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Abstract 

W e  discuss the modification of queries against 
a n  integrated view in a federation of object-oriented 
databases. W e  present a generalisation of existing algo- 
rithms for  simple global query processing that works fo r  
arbitrarily defined integration classes. W e  then extend 
this algorithm to deal with object-oriented features such 
as queries involving path expressions and nesting. W e  
show how properties of the 00-s ty le  of modelling rela- 
tionships through object references can be exploited to  
reduce the number of subqueries necessary to  evaluate 
such queries. 

1 Introduction 

An important issue in database interoperability is 
the processing of queries against an integrated view in a 
federation of pre-existing databases. Although a num- 
ber of different approaches to database interoperation - 
often divided into so-called loosely-coupled and tightly- 
coupled approaches [ 161 - have been proposed, many of 
them share the characteristic of somehow defining an 
integrated view of data residing in multiple component 
databases. As a consequence, queries can be formu- 
lated against such a view, and these queries must be an- 
swered by transforming them into queries that can be 
answered by the underlying component databases. The 
query processing issues that then arise, are largely in- 
dependent of whether such a view defines a rigid global 
schema for the entire federation [16], or just a personal 
view of remote data imported into a local database [8]. 
In this paper, we refer to processing queries against any 
kind of integrated view as global query processing. 

While global query processing has been dealt with 
for the case of rather elementary queries [3,4], the 
current popularity of the object-oriented model as a 

canonical data model in such federations [15] intro- 
duces the possibility of formulating queries involving 
path expressions and nesting against an integrated 
view. Processing such queries has not received much 
attention in existing research; it is discussed in this 
paper. In the process, we generalise existing work on 
processing simple queries by defining a global query 
processing algorithm that is independent of the defini- 
tion of the classes in the integrated view. 

1.1 Issues in global query processing 

The following issues in global query processing in 
database federations may be distinguished [13]. 

Query modification, i.e. the transformation of a 
query against integrated classes to a query against 
local and/or remote classes. This is the topic of 
this paper. 

Query decomposition, i.e. the transformation of 
a modified query against both local and remote 
classes into several queries each addressing a sin- 
gle component database. 

Local query processing, i.e. the transformation of a 
query addressing the global view of a single com- 
ponent database into a query that can be pro- 
cessed by the local database. 

Query optimisation, i.e. the problem of executing 
a given query as efficiently as possible. 

1.2 Existing work 

Global query processing is an obvious research goal 
in the context of database interoperation. Hence its 
principles were already investigated in the context of 
early systems [3,4,5]. More recently, these principles 
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have been extended with regard to aspects such as 
query modification [13], optimisation [ll], and object- 
orientation [9]. 

None of these approaches has considered the global 
query modification in its full generality. For example, 
[3] does not deal with possible value inconsistencies; 
[4,5] do not consider the case of locally exclusive at- 
tributes (they consider integrated classes formed us- 
ing generalisation, which do not contain attributes that 
are exclusive to a specific local database). Many ap- 
proaches, e.g. [9,13,14], treat global query processing 
in the context of a specific set of integrated class con- 
structors; global query modification is then the dual 
problem of the materialisation of the virtual integrated 
classes thus obtained. 

Moreover, the specific features of object orientation 
w.r.t. query processing have not been treated in any 
depth. In particular, the modification of global queries 
involving path expressions and nested queries on set- 
valued attributes has not received much attention. 

1.3 Overview 

The contribution of this paper is twofold. First 
and foremost, we try to complement these existing 
works in that we consider query modification in an 
object-oriented environment, allowing the expression 
of queries against complex object structures that in- 
volve path expressions and nested queries on set-valued 
attributes. Moreover, we generalise existing work in 
that we consider queries against arbitrarily defined in- 
tegrated classes, that may: (1) contain objects from 
different component databases, with possible overlap in 
the real-world objects they describe; (2) have attributes 
defined in different component databases, where some 
attributes may be defined in several components; and 
(3) use decision functions to settle possible value con- 
flicts. 

We focus on query modification, as the kind of 
queries we address present new challenges to this phase 
in particular. The optirnisation of the modified queries 
we obtain, for example, does not differ significantly 
from those discussed in [4,11]. Our modified queries 
are themselves ‘optimised’ in the sense that subqueries 
which are known to yield empty results are eliminated, 
however. That is, we show how the specification of 
global complex objects can be exploited to reduce the 
number of subqueries necessary to evaluate the global 
query. 

