
appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

A Methodology for Building a Data Warehouse in a Scientific Environment

Karl Aberer, Klemens Hemm
GMD–IPSI

Dolivostr. 15, 64293 Darmstadt, Germany
{aberer, hemm}@darmstadt.gmd.de

Abstract

Rational drug design is an example where integrated access
to heterogeneous scientific data is urgently needed, as it be-
comes rapidly available due to new experimental and com-
putational techniques. This is currently problematic as data
is scattered over heterogeneous, mostly file-based legacy
databases, the data is erroneous, incomplete, and inconsis-
tent in representation and content. We have developed a
methodology, including metadata specification, data trans-
formation and software architecture, that supports data
analysis and preparation for building a data warehouse us-
ing object-oriented database technology. With this method-
ology the system ReLiBase has been realized, that allows
querying and visualization of the drug-design related data
from heterogeneous resources.

1 Introduction

Developing a new drug is both an expensive and time
consuming enterprise. Traditional approaches like modify-
ing a well known drug or performing random screening over
huge sets of organic molecules lack controlled result
orientation and substantial innovative perspectives. ’Ratio-
nal drug design’ tries to obtain a functional understanding
of the processes in an organism, and to propose new lead
substances for drugs. The starting point for the study of
biochemical processes are databases of experimental data.
Analysis and interpretation of this ’raw data’, involving
complex computational tools, guide the drug design cycle.

In cooperation with the pharmaceutical companies
Merck, Darmstadt, and BASF, Ludwigshafen, and the Euro-
pean Molecular Biology Laboratory EMBL, Heidelberg,
we have developed ReLiBase, a tool to provide drug design-
ers with an integrated platform supporting powerful access
mechanisms to qualitatively enriched data relevant for drug
design. (The work is performed within the national joint

project RELIWE ”Computation and Prediction of Recep-
tor-Ligand Interaction” and supported by the German
”Bundesministerium für Bildung und Wissenschaft”,
BMBF, grant number 01IB302E). Two central questions
had to been answered when designing the system. What is
the appropriate platform and what is the methodology to mi-
grate data from the various source databases to the target
platform. With regard to the first question it is in the mean-
while well accepted wisdom in biomolecular applications,
that object-oriented systems are the appropriate choice due
to the ability to flexibly represent the various domain-spe-
cific data types and algorithms. An indication for this is the
use of object-oriented technology in various projects re-
lated to biomolecular databases[10][13][18]. Therefore we
are using the object–oriented database management system
VODAK [24] as data warehousing platform. So a main fo-
cus has been to develop an integration methodology.

Database integration is a well studied problem in com-
puter science [25]. Approaches range from classical feder-
ated database architectures, like in the IRO–DB [12] ap-
proach for integrating relational and object-oriented data-
bases, to data warehousing in commercial settings, like re-
ported in [15]. In [7] it has been noted that the issues occur-
ring in the biomolecular domain differ with regard to the
complexity of queries and data modelling. Thus approaches
with the background of commercial applications have only
limited applicability. The authors of [7] propose to access
biomolecular data based on an object-oriented data model
without physically integrating the data. Queries are ex-
pressed in a comprehension language, are decomposed, op-
timized and delegated to various external databases and can
perform the required data transformations. Although this
approach is striking for its flexibility it is less applicable to
our problems for performance considerations.

For obtaining adequate performance it was quite clear
from the beginning that for data analysis purposes at least
a core database has to be integrated physically, in other
words a data warehouse [15] was required. The observation
that substantial biochemical and biomolecular knowledge

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

is required to appropriately prepare the data for the ware-
house was identified as a main problem. This includes
selection of data, correction of errors, addition of missing
data or consolidation of data from different databases. The
knowledge for data preparation is primarily provided at the
side of the industrial partners. On the other hand integrating
the data from various file-based databases to an object-ori-
ented database requires non-trivial data management tech-
niques. We had to resolve the question how expert knowl-
edge from both fields could be smoothly combined.

Existing approaches on data warehousing in molecular
biology are lacking a methodology in the support for data
preparation and analysis. An example for integrating and
enriching file-based databases for covering a particular spe-
cialized aspect, namely protein sequences, is SWISSPROT
[5], itself a file-based database. Consistency is there main-
tained by an editorial team. An approach for building a
warehouse for genome data in an automatized way is IGD
[23]. Heterogeneous data is first represented in proprietary
object-oriented structural model (ACE [10]). Integration is
performed by matching semantically equivalent entities
and resolving conflicts by juxtaposition, on schema as well
as on instance level. Thus integration and correction based
on data analysis is not performed. Finally the object-ori-
ented schemas are automatically translated into relational
schemas for building the warehouse on a relational system
(Sybase). Other warehouses store only the information that
is required to link information from different databases, like
SRS [11].

The contribution of this paper is a methodology for
building a data warehouse that has evolved from the close
cooperation with industrial scientific users (mostly bioche-
mists and molecular biologists, we will refer to them in the
following as ”the users”). It has proven to be a practicable
approach in building the data warehouse for their needs.
The key components of this methodology are

1. A well defined interface between the users and the
computer scientist in form of a metadatabase, that is speci-
fied by the users. This metadatabase allows the specifica-
tion of the data that is to be included into the data ware-
house, of how data from different databases is to be inter-
connected, and of additional data that is not contained in
one of the source databases. The operational execution of
this specification is the task of the data management system.

2. A basic set of data transformations that are on the one
hand sufficiently expressive to transform the heterogeneous
source databases to a target database, but are on the other
hand sufficiently simple in semantics such that a biological
user can understand their effects without having knowledge
of technical details of the target database or the transforma-
tion process.

3. The software design to execute the data transforma-
tions from file-based source databases to the object-ori-
ented target database as specified in the metadatabase in an
efficient and automatized manner.

