
Adaptive Lookup for Unstructured

Peer-to-Peer Overlays

K Haribabu, Dayakar Reddy, Chittaranjan Hota

Computer Science & Information Systems

Birla Institute of Technology & Science

Pilani, Rajasthan, 333031, INDIA

{khari, f2005462, c_hota}@bits-pilani.ac.in

Antii Ylä-Jääski, Sasu Tarkoma

Telecommunication Software and Multimedia Laboratory

Helsinki University of Technology

TKK, P.O. Box 5400, Helsinki, FINLAND

{antii.yla-jaaski@tml.hut, Sasu.Tarkoma@cs.helsinki}.fi

Abstract— Scalability and efficient global search in unstructured

peer-to-peer overlays have been extensively studied in the

literature. The global search comes at the expense of local

interactions between peers. Most of the unstructured peer-to-

peer overlays do not provide any performance guarantee. In this

work we propose a novel Quality of Service enabled lookup for

unstructured peer-to-peer overlays that will allow the user’s

query to traverse only those overlay links which satisfy the given

constraints. Additionally, it also improves the scalability by

judiciously using the overlay resources. Our approach selectively

forwards the queries using QoS metrics like latency, bandwidth,

and overlay link status so as to ensure improved performance in

a scenario where the degree of peer joins and leaves are high.

User is given only those results which can be downloaded with the

given constraints. Also, the protocol aims at minimizing the

message overhead over the overlay network.

Keywords- Peer-to-peer; Overlays; QoS; Lookup

I. INTRODUCTION

Peer-to-peer (P2P) overlay networks are widely used as
public file sharing networks. Data sharing P2P systems are
capable of sharing huge amounts of data. For example, in April
2003 the KaZaA [5] P2P data sharing system reported over 4.5
million users sharing a total of 7 petabytes of data. Such a huge
collection of data will be unusable without efficient lookup of
the object being looked for.

P2P overlay networks are application-level logical
networks built on top of the Internet. These networks maintain
routing tables to enable efficient search and data exchange
between peers. They don’t require any special administrative or
financial arrangement. They are self-organizing and adaptive,
distributed and decentralized. They can support the distribution
of storage and computational problems. P2P overlay networks
are categorized as unstructured and structured [1]. An
unstructured P2P system is composed of peers joining the
network with some loose rules, without any prior knowledge of
the topology. Freenet [2], Gnutella [3], FastTrack [4], and
KaZaA [5] are examples of unstructured P2P overlay networks.
These networks are typically power law networks (or scale free
networks). Gnutella [3] is a traditional example of a power law
network, where search has a high cost due to many connections
between peers. In structured P2P overlay networks, network
topology is tightly controlled and content is placed not at

random peers but at specified locations that will make
subsequent queries more efficient. Most of the structured P2P
overlays are Distributed Hash Table (DHT) based. Content
Addressable Network (CAN) [6], Tapestry [7], Chord [8],
Pastry [9], Kademlia [10] and Viceroy [11] are some examples
of structured P2P overlay networks.

In unstructured P2P network, lookup is based on
forwarding the queries [12]. At each node the query is
forwarded to neighbors. Unless the peer finds the item or the
hop count of the query reaches zero, query is forwarded to
neighbors. In this lookup approach, there are variations on how
the query forwarding can be controlled without decreasing the
chance of finding an item. The query forwarding is controlled
by selectively choosing the neighbors. The selection is based
on the information stored at the peer about its neighbors. The
information is either past history or the indexes of the content
available of neighbors. The controlled forwarding also happens
by randomly selecting the neighbors which reduces the chance
of finding an item.

Unstructured peer-to-peer overlay networks mostly consist
of nodes which are home PCs. They are connected to network
by a weak bandwidth connection. In this paper we present an
approach to give freedom to the user to specify the constraints
that should be satisfied for the results obtained. The results are
ranked using a composite function that is expressed as a
function of QoS metrics defined in the later sections. The result
with the highest rank will be from the node that can satisfy the
users constraints to the maximum.