The remainder of this paper is organised as follows. 
As a context for discussion, we review our instance- 
based approach to database interoperation in Section 
2. To illustrate our claim that this approach allows 

us to deal with global query processing in a general 
manner, we develop some vocabulary to be used in our 
treatment of global query modification, and show how 
integrated classes as defined by several existing integra- 
tion methodologies can be described using this vocabu- 
lary. Section 3 then presents a general query modifica- 
tion algorithm for simple queries on arbitrarily defined 
integrated classes. In Section 4, we extend this algo- 
rithm to deal with queries involving path expressions 
and nested queries. Section 5 presents our conclusions. 

2 An integrated view of component 
databases 

In this section, we summarise our instance-based ap- 
proach to database interoperation [18], which will form 
the context for our discussion of global query modifi- 
cation. This approach is characterised by the adapta- 
tion of existing schema integration techniques 12) to be 
applicable at the instance level of database interoper- 
ation, thus avoiding the explicit mapping of the dif- 
ferent classifications used by the different component 
databases to describe a similar application domain. 

We furthermore introduce an example (Section 2.1) 
that will be used throughout this paper, and intro- 
duce some definitions (Section 2.3) that will be used 
in upcoming sections. Although these definitions are 
in terms of the approach described in this section, they 
can be used to describe any kind of integration classes 
formed in other approaches. Indeed, these definitions 
are introduced to abstract from the specific kind of in- 
tegration classes defined by particular interoperation 
approaches. 

2.1 Example 

We here present an example containing two rather 
similar schemata, which will nevertheless be illustra- 
tive enough to discuss global query modification issues. 
Consider the two databases whose schemata are repre- 
sented graphically in Figures 1 and 2. 

Database WELLS is kept by a researcher who keeps 
track of oil exploration and production. Database 
FIELDS is used by a government institute that registers 
ownership and use of oil fields. As can be seen from 
their schemata, the databases have largely overlapping 
application domains, but focus on slightly different as- 
pects. For example, a field can be concessioned to sev- 
eral companies, as modelled by database FIELDS, but 
a well is owned by a single company, as modelled by 
database WELLS. 

We assume that the WELLS researcher wishes to de- 
fine a virtual integrated view of his local database ex- 
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Figure I. Schema of the WELLS database 

Figure 2. Schema of the FIELDS database 

tended with data imported from FIELDS. Hence we will 
refer to WELLS as the 'local database', and to FIELDS 
as the 'remote database'. 

2.2 Object comparison rules and property equiv- 
alences 

In [IS] we outlined an instance-based approach to 
database interoperation. As argued in length there, we 
consider objects rather than classes to be an appropri- 
ate basic unit of integration. In short, the motivation 
for our approach is the argument that in absence of 
a common semantical context, it is more feasible for 
disparate sources to agree on relationships among the 
specific real-world objects that they describe, than to 
agree on the semantics of possible classifications for 
those objects. We showed that interoperability can be 
based on the definition of relationships between objects, 
by specifying conditions under which objects from dif- 

ferent classes are related in a certain way. 
Our approach requires a designer to specify condi- 

tions under which a certain relationship p between a re- 
mote object 0' and a local object 0 or class C holds'. 
The relationships we distinguish are: 

Equality. 0 and 0' represent the same real world 
object [12]. This is represented as Eq(O', 0). 
For example, some wells may be known in both 
FIELDS and WELLS. 

Strict similarity. 0' would locally be classified 
under C. This is represented as Sim(O', C). 
For example, some wells in FIELDS may be 
production wells, and would be classified as 
Productionwell if they were known in WELLS. 

Approximate similarity. Locally C U (0') can 
be regarded as a more general virtual class C". 
This is represented as Sim(O', C, C"). 
For example, well logs and interpreted seismic sur- 
veys both describe some kind of interpretation of 
subsurface data. 

Descriptivity. Locally 0' is considered a set of 
values S describing an object 0" which is iden- 
tical to a local object 0 or similar to a local 
class C. This is represented as Eq(O',O.S) or 
Sim(O', C.S). 
For example, Location objects may refer to loca- 
tions of well objects in FIELDS. 