As an application of these concepts ReLiBase, a data
warehouse for rational drug design, has been built based on
this methodology. The concepts have proven to be easily ap-
plicable by the users and the separation of the aspects of data
analysis in a preparatory phase and the actual physical
building of the data warehouse has been successfully per-
formed. Currently the data warehouse is under evaluation
by the users.

In this paper we first analyze in Section 2 requirements
with regard to data integration that were derived during the
problem analysis. The key contributions of the paper are
found in Section 3. There we formally analyze the data
transformations, that are required, introduce the concept of
using a metadatabase for data warehousing, and discuss the
software architecture we have chosen. In Section 4 we dis-
cuss the implementation of the system. In Section 5 some
concluding remarks are given.

2 Requirements for data warehousing

We mention some of the important data resources used
in our work. Detailed structural data on proteins and pro-
tein–ligand complexes is available in PDB [6]. This data-
base contains currently about 3000 protein structures. In the
year 2000 it is expected to contain about 30.000 structures.
Structures are used for detailed analysis of protein–ligand
interaction. More than 100.000 protein sequences are avail-
able in public databases, like SWISSPROT [5]. Mutation
data allows to identify functionally critical regions in pro-
teins. This information is found in SWISSPROT and in spe-
cialized databases like PMD [20]. The different databases
and corresponding tools interoperate only little if at all. The
hope is to obtain new insights in the interaction of biological
molecules with drugs by enabling the analysis of data from
different resources and thus combining different paradigms
(e.g. key-lock principle, sequence similarity, mutation).

The existence of these databases in public form is desir-
able from the viewpoint of availability. However, since the
data providers are autonomous a high degree of heterogene-
ity is encountered. Most data is stored in file-based data-
bases. One often encounters semantically complex data in
poorly structured representations. Database schemas are
often missing or implicit. Data is often incomplete and erro-
neous. Data may only be available as the result of analysis
programs or even only accessible in the literature. Thus to
provide quality data for the scientific work an extensive
analysis and enrichment process is required. To illustrate
the difficulty in integrating the data we sketch a few steps
that need to be realized within our project for preparing the
data warehouse (for a more extensive description see [14]).

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

Starting from the set of existing PDB files those are iden-
tified that contain a protein. If this is the case it is tested
whether a ligand exists, that is not another protein or a nu-
cleic acid. Only in this case a protein object, a complex ob-
ject and a ligand object are created and the complex is con-
nected with the corresponding protein and ligand. The three
dimensional complex models in the PDB file are identified
and are added to the data warehouse. Now the topology of
the ligand is constructed as it is not available in PDB. This
step requires algorithmic tools, access to ligand databases
and manual inspection and includes error correction and
elimination of duplicate structures. When the correspond-
ing structure is identified, a file in MOL2 format is added
to the source database and the model needs to be connected
to the corresponding ligand. For the protein the SWIS-
SPROT database is searched for a sequence entry. This is
done either by using keyword search or by using a sequence
similarity database. If it is found the SWISSPROT entry is
created and connected to the corresponding protein. Possi-
bly there are discrepancies in the numbering schemes of the
SWISSPROT sequence and the sequence stored in PDB. In
this case corresponding corrections are generated to align
the residue numbering of swissprot with the numbering
used in the PDB model. From SWISSPROT references to
other sequence databases, like PIR or EMBL, can be
derived. Mutation data can be derived either from the
SWISSPROT database or the PMD database. The process
is based on different stand-alone programs and parsers, and
the different steps evolve continuously.

The following requirements have been derived with re-
gard to building the data warehouse. It is necessary

(5) to access heterogeneous file-based databases e.g. by
parsing techniques.

(6) to perform complex data restructuring in order to
transform the data from the different heterogeneous data
formats into the integrated warehouse.

(7) to support correction of errors, data adjustments and
data completion by using complex data analysis techniques.

(8) to be able to track any data back to its original re-
sources for verification or visualization.

(9) to allow the user to flexibly adapt the scope, struc-
ture and contents of the data warehouse to his needs without
requiring support from the data management expert.

(10) to relieve the user as far as possible from details on a
technical level of integration.

(11) to minimize manual intervention as far as possible
during the data integration process.

(12) to consider updates in external formats and schema
evolution.

Some of the requirements are contradictory such that a
feasible compromise needs to be found. For example mak-
ing the user able to adapt the integration process (5) is in
conflict with requiring minimal technical understanding
from his side (6). Or the desire to fully automatize the pro-
cess (7) opposes the requirement that manual intervention
might be required (3). Some aspects simplify the integration
methodology, in particular the fact that we do not have to
deal with continuous updates of the source databases, but
rather with different release policies.

Of course we were not able to cover all of the above re-
quirements completely or equally well. However we care-
fully considered these requirements in the system design
such that we do not introduce artificial barriers for future
steps towards the ”ideal” system.

3 Building the data warehouse

We have developed an application-oriented approach for
a data integration methodology that constitutes the main fo-
cus of this paper. Although the approach is not generic in
implementation it appears to us, that it covers some basic
aspects, which are of interest for the development of a gen-
eral data warehouse integration methodology.

3.1 Preliminary observations

It is in the meanwhile a well accepted fact that some kind
of object-oriented system is required [1][16] for efficient
handling of the complex, application-specific data struc-
tures that occur in molecular biology. As we are dealing
with a huge amount of data the system must support second-
ary storage management and multi-user access, thus object-
oriented database management system are the favorable
choice.

From the viewpoint of schema integration source and
target schemas are predetermined in our application scenar-
io. For the source schemas this is obvious as we are dealing
either with public or proprietary databases that have full au-
tonomy.

For the design of the object-oriented target schema an in-
formal approach was chosen by exchanging on the one hand
implicit knowledge and preferences of the users and on the
other hand the knowledge of the computer scientists on the
feasibility of certain data representations within the chosen
object-oriented DBMS. In this way the desired target sche-
ma evolved quite rapidly. It reflects the particular view and
preferences of drug designers with regard to data and tools
they want to employ in their research.

