
A Generative Communication Service for Database Interoperability

Wilhelm Hasselbring�

Department of Computer Science, University of Dortmund
D-44221 Dortmund, Germany, tel ++49 231 755-4712, fax -2061

e-mail hasselbring@acm.org

Mark Roantree
School of Computer Applications, Dublin City University

Dublin 9, Ireland, tel ++353 1 704-5636, fax -5442
e-mail mark.roantree@compapp.dcu.ie

Abstract

Parallel and distributed programming is conceptually
harder to undertake and to understand than sequential pro-
gramming, because a programmer often has to manage the
coexistence and coordination of multiple concurrent activi-
ties. The model of ‘Generative Communication’ in Linda —
a paradigm that has been developed for parallel computing
— emphasizes the decoupling of cooperating parallel pro-
cesses; thus, relieving the programmer from the burden of
having to consider all process inter-relations explicitly.

In many application areas, data is distributed over a
multitude of heterogeneous, autonomous information sys-
tems. These systems are often isolated and an exchange
of data among them is not easy. On the other hand, sup-
port for dynamic exchange of data is required to improve
the business processes. Cooperative information systems
enable such autonomous systems to interoperate. They are
complexsystems of systemswhich require a well designed
and flexible software architecture.

The Linda model had a great influence on research in
parallel programming languages. Stimulated by this suc-
cess, a Generative Communication Service, which offers a
very flexible associative addressing mechanism based on
metadata matching, has been developed for supporting in-
teroperability of cooperative informationsystems. Some de-
sign patterns guided the construction of the resulting com-
munication service that has been implemented on top of
CORBA for an ODMG canonical data model.

Keywords: Interoperability, Multidatabase Systems, Gen-
erative Communication, Communication Service, Design
Patterns, Linda, CORBA, ODMG.

�New address from August 1998 onwards: Department of Information
Management and Computer Science, Tilburg University, 5000 LE Tilburg,
The Netherlands.

1. Introduction

Cooperative information systems are complexsystems of
systemswhich require a well designed and flexible software
architecture. This paper presents a Generative Communica-
tion Service that has been developed based on the experi-
ence with object-oriented communication frameworks and
the Linda generative communication model. The experi-
ence using design patterns in the development of an object-
oriented communication framework guided us in structur-
ing the communication service. The resulting Generative
Communication Service offers a very flexible associative
addressing mechanism based onmetadata matching, i.e. it
aims to support interoperability of cooperative database and
information systems. We base our work on previous re-
search in parallel programming [12, 16], reuse some of our
previous experiences with object-oriented communication
frameworks [15] and the use of metadata in multidatabase
systems [26] to design the Generative Communication Ser-
vice.

Our research is based in a healthcare multidatabase envi-
ronment. We assume a multidatabase or federated database
system to refer to a loose coupling of participating hetero-
geneous database systems. We will use the terminology in
[27] and [24] when referring to the multidatabase architec-
ture and components. We have the following problem to
consider: two autonomous databases have a requirement
to exchange information in a multidatabase environment.
They wish to pass information objects using a communi-
cation service that should not need to know anything of the
makeup of the participating databases (their schemas, etc.).
However, if different kinds of information (represented as
objects) should be transferable, then some mechanism for
handling them must be available at the communication ser-
vice.

1

local
application service

communication local
applicationagent

database
agent

database

management system management system
local database local database

Figure 1. The general system architecture with database agents as mediators between local database
systems. The database agents exchange information through a communication service.

Let us consider the general system architecture. To
achieve a division of labor between system components,
databaseagentsshould be connected to the local database
systems to serve as mediators. The database agents trans-
form the data between the local data models and the canon-
ical data model (we use ODMG-93 [7]) in the sense of a
federated schema architecture [27]. The communication
service that manages the information exchange sees these
database agents asactive database systems that exchange
information on their own initiative. An active database sys-
tem is an extended database system which has the capability
to monitor predefined situations (situations of interest) and
to react with defined actions [30]. Figure 1 displays the
general system architecture illustrating the division of labor
between the communication service and database agents.
From the local database management system’s point of
view, the agents are local applications.