We require the specification of object comparison rules 
of the form p +- 9, where p is any of the relationships 
listed above, and 9 is a conjunction of first-order logic 
predicates, which might involve additional information 
such as correspondence tables etc. 

Moreover, property equivalence assertions must be 
formulated, specifying to what extent the descriptions 
provided by DB and DB' overlap. These assertions 
are of the form propeq(C.p, C'.p', cf, cf', df), where: 

p,p'  are basic or derived local and remote proper- 
ties, respectively, 

c f, c f ' are conversion functions mapping the do- 
mains of p and p' to a common domain D, and 

e df : D x D -+ D is a decision function which 
determines a global value for the property given 
possible value discrepancies between the local and 
the remote database. We require that for each 

~~~ 

lIn the remainder of this paper, we use the conventions for 
symbols s to refer to the local database, s' to refer to the remote 
database, and s to refer to the integrated view of these databases. 
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decision function df, Vu E Dldf(a,a)  = a. In our 
view, functions such as sum used e.g. in [5] define 
derived global properties rather than determining 
values for equivalent local and remote properties. 

Example For our example databases, we list some 
sample object comparison rules. Note that the example 
is used for illustration purposes; it is not intended to 
demonstrate our integration methodology in full. In 
particular, the schemata have been kept rather similar 
for ease of presentation. We also list some example 
property equivalences, omitting obvious ones. We use 
predefined conversion functions such as i d ,  the identity 
function, and decision functions such as t rus t ,  which 
assigns a specific database as the primary source for a 
property's value. Note that we abstract from the entity 
identification problem [12] by assuming that both fields 
and wells are identified by a generally known id, which 
is used as a key in both databases. 

Eq(O:Fieldi, 0':FieldZ) +- 0.field-id=O'.field-id 
Sim(O':Field2, Fieldi)  
Eq(O:Welli, 0':We112) +- O.wel1-id=O'.well-id 
Sim(Or:We112, ExplorationWel1)t O'.type='exploration' 
S i n (  0' :We112, Product ionwell) t 0' .type='production' 
Eq(O:Companyl, Of:Company2) c O.name=O'.name 
Sim(Or:Company2, Companyi) 
Eq(0 : Location, Of : Well2.{xpos,ypos)) 
t O.x=O'.xpos AO.y=O'.ypos 

S i n (  Of :SeismicSurvey,WellLog, INTERPRETATION) 
t 0' .status='interpreted' 

propeq(Field1 .wells, Field2 .wells, i d ,  i d ,  union) 
propeq(Fieldi.est-size, Field2.est-size, 

propeq(Companyi.est-turnov, Company2.est-turnov, 

propeq(WellLog.author, SeismicSurvey.surveyor, id, id ,  any)  
propeq(Welll.depth, WellZ.depth, i d ,  i d ,  avg) 
propeq(Welli.op-time, Well2.op-time, 

i d ,  MJToBarrels,  trust(Field2)) 

id, id,avg) 

id, YearsToMontha, tTuSt(w8112)) 

2.3 Definitions 

We now develop some terminology to be used in our 
discussion of global query modification. Consider a lo- 
cal class C and a remote class C' for which rules of the 
form 

E q ( 0  : C, 0' : C r )  +- @(O,  O r )  
Sim(0' : C',  C )  t *(O')  
Sim(0' : C', c, Csup)  +- R(0 ' )  

have been defined. Descriptivity rules and the associ- 
ated conformation are discussed later. For simplicity, 
we here assume that object comparison rules have been 
defined between C and a single remote class C' only. 
The case where such rules are defined for multiple re- 
mote classes is a straightforward extension. 

Attribute types In global query processing, one 
must distinguish among three disjoint types of at- 
tributes: 

Locally exclusive attributes ALE = (a1 a E 
at t r ibs (C)A f i a r  E at tr ibs(C')  : propeq(a, a')} .  
These attributes occur in the local database only. 
An example is the 'est-prod' attribute of F ie ld l .  

Remotely exclusive attributes ARE = {a'[ a' E 
attr ibs(C')A p a  E attr ibs(C) : propeq(a, a')} .  
These attributes occur in the remote database 
only. An example is the 'area' attribute of Field2. 

Overlapping attributes A0 = (a1 a E at t r ibs (C)  
3a' E attr ibs(C')  : propeq(a,a')}. These at- 
tributes occur both in the local and the remote 
database. An example is the 'wells' referential at- 
tribute of F i e l d l  and Field2. 