The type of Quality of Service (QoS) introduces several
factors that need to be taken into account. In this paper, we
consider two parameters, bandwidth and link latency, at the
link level. We consider one parameter past response or past
interactions with the peer as the node level constraint. This
paper presents a scalable and adaptive lookup approach that
takes user preferences into account in choosing the best overlay
route to fetch the object among the multiple locations.

II. RELATED WORK

The lookup problem in a P2P overlay refers to finding any
given data item in a scalable manner. More specifically, given a
data item stored at some dynamic set of nodes in the overlay,
we need to locate it [13]. The unstructured overlays commonly

use flooding [3], random walks [14], iterative deepening search
[15], directed breadth first search (BFS) [15] to lookup content
stored on other overlay peers.

Freenet [2] uses a symmetric lookup search where queries
are forwarded from node to node based on the routing table
entries that are built-up dynamically. It ensures anonymity by
not forming any predictable topology and also by not
associating an object with any server. Because of anonymity,
search for an object needs to visit large fraction of nodes that is
time consuming. In flooding technique [3], the query is
forwarded to all the neighbors. To improve the scalability, it
uses small time-to-live (TTL) counters. Though it reduces
network traffic and load on peers, it also reduces the chances of
finding a match. In k-walker random walks [14] the query is
forwarded to k randomly selected neighbors. Those neighbors
in turn forward to k randomly selected neighbors. Although
this search method reduces the network load but massively
increases the search latency. In iterative deepening search [15],
consecutive BFS at increasing depths is performed to locate an
object in the P2P overlay. This search method also increases
network load and duplicate query messages. In this technique,
at every node the query is forwarded to all neighbors except the
one who sent the query. In GUESS (Gnutella UDP Extension
for Scalable Searches), a hybrid peer-to-peer overlay builds
upon the notion of ultra-peers [16]. A search is conducted by
iteratively contacting different ultra-peers for their leaf nodes
until a number of objects are found. These ultra-peers need not
be the neighboring nodes and also the order with which ultra-
peers are chosen is not specified.

In [17], author has studied the minimum delay P2P video
streaming problem. For a delay sensitive application, the
standard uploading bandwidth of a peer cannot be utilized to
upload a piece of content until it completes the download of
that content. He proposed minimum delay bound for real-time
P2P systems. He has shown that the bandwidth heterogeneity
amongst peers can be exploited to significantly improve the
delay performance amongst peers.

In routing indices [18] based search, each node keeps
information of topics and number of documents in each topic
available in the neighbors. The goodness of a neighbor
(compound routing index) is computed based on these
statistics. The query is forwarded to neighbor with the highest
compound routing index. The hop-count routing indices consist
of non-cumulative number of documents at each hop. This
index is computed based on number of documents and number
of messages required to reach those documents. But this
approach involves the cost of keeping up to date information of
neighbors. In intelligent search [19], the query is forwarded to
best neighbors that have responded to similar queries. The
similarity is computed using cosine similarity model which is
the cosine of angle between current query vector and the past
answered query vector of the neighbor. For this, each node
keeps a profile of answered queries for each neighbor. In
adaptive probabilistic search [20], the query is forwarded to a
node with the highest probability value. The probability value
for a neighbor is computed based on the past query responses
and current query result by the neighbor. Each node maintains
a local index for each neighbor and each object. The index
entry for an object and a neighbor indicates the relative

probability of the neighbor being selected for querying that
object. In ant based search algorithm [21], the goodness of a
neighbor is judged by number of documents and path length of
the neighbor. Also the goodness updation algorithm
dynamically finds out optimal path for a particular query. But
this approach fails in case of high churn. In directed BFS
search [15], the query is forwarded to neighbors who have
good statistics. This is done only for the first hop and for the
rest of the hops the query is forwarded to all neighbors.