What remains to be solved is the data transformation and
integration problem. Data from a number of source data-
bases has to be transformed into one target database. Con-
ceptually we can interpret the source databases as instances

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

of particular object-oriented schemas. Most of the data-
bases are organized in files, each file corresponding to one
(or a few) objects, e.g. proteins, sequences, ligands. The
data in files are organized in record structures. Specific re-
cords may be optional. Values can be simply structured data
or can be texts, sequences, or again record structures (e.g.
the coordinates of an atom). For a formal description of the
data transformation process it is however useful (and feasi-
ble) to map these structures into a structural object-oriented
data model and make implicit data structures in this way ex-
plicit. In principle, one could perform this step by defining
import schemas, like in a federated DBMS architecture
[25], and then perform a semantic integration of the data on
top of these import schemas. For performance consider-
ations we abandoned this possibility. Instead we provide
corresponding access mechanisms directly on the files
which are typically based on parsers.

In the transformation between source and target data-
bases complex restructuring of the data may occur, includ-
ing splitting and merging of objects, extracting keywords
from text segments or restructuring of sequences. Those
structural relationships between source databases and the
target database are sometimes relatively clear. For example,
it is straightforward to transform a given tuple representing
the coordinates of an atom to a corresponding atom object
in the target database, although the structural representation
might be different. Other aspects of the data transformation
cannot be easily described as data restructuring operations.
For example a PDB file may not contain data on proteins at
all, but rather on nucleic acids. Or it may contain in addition
to protein data also protein ligand data. In such a case the
ligand may be another protein (a so-called peptidic ligand),
a nucleic acid, or a small organic molecule. Such distinc-
tions can only be made by using heuristic algorithms that re-
flect substantial biochemical knowledge and they are re-
quired order to correctly identify those objects to which
subsequent transformations can be applied correctly. Thus,
the problem of integrating data is not only one of data model
transformation and data restructuring, but requires seman-
tic analysis of data. Therefore different tasks in the integra-
tion process allow for different degrees of automation.

3.2 Language for describing data transforma-
tions

In order to describe the data transformation process for-
mally we will adopt the language WOL [19] for expressing
data transformations.

The language is based on a simple structural object-ori-
ented data model with object-identities, classes and com-
plex data-structures, including records and sets. We
introduce the main concepts by means of a few examples.
Let a schema be given for representing data from a PDB file

with one class PDB_file. The class has associated a type that
matches the file format, for example

typePDB_file =
(name: STRING,
atoms: { [column1: STRING, column2: STRING,

column3: STRING, column4: STRING] })

An instance of this class can be considered as an abstract
representation of a concrete PDB file. For example the
instance

PDB_file(”1atr”, { [”N”, 12.1, 1.7, 14.5], [”C”, 0.7, 3.5, 23.5],... })

matches the contents of a file with name 1atr and the fol-
lowing content:

ATOM N 12.1 1.7 14.5
ATOM C 0.7 3.5 23.5

The four record entries correspond of course to the atom
type and the 3D atom coordinates. We also consider a se-
cond schema for the representation of a protein model in an
object-oriented database.

typeProteinModel =
(proteinname: STRING, atoms: {Atom})

typeAtom =
(atomtype: STRING,
coordinates: [x: REAL, y: REAL, z: REAL])

Now we give a simple example of a constraint that could
hold between these two schemas

P�ProteinModel, P.proteinname = X.name <== X�PDB_file

The capital letters X and P denote variables and the dot
notation expresses attribute access to records in the usual
way. Class names denote the set of instances of the class.
The rule is interpreted as follows. For some instantiation of
the variables that makes the condition on the right hand side
true the left hand side has also to be true. This rule describes
an inter-database constraint containing a condition on ob-
jects from the target database on the left hand side and a
condition on objects of the source and target database on the
right hand side. Such a rule is called a transformation rule.

Assuming that the source database(s) is populated, and
that the right hand side matches the given pattern (in our ex-
ample X � PDB_file), and further assuming that no object
exists that satisfies the condition on the left hand side, an ac-
tion has to be performed in order to satisfy this constraint.
For example, this action can be the creation of an appropri-
ate object in the target database (in our example the creation
of a ProteinModel object) or the update of an attribute of
such an object (in our example setting the property of the
created object to X.name). Thus, in order to satisfy this
constraint a data transformation is performed.

The same kind of rules can be used to define intradata-
base constraints, in the case where only classes of one data-

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

base are involved. Then, for example, a DBMS would be re-
quired to maintain these constraints. A simple example is

A.atomtype�{”C”, ”N”, ”O”, } <== A�Atom

In this paper we do not assume, that a generic imple-
mentation of the WOL language exists, rather we will im-
plement different rules by different specialized programs.
However, it is valuable to express the transformations we
use in a formal way in order to analyze the different steps
of the data warehouse building process.

3.3 The use of metadata for data integration

We continue the example of the previous section. In prin-
ciple, the database transformation for protein models can be
specified by a single rule.

P�ProteinModel, P.proteinname = X.name, A in P.atoms,
 A.name = Y.column1, A.coordinates.x = Y.column2,
A.coordinates.y = Y.column3, A.coordinates.z = Y.column4
<== X�PDB_file, Y�X.atoms, is_protein(X)

However, not all PDB files contain protein models. This
requires the evaluation of a predicate is_protein, which
hides an analysis of the source data. For example to decide
whether the PDB file contains a protein or a nucleic acid,
a statistical analysis of the occurring atom types is required.
This process cannot be described within the data trans-
formation language (and it is not obvious how any general
purpose formalism can do this). The evaluation of certain
predicates even may not allow for automated processing.
For example, when transforming small molecule structures
from PDB files into topological representations with bind-
ing patterns, any algorithm must be manually supervised
and requires eventually corrective actions. Although we are
able to describe now the transformation from the source to
the target database on an abstract level, it does not adequate-
ly describe what happens ”behind the scenes”.