Extension subsets 
tension subsets: 

We also define the following ex- 

0 Local objects CL = (010 E C}.  

Locally exclusive objects CLE = (010 E C A  
BO' E C' : ip(O,O')}, the set of objects that 
appear only locally. For example, some wells may 
be known in WELLS, but not in FIELDS. 

e Remote objects CR = (0'10' E C ' } .  

0 Remotely exclusive objects CRE = (O'(0' E C' A 
P O  E C : ip(0,O')). For example, some fields 
may be known in FIELDS but not in WELLS. 

0 Strictly similar remote objects Css = {O'lO' E 
C' A * ( O r ) } .  For example, all Well2-objects with 
type='production' are strictly similar to the local 
class ProductionWell. 

0 Approximately similar remote objects CAS = 
(O'(0' E C' A Cl(O')}. For example, all 
Seismicsurvey objects with status='interpreted' 
are approximately similar to the local class 
WellLog (assuming that well logs are interpreted 
by definition). 

0 Overlapping objects CO = (010 E C A 30' E 
C'l@(O, 0')) the set of objects that appear both 
locally and remotely. For example, some wells may 
be known in both WELLS and FIELDS. 

Note that some, but not all, of these subsets are dis- 
joint. 
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2.4 The integrated view 

As a result of a specification as defined above, an 
integrated or global view of the local and the remote 
database can be constructed. This construction is a 
two-step process of conformation and merging analo- 
gous to the steps distinguished for schema integration 
in [2]. 

2.4.1 Conformat ion 

In the conformation step, the local and remote 
database are brought into a common semantical con- 
text, so that they can be merged. This involves the 
settling of object-value conflicts resulting from descrip- 
tivity relations between objects, by creating virtual ob- 
jects from values and/or casting objects into property 
values describing other objects. In our example, the de- 
scription of a location as a set of simple values describ- 
ing a well or as a separate object must be conformed. 
For example virtual VirtLocation-objects may be cre- 
ated from the values of Well2.{xpos,ypos}. 

Moreover, equivalent local and remote properties are 
turned into conforming properties by assigning them 
identical names and converting them to identical do- 
mains. Examples include the renaming of 'surveyor' to 
'author' and conversion of FIELD field size estimations 
from cubic metres to barrels. 

Query processing issues related to conformation 
arise in local query processing only. This is not our 
focus here; hence for the moment we do not consider 
structural conflicts, naming conflicts, or domain differ- 
ences between the component databases. 

2.4.2 Merging 

In the merging step, integrated classes are formed. This 
involves the definition of both the attribute sets and 
the extensions of classes that appear in the integrated 
view. This can be done using the attribute types and 
extension subsets that we defined above. Our query 
modification algorithm, however, is independent of the 
exact definition of these classes; it uses only the defini- 
tions of Section 2.3. Examples of definitions of global 
classes include the following: 

The extension of local classes C is expanded with 
similar objects from C', as in [6]. We call such ex- 
panded classes enriched local classes, denoted as 
C. For example, We112 objects with type 'produc- 
tion' might be added to the local ProductionWell 
class. 

That is, C = CLEUCOUCSS, and A& = A L E U A ~ .  

For each pair (C, C') of classes for which equal- 
ity rules have been defined, a common sub- 
class CsUa may be created, holding their com- 
mon instances, as in [9]. For example, a class 
Off ShoreProductionWells might be created. 
That is, = CO, and Ac, ,~ = ALEUAOUARE. 

For each pair (C, C') of classes for which approxi- 
mate similarity rules have been defined, a common 
superclass Csup may be created, containing their 
common attributes, analogous to [5].  An example 
is the creation of the virtual class INTERPRETATION 
holding both well logs and interpreted seismic sur- 
veys. 
That is, Csup = CLE U CO U Css U CAS,  and 
A&,, = A o .  

Note that other definitions would be possible, 
e.g. Csub = CO U Css, or Ae = ALE U A0 U ARE. In- 
deed, different approaches to database interoperation 