To reduce response time and bandwidth, approaches in [22,
23] specify selection of a flooding or DHT based lookup based
on the popularity of the content. It is computed using a global
collection algorithm. It is based on the observation that
flooding is efficient for finding a popular item, but to find a
rare item DHT based lookup is used.

Our technique is similar to the search technique described
in [19]. But our technique differs from this in two ways, one is
that the criteria to be used as performance metric in forwarding
the query is given by the user and the second is that we use
composite function to compute a cost that gives us the best
possible route in the churn scenario.

III. LOOKUP IN UNSTRUCTURED OVERLAYS

Lookup in unstructured P2P overlay networks happens by
forwarding messages to neighbors. In figure 1, let the
requesting node be A, and responding node be H i.e. say user at
node A wants a video file that is stored at node H. As shown in
the figure, peer A sends the requests to its neighbors B and C
and they in turn forward it to their neighbors D and E. This
happens until either the TTL becomes zero or item is found.
When TTL reaches zero, the query is no more forwarded. Here,
peer H has found a match for the query. When a peer finds a
matching item, it sends a query hit message traversing the same
route as taken by the query.

Techniques discussed in [14, 15] for keyword search focus
on efficient and partial search but not on comprehensive search.
The partial search is acceptable in case of finding a single file
over the overlay. But that is not sufficient while searching for
web pages, multimedia documents etc. where the information
is available at multiple nodes and the requester wants to make a
choice. Algorithms such as the one presented in [24] propose
content addressable Publish/Subscribe service to help user find
most relevant information or comprehensive information using
ranked key word search. In these algorithms i.e. be it partial or
comprehensive, collecting and maintaining the documents in a
robust, efficient and distributed manner is a challenge. Also, in
[25], issues like what should be the order of the peers to be
probed while processing a query without putting much load on
the peers, how to detect and prevent selfish behaviors etc., are
addressed as research challenges. Efficient search can be
measured in terms of the quality of service (QoS) guarantees
provided by the search or lookup procedure. Here, QoS can be
measured in terms of different metrics, depending on the
application and a spectrum of acceptable performance along
each metric. The different metrics that can be considered are
response time which is a measure of bandwidth, latency,
resource availability, relevance or precision of the response etc
as given in [26].

IV. SCALABLE AND ADAPTIVE LOOKUP

A peer-to-peer overlay network is formed by a set of peers.
Each peer has limited knowledge about the other peers. That is
every peer knows few other peers known as neighbors. Also
each peer probes periodically and stores the bandwidth and link
delay of the links that are connecting to its neighbors.

A. Protocol Overview

The protocol is based on the mechanism of controlled
forwarding of the queries. The control is by the user specified
constraints. At each node the query is forwarded further only if
the neighbor satisfies the constraints given by the user.

User behaviour

The user while requesting for a particular keyword, he also
specifies the minimum bandwidth, maximum link delay. He
expects the results that are collected from the peers in the
network should satisfy these constraints. The protocol also
sorts the results based on a cost metric that is calculated by
combining bandwidth, link delay and past response in certain
proportion.

Query State

In addition to the fields present in the Gnutella [3] Query
message, each query consists of the minimum bandwidth,
maximum latency, and composite cost.

Node behaviour

Each node has a data structure that stores the bandwidth
and latency of the links leading to neighbors. The node probes
the neighbors periodically to update the bandwidth and link
delay values. The method of computing bandwidth and latency
is described in part B. Also each node has a query hit history
containing the addresses of the nodes from whom QueryHit
message is originated and the number of files matched.

Upon receiving a query, the peer first checks up with the
local database to see whether the item matching with the
keyword is available. If such an item not available, the peer
selects the neighbors which satisfy the condition that composite
cost of that link should be less than the maximum cost
calculated from the constraints specified by the user.