Thus we proceed in two steps. First we identify those
components of the data transformations that can be fully de-
scribed as data restructuring. For these components we de-
velop the specification of the data transformation in form of
transformation rules and provide functions that can perform
the transformations. For example, this is feasible, when a
PDB file is identified to contain exactly the model of one
protein, then this file can easily be transformed to an equiv-
alent representation in the data warehouse. This kind of
transformations then provides a set of atomic data trans-
formations that can serve as components in the whole trans-
formation process.

For those components of the data transformations that
cannot be treated in this way, we define a metaschema that
contains additional information. This information is
derived by data analysis, like the determination of the value

of the predicate is_protein. The corresponding metadata-
base is prepared by users and treated in the data transforma-
tion process as additional source database. Supplemented
with this metadatabase the whole data transformation pro-
cess can be performed fully automatically (see req (7)).

The metadatabase defines a ”parameter space”, in which
the user can control the integration process and define the
contents of the data warehouse (see req (5)). From another
perspective the metadatabase establishes a well-defined
and sufficiently restricted interface between the computer
scientists and users. It factors out those aspects of data in-
tegration, that are not well definable, after having agreed on
stable knowledge which is encoded in atomic data trans-
formations. This corresponds to a division of work, where
computer scientists take care of data restructuring and con-
sistency management and users take care of the application-
specific aspects that occur in data integration. The comput-
er scientist and the user thus exchange only information on
aspects that are really variable in the data transformation
scenario. Another benefit of using metadata is that it allows
the user to define different data warehouses for specialized
purposes. A similar conception using metadata is consid-
ered e.g. in [15].

We illustrate the concept now by proceeding with the ex-
ample. We assume the following class is given in the meta-
schema

typeProteinModel_meta = (proteinname: STRING)

Then the user generates as a result of data analysis the
following object

ProteinModel_meta(”1atr”)

where 1atr is the name of a protein and its corresponding
PDB file. The data transformation process is then described
by the following rule

P�ProteinModel, P.proteinname = Z.proteinname, A in P.atoms,
 A.name = Y.column1, A.coordinates.x = Y.column2,
A.coordinates.y = Y.column3, A.coordinates.z = Y.column4
<== X�PDB_file, Z�ProteinModel_meta,

Z.proteinname = X.name, Y�X.atoms

In this rule predicates with ”hidden meaning” do not oc-
cur anymore. Still, the one step transformation rule does not
appropriately reflect the work division that was discussed
previously. To achieve this we decompose the rule into a
rule corresponding to an atomic data transformation, inde-
pendent of metadata, and a rule corresponding to the trans-
formation of metadata. The latter can be considered as com-
posite data transformation, since it triggers subsequent
atomic transformations by changing the contents of the tar-
get database. The atomic data transformation rule is

A�P.atoms, A.name = Y.column1, A.coordinates.x = Y.column2,
A.coordinates.y = Y.column3, A.coordinates.z = Y.column4
<== P�ProteinModel, X�PDB_file,

P.proteinname = X.name, Y�X.atoms

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

This rule expresses, that when a protein model object ex-
ists in the target database, then the corresponding attributes,
in this case the information on atoms, can be automatically
retrieved from the corresponding source PDB file (in prac-
tice by using an appropriate file parser). It is important to
observe that this rule is independent of the metaschema.

The transformation of metadata on the other hand is de-
scribed by the following rule

P�ProteinModel, P.proteinname = Z.proteinname
<== Z�ProteinModel_meta

This rule states whenever there exists an entry in the me-
tadatabase stating the existence of a protein model then a
corresponding entry in the target database for the protein
model is required. In this way we have organized the trans-
formations in a way such that the atomic transformation are
specified independently of the transformations of metadata.
As both kinds of transformations are described in a simple
data restructuring language it is obvious that they can be
systematically implemented.

To conclude this section we illustrate the usage of rules
for the description of target database constraints and meta-
database constraints. Both kinds of constraints play actually
a role in our application. A typical case for such constraints
are primary keys which play a central role in the identifica-
tion of objects during integration. For keys the language
WOL provides a special function MkC(t) which represents
the object identity of the object o in class C with key t, where
t is a term of appropriate type. Then we can state the follow-
ing constraints

P = MkProteinModel(P.proteinname) <== P�ProteinModel
Z = MkProteinModel_meta(Z.proteinname)

<== Z�ProteinModel_meta

Actually these and other constraints are checked in the
course of the data transformation process.

To summarize a metadatabase is prepared by the user
providing all the information to transform and interconnect
the information from the different databases and to correct
the data in the desired way. This specification fully de-
scribes the data warehouse in a declarative way, from which
an automatic process can physically build it.

For the sake of clarity, the examples used in the presenta-
tion of this section are to a certain degree a simplification
of the situation we encounter in practice. We will give in the
following section examples of more complex transforma-
tions.

3.4 Types of transformations

To keep the design of transformation rules maintainable
and the semantics of the metadatabase transparent for the

user, who has to generate this metadata, we have restricted
the types of possible transformation rules applicable to the
metadatabase. Experience has shown that in our application
scenario the four following rule types are sufficient:

(1) Creation of an object in the target database: It has
the general format

O�C_target, (clauses for initialization of attributes)
<== X�C_meta

For example for identifying the proteins for the data
warehouse we introduce a new type for the metadatabase

typeProtein_meta = (proteinname: STRING)

where the corresponding transformation rule is

P�Protein, X.proteinname = P.proteinname
<== X�Protein_meta

(2) Change of an attribute of an existing object in the
target database: These rules are used to set attributes that
need to be changed only occasionally and are thus not set at
object creation time. A typical application of this rule is the
correction of errors or complementation of missing data in
the source database (see req (3)). These rules have the gen-
eral format

(clauses for initialization of attributes)
<== X�C_meta, O�C_target, X.key = O.key

where key is a key attribute of the corresponding class.
A concrete example of such a rule is

X.organism�Protein.organism
<== X�Protein_organism_meta, O�Protein,

X.proteinname = O.proteinname

where the type in the metadatabase for describing such
corrections is

typeProtein_organism_meta =
(proteinname: STRING, organism: STRING)

and a sample entry in the metadatabase is

Protein_organism_meta(”1atr”,”mouse”)

It is frequently the case that annotation information, like
in the example, is missing in the PDB database and needs
to be added by the user.