tend to define different kinds of integrated classes. In 
the next section, we present a general query modifica- 
tion algorithm, adapted from the ones in [3,4,13], that 
is independent of integrated class definitions, as long 
as they can be described using the definitions of Sec- 
tion 2.3. It will be used as a basis for our discussion of 
queries on complex objects. 

3 Simple queries 

Equipped with a proper terminology, we now turn 
to the modification of simple queries against integrated 
classes. A simple query Q is of the form2 

collect II 
for x in CQ 
iff Z 

where we assume that CQ is an integrated class, 11 
is of the form f(x.a1,z.a2,. . . ,x.u,), where none of 
the attributes ai is referential, and B is a conjunctive 
condition. 

Query modification principles The generalised 
query modification algorithm for simple queries pre- 
sented in this section is based on a combination of prin- 
ciples found in existing literature. 

Attributes appearing in either 3 or 11 must be eval- 
uated by consulting the local and/or remote database. 
The evaluation of an overlapping attribute a is sup- 
ported by both the local and the remote database. 
However, both component databases provide a value 

'In this paper we use the TM [I] syntax for queries. This syn- 
tax is rather self-explanatory, but will be clarified where needed. 
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for a global object 0 only if the component’s exten- 
sion contains a representation of 0. If both the local 
and the remote database contain such a representation, 
possible value inconsistencies must be resolved using 
the decision function. Hence, analogous to [4,13], the 
evaluation of overlapping attributes in either B or II 
induces a distribution of Q over the disjoint subsets 

On the other hand, the evaluation of locally ez- 
clusive attributes is supported by the local database 
only; analogously, remotely exclusive attributes are 
supported by the remote database only. As observed 
in [3], queries where B contains locally exclusive at- 
tributes do not have answers in CBE. In [3], it is as- 
sumed that value inconsistencies do not occur; then if 
II n ARE = 0, the evaluation of such queries does not 
involve the remote database at all. In general however, 
for objects in CO that satisfy E according to the local 
database, the evaluation of overlapping (or remotely 
exclusive) attributes appearing in the collect part of Q 
still involves the remote database. Analogously, queries 
where B contains remotely exclusive attributes do not 
have answers in CLE. 

C L E ,  CRE and CO. 

Query modification algorithm These principles 
lead to the formulation of the following generalised al- 
gorithm for modifying simple queries on enriched local 
classes, virtual superclasses and virtual subclasses. 

1. First, we define a procedure that, given a global 
query Q on an integrated class CQ which has a def- 
inition as in Section 2.4, finds the set of relevant 
extensions against which Q is to be decomposed. 
Relevant extensions are determined by: (1) the 
query characteristics (in particular, the type of at- 
tributes occurring in S and II); and (2) the defini- 
tion of CQ. The procedure RelevantExtensions 
is shown in Figure 3. 

2. We then construct a subquery for each relevant 
extension. This involves expressing the definition 
of the extensions as given in Section 2.3 in terms 
of the query language; this is quite straightfor- 
ward, although for CO it requires a nested collect 
in TM(see the example). References to attribute 
values are modified as follows: 

0 In the case of CLE, occurrences of remotely 
exclusive attributes in II are replaced with 
null. 
In the case of CRE, occurrences locally exclu- 
sive attributes in 1T are replaced with null. 

0 In the case of CO, occurrences of an overlap- 
ping attribute a in either 5 or II are replaced 

RelevantExtensions 
in: Q = (JI,CQ,S) 
out: RelExt  

%Define overlap of CQ with possibly relevant extensions 
Q L = C L n c , ; & R = C R n c Q ;  
QLE = CLE n CQ; QRE = CRE n CQ; 
Qo = co n CQ; 
%Examine query characteristics to define relevant extensions 

Then 
If (at t rs(E) U U t t T S ( n ) )  n AO # 8 

RelExt  = { Q L E ,  Qo,  Q R E } ;  

If 
Then RelExt  = RelExt  \ {QRE};  
If 
Then RelExt  = RelExt  \ { Q L E } ;  