Composite weighted cost of each out going link is calculated.
Composite cost of i

th
 neighbor is calculated as follows:

Composite costi= 0.65 x (bandwidth)i+ 0.20 x (delay) i

All those links which have cost less than maximum cost
will be selected for forwarding the query. The i

th
 composite

cost is added to the cost present in the query to be sent to i
th

neighbor. The cost in the message is the sum of individual link
costs of route so far traveled. Figure 2 describes an example.

In figure 2, let the requesting node be A. A has set the
minimum bandwidth and maximum latency as 2 Mbps and 20
msecs respectively. The cost computed by A for these
constraints is 6.25. Assume that 10 Mbps bandwidth gets rating
of 1 point and 100 ms link latency gets 10 points rating. This is
further explained in part B. The bandwidth falls in the range of
(1-2). So it gets 9 points. The latency falls into the range of
(10-20). So it gets 2 points. The cost is 0.65 * 9 + 0.2 * 2 =
6.25. Node A selects only those neighbors whose link costs are
less than 6.25. So, node A has selected C but not B. Node C
also computes costs of the links leading to D and E. Since the
cost of both the links is within the maximum cost, the query is
forwarded to both D and E. Similarly at every node the
composite cost of each link is computed and compared. The
query has found a match at two peers F and H. They send the
query hit message to the requester peer A. The replies travel
through the same path as traveled by the query.

Hit Node behaviour

Hit node is the node which has found the one or more
results for the query. This node stops forwarding the query
further. It makes the Query Hit message and copies the
composite cost from Query message to Query Hit message.
Query Hit message also includes the number of results found.
The query hit message is sent over the same route through
which the query has come. In Figure2, F and H are the hit
nodes.

Requester Node behaviour

Requester node is the one which is performing the lookup.
Upon receiving a query hit, the requester node adds the address
of the node and the number of files present in the Query Hit
message to its query hit history. It also updates the past
response of the node. The detail of how the past response is
updated is explained in part B. The composite cost is updated
in the following manner.

(Composite cost)i= (composite cost) i + 0.15 * (past
response) i

The composite cost of i
th

 query hit message is updated by
adding the past response of the query hit node with 15%
weight.

After receiving the query hit messages, the node sorts them
by the composite cost. The user can chose the first displayed
result to get the file.

Figure1: Lookup in unstructured P2P overlay

Algorithm 1:

/* Pseudo code for a node which receives a query*/

ProcessQuery(Q){

N: set of all neighbors

bw: Array of bandwidths of links of neighbors

ll: Array of link latencies links of neighbors

Q: Query that has come from another node

SN: Node that has sent the query

MC: Maximum cost as per user requirements

/* avoids loop */

if Q.message id found in local cache then

 drop the query, exit

end if

if Q.keyword matches files in local db then

 make Query Hit Message

 send Query Hit Message to SN

else if Q.hopcount = 0 then

 drop the query

 else

 store the Q.MessageId in cache

 for each neighbour in N

 if N <> SN then

 if computeCompositeCost (neighbor) <= MC

 then

 CQ=copy of Q

 CQ.hopcount=CQ.hopcount-1

 CQ.cost=CQ.cost+cost of neighbor

 forward CQ to neighbor

 end if

 end if

end for

end if }

/* Function for computing cost of link to neighbor*/

ComputeCompositeCost(neighbor){

 BW: bandwidth of link to neighbor

 LL: link latency

 NBW: normalized bandwidth

 NLL: normalized link latency

 MAXBW: Maximum bandwidth possible in the network

 MAXLL: Maximum link latency possible in the network

 /* The ranges are divided as follows

 (0 , MAXBW/10] = rating 10

 (1 * MAXBW/10, 2* MAXBW/10] = rating 9

 (9 * MAXBW/10, MAXBW] = rating 1

 The ideal conditions are given lowest ratings

 Similarly the latency is also divided into ranges

 with ratings

 (0 , MAXLL/10] = rating 1

 (1 * MAXLL/10, 2* MAXLL/10] = rating 2

 (9 * MAXLL/10, MAXLL] = rating 10*/

 NBW = rating of BW

 NLL = rating of LL

 return (0.65 * NBW + 0.20 * NLL)