(3) Creation of existence-dependent objects in the target
database: In many cases we encounter part-of relationships
in the target schema. For these it is advantageous to provide
an appropriate transformation rule type.

P�C_target_part, P.whole = O, P�O.parts,
(clauses for initialization of attributes)
<== X�C_meta, O�C_target_whole, X.key = O.key

We illustrate the use of such a rule by an example. We
extend the definition of the type of ProteinModel_meta as

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

given in Section 3.2 , since in practice the name of the PDB
file does not coincide with the name of the protein. Also one
PDB file may contain several protein models for the same
protein. Thus the extended type of ProteinModel_meta is as
follows.

typeProteinModel_meta =
(proteinname:STRING, modelname:STRING,
pdbfile:STRING, modelnumber:INT)

A corresponding sample entry is

ProteinModel_meta(”1atr”,”m1”,”1atr.pdb”,1)

A rule that is applied to this entry is

M�ProteinModel, M.protein = P, M�P.models,
M.name = PM.modelname
<== PM�ProteinModel_meta, P�Protein,

P.proteinname = PM.proteinname

We omit the further type definitions and rules, that are
required to describe the transformation of the atom model
contents identified by modelnumber contained in the file
pdbfile. Those are straightforward generalizations of the
atomic transformation rules given in Section 3.2.

(4) Establishing relationships between objects: When
relationships are not hierarchically organized it is in general
not possible to establish the relationship always at object
creation time. For example, the same ligand can be part of
many complex structures. Then the explicit creation of a
relationship is required after the ligand is created as an ob-
ject. We give the general pattern for establishing a part-rela-
tionship

P.whole = O, P�O.parts, (clauses for initialization of attributes)
<== X�C_meta, O�C_target,

X.wholekey = O.wholekey, P�C_target_part,
 X.partkey = P.partkey

It is important to note that the semantics of the rules can
be easily communicated to the biological user in an infor-
mal manner, e.g.

”The entry Protein_meta(”1atr”) leads to the creation of
a protein with name 1atr”

”The entry ProteinModel_meta(”1atr”, ”model1”,
”1atr.pdb”, 1) leads to the insertion of a new model with
name model1 for protein 1atr which is derived from the first
model that can be identified in the PDB–file 1atr.pdb”

The second example is a rule where the corresponding
metadata transformation leads to the subsequent execution
of an atomic transformation, in this case the transformation
of the three-dimensional protein model. This semantics is
also easily understood by the user.

3.5 Implementation of data transformations

Given a transformation rule, there exists a source data-
base in form of a record-oriented file, either original files
from biomolecular databases or a file prepared by the user
containing metadata, and a target database that has to be
populated according to the rule. The target database is im-
plemented with an object-oriented database application
with the database schema described in section 4.2. We de-
scribe by means of an example how in such a case the trans-
formation rule can be implemented. Take the rule

P�Protein, P.proteinname = Z.proteinname
<== Z�Protein_meta

introduced in Section 3.4, case (2). Then the imple-
mentation of the rule consists of three steps.

(1) Identify the pattern given on the right hand side of
the rule. This is done by parsing, if the data resides in a file-
based database, or by executing a method resp. query, if the
data resides in the object-oriented target database.

(2) Bind the variables occurring in the pattern on the
right hand side of the rule.

(3) Execute the transformation actions in order to satisfy
the constraints specified on the left hand side of the rule.
This is done be sending appropriate messages to the object-
oriented DBMS.

In addition we implement the intra database constraints,
for example

P = MkProtein(P.proteinname) <== P�Protein

The constraints are checked within the methods
executed in the OODBMS. We give now the complete algo-
rithm for the example, similarly as it is actually implement-
ed in our system. The algorithm is available as database
method of a class MetaDB.

MetaDB::transform();
{
while(not eof())
line := next_line();
/* read next line from file */
case

line–>head() == ”Protein”;
/* step 1, pattern identified */
{
name == line–>column(1);
/* step 2, variable binding
for Z.proteinname*/
p := Protein–>newWithName(name);
/* step 3, executing actions
and checking consistency constraints */
}

... /* other cases treated similarly*/
end; /* case */
end; /* while */
}

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

In the implementation we have used the method new-
WithName() of class Protein. This method performs the re-
quired actions and constraint checking. Its implementation
is given as follows.

Protein::newWithName(n: STRING) : Protein;
{
if(not (Protein –> existsWithName(n)))
/* constraint checking */
{

p := Protein –> new();
/* action for P � Protein */
p.name := n;
/* action for
P.proteinname = Z.proteinname */
return p;

}
else raise(error);
}

As a guideline the actions of more complex rules involv-
ing actions on different database objects are grouped, such
that each group of actions can be realized as a database
method of a particular target class. A more detailed archi-
tecture of the required software components is given in the
next section.

In our implementation the entries are processed in the
linear order that is given in the metadatabase by the user.
This requires that the entries are ordered in a way that their
interdependencies are observed. For example, an entry for
inserting an organism into the attributes of a protein object
requires that the entry for the creation of the corresponding
protein object has to be processed first. Such an ordering ap-
pears to be natural for the user and is provided currently
without difficulty by him. In the future a component that
consistently orders the entries seems to be a useful supple-
ment to the current implementation.

