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Abstract

We present a hardware architecture that combines El-
liptic Curve Cryptography (ECC) and lossless data com-
pression in a single chip. Input data is compressed using
a dictionary-based lossless data compressor before encryp-
tion, then; two elliptic curve cryptographic algorithms can
be applied to the compressed data: ECIES for encryption
or ECDSA for digital signature. Applying data compres-
sion presents three advantages: first, the improvement in the
cryptographic module throughput by reducing the amount
of data to be encrypted; second, the higher utilization of the
available bandwidth if encrypted data is transmitted across
a public network and third, the increment of the difficulty to
recover the original information. The architecture was de-
scribed in VHDL and synthesized for a Xilinx FPGA de-
vice. The results achieved show that it is possible to com-
bine these two algorithms in a single chip while gathering
the advantages of compression and cryptography. This work
is novel in the sense that no such algorithm combination has
been reported neither a hardware implementation of ellip-
tic curve cryptographic schemes.

1. Introduction

Data compression and cryptography play an important
role when transmitting data across a public computer net-
work. While compression reduces the amount of data to
be transferred or stored, cryptography ensures that data are
transmitted with reliability and integrity. In theory, com-
pression and cryptography are opposite: while cryptography
converts some legible data into some totally illegible data,
compression searches for redundancy or patterns in data to
be eliminated in order to get a reduction of data.

Using a data compression algorithm together with an en-
cryption algorithm, in the correct order, makes sense for
three reasons:

• Compressing data before encryption reduces the re-
dundancies that can be exploited by cryptanalysts to
recover the original data.

• Compressing data speeds-up the encryption process.

• If encrypted data are transmitted in a computer net-
work, the bandwidth is better utilized.

Data must be compressed before encryption. If it were
the opposite case, the result of the cryptographic operation
would be illegible data and no patterns or redundancy would
be present, leading to very poor or no compression at all.

The approach of combining compression with cryptog-
raphy has been adopted in some software applications like
HiFn [7], PKWare [15], PGP [19] and CyberFUSION
[16]. Also, some network security protocols like SLL, SSH
and IPSec compress data before encryption as part of the
transferring process. PGP uses symmetrical ciphers, CAST-
128, IDEA and 3DES for encryption, and RSA for public
key cryptography. Messages signed or encrypted are com-
pressed using the ZIP algorithm. The popular PKWare’s
software, PKZip, encrypts messages for storage or transfer
using symmetrical encryption, 256-bit key AES, or asym-
metrical encryption, RSA. CyberFUSION, similar to a FTP
application, encrypts data using either the DES or 3DES
algorithm. Compression is performed using the RLE (Run
Length Encoding) algorithm.

HiFn proposed a processor to perform both compression
and encryption. Cryptographic symmetrical algorithms sup-
ported by this processor are AES and 3DES, and SHA-1 and
MD5 for authentication [19]; compression is performed by
the LZS (Lempel-Ziv-Stac) [5] algorithm. CISCO offers
some hardware and software modules to encrypt and com-
press incorporated into routers in order to improve the per-
formance of data transmission. Data can be compressed by
the LZS algorithm or by the IPPCP compression protocol;
the compressed data are encrypted by the AES algorithm
with 128, 192 or 256-bit key.



Compression and cryptographic algorithms are expen-
sive in terms of time when they are implemented in gen-
eral purpose processors (like the ones used in personal com-
puters). When implementing compression algorithms, the
search for redundancy implies many complex operations
that can not be implemented efficiently with the available
instruction set of a general purpose processor. And when
cryptographic algorithms are implemented, it is necessary
to perform a high amount of mathematical operations be-
tween large numbers in a finite field. Again, general purpose
processors do not have instructions to support these opera-
tions, leading to inefficient implementations. For these rea-
sons, a hardware solution is well suited to implement both
kinds of algorithms, especially for real time data process-
ing.

In this paper, we implement public key cryptography in-
stead of symmetrical encryption. Traditionally, public key
cryptography has been used only to generate a shared secret
value, which is used for bulk encryption. We now consider
how public key cryptography performs to encrypt data. Fur-
thermore, we compress data before encryption operations
in order to improve the performance of the cipher module.
Compression is performed by a dictionary-based lossless
data compressor, a variant of the LZ77 algorithm [22], the
LZSS [20]. Compressed data are encrypted using Elliptic
Curve Cryptography (ECC) [10], implemented schemes are
the Elliptic Curve Integrated Encryption Scheme (ECIES)
[17] for bulk encryption and the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) [1] for digital signature.