}

/* pseudo code for requester node */

ReceiveQueryHit(){

QH: Query hit message

N: Node form which query hit originated

i: rank

for each query hit QH received from node N

 if N not found in local history cache then

 store the address of N in local history cache

 end if

 retrieve past response for N

 past response= 0.8 * past response + 0.2 * rating for

 QH.number of documents matched

 QH.cost=QH.cost + 0.15 * past response of N

 save past response in history cache

end for

i=1

for each query hit in {QH sorted by QH.cost,QH.no of files in

ascending order}

 assign rank i

end for

 display results for user with ranks

}

After receiving the Query Hit messages over a period of time,
the node sorts them by the updated composite cost. The lowest
cost is ranked as 1 and highest cost is ranked last. If there is a
tie amongst the composite costs received, tie is resolved by
considering the number of files that node has returned in the
current response.

In figure 2, requesting node A receives query hit messages
from nodes F and H. The cost of the route to F and H is 17.50
and 17.05 respectively. Assuming that F and H have past
responses as 5 and 4 respectively and they have returned 14
and 6 documents in the current query, their past responses will
be updated to 4.6 and 5 respectively. The updated composite
costs of F and H will be 18.19 and 17.80. So, peer H will be
given rank 1. Here we assumed that maximum number of files
that a node can return is 50.

B. Composite Function

The user is interested in several factors such as number of

results, proximity to expected content, maximum bandwidth

and minimum latency of the route to download the file etc.

Here we try to optimize the bandwidth and link latency for the

route. Whenever query is sent, the expected QueryHit will be

the one that can provide an optimum path i.e., the maximum

speed of transfer, low time delay and a non-corrupted file. But

maximum preference is given for the speed of the transfer and

then latency. Here latency includes all kinds of delays. In this

protocol, a weight of 65% to the transfer speed and 20% to

latency and the remaining 15% to the past response

(popularity of the peer) is given. This weightage can be

changed according to the requirements of the overlay network.

Bandwidth

The bandwidth available with a link associated with a node
is calculated by sending a packet of very small size to its
opposite node. After receiving the query hit message the ratio
of packet size sent to the round trip time gives the bandwidth
available with that particular link. However, we have assumed
other delays associated in the packet transfer as negligible in

calculating the bandwidth available over a link. This process is
done for all the neighbors of a particular node.

Latency

Link latency is computed as the propagation delay over

the link that is directly proportional to the distance of the link

between two peers. For simplification, we do not consider any

queuing delay and processing delay while computing link

latency. However, these delays will not have any adverse

effect in our Protocol.

Figure2: QoS based Lookup in unstructured P2P

overlay

Past reposne

Past response of a node indicates the reliability of the node.
It is calculated for every node returning a query hit message.

The main problem that has to be looked into is the
normalization of various parameters that were being assigned
some weightages in the calculation of the composite function.
This is solved by scaling all the parameters on a scale of 10. As
we are seeing for the minimization of the composite function
the ideal conditions must be given the lowest rating and the
worst conditions the highest.

Assuming the maximum bandwidth available in the
network to be B and as the minimum bandwidth can go until 0
the bandwidth available with a particular link can be given the
rating. Depending upon the maximum and minimum
bandwidths available, a rating of 1 means that the bandwidth
available is in the range (9B/10 – B] and a rating of 10 implies
that the bandwidth available is in between (0 - B/10].

Now the scaling of latency values on a scale of 10 is done
using the same process as above and the maximum latency L is
an assumed value throughout the global network. Here the
latency in the range (9L/10 - L] is given rating of 10 because
that is the ideal condition.