attrs(E) n ALE # 0 

attrs(E) fl ARE # 0 

Else 
If UttTS(E) c ALE 
Then RelExt  = {QL}  
Else If at t rs (8)  C ARE 

Then RelExt  = { S a }  
Else ReZExt = {Qo} 

Figure 3. Procedure RelevantExtensions 

with the decision function specified for a ,  ap- 
plied to the local and the remote value of a. 

0 In the case of CL or CR, attribute references 
remain as is (note that we have abstracted 
from local query modification here). 

3. The result of Q is the union of the results of the 
subqueries thus obtained. 

Example 
the modification of the query Q: 

collect ( x.production, x.platfheight) 
for x in OffShoreProductionWell 
iff x.depth> 1000 

As a representative example, we consider 

where Off ShoreProductionWell is an integrated sub- 
class of ProductionWell and Off Shorewell, ‘produc- 
tion’ is a locally exclusive attribute, ‘platfheight’ is re- 
motely exclusive, and ‘depth’ an overlapping attribute 
with decision function avg. We here assume the defini- 
tion of the extension of integrated subclasses is CsUb = 
C O  U css. 

Note that E contains overlapping attributes; 
hence RelevantExtensions initialises R e l E x t  to 
{ Q L E ,  Qo,  QRE} .  Since contains neither locally nor 
remotely exclusive attributes, the following tests do 
not lead to a reduction of this set. Now Q L E  = 
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CQ n CLE = (CO U CSS) n CLE = 0, and QRE = 
CQ n CRE = (CO U CSS) r l  CRE = CSS n CRE, and 
Qo = CQ n CO = (CO U CSS) n CO = CO. Hence the When considering single-valued referential at- 
relevant subextensions are (CSS n CRE) and Co. tributes, we allow attribute expressions such as x.d.a 

to occur in the collect and iff part of the query, where 

as its domain. 

4.1 Path expressions 

Q is then transformed into the following query 

Note how the definition of CO (the nested part) and 
CBE n Css is represented in the query. 

referencing only ProductionWell and Off Shorewell. the referential property xed has an integrated class DQ 

unnest 
collect 

collect ( x.production, y.platfheight ) 
for y in OffShoreWell 
iff x . well-id= y. well-id 
and awg(x.depth,y.depth)> 1000 

for x in ProductionWell 

collect ( null, y.platfheight ) 
for y in OffShoreWell 
iff y.type=‘production’ and y.depth> 1000 

and not exists x in ProductionWell I 
x.wel1-id=y.well-id X CRE part 

X CO part 

union 

Compare this to the query 

collect ( x.platfheight) 
for x in OffShoreProductionWell 
iff x.production> 1000 

Here Z contains only locally exclusive attributes; 
II contains remotely exclusive attributes. Hence 
ReZEzt = {QL} ,  where Q L  = CQ nCL = (CO UCss)n 
CL = CO, and the resulting query is: 

unnest 
collect 

collect ( y.platfheight ) 
for y in O f f  Shorewell 
iff x.wel1-id=y.well-id 

for x in ProductionWell 
and x.production> 1000 x CO part 

4 Complex queries 

So far, we have discussed the modification of a type 
of queries that may arise in both the relational and 
object-oriented data model. We now consider more 
complex queries against integrated classes that arise in 
the object-oriented model only, due to the feature of 
referential attributes of this model. A referential at- 
tribute is an attribute whose domain is a class. We 
distinguish between single-valued and set-valued refer- 
ential attributes. 

3This query involves nesting. In TM, collect expressions can 
be nested; a preceding unnest causes the result to be a simple 
set. 

Example Here’s an example query Q containing a 
path expression: 

collect ( x.cost, x.owner.est-turnov ) 
for x in Off ShoreProduct ionWell 
iff x.owner.est-turnov> 1000 and x.diam < 1 

Issues in modifying path queries Compared to 
the simple queries we have considered so far, such 
queries introduce additional problems: 

(1) Object comparison rules may have been defined 
on DQ as well. In the case of our example query, the do- 
main class Company of the attribute ‘owner’ is an inte- 
grated class constructed from Company1 and Company2 
due to the identity and similarityrules defined on them. 

(2) Like any other attribute, referential properties 
may be overlapping, and hence a decision function must 
be definable on them. For the single-valued case, we 
identify the decision functions t r u s t ( D B )  and any.  

(3) If the referential attribute d in an expression 