The problem is how to transfer information such that the
individual database systems do not need to know the other
systems or how many other systems are connected. The
systems should only say what they offer (i.e., are willing to
send) and what they need (i.e., want to receive). To achieve
this flexibility, we developed a communication service un-
der the guidance of some design patterns and combined
this software architecture with the decoupled communica-
tion model of Linda, which is calledgenerative communi-
cation[12].

Design patterns are descriptions of communicating ob-
jects and classes that are customized to solve a general de-
sign problem in a particular context [11]. Design patterns
can be specific enough to name particular objects, their re-
sponsibilities, and interaction. A well-known pattern of this
kind is the Observer pattern from [11, pages 293ff]. It sup-
ports keeping cooperating components consistent, with the
help of a change propagation mechanism. Another design
pattern is calledPrototype[11, pages 117ff]. The basic idea
of this design pattern is that the different kinds of objects

which need to be constructed, are represented through ‘pro-
totypical’ instances that are able to ‘clone’ themselves by
copying the corresponding prototype.

This paper presents a Generative Communication (GC)
service which operates as aprototype-factory servicein a
CORBA environment. It has been designed for accom-
plishing the transfer of information among interoperable
database and information systems, such that:

� The GC service does not need to know the structure
and different types of information to be transferred in
advance, nor does it need to define these objects in its
type hierarchy. It only manages the descriptions (meta-
data) of the information to be exchanged in a prototype
factory.

� The individual information systems do not need to
know each other. It is sufficient to agree on the struc-
ture of information (metadata) they intend to exchange.

Section 2 discusses some previous and related work on
an object-oriented communication framework. A note on
the terminology: The communicationframeworkdiscussed
in Section 2 is a C++ class hierarchy together with mod-
els of interactions which can be turned into complete appli-
cations by creating specializations which concentrate on a
more concrete task. Such an architecture is usually called
‘object-oriented framework’ [9, 25]. The communication
servicepresented in this paper, offers some CORBA objects
to the programmer. Such CORBA objects provideservices
to other CORBA objects [22].

Section 3 then explains Linda’s model ofgenerative
communicationthat has been developed for parallel pro-
gramming to serve as a motivation for the generative com-
munication service that is presented in Section 4. Another
note on terminology: Aconcurrentprogram specifies two
or more processes that cooperate in performing a task [1].
Each process is a sequential program that executes a se-
quence of statements. Processes cooperate by communi-

2

cation and synchronization. In aparallel program, these
concurrent processes are executed in parallel on multiple
processors. Adistributed program is a concurrent pro-
gram in which processes on different computers commu-
nicate through a network. CORBA is usually applied in dis-
tributed programming. The resulting combination of gener-
ative communication and CORBA services is aGenerative
Communication Service. Section 5 summarizes the paper
and indicates areas for future work.

2. Previous and Related Work

A C++ communication framework that has been developed
as part of a larger project in which heterogeneous informa-
tion systems needed to interoperate is presented in [15]. An
important goal for the system design was to decouple the
subsystem components in a simple way such that the indi-
vidual subgroups within the project team were able to work
independently while agreeing on small interface specifica-
tions.

Object-oriented frameworks can be regarded as incom-
plete software architectures which can be turned into com-
plete applications through various kinds of specialization
[9, 25]. Design patterns guide the construction and docu-
mentation of frameworks [19], but they may also bediscov-
ered in existing object-oriented frameworks, e.g., in frame-
works for graphical user interfaces, communication middle-
ware, databases, etc.

The larger project in which this communication frame-
work has been developed aimed at integrating cooperative
hospital information systems. The federated system archi-
tecture in this project has been designed according to the
specific requirements of integrating replicated information
among heterogeneous information systems within hospitals
[14].

A crucial design decision was the architecture of the
communication framework. The resulting C++ communi-
cation framework encapsulates the CORBA services to ex-
change information. A basic problem was how to transfer
information by the communication framework, in a way in
which it does not need to know the internal structure and in
which the cooperative information systems do not need to
know the communication platform (CORBA, in this case).