To our knowledge, there is no hardware implementation
where lossless data compression and elliptic curve cryptog-
raphy have been considered jointly, neither a hardware im-
plementation of the ECC schemes.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the cryptographic schemes implemented in
this work, section 3 presents the system architecture and ex-
plains how data flow occurs; Section 4 presents the synthe-
sis results and timing for scalar multiplication and data com-
pression. Finally, section 5 concludes this work and presents
future directions.

2. Data compression and ECC

ECC is a relatively novel approach for public key cryp-
tography. It uses shorter length keys than other public-key
cryptosystems offering the same security level. For exam-
ple, using a 163-bit offers the same security level that RSA
with a 1024-bit key. This implies less space for key storage
and faster arithmetic operations. Furthermore, it has been
shown in the literature [10] that ECC’s security is higher
than that provided by RSA, which is the most widely used
public key cryptosystem. The LZ77 algorithm is the first
proposal for text compression where prior knowledge or sta-

tistical characteristics of the symbols are not required. This
fact leads to faster compression because a second pass over
the data is not required as it occurs in some statistical meth-
ods. A second advantage is that the decompression process
is easier and faster than the compression one. These two rea-
sons made LZ77 attractive for us to implement it and study
it as a competitive lossless data compressor to be used pre-
vious the elliptic curve cryptosystem.

An elliptic curve cryptosystem consists of a 7-tuple T =
(q, a, b, G, n, h) where q is the finite field where the elliptic
curve is defined, a and b are elements in the finite field that
define the elliptic curve equation, G is a point of the elliptic
curve and has the property of generating all other points de-
fined by the same elliptic curve, n is the order of the point
G and h is the divider of the number of elements of the el-
liptic curve by n [2].

In this work, we select the two-characteristic finite field
F2m , according to literature, this field leads to more effi-
cient hardware implementations than other finite fields [2].
For F2m , an elliptic curve is defined as a set of points sat-
isfying equation 1.

y2 + xy = x3 + ax2 + b (1)

The points of the elliptic curve form a group respect to
the sum operation. On this group, the discrete logarithm
problem is defined as follows: given two points on the
curve, say P and Q, find the scalar k such that kP = Q. As
this problem is considered extremely difficult for special el-
liptic curves, ECC bases its security on this problem. On the
contrary, given the scalar k and a point on the curve P , the
operation kP is relatively easy to compute. This operation
is called scalar multiplication and it is a critical operation in
the cryptographic schemes based on elliptic curves, two of
them are implemented in this work. For these schemes, as-
sume that the 7-tuple T is shared by entities A and B, dA

and dB are private keys of entities A and B respectively and
QA and QB are the public keys of A and B respectively.

Entity A performs the following steps for encrypting a
message m1 for B,

1. Select a random number k ∈ [1, n − 1]

2. Compute (x, y) = kQB and R = kG

3. Use a Key Derivation Function (KDF) to derive a (S +
M )-bit key, kKDF , from x

4. Take the S left most bits of kKDF as the S-bit key kS

and encrypt the message. C = E(m1, kS)

5. Take the M right most bits of kKDF as the M -bit
key kM and compute the m’s MAC value. V =
MAC(m1, kM )

6. Send (R, C, V ) to B

To recover the original message, B perform the follow-
ing steps:



Figure 1. ECDSA

1. If R is not a valid elliptic curve point, fail and return.

2. Compute (x′, y′) = dBR

3. Use a Key Derivation Function (KDF) to derive a (S +
M )-bit key, kKDF , from x′

4. Take the S left most bits of kKDF as the S-bit key kS

and decrypt the message C. m1 = E(C, ks).

5. Take the M right most bits of kKDF as the M -bit
key kM and compute the C’s MAC value. V =
MAC(C, kM )

6. Accept message m1 as valid if and only if V = V1

The ECDSA works as follows: To sign the message m1,
entity A performs the following steps:

1. Select a random number k from [1, n − 1]

2. Compute R = kG = (x, y) and r = x mod n. If r = 0
go to step 1.

3. Compute s = k−1(H(m1) + dAr) mod n, H is the
hash value of the message.

4. The digital signature on message m1 is the pair (r, s)

Entity B can verify the digital signature (r, s) on m1 per-
forming the following steps:

1. Verify r and s are integers in [1, n− 1], if not, the dig-
ital signature is wrong. Finish and reject the message.

2. Compute w = s−1 mod n and H(m1), H is the hash
value of the message.

3. Compute u1 = H(m1)w mod n and u2 = rw mod n

4. Compute R′ = u1G + u2QA = (x′, y′)

5. Compute v′ = x′ mod n, accept the digital signature if
and only if v′ = r

Block diagrams of the ECDSA and ECIES schemes,
showing where data compression occurs, are depicted in fig-
ures 1 and 2. In both schemes, support for elliptic curve
operations is required. In ECDSA, it is necessary to per-
form mathematical operations on large integers. In ECIES,
the KDF module derives a key as a bit string of arbitrary