x.d.a itself is locally exclusive, say, then the attribute 
a of class DQ may still be overlapping or remotely 
exclusive. This is illustrated by our example query, 
where the referential attribute ‘owner’ is locally exclu- 
sive, but ‘est-turnov’ is provided by both Company1 and 
Company2. 

Our discussion here is restricted to paths of length 
1; the generalisation to paths of length n is straight- 
forward. When considering queries involving such a 
path expression, the following ‘naive’ algorithm sug- 
gests itself, which is based on the well-known technique 
of pushing selections and projections through a join. 

A naive algorithm Let S:cQ be the conditions of 
E that refer to CQ; let IIc, be the attributes re- 
trieved from CQ. Define analogously (re- 
call that DQ is the class that is referred to through the 
path expression). Apply RelevantExtensions to both 
&1 = (&Q,CQ,ECQ) and Q2 = (~DQ,DQ,EDQ). 
Then construct subqueries that search all combinations 
of relevant extensions (CQ, DQ) thus found. 

Restrictions on extension combinations How- 
ever, we can further restrict the set of possible combi- 
nations of relevant extensions, by exploiting some prop- 
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Condition 
d E ALE 
d E ARE 
d E A o  
d E Ao 
d E A0 A dfd = trust(C) 
d E A0 A dfd = tTuSt(C‘) 

Example Our example query contains a condition 
involving the locally exclusive attribute ‘owner’ and the 
remotely exclusive attribute ‘diam’ of the integrated 
class Off ShoreProductionWell (CQ) .  We assume the 
definition of the integrated class Company ( D Q )  is 
DLE U Do U DEE. DQ is restricted based on its over- 
lapping attribute ‘est-turnov’. RelevantExtensions 
hence returns {CO) when applied to CQ. When applied 
to DQ, it returns {DLE,  D o ,  DEE} ,  but since the ref- 
erential attribute ‘owner’ (d)  is locally exclusive, from 
Table 1 we can infer that DEE cannot contain objects 
satisfying Q. The modified version of Q is now as fol- 
lows. 

Restriction on (01,02) 

01 # CRE A 0 2  $! DRE 
01 # CLE A 0 2  DLE 
01 E CLE * 0 2  DRE 
01 E CRE +- 0 2  $! DLE 
01 E CO * 0 2  # DRE 
dl E CO * 0 2  # DLE 
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unnest 
collect 

collect 
if (not exists d2 in Company2 I 

x.owner .name=d2 .name) 
and x.owner.est-turnov> 1000 
then ( x.cost, x.owner.est-turnov) X DLE part 
else 1 DO part 

if exists d2 in Company2 I x.owner.name=d:!.name 
and avg(x.owner.est-turnov, d2.est-turnov)> 1000 
then ( x.cost, avg(x.owner.est-turnov, d2.est-turnov)) 
else () 
endif 

endif 
for y in Off Shorewell 
iff x.well-id=y.well-id and y.diam<l % CO part 

for x in ProductionWell 

4.2 Nested queries 

If we allow referential attributes to be set-valued, we 
must be able to cope with nested queries. Moreover, 
for set-valued referential attributes, decision functions 
such as union and intersect are relevant. 

Example Consider the nested query 

unnest 
collect 

collect ( x.area, y.depth) 
for y in x.wells 
iff y.diam>l 

for x in Field 
iff x.est-prod<lOO 

where Field is the enriched version of Field1 (i.e. it 
is defined as CLE U Co U Css), ‘est-prod’ is a lo- 
cally exclusive attribute, ‘depth’ and ‘area’ are over- 
lapping attributes with decision functions avg and 
trust(Field2), respectively. firthermore, ‘wells’ is a 
set-valued referential attribute with domain class Well 
(the enriched version of Welll), with decision function 
union. That is, the wells that are associated with a 
particular field f in the integrated view are those wells 
associated to f through its ‘wells’ property in either 
WELLS or FIELDS. Finally, ‘diam’ is a remotely exclu- 
sive attribute of Well. 

Principles of modifying nested queries The 
naive algorithm suggested for modifying path queries 
is equally applicable to nested queries. Analogous to 
the restrictions defined for path queries, we can restrict 
the (CQ, DQ) extension combinations to be considered, 
however. 



Consider the following general case of a nested query 
Q against an integrated class CQ with a set-valued ref- 
erential property d that has a domain class DQ, which 
is an integrated class as well. Consider a possible 
answer instance ( 0 1 ,  {O&, O i 2 , .  . .0in}) to a nested 
query Q on CQ, where 01 E CQ and O z i  E D Q , ~  = 