The first step for designing the communication frame-
work was to base it on the design patternAbstract Factory
[11, pages 87ff]. The basic idea of this design pattern is that
users of a ‘factory’ obtain an abstract interface for creating
families of related objects without specifying their concrete
classes. With theAbstract Factorypattern the communica-
tion framework does not need to know the concrete classes
it is required to transfer. However, the number of different
products (information objects) in the product family is en-
coded within the model and the program code. In case of a

handles

Info-2

Info-1

Clone()
Process()

Info-1 Handler

Clone()
Process()

Info-2 Handler

/handles

/handles

Clone()

Clone()

Handler
{abstract}

Process()
virtual

virtual

Clone()
InfoType

Information
{abstract}

virtual Clone()

Figure 2. Extract of the data model for transfer-
able information objects and their handlers in
the UML notation [10]. The symbol `/' at the
lower `handles' associations indicates their in-
heritance relationship to the corresponding up-
per association.

requirement for additional types of information, it is neces-
sary to modify the communication framework as a client of
the factory; thus, yielding a somewhat inflexible design.

This situation led us to search for a solution in which
the communication framework becomes decoupled from
changes with respect to the structureand the number of
different types of information objects. The next step
was to employ the design patternPrototype Factory[11,
pages 117ff]. The idea behind this design pattern is that dif-
ferent classes of information objects and their handlers are
represented through ‘prototypical’ instances that are able to
‘clone’ themselves. Figure 2 displays the class structure
for the prototypes of information objects and their corre-
sponding handlers. Handlers process received information.
Figure 3 illustrates the architecture of the communication
framework which only needs to know the abstract classes
Operation andHandler, and not their concrete subclasses.

A more detailed explanation of the models in Figures 2
and 3 is given as follows. Rectangles are the UML sym-
bols for classes. Within a class rectangle, the class name
(at the top), attributes (in the middle) and methods (at the
bottom) are defined. The C++ keywordvirtual [28] is
used to specify abstract methods in abstract classes. In-
heritance for specialization and generalization is shown in
UML as a solid-line path from the subclass to the super-
class, with a hollow triangle at the end of the path where
it meets the superclass [10]. Using UML, multiplicities for
associations are specified through numerical ranges at the
association links (Figure 3). The default multiplicity is1.
If the multiplicity specification comprises a single star, then

3

Get_operation()
Get_handler()

Pool

*manages

prototype factory

singleton

sends

CommunicationOperation

init()

*

receives

{abstract}

*

virtual Clone()
InfoType

Handler

Information

{abstract}

{abstract}

Send()

Sender

Instance()
Receive()

Receiver

Process()
virtual

virtual

Clone()

h
an

d
le

s

*

m
an

ag
es

Figure 3. The general architecture of the previous
C++ communication framework.

it denotes the unlimited non-negative integer range (zero or
more). Hollow diamonds indicate part-of relations (aggre-
gation). The arrows indicate the access direction. The ap-
plied design patternsSingletonandPrototype Factoryare
indicated through comment boxes that are attached to the
corresponding classes via dashed lines in Figure 3.

The classesSender andReceiver manage the transfer
of information. They inherit some general methods for us-
ing the Object Request Broker from the abstract classCom-
municationOperation (see Figure 3). The communication
framework uses two abstract classes for which a user spec-
ifies concrete subclasses (see Figure 2):

Information: for each type of information a concrete class
is defined through inheritance from the abstract class

Information which specifies a uniform interface for
all information types (see Figure 2). Each concrete
subclass specifies the specific structure for the speci-
fications of one type of information to be exchanged
via object instances of this class. The communication
framework itself is independent of this specific struc-
ture.

The Clone method is needed to obtain copies of the
prototype objects. The attributeInfoType identifies the
type of the prototype objects.

Handler: to receive and process information of a specific
type, it is necessary to provide corresponding informa-
tion handlers to process the information in an appropri-
ate way (see Figure 2). On receipt of an information
object, the communication framework uses copies of
prototypeobjects for information/handler pairs, which
are managed by the class Pool (see Figure 3). The han-
dler is responsible for processing the associated infor-
mation; thus, realizing the corresponding application
logic.