3.6 The design of the integration software layer

As already mentioned in the previous section the data
transformations corresponding to rules, that apply to the
metadatabase entries, are realized as database methods of
a class MetaDB. This is also the case for the atomic trans-
formation rules. For each file type that can be integrated
into the data warehouse a corresponding class exists in the
database schema. For example there exists a class PDBfile
that provides different parsing methods for PDB files. This
establishes in the object-oriented database schema in addi-
tion to the application layer, that contains the application
schema introduced in section 4.2, an integration layer.

The integration layer also allows to keep a history of
which information of external databases has been trans-
formed in the database and to track back how the informa-
tion in the target database has been generated from the
source databases (see req (4)). For this purpose correspond-

ing links are supported from classes of the integration layer
to the classes of the application layer in the target database
and vice versa. This allows to use the original information
in the source database files, when required. For example
many visualization tools for proteins are able to interpret
PDB files directly. In this case we can integrate such a visu-
alization tool easily with our target database schema. Keep-
ing these backward references in the application layer di-
rectly is problematic, since there is no one-to-one corre-
spondence between objects in the source and target data-
bases.

In Figure 1 the software architecture is depicted. We dis-
tinguish three layers: (1) the external file database layer, (2)
the integration layer and (3) the application layer. The lay-
ers are represented in an object–oriented diagram. Nodes
represent objects and corresponding class objects, arrows
indicate method calls, pointing to the receiver objects. Pre-
fixed integers of method calls indicate the order of method
invocation. The diagram shows the actions that take place
when interpreting the two metadatabase entries Pro-
tein_meta(”1atr”) and ProteinModel_meta(”1atr”, ”m1”,
”1atr.pdb”, 1).

First we create a named reference object for the metada-
tabase and start the hard coded rule interpreter (method
calls 1,2,3). The first metadatabase entry Pro-
tein_meta(”1atr”) triggers the dispatching of methods 4,5,
that create a uniquely named protein object in the target da-
tabase. The second metadatabase entry ProteinMo-
del_meta(”1atr”, ”m1”, ”1atr.pdb”, 1) causes first the cre-
ation of a model object m1 that is linked by its unique name
to the protein object 1atr (method calls 6,7). The next action
is the atomic transformation of the atom data from the
PDB–file into the target database. Method calls 9,10 create
a reference object for the PDB–file and method call 11
parses the PDB–file for m1. Method call 12 writes the
parsed data into the model object.

4 Implementation of the data warehouse

In this section we give some remarks on the concrete im-
plementation, including the VODAK database manage-
ment system, the application schema, querying and visual-
ization techniques and finally quantitative features of the
system.

4.1 The OODBMS VODAK

The protein-ligand database ReLiBase is implemented
on top of the object-oriented database management system
VODAK release 4.0 [24] developed at GMD-IPSI. VODAK
provides full database management system functionality,
including schema compiler, transaction management, ob-
ject management, data dictionary, communication manage-
ment and query processing. It runs on top of the commercial
system ObjectStore, which is used for low-level storage.

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

1

MetaDataBase 2

o:MetaDataBase3

4

5ProteinClass

o:Protein

ModelClass

6
o:Model

7

8

9
PDBFileClass

o:PDBFile10

12
11

application
layer

integration
layer

external file
databases

Meta
database

file

PDB
file

Figure 10: Processing of the metadatabase
1:newWithName(”load”), 2:setName(”load”), 3:parse(), 4:newWithName(”1atr”),

5:setName(”1atr”), 6:newWithName(”1atr,m1”), 7:linkToProtein(p),
8:setModel(”1atr.pdb”,1), 9:newWithName(”1atr.pdb”), 10:setName(”1atr.pdb”),

11:setAtoms(as), 12:parseModel(1)

Different features make VODAK particularly attractive
for our purposes. The object-oriented data model VML pro-
vides a metaclass concept for tailoring the data model to
specific requirements, like database integration [17]. Thus
semantic concepts that are characteristic for an application
domain can be provided as new data modelling primitives
extending the core data model. The declarative OQL com-
patible query language allows the usage of method calls and
path expressions within queries, and thus enables flexible
and easy access to the database. A powerful, extensible
query optimization module, based on algebraic optimiza-
tion techniques, allows to incorporate application-specific
optimization strategies, which are particularly important
when complex calculations or expensive access operations
to external databases are involved in declarative queries [2].

4.2 Implementation of the application schema

The schema provides a uniform logical view on the un-
derlying data resources as well as on integrated tools. An
overview of the schema is given in Figure 2. The figure also
illustrates how object-oriented data modelling primitives
allow a direct representation of the complex interconnec-
tion between the different biological data types.

For performance reasons we had to provide for certain
data types, for example the three-dimensional models of
proteins, specialized physical implementations, where the
logical object-oriented view of the data and the physical
representation differ. In the spirit of data independence
these specialized implementations can be accessed through

abstract interfaces in a way such that the user is not aware
of the underlying specialized mechanisms.

The schema provides for some of the application specific
data structures specialized index structures, which are ac-
cessible by dedicated methods. Thus they can either be di-
rectly used or are potential alternative access mechanisms
the query optimizer can choose from. Other methods encap-
sulate the access to external systems, like visualization tools
or external databases, that are not physically integrated in
the warehouse.

4.3 Query processing

Query optimization plays a central role for the efficient
usage of the data warehouse. For example, in some cases we
do not migrate data physically into the warehouse. In those
cases only access mechanisms for external databases are
provided. Those databases often provide alternative access
paths, that allow for more efficient and adequate processing
of specialized requests. To exploit these alternative access
paths, we make the query optimizer aware of the semantics
of these.

Another aspect of query optimization is to minimize the
of expensive methods. For some queries the method execu-
tion costs are the dominating factor, and optimization strat-
egies have to avoid too frequent method calls. Thus also
knowledge on the execution costs of methods is made ex-
plicit in our system.