Past response is calculated as the 80% of the old past
response and 20% of the normalized rating for the number of
files returned in the current hit message. To compute the past
response, we used the following formula:

(Past response)i= 0.8 * (past response) i + 0.2 * (rating
points for the number of files returned in the current query hit
message) i

The scaling of response of a node on a scale of 10 is done
in the same as mentioned for bandwidth. If the maximum
response is P, then if a node returns number of files falling in
the range (9P/10 – P], it is given rating of 1 and other ranges
are scaled accordingly.

C. Algorithms

The pseudo code for processing the query received from a
neighbor, computing composite cost and processing the hits
received from peers is given in Algorithm 1.

D. Adaptive nature of our approach

Our approach finds the most preferable overlay route under
the constantly changing link bandwidths and delays. It adapts
to the dynamically changing network parameters by choosing
the best neighbors at every hop. Also the algorithm adapts to
the high churn (node joining and leaving) scenario mostly
found in the P2P overlay networks. This is possible because the
approach always finds the best neighbors based on the
bandwidth and link latency but not on the content that is hosted
by the peer. Our protocol also handles the link or node failures
which could be the result of an earlier connected peer leaving
the overlay network. In this situation the protocol automatically
recalculates the better available route for the next set of queries
that arrive at the existing peers. The QoS parameters that the
user is able to specify while requesting for the object could be
based on his own experiences with the access network to which

he is connected and the resource available at the end system or
it could even be on the basis of his experiences with the peer-
to-peer overlay download over few days or months or years. A
peer that was down because of some reasons (possibly crash or
maintenance reasons) when rejoins, our algorithm dynamically
integrates it into the existing set of overlay peers.

V. SIMULATION RESULTS

This section shows our simulation results. The objective of
the simulation is to show that the proposed protocol indeed
delivers the expected results and consumes low bandwidth of
the network and hence can accommodate more number of peers
without degrading performance. The simulated network
consists of 1000 nodes and 50 different objects but spread
randomly across the network. The degree of node varies from 3
to 12 with average 6. The objects are distributed randomly
across the peers. Each peer has maximum of 15 objects. The
bandwidth and link latency is randomly assigned to each link.
We compared our approach with the flooding technique which
is used by most currently operating unstructured overlays. The
TTL limit is varied from 1 to 5. The bandwidth of the links is
randomly changed during simulation to reflect the dynamic
nature of the network congestion. It is changed after every
query. We plotted the results as shown in figure 3 and figure 4.

As we see in figure 3, as the TTL increases the message
overhead produced by the QoS based search becomes
insignificant when compared to flooding. But when the hop
count reaches 4, there is an exponential increase in the message
overhead for the flooding approach. When the hop count is 5,
the message count raises up by a factor of several thousands.
But in our adaptive search approach, increase in message
overhead is very slow with respect to hop count. This is
natural out come of the QoS constraints. The message overhead
directly affects the bandwidth consumed in the network. The
graph in figure 4 shows that the magnitude of results returned
by the two approaches. When hop count is 1, the results
returned by the both approaches are zero. The results returned
by flooding increases rapidly with respect to the hop count. As
shown in figure 5, flooding approach returns huge number of
unwanted hits. These results do not satisfy the user
requirements. They unnecessarily consume the bandwidth
doing nothing good for the user and reducing the scalability.

Message Overhead

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4 5 6Hop count

M
e
s
s
a
g
e
 C

o
u
n
t

Flooding (10) QoS(10) Flooding(20)
QoS (20) Flooding(30) QoS (30)

Figure 3: Performance of QoS based search (Numbers in the

brackets indicate number of queries)