The presented mechanism, which makes the communica-
tion framework independent of the concrete information
classes, has been achieved through guiding the design by
the patternPrototype Factory.

Another design pattern used in Figure 3 is calledSingle-
ton [11, pages 127ff]. Each CORBA object (a C++ pro-
gram) contains exactly one C++ object instance of the class
Receiver, because each database agent is accessed as a
CORBA object. However, severalSender objects may ex-
ist within a CORBA object.

It turns out that the developed communication frame-
work is an object-oriented framework withinversion of con-
trol [9]: the framework calls the application which uses the
framework. Event handler objects of the application are in-
voked via the framework’s reactive dispatching mechanism.
The handlers that represent the application logic for pro-
cessing received information are called by the communica-
tion framework. This is different to the reuse in procedu-
ral languages such as C, where the application calls func-
tions/procedures which are provided by a library.

With the presented architecture, the information can be
transferred through the communication framework in a way
that

� the framework does not need to know the structure and
different types of information to be transferred and

� the individual information systems do not need to
know the employed communication platform.

This way, it was feasible decoupling the system compo-
nents in a flexible way such that the individual subgroups

4

within the project team were able to work independently
while agreeing on small interface specifications.

We can only present an coarse overview of this architec-
ture in this paper. For a more detailed description refer to
[14]. The Chorus Cool CORBA implementation [18] was
deployed in this project.

However, with this approach, both sender and receiver of
information must agree on the same concrete C++ classes of
information objects and they must know each other to ex-
change information objects via send and receive operations
(message passing). To achieve a flexible decoupling, we
developed a new communication service based on Linda’s
generativemechanisms (see Section 3) combined with the
positive experience with theprototype-factorypattern that
was employed in the previous project’s C++ communication
framework. In the follow-up project, which is discussed in
Section 4, we decided not to hide CORBA, but to deliver
the new communication service as CORBA service objects.
This way, it is possible to combine the new communication
service with other CORBA services such as events and se-
curity.

We have attempted to combine these ideas with previ-
ous research undertaken on metadata modeling in multi-
database systems [26]. In this research one of the functions
of the canonical model was to represent thevirtual schemas
(export and federated schemas [27]) as metadata compo-
nents. Since CORBA objects must be compiled before they
are used, it was necessary to build flexible objects which
could accommodate change without the need for recompi-
lation. This was accomplished through the usage of generic
classes. This use of generic classes is now extended in this
paper where prototypes are used to describe any ODMG [7]
object types, and clones can be constructed from these pro-
totypes to carry data values.

3. Generative Communication in Linda

There has been particular attention on parallel computing
within the computer science community in the last decades.
Many programming models and languages have been devel-
oped for parallel programming. However, for many appli-
cation areas, the often used parallel-programming model of
message passingis too low-level and inflexible:

“In fact, even though PVM and the MPI [8] are de
facto standards in parallel programming, their re-
lated programming style looks in many respects
like assembler-level programming of sequential
computers.” [29]

In particular, the lack of a global name space forces algo-
rithms to be specified at a relatively low level, since it is
complicated to simulate shared memory [3]. This greatly in-
creases the complexity of programs, and also restricts algo-

Tuple space

in ("data", ? i);

rd ("data", ? i);

["data", 123]

out ("data", 123);

receiver (extracting)

Sender

receiver (reading)

Figure 4. Tuple-space communication in Linda.
Processes are displayed as ellipses and the tuple
space is displayed as a rectangle.

rithm design choices, inhibiting experimentation with alter-
nate algorithm choices or problem decompositions. There-
fore, several alternative models have been designed for par-
allel programming, which provide higher-level abstractions.
These languages emphasize some kind of shared data.