Figure 2. ECIES

length l by executing the SHA-1 algorithm l/160 times.
KDF is specified in standard ANSI X9.63. The MAC al-
gorithm considered in this work is HMAC using a 160-bit
kM key. HMAC is specified in ANSI X9.71. One of the
symmetrical encryption methods recommended by SEC-1
for ECIES symmetrical encryption is the XORing encryp-
tion. This kind of encryption consists in a XOR operation
between the key kS and data. So, the KDF module must
generate a 160-bit kM key and a kS key of the same length
that the message to be encrypted/decrypted. Theoretically,
we need to know the length of data a priori in order to know
how many SHA-1 iterations will be executed.

HMAC y KDF, are based on the SHA-1 algorithm [13],
which is used in the ECDSA scheme too as the hash func-
tion. The SHA-1 algorithm assumes all data is available in
order to compute the hash value. In KDF, SHA-1 computes
a hash value on fixed size data, but in HMAC and ECDSA,
the size is determined by the input message. For a signa-
ture generation operation, data are compressed before com-
puting the hash value. For an encryption operation, data are
compressed before they are encrypted by the E module. In
a signature verification or decryption operation, data are as-
sumed to arrive in a compressed form, so, incoming data are
not compressed but decompressed after the cryptographic
operations.

In order to outperform a sequential implementation data
are processed in each module as they are being processed
in previous modules, as a pipeline approach. For example,
in an encryption operation, data are authenticated as they
are been encrypted, that in the same way, data are being en-
crypted as they are been compressed. Because of arithmetic
operations do not depend on partial results in data process-
ing blocks, these can be supported by independent arith-
metic units, one for elliptic curve arithmetic and other for
modular integer arithmetic. In both schemes, arithmetic op-
erations and data processing can be performed in parallel,
as shown in figures 1 and 2.



Figure 3. Data processing

3. Architecture of the system

Figure 3 shows how the main modules for data pro-
cessing in ECIES and ECDSA are organized. Data flow is
controlled by multiplexers according to the current opera-
tion going to be applied to input data. The HMAC module
can either compute the hash value of the input data when
ECDSA algorithm is executed or, it can compute the HMAC
value of incoming data. The KDF depends on a shared se-
cret value to start to generate the keys for E and HMAC.
When data are signed, data to be hashed is taken from the
output of the compressor. When digital signature is veri-
fied, data to be hashed is taken directly form the host (no
compression is applied). For a encryption operation, data is
encrypted by the E module, taking data from the compres-
sor. In this case, HMAC computes the MAC value from the
shared value. When data are decrypted, data are not com-
pressed, so data coming from the host are processed by the
encryption module and by the HMAC. KDF and HMAC are
build around a core of the SHA-1 algorithm, which com-
putes the hash value of a 512-bit data block.

Figure 5 shows the organization of the arithmetic units
for both, elliptic points and large integers modulo n. All
internal buses in both arithmetic units are m-bit wide. An
Input/Output interface loads and reads new F2m values
to/from the memories for the arithmetic units. The I/O in-
terface does not can access protected information, like the
private keys. Two memories are used for the elliptic curve
arithmetic unit, one for storing the points involved in scalar
multiplication and other for storing scalar values involved
in the multiplication. The big arithmetic ALU only uses a
memory for storing input and intermediate parameters. In
this memory, the result of the HMAC module is stored for
future read.

3.1. Data Compression

The compression module was designed using a systolic
array approach. Its derivation was made by applying loop
unrolling to the algorithm, taking the ideas given in [8].

Figure 4. Processing elements

Figure 5. Arithmetic units diagram

The processing elements for the systolic array are depicted
in figure 4.

The compression performance depends strongly on the
size of two buffers in the LZ compression algorithm. An
study of how compression ratio is affected by these sizes,
and also more detail in the architecture of the compressor
can be found in [12]. In the design of the compressor, the
systolic array is composed of M type-I PEs and one Type-
II PE. The latency of each codification step is in the worst
case (N + M).

3.2. Arithmetic units

Elliptic curve arithmetic unit executes either a scalar
multiplication or an elliptic curve point’s sum. Scalar mul-
tiplication is basically a sum of elliptic points, the operation
kP is viewed as the sum of the point P with itself k times
(kP = P + P + ... + P ). This sum of points is one of two
types: Doubling operation when two points are equal and
Add operation when points are different. In this work, the
binary method [6] in its left to right version is used. This al-
gorithm allows to compute a Doubling and Add operations
in parallel. Every sum of points requires several field oper-
ations, the number and type of them depends on the type
of coordinates being used. In this work, the elliptic points
are represented in affine coordinates and field elements are
viewed as polynomials on the field {0, 1}. The Doubling
operation requires the following field operations: 2 multi-



Figure 6. LZ compression performance for
different buffers size

plications, 2 squaring, one inversion and 5 sums. The Add
operation requires one inversion, two multiplications, one
squaring and eight sums. A sum in the field F2m is a XOR
operation and it is easily implemented in hardware. In this
work, the multiplication is performed by a digit-serial mul-
tiplier, the squaring operation is performed with customized
hardware and computed in only one clock cycle. The mul-
tiplier and squaring are based on the work reported in [11].
The inversion operation is carried out by direct division al-
gorithm, described in [18].

