDP-based rate-based
congestion control algorithm [5,6], to independently determine
the transmission rate for each end user. The end-user node
performs content quality evaluation using application-specific
performance metrics and provides periodic feedback to the
multicast node about its current receive rate. In Fig. 7, six
different end-user nodes 1-6 at geographically different
locations receive weather radar data streams from the source
node at MIT, Cambridge at their required TR and MR over the
planetlab. The source node generates data at a constant rate of
10Mbps. End user nodes 1-3 make their data request with the
desired TR and MR requirement to the multicast node at Ohio.
Similarly end-user nodes 4-6 make data requests with their
desired TR and MR to the multicast node at Purdue. After
requests are received from the end users, both multicast nodes
independently send aggregate bandwidth requests to the source
node at MIT. A single stream of radar data is delivered from
MIT to the Ohio node for further distribution to end user nodes
1-3. Similarly, a single stream from the MIT source node is
delivered to the multicast node at Purdue for further
distribution to end user nodes 4-6.

Figure 8. Impact of application-aware architecture on the content quality delivered to the end user s (a) Standard deviation of data for
end user 5 with low bandwidth requirement TR=4, MR=2, (ii) Standard deviation of data for end user 1 with high bandwidth requirement
TR=7, MR=4. (c) Marked packet frequency for end user 5, (d) Marked packet frequency for end user 1

 Impact of Application-awareness on the Content Quality -End User 5
TR=4Mbps and MR=2Mbps

(Experiment 1 - 3.88 Mbps, Experiment 2 - 3.85 Mbps,
Experiment 3 - 3.87 Mbps)

0

0.5

1

1.5

2

2.5

3

3.5

141 142 143 144 145 146 147 148 149 150
Gates

S
ta

nd
a

rd
 D

e
vi

a
tio

n

No Application-Awareness - Experiment 1
 Application Aware Source - Experiment 2
ApplicationAware Source node and Multicast Node - Experiment 3
Base Case

Impact of Application-awareness on Content Quality - End User 1
TR=7 Mbps, MR=4 Mbps

Experiment 1 - 6.78 Mbps, Experiment 2 - 6.70 Mbps,
Experiment 3 - 6.72Mbps

0

0.5

1

1.5

2

2.5

3

141 142 143 144 145 146 147 148 149 150
Gates

S
ta

nd
ar

d
 D

ev
ia

tio
n

No Application-Awareness - Experiment 1
Application Aware Source Node - Experiment 2
Application Aware Source Node and Multicast Node - Experiment 3
Base Case

Impact of Application-awareness on the Content Quality -End User 5
TR=4 Mbps and MR=2 Mbps

(Experiment 1 - 3.88 Mbps, Experiment 2 - 3.85 Mbps,
Experiment 3 - 3.87 Mbps)

0

5000

10000

15000

20000

25000

30000

35000

2 3 4
 Rate (Mbps)

F
re

qu
en

cy
 o

f M
ar

ke
d

P
ac

ke
ts

No Application-awareness - Experiment 1
Application-aware Source Node - Experiment 2
Application-aware Source and Multicast Node - Experiment 3

(a) (b)

(c) (d)

Frequency of Marked Packet - End User 1
TR=7 Mbps, MR=4 Mbps

Experiment 1 - 6.78 Mbps, Experiment 2 - 6.70 Mbps,
Experiment 3 - 6.72Mbps

0

10000

20000

30000

40000

50000

60000

70000

4 5 6 7
Rates (Mbps)

F
re

q
u

en
cy

 o
f M

ar
ke

d

P
ac

ke
ts

No Application-awareness - Experiment 1
Application Aware Source Node - Experiment 2
Application-aware Source and Multicast Node - Experiment 3

 9

Performance Metrics: The effectiveness of the AWON
architecture and the programming interface can be evaluated
by measuring the quality of the content delivered to the end
users under different network congestion conditions. For most
real-time applications, application-specific metrics are used to
measure quality of the content; for multimedia applications,
these metrics include PESQ [1,19] for voice quality and PSNR
[19] for video streaming. For the CASA application we use the
standard deviation of the estimated sensed values (specifically,
reflectivity and wind velocity) to evaluate quality of the radar
data [6,7]. A lower standard deviation indicates better radar
data quality. A minimum standard deviation, i.e., the highest
content quality, is achieved when all the data from the source
node is delivered to the end users. Alternatively, we also
evaluate the content quality by measuring the frequency of the
desired packets at the receiver node based on their markings.
For better quality of the data, it is necessary to receive more
packets with the desired markings. For an application with TR
and MR bandwidth requirements, the “most appropriate”
packets are marked to result in data rates between MR and TR.
Methodology: We demonstrate the effectiveness of the
AWON architecture for application-aware processing within
the overlay network by performing three sets of experiments.