One of these languages is Linda that has been developed
by Nick Carriero and David Gelernter at Yale University
[4, 12]. The shared data pool in the Linda concept is called
tuple spacewhich is a collection of tuples. A tuple space
may contain any number of copies of the same tuple: it is a
multiset, not a set. All Linda communication is a three-party
operation: sender interacts with tuple space, tuple space in-
teracts with receiver. Conversely, traditional models such
as point-to-point message passing provide two-party opera-
tions. Process communication in Linda is calledgenerative
communication, because tuples are added to, removed from,
and read from tuple space [12]. Figure 4 illustrates this con-
cept which is explained below.

Reading access to tuples in tuple space is associative and
not based on physical addresses. Reading access to tuples is
based on their expected content described in so-calledtem-
plates. This method is similar to the value-based selection
of entries from a relational database. Each component of
a tuple or template is either anactual, i.e., holding a value
of a given type, or aformal, i.e., a declared placeholder for
such a value. A formal is prefixed with a question mark.
Tuples in tuple space are selected bymatching, whereby a
tuple and a template are defined to match, iff they have the
same structure (corresponding number and type of compo-
nents) and the values of their actuals are equal to the values
of the corresponding tuple fields.

5

Linda defines some operators, which may be added to a
sequential computation language. These operators enable
sequential processes, specified in the underlying computa-
tion language, to access the tuple space. Theout adds tu-
ples to the tuple space. The “out("data", 123);” op-
eration in Figure 4 deposits the tuple["data",123] into
tuple space.

Thein operation attempts to withdraw a tuple from tu-
ple space. Tuple space is searched for a matching tuple
against the template supplied as the operation’s argument. If
and when a tuple is found, it is withdrawn from tuple space,
and the values of its actual fields are bound to any corre-
sponding formals in the template. Tuples are withdrawn
atomically: a tuple can be grabbed by only one process,
and once grabbed it is withdrawn entirely. If no match-
ing tuple exists in tuple space, the process executing the
in suspends until a matching tuple becomes available. If
many tuples satisfy the match criteria, one is chosen ar-
bitrarily. The “in("data",?i);” operation in Fig. 4
withdraws the tuple["data",123], which matches the
template “["data",?i]”, from tuple space and assigns
123 to the integer variablei. To summarize, a tuple and a
template match in Linda iff

� the numbers of fields are equal,

� types and values of actuals in templates are equal to
the corresponding tuple fields, and

� the types of the variables in the formals are equal to
the types of the corresponding tuple fields.

Therd operation is the same asin, with actuals assigned
to formals as before,exceptthat the matched tuple remains
in tuple space (Figure 4). Additionally, many Linda dialects
provide non-blocking extraction operations, multiple tuple
spaces and support for process creation. Some Linda di-
alects allow formals in deposited tuples which match with
appropriate actuals in templates. Refer to [5] for a full ac-
count to parallel programming in Linda. Comparisons of
Linda with other approaches to parallel programming may
be found in [4, 21]

A coordination languagelike Linda provides means for
process creation and inter-process communication which
may be combined withcomputation languageslike C [6]. A
parallel programming languageconsists, therefore, of a co-
ordination language and a sequential computation language.
With Linda, coordination and computation are two separate
issues of equal standing which together address the prob-
lem of building software. The first computation language,
in which Linda has been integrated, was C. Meanwhile there
exist also integrations into higher-level languages support-
ing the early phases in software development, such as pro-
totyping for early design evaluation [16].

Parallel programming is conceptually harder to under-
take and to understand than sequential programming, be-
cause a programmer often has to focus on more than one
process at a time. Linda’s shared, associative object mem-
ory supports a highlydecoupledprogramming style in
which processes remain mutually anonymous. Each task in
the computation can be programmed (more-or-less) inde-
pendently of any other task. This enables the programmer
to focus on one process at a time; thus, making parallel pro-
gramming conceptually the same order of problem-solving
complexity as conventional, sequential programming. With
generative communication each access to shared data is
asynchronous: sender and receiver of a tuple do not have
to exists at the same time and do not have to do things syn-
chronously.

A flexible coordination device is the distributed data
structure which is well-developed in the Linda program-
ming model of generative communication [20]. Distributed
data structures are data structures that can be manipulated
simultaneously by several processes. Processes communi-
cating via distributed data structures do so with minimal co-
ordination: processes may deposit data without being aware
of the receivers who will access it. Processes may access
data without being aware of the producers who generated it.
This implies asynchronous behavior, since the generation of
information is decoupled from its consumption.