1. .  .n. Note that { 0 ; 1 , 0 ; 2 , .  . . Oin} C 0 l . d .  Based 
on the principles listed in the previous subsection, we 
find the restrictions on possible ( 0 1 , 0 1  .d) combina- 
tions listed in Table 2. 

Condition 
d E A L E  
d E A R E  
d E A o  

d E A 0  Ad fd  = trust(C) 
d E A o  

d E A0 A d f d  = trust(C’) 
d E A0 A dfd = intersect 

Restriction on (01,dl .d) 
dl # C R E  A d i . d n D R E = @  
dl # C L E  A d i . d n D L ~  = 0  
dl E CLE * d l . d n D R E  = 8 

di E CO 
0, E CRE * Ol.d n DLE = 0 

01 E CO + 0 l . d  n DLE = 0 
01 E CO * 0 l . d  C D o  

Oi.d n DRE = 0 

Example Our example query involves an overlap- 
ping attribute (‘area’), and restricts a locally ex- 
clusive attribute (‘est-prod’) of F ie lds  (CQ); hence 
RelevantExtensions returns {CLE, CO}. It fur- 
ther involves an overlapping attribute (‘depth’), and 
restricts a remotely exclusive attribute (‘diam’) of 
Wells (DQ); hence RelevantExtensions returns 
{Do, DRE}.  Since the referencing attribute ‘wells’ is 
overlapping, with decision function union,  Table 2 in- 
dicates that we can eliminate the {CLE, DRE}  combi- 
nation. 

The obtained modification of Q is shown in Figure 4. 
The modification in case the decision function intersect 
is used for ‘fields’ is easily obtained from the listed mod- 
ification by substituting and for or in the (CO, D O )  
part and eliminating the (CO, D R E )  part, due to the 
last rule of Table 2. 

Query execution In this paper, we focus on global 
query modification. That is, we have defined syntac- 
tical transformations of (00-)queries referencing inte- 
grated classes to queries referencing only local and re- 
mote classes. The actual execution of such queries fur- 
ther requires query decomposition and optimisation, 
and local query processing. The issues arising from 
00-queries in these phases are not different from those 
arising in relational query processing. In particular, we 
may use optimisation techniques such as the ones in 
[ll] to determine subsets such as CO, CLE and CRE in 

unnest unnest 
collect 

collect 
collect ( x.area, avg (z.depth, y.dep th)) 
for y in We112 
iff y.diam > 1 
and z.well-id=y.well-id% DO part 

for 1; in x.wells 
for x in Fieldl 
iff x.est-prod<lOO 
and not exists U in Field2 I x.field-id=u.field-id 

X CLE part 

union 
unnest unnest 

collect 
collect 

unnest 
collect 

collect ( x2.area, avg(yl.depth, y2.depth)) 
for y2 in We112 
iff (yl in xl.wells or y2 in x2.wells) 
and yl.well-id=y2.well-id and y2.diam >1 

for y l  in Well1 X DO part 
union 

collect ( x2.area, y2.depth) 
for y2 in x2.wells 
iff y2.diam > 1 
and not exists y l  in Well1 I yl.well-id=y2.well-id 

X DRE part 

for x2 in Field2 
iff x l  .field-id=xa.field-id % CO part 

for xl in Fieldl 
iff xl.est-prod< 100 

Figure 4. Example modification of nested 
query 

a more efficient way. We do not discuss these issues 
here. 

5 Conclusion 

This paper discussed query modification in database 
federations that use the object-oriented model as a 
canonical data model. We showed that earlier ap- 
proaches to processing of relatively simple queries can 
be extended to deal with typical object-oriented fea- 
tures such as queries containing path expressions and 
nested queries. We showed how the specification of 
global complex objects can be exploited to reduce 
the number of subqueries necessary to evaluate such 
queries. Moreover, we showed that global query modi- 
fication is independent of the definition of global classes 
by introducing a generalised global query modification 
algorithm. 
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As to extensions to our approach, note that in [17] 
we discussed the definition of integrity constraints on 
the global view from the constraints defined on the lo- 
cal and remote database. This opens the possibility of 
combining the techniques presented in this paper with 
those of semantic query optimisation, as in e.g. [7,10], 
for queries against the integrated view. Furthermore, 
some global queries may directly be answered using re- 
trieval methods that have been implemented with local 
databases. We have discussed issues concerning the 
applicability of local methods to the integrated view in 
~ 9 1 .  
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