In the first set of experiments, experiment 1, no
application-aware processing is performed in the network, i.e.,
the source node randomly selects data from a DRS block of
radar data for transmission, without considering end-user loss
tolerance requirements. Packet marking is performed but
packet marks are not used at the forwarding nodes or at the
multicast nodes for on-the-fly selection of packets for
transmission. In experiment 2, the source node performs
application-aware selective drop during network congestion
and marks packets at the time of transmission. However,
packet marking is not used at forwarding nodes and multicast
nodes for on-the-fly selection of data for transmission to the
end users. Experiment 2 is equivalent to a network that
supports limited application-aware processing at end hosts
without the support of AWON architecture. Experiment 3 is an
example of the AWON-based implementation that enables in-
network processing by performing different application-
specific tasks within the network. In Experiment 3, the source
node at MIT performs application-aware selective drops and
packet marking. The multicast nodes at Ohio and Purdue use
token-bucket based rate control scheme along with packet
marking to select appropriate packets on-the-fly for
transmission to individual end users at their respective
transmission rate. At present, in experiment 3, nodes at
Houston and Denver act as simple forwarding nodes and do
not make use of packet marking when forwarding packets.
 Fig. 8 shows the result of experiments 1-3. Performance is
compared by measuring the quality of the content delivered to
the end users for different experiment scenarios under
different network congestion conditions. For lack of space we
show results for two end users, End user 1 and End user 5. As
mentioned earlier, data is generated at 10Mbps at the source
node but end user 1 requests for TR=7Mbps and MR=4Mbps.
End user 5 has relatively lower bandwidth requirement with

TR=4Mbps and MR=2Mbps. Both end users can tolerate
uniform drop of data within the DRS block. Both end users
compute reflectivity [6] using raw data received from the radar
source node. Fig. 8(a) and 8(b) show the standard deviation of
reflectivity for all three experiments. In this radar application,
each end user computes reflectivity for multiple gates [6]. (In
radar terminology, a gate refers to a volume in the atmosphere
at a particular distance from the radar source node for which
data is collected by a radar.) Fig. 8 thus shows content quality,
i.e., standard deviation for subset of gates. As seen in Fig. 8(a)
and 8(b), experiment 1, with no application-aware processing
support within the network, has highest standard deviation and
hence has the worst data quality among three cases. In
experiment 2, when limited application-aware drops are
performed at the source node, the quality of the data improves
in comparison to experiment 1, as indicated by decrease in
standard deviation. Experiment 3, which has support for
application-aware drop at the source node and marking-based
selective drop at the multicast nodes, delivers data with the
highest quality, i.e., with the smallest standard deviation. It is
important to note that under high loss conditions, the AWON
architecture is very effective in improving the quality of the
data as shown in Fig. 8(b). Indeed, the standard deviation of
the AWON case approaches that of the base case standard
deviation, which corresponds to a scenario when all data from
the source node generated at 10Mbps is delivered to the end
users. Note that in experiments 1-3, end users receive data at
approximately the same rate, but the content quality is
different. For an example, in Fig. 8(b), end user 1 receives data
at 3.88Mbps, 3.85Mbps, and 3.87Mbps for experiment 1, 2
and 3 respectively. However, the application-level quality of
data delivered to the end users is significantly different for all
gates. The gain in performance in terms of content quality is
achieved because AWON modules deliver the most
appropriate application-specific content to the end user within
the available bandwidth resources. This is made possible by
performing application-aware processing of the data as it
traverses the network.
 Fig. 8(c) and 8(d) show the impact of the three experiment
scenarios on the delivery of most appropriate information to
the end user at a given rate. Packets are marked for different
rates for which it is most suitable for transmission as explained
in Section 6. When an end user receives more packets with
markings corresponding to the desired rate, this is an
indication of a higher quality of received data.
Aforementioned, for CASA end users, the desired rates are
between MR and TR and the desired packets are those that are
marked for rates between TR and MR. In Fig. 8(c) and 8(d),
we show the number of packets delivered with the marking
corresponding to rates between TR and MR requirements of
the end users. Fig. 8(a) and 8(c) both measure content quality
using different metrics and corresponds to the same end user 1.
Fig. 8(b) and 8(d) illustrate the content quality for end user 5.
As seen in the Fig. 8(c), and 8(d), experiment 1 with no
application-awareness, delivers fewer packets with the desired
marking. Alternatively, the frequency of the packets with
desired marking increases with experiment 2 resulting in a