Application specific index structures, e.g. for efficient
access to spatial data, and special purpose physical data rep-
resentations play an important role in the warehouse. The

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

AlignmentPrimitive

OneChain
SecondaryStructure

connects

alternativeModels

alternativeModels

Protein

Complex

Ligand

ComplexModel

Model

LigandModel

ProteinModel

AtomSecondaryStructure

Chain

ProteinChain

Modification

Mutation

Residue

Alignment

OneChain
Alignment

SecondaryStructure
Primitive

Bond

Bindingsite

SSofChain

hasChains

hasParts

alternativeSSalternativeModels

hasParts

hasParts

hasParts

hasParts

connects

hasParts

hasParts hasParts

has
Position

hasPrimitive

isAlignedIn

mutatesTo

modifiesTo

hasParts

hasParts

hasParts

Figure 11: The conceptual database schema for the data warehouse ReLiBase.

correct usage of index structures and specialized access
mechanisms can be a difficult task for the user. Knowledge
on the semantics of these mechanisms is thus made avail-
able to the query optimizer, such that they can be hidden
from the user in ad-hoc querying.

Summarizing, it is crucial to have an open query proces-
sing component that supports extensibility with regard to
query transformations and cost models. In VODAK we real-
ize this through a query processing module that follows an
extensible design [2][3].

4.4 Visualization

Biological data visualization tools are an important
means to understand the structure and function of molecules
in detail. From another perspective also the object-oriented

data model is a paradigm that is predestined to be accessed
in a visual way.

Thus we have integrated several visualization tools with
our database. To support data inspection, browsing and nav-
igation we provide a generic HTML-based object viewer,
that allows to navigate along object references, to display
the objects attributes and to send messages to objects. Quer-
ies can be submitted via HTML, either as predefined quer-
ies, parametrized queries or, by the more sophisticated user,
by directly writing OQL queries according to the ODMG93
standard [9]. Query results are formatted in a way that the
results become starting points for navigational access in
HTML.

For viewing biomolecular data we have integrated ge-
neric 3D viewers for VRML, as well as specific biomolecu-
lar viewers like RASMOL or Whatif [26]. Specialized
viewers operate only on a particular kind of data, for exam-
ple proteins. As we are integrating data from different

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

sources viewers for the integrated data, e.g. for presenting
complexes, may not be available. In such cases generic
viewers like VRML-based ones are used. Another interest-
ing aspect is to use visualized objects as starting points for
consecutive navigation. For example one gets the properties
of an atom from the database by clicking at this atom in a
visualization tool.

4.5 Experiences

The ReLiBase system is implemented and running. Cur-
rently we are evaluating the system together with the users.
As a result extensions and improvements of the system will
be developed and new requirements will be derived. We
give a short list of quantitative features to illustrate the order
of magnitudes we are dealing with.

database instances

instances in the metadatabase 200.000

instances in the target database (physi-
cal DBMS objects)

400.000

protein–ligand complexes
(target database)

3500

database generation

populating a complete warehouse 4 days

indexing the complete warehouse 1 week

size of the warehouse

without index structures 900 MBytes

with index structures 1.5 GByte

size of the source databases 600 Mbytes

duration of a typical scan query

over all complexes (cold) 8 sec

over all complexes (hot) 4 sec

complete scan of the warehouse 10 hours

All of the numbers are approximate as they can depend
on configuration and system usage. They are taken from a
snapshot of the current system version and thus can be con-
sidered as typical values. The system is running on a SGI
Challenge 800 L, with 256 MBytes Main Memory using one
processor at 200Mhz.

The duration of query evaluation is often dominated by
the algorithmic cost for executing specialized analysis algo-
rithms. For example, evaluating a query that requires to
execute a substructure test for the ligand of each complex
takes approximately 2 hours, since each single evaluation,
which performs basically subgraph testing, takes about 2
sec. for each of the 3500 complexes in the database.

5 Conclusion

The methodology and system presented in this paper is
currently used to build a data warehouse for data analysis
purposes in drug design. The development of the approach
was driven by the requirements that occurred in the coop-
eration with industrial users. The system provides inte-
grated and efficient access to an extensively analyzed, cor-
rected and enriched database. The advantage of the method-
ology is the separation of the tasks of data analysis, that re-
quire substantial biomolecular knowledge, from the techni-
cal details of data transformation.

Further work is driven by requirements that occur in the
practical use of the system. In order to keep the system scal-
able for the ever growing amounts of data, it appears man-
datory to extend the techniques such that they allow for in-
cremental loading and indexing of the data. Due to VO-
DAK’s extensibility of the data model and query processing
module the system will grow with regard to built-in intelli-
gence in handling complex algorithms and accessing data-
bases that are not physically integrated in the warehouse.

Data warehousing is receiving growing attention in the
computer science literature [28]. As most activities in this
direction are quite recent no solutions for our concrete data-
base integration problems have been readily available. We
mention some relevant work and contains potentially inter-
esting ideas for the methodological construction of com-
plexly structured data warehouses. A mediatory approach
that focuses on rule-based specifications for data warehous-
ing, that are comparable to ours, is reported in [30]. Other
relevant work is found on object migration [22][21], data-
base transformation [19][8], mediatory systems [29] or the
access to file-based databases from within object-oriented
databases [4].

6 References

[99] Aberer, K.: ”The Use of Object–Oriented Data Models for
Biomolecular Databases”, Proceedings of the Conference on
Object–Oriented Computing in the Natural Sciences
(OOCNS) ’94 , Heidelberg, 1995.

[100] Aberer, K., Fischer, G.: ”Semantic Query Optimization for
Methods in Object–Oriented Database Systems”, Interna-
tional Conference on Data Engineering (DE) ’95, Taipei,
Taiwan, p 70–79, 1995.

[101] Aberer, K., Hemm, K.: ”Semantic Optimization of Biomo-
lecular Queries in Object–oriented Database Systems”,
Meeting on the Interconnection of Molecular Biology Data-
bases (MIMBD) ’95, Cambridge, UK, WWW page
http://este.darmstadt.gmd.de:5000/~aberer/MIMBD95.html,
1995.