VI. CONCLUSION

In this paper we presented a QoS based adaptive heuristic
search protocol for unstructured peer to peer overlay networks.
The objective of this heuristics is to find items in the routes that
satisfy the user given constraints. The approach also aims at
reducing the bandwidth consumption of the network. We
quantify the performance of our approach in terms of number
of hits and message overhead in the overlay network. Our
adaptive heuristics performs better over flooding technique
which is currently being used predominantly in most of the
unstructured P2P overlays. For small TTL values, both
flooding and our approach do not differentiate much. However,
for moderate to large TTL values, our adaptive protocol
improves performance of the overlay lookup. Our protocol is
scalable because it judiciously or optimally uses the bandwidth
available over the overlay links. Our approach also handles
Churns (high rate of peer joins and leaves) efficiently by
choosing the right neighbors who have low latency and less
congestion amongst the available neighbors. However, in

literature researchers have selected nearest neighbor in the
churn scenario which may not be better always from
performance metric considering the QoS angle. We plan to
extend our work by building a testbed for unstructured P2P
overlay in our advanced network research laboratory running a
modified version of open source software like bittorrent with
our adaptive lookup being used to improve the download speed
of multimedia contents in a large peer base.

REFERENCES

[1] P. Ganesan, P. K. Gummadi, and H. Garcia-Molina. “Canon in G major:
Designing DHTs with hierarchical structure,” In Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS),
Tokyo, Japan, pp. 263-272, 2004.

[2] Clarke I., Sandbert O., Wiley B., Hong T, “Freenet: A distributed
anonymous information storage and retrieval system,” In: Designing
Privacy Enhancing Technologies: Design Issues in Anonymity and
Unobservability,” (Federrath H. ed.) New York, Springer, pp. 46-66,
2001.

[3] Gnutella Protocol Specification Version 0.4

 Available from:

 http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

[4] Fasttrack Specification

Available from:

http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-
FastTrack/PROTOCOL?rev=HEAD&content-type=text/vnd.viewcvs-
markup

[5] http://www.kazaa.com

[6] Ratnasamy S., Francis P., Handley M., Karp R., Shenker S., “A scalable
content addressable network,” In Proceedings of the 2001 ACM Annual
Conference of the Special Interest Group on Data Communication
(SIGCOMM), San Diego, USA, Aug 27-31, ACM Press, pp. 161-172,
2001.

[7] Zhao B.Y., Huang L., Rhea S.C., Stribling J., Joseph A.D., Kubiatowicz
J.D, “Tapestry: A global-scale overlay for rapid service deployment,”
IEEE Journal on Selected Areas in Communications, Vol 22, No 1, pp.
41-53, Jan 2004.

[8] Stoica I., Morris R., Liben-Nowell D., Karger D., Kaashoek M.F.,
Dabek F., Balakrishnan H, “Chord: A scalable peer-to-peer lookup
service for internet applications,” IEEE/ACM Transactions on
Networking, Vol 11, pp. 17-32, Feb 2003.

[9] Rowstron A., Druschel P, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” In
Proceedings of IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, pp. 329-350,
Nov 2001.

[10] Maymounkov P., Mazires D, “Kademlia: A Peer-to-peer Information
System Based on the XOR Metric,” In Proceedings of First Interational
Workshop on Peer-to-Peer Systems (IPTPS’02), Cambridge, USA, Mar
07-08, Springer, pp. 53-65, Mar 2002.

[11] Malkhi D., Naor M., Ratajczak D, “Viceroy: A scalable and dynamic
emulation of the butterfly,” In Proceedings of the 21st ACM Symposium
on Principles of Distributed Computing (PODC ’02), Monterey, USA,
ACM Press, pp. 183-192, Jul 2002.

[12] Beverly Yang, Patrick Vinograd, Hector Garcia-Molina, “Evaluating
GUESS and Non-Forwarding Peer-to-Peer Search,” In Proceedings of
IEEE 24th International Conference on Distributed Computing Systems
(ICDCS), IEEE Computer Sociey, Wasinghton DC, USA, pp. 209-218,
2004.

[13] Balakrishnan H., Kaashoek M.F., Karger D., Morris R., Stoica I. ,
“Looking Up Data in P2P Systems,” Communications of the ACM, Vol
46, pp. 43-48, 2003.