This paper suggests learning from the experience with
parallel computing and applying some of the ideas of the
flexible Lindaparallel programming model — in particular
the decoupled communication enabled by matching — to
distributedprogramming as it is required for database inter-
operability.

4. A Generative Communication Service

In this section we discuss the design for a Generative Com-
munication (GC) Service which is based on the concept
of a Prototype Factorymodel (Section 2) and generative
communication (Section 3). Let us consider the problem
discussed in the introduction where databaseA wishes to
send some information in the form of objects to database
B. These databases either have similar schemas, their type
hierarchies contain the objects they wish to share, or they
have agreed a common format in advance for transferable
objects. We propose a system whereby an intermediary ser-
vice, the GC service, is used to define prototypes of these
objects, and then to create a clone for every information ob-
ject it is required to store and forward. Thus, ifA wishes to
send a set of objects toB, it does so by checking to see if the
object type has been registered previously with the GC ser-
vice. If not, it must be defined, otherwise object clones can
be created for every objectA wishes to send. The design
model for the GC service contains two main object types:

6

0..*

0..*
Relationship

Name : string

Type : string

0..*

PrototypeAttribute

Name : string

Type : short

Value : string

0..*

KeyDef

Name : string

IsPrimary : boolean

IsComposite : boolean

0..*

participates in

1..*

PrototypeSpecialization

Name : string

Depth : integer

0..*

0..*0..*

CommunicationService

Register(Prototype *) : boolean

PrototypeMatch(Prototype *) : Prototype

0..*

Prototype

Name : string

SenderId : long

ReceiverId : long

Identification : string

Clone() : Clone

1..*

0..*

Clone

Name : string

Set (string AN, Value)

Get (string AN, Value)

0..*

IsOfType

0..*

Figure 5. The metamodel of the Generative
Communication Service modeled in the UML
notation for class diagrams [10]. Hollow dia-
monds indicate part-of relations (aggregation).

thePrototype object type and theClone object type which
are used to describe objects discovered at runtime, and carry
actual data values respectively.

The GC service is based on thePrototype Factorymodel
where object prototypes are defined for unknown object
types. A registration process provides the service with a
description of the class of objects it is required to manage.
When it is necessary to create and store an instance of this
class, a clone of the registered class is constructed which
holds actual data values. Our work differs from the frame-
work discussed in Section 2 in that although our prototype
factory handles objects of unknown types, itunderstands
how to represent them through storage of the objects’ meta-
data. This provides us with a useful matching technique for
object prototypes which we will discuss later in this section.

4.1. Metamodel Description

Before describing the GC service it is necessary to under-
stand thePrototype class used to describe prototype ob-
jects. As the GC service must carry objects of different and
unknown types it must first create a prototype object. This is
achieved by creating a new instance of thePrototype class
and then using the registration operation (through theReg-
ister method) to describe the prototype object. In essence,
thePrototype class is a generic class, which describes new
types discovered at runtime, and contains some data ele-
ments (attributes used by naming and security services) and
some metadata elements. This closely relates to the Linda
model of formal and actual parameters described in Sec-
tion 3 where formal parameters are metadata elements and
actual parameters are data elements. Our metamodel which
is illustrated in Figure 5, has two data elements (thePro-
totype and Clone classes) with their contained metadata
elements. The metadata element comprises a series ofPro-
totypeSpecialization objects of which eachPrototype ob-
ject must have at least one. They are used to describe the in-
heritance hierarchy of the object type to be registered. The
set of subclasses are represented as an ordered list of objects
containing class names and aDepth attribute which is used
to determine the order of subclasses. It is assumed that all
objects inherit from the rootObject class, which is an in-
stance of the classPrototypeSpecialization, and it is thus,
only necessary to describe all specializations of theObject
class when registering the new type with the GC service.
All Prototype objects arecontainedwithin theCommuni-
cationService object, which is the CORBA service object.