[102] Abiteboul, S., Cluet, S., Milo, T.: ”Querying and Updating
the File”, Proc. of Int. Conf. on VLDB, p. 73–84, 1993.

[103] Bairoch, A., Boeckmann, B.: ”The SWISS-PROT Protein
Sequence Data Bank”, Nucleic Acids Res., 19 (Sequences
Suppl.), p 2247 – 2249, 1991.

appeared in: First IFCIS International Conference on Cooperative Information Systems, Brussels, Belgium, June 19–21, 1996

[104] Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F.
Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi,
T., Tasuni, T.: ”The Protein Data Bank: a computer based ar-
chival file for macromolecular structures”, J. Mol. Biol. 112,
p 535 – 542, 1977.

[105] Buneman, P., Davidson, S.B., Hart, K., Overton, C.: ”A Data
Transformation system for Biological Data Sources”, Pro-
ceedings of the 21st VLDB Conference, Zurich, Switzer-
land, 1995.

[106] Cabibbo, L.: “On the Power of Stratified Logic Programs
with Value Invention for Expressing Database Transforma-
tions”, ICDT, p 208–221, 1995.

[107] Cattell, R. G. G. (Ed.): ”Object Databases: The ODMG-93
Standard”, Release 1.1, Morgan Kaufmann, San Francisco,
1994.

[108] Durbin, R., Thierry–Mieg, J.: ”The ACEDB Genome Data-
base”, WWW page, http://probe.nalusda.gov:8000/ace-
docs/dkfz.html.

[109] Etzold, T., Argos, P.: ”SRS an indexing and retrieval tool for
flat file data libraries.”, Comput. Appl. Biosci. 9:49–57,
1993.

[110] Gardarin, G., Gannouni, S., Beatrice Finance, B., Fankhaus-
er, P., Klas, W., Pastre, D., Legoff, R., Ramfos, A.: IRO–DB:
A Distributed System Federating Object and Relational Da-
tabases. In: Omran Bukhres and Ahmed K. Elmagarmid, edi-
tors, Object Oriented Multidatabase Systems, Prentice Hall,
July 1994.

[111] Goodman, N.: ”An Object-Oriented DBMS War Story: De-
veloping a Genome Mapping Database in C++”, in Kim W.,
ed.: ”Modern Database Systems”. ACM Press, New York, p
216 – 237, 1995.

[112] Hemm, K., Aberer, K., Hendlich, M.: ”Constituting a Recep-
tor–Ligand Database from Quality–Enriched Data”, Pro-
ceedings of the International Conference on Intelligent Sys-
tems in Molecular Biology (ISMB) ’95, Cambridge, UK,
1995.

[113] Inmon, W.H., Kelley, C.: ”Rdb/VMS, Developing the Data
Warehouse”, QED Publishing Group, 1993.

[114] Karp, P. (Ed.), Final report on the 1994 Meeting on Intercon-
nection of Molecular Biology Databases, WWW page
http://www.ai.sri.com/people/pkarp/mimbd.html, Stanford
University, August 9–12, 1994.

[115] Klas, W., Fankhauser, P., Muth, P., Rakow, T., Neuhold, E.J.:
”Database Integration Using the Open Object-Oriented Da-
tabase System VODAK”, in: Object-Oriented Multidata-
base Systems, O. Nukhres, A.K. Elmagarmis Eds., Prentice
Hall, 1995.

[116] Kemp G.J.L., Jiao Z., Gray P.M.D., Fothergill J.E.: “Com-
bining Computation with Database Access in Biomolecular
Computing”, ADB 94, Vadstena, Sweden, p 317–335, 1994.

[117] Kosky, A., Davidson, S., Buneman, P.: ”Semantics of Data-
base Transformations”, Technial Report MS–CIS–95–25,
University of Pennsylvania, 1995.

[118] Nishikawa,K., Ishino,S., Takenaka,H., Norioka,N., Hirai,T.,
Yao,T. and Seto,Y.: ”Constructing a protein mutant data-
base”, Protein Engng, 7, 733, 1994.

[119] Qing Li, Guozhu Dong: A Framework for Object Migration
in Object–Oriented Databases. DKE 13(3), p 221–242,
1994.

[120] Radeke, E., Scholl, M.: ”Federation and Stepwise Reduction
of Database Systems”, ADB 94 Vadstena, Sweden, p
381–399, 1994.

[121] Ritter, O., Kocab, P., Senger, M., Wolf, D., Suhai, S.: “Proto-
type Implementation of the Integrated Genomic Database”,
Computers and Biomedical Research, 27, p 97–115, 1994

[122] VODAK V 4.0, User Manual, GMD technical report No.
910, 1995.

[123] Sheth, A.P., Larson, J.A., ”Federated Database Systems for
Managing Distributed, Hetereogenous, and Autonomous
Databases”, ACM Computing Surveys, vol. 22, no. 3, p 183
– 236, 1990.

[124] Vriend, G.: ”WHAT IF: A molecular modeling and drug de-
sign program.”, J. Mol. Graph. 8, 52–56, 1990.

[125] Wäsch, J., Aberer, K.: ”Flexible Design and Efficient Imple-
mentation of A Hypermedia Document Database System by
Tailoring Semantic Relationships”, Proceedings of the IFIP
WG2.6 sixth Working Conference on Database Semantics
(DS–6) Atlanta, Georgia, USA, 1995.

[126] Widom, J., (Ed.), Data Engineering Bulletin 18(2), Special
Issue on Materialized Views and Data Warehousing, 1995.

[127] Wiederhold, G.: ”Mediators in the architecture of futurre in-
formation systems”, IEEE Computer, 25:38–49, 1992.

[128] Zhou G., Hull R., King R., Franchitti J.C.: “Data Integration
and Warehousing Using H2O”, Data Engineering Bulletin
18(2), pp. 29–40, 1995.