Query Hits

0

200

400

600

800

1000

1200

1400

0 2 4 6

Hop Count

Q
u
e
ry

 H
its

Flooding (10) QoS(10) Flooding(20)
QoS (20) Flooding(30) QoS (30)

Figure 4: Query hits of QoS based search

(Numbers in the brackets indicate number of queries)

Unwanted Query Hits

0

200

400

600

800

1000

1200

1400

1 2 3 4 5
Hop Count

Q
u

e
ry

 H
it

 C
o

u
n

t

Flooding(30) QoS (30) Difference (30)

Figure 5: Unwanted query hits

(Numbers in the brackets indicate number of queries)

[14] Lv C., Cao P., Cohen E., Li K., Shenker S, “Search and Replication in
Unstructured Peer-to-Peer Networks,” In Proceedings of the 16th
International conference on Supercomputing, New York, US, ACM
Press, pp. 84-95, 2002.

[15] Yang B., Garcia-Molina H, “Improving Search in Peer-to-Peer
Networks,” In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS'02), Vienna, Austria, pp. 5-14,
2002.

[16] Daswani S., Fisk A. GUESS protocol specification.

Available from

http://groups.yahoo.com/group/the_gdf/files/Proposals/GUESS/guess_0

1.txt

[17] Yong Liu, “On the minimum delay peer to peer video streaming: how
real time can it be?,” In Proceedings of the Fifteenth International
Conference on Multimedia, Augsburg, Germany, ACM SIGMM &
ACM SIGGRAPH, pp. 127-136, Sept 2007.

[18] Crespo A., Garcis Molina H., “Routing indices for peer-to-peer
systems”, In Proceedings of the 22nd International Conference on
Distributed Computing (ICDCS'02), Vienna, Austria, IEEE Computer
Society Press, pp.23, 2002.

[19] Kalogeraki V., Gunopulos D., Zeinalipour-Yazti D., “A local search
mechanism for peer-to-peer networks”, In Proceedings of the 11th ACM
Conference on Information and Knowledge Management (ACM
CIKM’02), McLean, Virginia, ACM, pp. 300-307, 2002.

[20] Tsoumakos D., Roussopoulos N., “Adaptive probabilistic search in peer-
to-peer netwrorks”, Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS’03), Berkely, CA, IEEE Computer Society
Press, pp. 102- 109 , 2003.

[21] Ea M., “Ant Algorithms for Search in Unstructured peer-to-Peer
Networks”, In Proceedings of the 22td International Conference on Data
Engineering Workshops (ICDEW'06), Atlanta, Georgia, IEEE Computer
Society Press, Vol 0, pp.142, 2006.

[22] Zaharia M., Keshav S, “Gossip-based Search Selection in Hybrid Peer-
to-Peer Networks”, In Proceedings of the 5th Inernational Workshop on
Peer-to-Peer Systems (IPTPS’06), Santa Barbara, CA, 2006.

[23] Shi X., Han J, Liu Y., Ni L.M. “Popularity Adaptive Search in Hybrid
P2P Systems”, In Proceedings of IEEE International Parallel and
Distributed Processing Symposium (IPDPS’07), IEEE Computer Society
Press, pp.110, 2007.

[24] Cuenca-Acuna F.M., Peery C., Martin R.P., Nguyen T.D, “PlanetP:
Using gossiping to build content addressable peer-to-peer information
sharing communities,” In Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing (HPDC’03),
Seattle, USA, IEEE Computer Society, pp. 236-246, 2003.

[25] Bawa M., Brian F.C., Crespo A., Daswani N., Ganesan P., Garcia-
Molina H., Kamvar S., Marti S., Schlosser M., Sun Q., Vinograd P.,
Yang B, “Peer-to-peer research at Stanford,” AGM SIGMOD Record,
Vol 32, pp. 23-28, 2003.

[26] Daswani N., Garcia-Molina H., Yang B, “Open problems in data-sharing
peer-to-peer systems,” In Proceedings of the 9th International Conference
on Database Theory (ICDT’03), Sienna, Italy, LNCS Springer Vol 2572,
pp. 1-15, 2003.