EachPrototypeSpecialization hasn attributes (n � 0),
m relationships (m � 0) andp candidate keys (p � 0).
Candidate key elements must map directly to one or more
attributes defined for the new object type. Since both sup-
pliers and consumers contain transferable types in their lo-
cal type hierarchies, it is not necessary to transfer behavior
and thus, it is not part of our metamodel. It is also assumed
that consumers are aware of which behavioral parts are no
longer valid. For example, if the supplier is exporting only
a projection of the overall object, then it is possible that not
all methods will function on the object’s projection. The
supplier will be aware of the projection and can determine
which behavioral attributes are no longer valid. ThePro-
totypeSpecialization and Relationship classes are used
to create the structure for each of the classes described in
the inheritance hierarchy.Namesandtypesare required for
both PrototypeAttribute and Relationship objects. The
Type attribute in theRelationship class is used to deter-
mine whether the relationship is a1� 1 or 1� n (set) rela-
tionship. Finally, theKeyDef class is used to describe keys
for each of the information classes. Note that in the imple-
mentation, class names may change as separate classes are

7

interface Clone
(

extent Clones
key name)

{
attribute string name;
relationship <Prototype> IsOfType
inverse Prototype::Memberset;

relationship set <CloneSpecialization>
Subclass inverse CloneSpecialization::
ClassType;

boolean Set(in String AttributeName,
in String Value);

boolean Get(in String AttributeName,
out String AttributeValue);

};

interface Prototype;
(

extent Prototypes
key name)

{
attribute string name;
attribute long sender;
attribute long receiver;
attribute string identification;
relationship set <Clone> MemberSet
inverse Clone::IsOfType;

relationship set <PrototypeSpecialization>
SubClass inverse

PrototypeSpecialization:: ClassType;

Clone clone(void);
};

Figure 6. Extract of the ODL interfaces for
clones and prototypes.

used for prototypes and clones (see below).
Once a class has been registered with the GC service the

Clone method is used to create an instance of these objects.
We will shortly discuss how actual data values are trans-
ferred between supplier and consumer database agents and
the GC service. TheCommunicationService class also
has aPrototypeMatch method which is used for suppliers
to match their ‘query’ against information objects held by
the GC service. This process is explained in the following
section.

4.2. Implementation Details

Our first version of the GC service was developed in C++

using Orbix [2], an implementation of CORBA. CORBA is
the ‘Common Object Request Broker Architecture’ of the
Object Management Group, used to standardize interoper-
ability among heterogeneous hardware and software sys-
tems [22]. Simply stated, CORBA allows applications to
communicate with one another no matter where they are
located or who has designed them. CORBA defines an In-
terface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object
Request Broker (ORB). CORBA also defines interoperabil-
ity by specifying how ORBs from different vendors can in-
teroperate.

The ORB is the middleware that establishes the client-
server relationships between objects. Clients can transpar-
ently invoke a method on a server object, which can be on
the same machine or across a network. The ORB intercepts
the call and is responsible for finding an object that can ac-
cept the request, pass it the parameters, invoke its method,
and return the results. The client does not have to be aware
of where the object is located, its programming language, its
operating system, or any other system aspects that are not
part of an object’s interface. Server objects offer services to
client objects.

Our architecture assumes a federation of databases
which use an ODMG object model as their canonical data
model. We assume that some ODMG compliant database
agents (providing component schemas in the traditional fed-
erated database sense [27]) wish to exchange information
(see Figure 1). In this illustration, the data model trans-
lation of local database schema to the canonical schema is
encapsulated inside the agent process at each local database.
The agent presents the component schema to the federation.
CORBA objects are used to provide an interface to each of
the database agents and to provide distribution for the archi-
tecture.