 10

higher content quality. In the case of experiment 3, the
frequency of desired marked packets is the maximum over all
three cases. As seen in Fig. 8(d), during high network
congestion, AWON based architecture is able to deliver 50%
more desired packets than the case when no application-aware
processing is done in the network. These results corroborate
the results shown for data quality in Fig. 8(a) and 8(b), which
used the standard deviation quality metric for end user 1 and
end user 5 respectively.
 The above experiments demonstrate that the AWON
architecture enables the deployment of application-aware
services in the overlay networks and that such overlay services
can be very effective in improving the performance of an
application in resource-constrained conditions.

8. Conclusions

The AWON architecture and a programming interface for the
application-aware data dissemination has been proposed and
implemented. Planetlab experiments demonstrate the
suitability of the AWON architecture and the programming
interface for the deployment of application-aware services in
overlay networks. We have seen that in resource-constrained
conditions and network congestion, an AWON-based data
dissemination application can deliver better quality data to the
end users than a data-quality-oblivious implementation while
using a similar amount bandwidth. The AWON architecture
and programming interfaces are generic and are not limited to
a particular application. It can thus be used to deploy
applications that need application-specific processing within
the network to meet its QoS requirements. Future work
includes validation of the architecture and the programming
interface in a large-scale deployment of application-aware
services.

References

[1] Amir, Y, Danilov, C., Goose, S., Hedqvist, D., Terzis, A., “An Overla

Architecture for High Quality VOIP Streams,” IEEE Trans. On
Multimedia-To appear

[2] Andersen, D., Bansal, D., Curtis, D., Seshan, S., Balakrishnan, H.,
“System Support for Bandwidth Management and Content Adaptation in
Internet Applications,” 4th USENIX OSDI Conf., San Diego, California,
Oct. 2000.

[3] Andersen, D., Balakrishnan, H., Kaashoek, M.F., Morris, R., “Resilient
Overlay Networks,” Proc. 18th ACM SOSP, Banff, Canada, Oct. 2001.

[4] Banerjee, S., Kommareddy, C., Kar, K. Bhattacharjee, B., and Khuller, S.
“Construction of an Efficient Overlay Multicast Infrastructure for Realtime
Applications,” in Proc. IEEE INFOCOM, June 2003.

[5] Bangolae, S., Jayasumana, A. P., and Chandrasekar, V., "Gigabit
Networking: Digitized Radar Data Transfer and Beyond," Proc. IEEE Intl.
Conf. on Comm. (ICC'03), Vol. 1, pp. 684-688, Anchorage, May 2003

[6] Banka, T., Maroo, A., Jayasumana, A.P., Chandrasekar, V., Bharadawaj,
N., and Chittababu, S.K. “Radar Networking: Considerations for Data
transfer Protocols and Network Characteristics”, in Proc. of AMS IIPS for
Meteorology, Oceanography, and Hydrology, American Meteorological
Society (AMS), 19.11. Jan. 2005

[7] Banka, T., Lee, P., Jayasumana, A.P., Chandrasekar, V., “Application
Aware Overlay One-to-Many Data Dissemination Protocol for High-
Bandwidth Sensor Actuator Network,” in Proc. of IEEE COMSWARE
2006, New Delhi, India, Jan. 2006

[8] Braynard, R., Kosti´c, D., Rodriguez, A., Chase, J., Vahdat, A. “Opus:
an Overlay Peer Utility Service,” Proc. of the 5th Intl. Conf. on Open
Architectures and Network Programming (OPENARCH), June 2002.