Integer arithmetic, multiplication, sum, and modular re-
duction operations are performed according to algorithms
reported in [9]. In these algorithms, modular reduction is
performed by subtracting the module n until the result falls
within the range [1, n-1]. The modular division operation
required in ECDSA algorithm is performed as described in
[18] for integer operands. Random numbers used in ECDSA
and ECIES are generated by a m-bit random number gener-
ator implemented as a linear feedback shift register (LFSR)
[19].

4. Implementation and Results

We synthesized and simulated the architecture for a Xil-
inx VirtexII XC2V6000-4ff1176 FPGA, using the ISE 6.x
and Active-HDL 6.2 software tools. The compressor was
synthesized for a searching buffer of size 1KByte and a cod-
ing buffer of size 15 bytes. These sizes were selected ac-
cording to software results for the compression algorithm,
testing different values for the buffers. Results of this test
are shown in figure 6.

Arithmetic units were synthesized for the random curve
recommended by NIST [13], for the finite field F 163

2
using

the irreducible polynomial F (x) = x163 +x8+x7+x3+1.
Synthesis results for each part of the full system is summa-
rized in table 1.

Module Slices Utilization BRAM
Compressor 9700 28% 0

HMAC 1339 3% 2
KDF 947 2% 2

E 19 1% 1
ECC-ALU 6080 17% 10
INT-ALU 2932 8% 5

RNG 177 1% 0

Table 1. Synthesis results

File Size (bytes) Time HW Time SW CR
progp 49379 94.54 265 0.47
obj1 21504 67.50 156 0.66

progc 39611 106.48 250 0.59
paper6 38105 111.78 250 0.61
paper5 11954 36.12 78 0.63
paper4 13286 42.28 109 0.65
paper3 46526 159.00 359 0.68
paper1 53161 163.81 421 0.63

Table 2. Timing results (ms) and compression
ratio

The slower module was the elliptic curve ALU and it de-
termines the clock frequency. On the contrary, the most area
consuming module was the compressor. In this case most of
the compressor area was occupied by the buffer that is im-
plemented as a set of registers connected in cascade. Ac-
cording to the synthesis results, we post-simulate the com-
pressor module, that determines the latency of data process-
ing, emitting a codeword every 1039 cycles in the worst
case. In table 2 the processing time for some files of the
Calgary Corpus [21] is given. The system behavior was val-
idated by comparing the simulation results in Active-HDL
with those obtained with an equivalent software implemen-
tation, for data processing algorithms and for the arithmetic
units. Modules as HMAC, SHA-1 and digital signature were
verified using the test vector given in its specification.

Because other similar implementations have not been re-
ported, we are not able to compare our results. However, we
can compare the results of the elliptic curve arithmetic unit
with some work that have been reported. A performance
comparison of hardware implementations for scalar multi-
plication against each other is not straightforward because
of different key size and FPGA technology used. In table 3,
the scalar multiplication timing result we have obtained is
compared with some hardware implementations mentioned
earlier in this paper.



Reference Fq Platform Time (ms)
This work F2163 Xilinx XC2V6000 1.34

[14] F2163 Altera EPIF10K250 80
[3] F2113 Amtel AT94K40 10.9
[4] F2270 Xilinx XC4085XLA 6.8

Table 3. Timing comparison for scalar multi-
plication

5. Conclusions and future work

We present a hardware architecture that combines loss-
less compression and public-key cryptography. The latency
of the overall process is determined by the compressor,
which can process up to 10 Mbps. As future work, the pro-
cessing time for the compressor can be improved if the nec-
essary time to look for a string is limited. For the crypto-
graphic work, the time to perform the scalar multiplication
can be improved if projective coordinates are used to repre-
sent the point of the curve and the Montgomery method is
used to compute the scalar multiplication. The work and re-
sults presented in this paper seem to be the only hardware
architecture that combines compression and encryption in
a single chip as no work in the literature was found report-
ing on that. This hardware architecture for lossless compres-
sion and public key cryptography gathers the advantages of
compression and cryptography, making the process of com-
pression and encryption transparent to the final user.
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