[9] Gurses, E., Akar, G. B., Akar, N., “A simple and Effective Mechanism
for Stored Video Streaming with TCP Transport and Server-side
Adaptive Frame Discard,” in Computer Networks Elsevier, Vol. 48,
Issue 4, pp. 489-501, Jan. 2005

[10] Joseph, D., Kannan, J., Kubota, A., K, Lakshminarayanan, K., Stoica, I.,
Wehrle, K., "OCALA: An Architecture for Supporting Legacy
Applications over Overlays", Proc. 3rd USENIX/ACM NSDI '06, May
2006.

[11] Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A., “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” Proc. of
SOSP’03, Bolton Landing, New York, Oct., 2003

[12] Lee, P., Banka, T., Jayasumana, A. P., and Chandrasekar, V., “Content
based Packet Marking for Application Aware Processing in Overlay
Networks,” Proc. of IEEE Conf. on Local Computer Networks, (LCN
2006), Tampa FL, Nov. 2006 – To appear

[13] Li, D., Wong, K., Hu, Y.H., and Sayeed, A., "Detection, Classification
and Tracking of Targets in Distributed Sensor Networks," IEEE Signal
Processing Magazine, Vol. 19 Issue: 2, Mar 2002

[14] Liu, Y., Gu, Y., Zhang, H., Gong, W., Towsley, D., “Application Level
Relay for High-Bandwidth Data Transport,” 1st Workshop on Networks
for Grid Applications (GridNets) , Oct. 2004

[15] Madhyastha, H., Venkataramani, A., Krishnamurthy, A., Anderson, T.,
“Oasis: An Overlay-Aware Network Stack.,” Proc. of ACM SIGOPS
perating Systems Review Vol. 40, Issue 1, pp41-48, Jan. 2006

[16] McLaughlin, D.J., Chandrasekar, V., Droegemeier, K., Frasier, S.,
Kurose, J., Junyent, F., Philips, B., Cruz-Pol, S., and Colom, J.
“Distributed Collaborative Adaptive Sensing (DCAS) for Improved
Detection, Understanding, and Prediction of Atmospheric Hazards,” in
Proc. of AMS IIPS for Meteorology, Oceanography, and Hydrology,
American Meteorological Society (AMS), 11.3, Jan 2005.

[17] Papaemmanouil, O., Ahmad, Y., Cetintemel, U., Jannotti, J.,
“Application-aware Overlay Networks for Data Dissemination,” in Proc.
of the Intl. Workshop on Semantics enabled Networks and Services
(ICDE SeNS 2006), Atlanta, April 2006.

[18] Savage, S., Anderson, T., Aggarwal, A., Becker, D., Cardwell, N.,
Collins, A., Hoffman, E., Snell, J., Voelker, G., Zahorjan, J., “Detour: A
Case for Informed Internet Routing and Transport,” IEEE Micro Vol. 19 ,
Issue1, pp. 50–59, Jan. 1999.

[19] Subramanian, L., Stoica, I., Balakrishnan, H., Katz, R.,“OverQoS: An
Overlay Based Architecture for Enhancing Internet QoS,” Proc. 1st
Symposium on Networked Systems Design and Implementation (NSDI),
San Francisco, CA, Mar. 2004.

[20] Tennenhouse, D.L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J., and
Minden, G. J., “A Survey of Active Network Research,” IEEE
Communications Magazine, Vol. 35, Issue 1, pp. :80–86, Jan. 1997.

[21] Zhang, Z.-L., Nelakuditi, S., Aggarwal, R., and Tsang, R. “Efficient
Selective Frame Discard Algorithms for Stored Video Delivery across
Resource Constrained Networks,” Proc. of IEEE INFOCOM, Mar. 1999.

[22] Zhi L., Mohapatra, P., “QRON: QoS-aware routing in overlay networks,”
IEEE Jour. on Selected Areas in Comm., Vol. 22, Issue 1, Jan. 2004.

[23] Planetlab: www.planet-lab.org