When a consumer connects to the GC service it will pass
a query in the form of ‘do you have any object which looks
like this?’. The assumption is that a consumer knows (from
previous agreements with suppliers) that objects of certain
types will be transferred. The request to the GC is not based
on data values but on object types. At this stage, it is only
necessary to retrieve objects which are of a specific type.
This is achieved through the prototype matching operation
PrototypeMatch. The consumer must define an object
prototype which may be transient or persistent. Persistent
definitions are used when the consumer makes regular re-
quests for the same type of data, and are stored in the GC
service database in the same manner as supplier prototypes.
Once the consumer has defined a prototype, theProto-
typeMatch method is used to detect any prototypes (and
subsequently their associated clones) which match this type.
This is necessary as it is impractical to arrange a naming

8

scheme for prototypes in advance in a concurrent service
with possibly hundreds of users. It also means that supplier
and consumer have no need to communicate once an ini-
tial arrangement has taken place on the types of data to be
transferred. (Note that if the results are presented in some
form of a view, a subsequent SQL-type query can refine this
dataset to those objects which match a certain criteria. This
way not all objects may be downloaded.)

Unlike Linda, the matching of more than one prototype
does not result in an arbitrary selection of one of them. In-
stead theidentification attribute in thePrototype
class is used to inform suppliers of the origin of the proto-
types. If theidentification can be decrypted to pro-
vide a meaningful term, then the consumer knows it has the
correct prototype. To automate this, it is necessary for all
identification labels to translate to the same ‘known’ term
to all suppliers. We are currently investigating ways of im-
proving this although it is not possible to use data values in
the clone objects as security is vital in healthcare systems,
and access to data is restricted to consumers who have ap-
propriate decryption keys.

The following ODL type definitions (ODMG-93 [7])
help to illustrate the differences between prototype and
clone objects in the implementation (Figures 6–8). Al-
though prototypes and clones are very similar in structure
(it could be argued that a prototype is a specialization of a
clone), it was decided to treat them as separate object types
due to the fact that there was not enough reusable elements
among them, as displayed in Figure 6. ThePrototype
andClone objects are the primary objects in the GC ser-
vice database; the remaining objects cannot exist without a
reference to a prototype or clone object.

As all Clone objects look similar in structure, it is nec-
essary to associate each collection ofClone objects with
the correspondingPrototype object. This is achieved
in both directions: theIsOfTyperelationship in theClone
class maps each clone object to a prototype object; the
Memberset relationship in thePrototype class maps
each prototype object to a set of clone objects.

The inheritance hierarchy is constructed using classes to
represent specialization. Once again, it was decided to use
separatePrototype andClone classes to model the hi-
erarchy description, and the hierarchy of data values respec-
tively. Clone and prototype objects contain a relationship
to their inheritance hierarchy through theSubClass at-
tribute. The link between a set of subclasses and the proto-
type or clone objects is achieved through theClassType
attribute (see Figures 6 and 7).

As each specialization (or subclass) will contain a set
of attributes, theAttributeSet attribute in both of
the above classes provides a relationship to a set of ob-
jects which, describe the attributes in the case ofPro-
totypeSpecialization classes, and contain data val-

interface CloneSpecialization
(

extent CloneSubclasses
key name)

{
relationship <Clone> ClassType

inverse Clone::Subclass;
relationship set <CloneAttribute>

AttributeSet inverse
CloneAttribute::Specialization

}

interface PrototypeSpecialization
(

extent PrototypeSubclasses
key name)

{
attribute string name;
attribute short depth;
relationship <Prototype> ClassType

inverse Prototype::Subclass;
relationship set <PrototypeAttribute>

AttributeSet inverse
PrototypeAttribute::Specialization

}

Figure 7. ODL interfaces for specializations.

ues in the case ofCloneSpecialization classes. The
CloneAttribute class must be able to maintain an ar-
ray of values to handle possibilities such as arrays of values,
a set of relationships (oids) and ODMG collections such as
tuples, bags and sets.

The final ODL sample in Figure 8 illustrates the
CloneAttribute and PrototypeAttribute
classes, together with theKeyDef class which is used by
prototypes to model database keys. In essence,CloneAt-
tribute objects contain data values and a set of methods
(not shown) to convert between the stored string value
and the actual data type. TheAttributeType attribute
in the PrototypeAttribute class contains an enu-
merated type denoting system datatypes, a relationship, a
relationship set or an ODMG collection.

4.3. A Sample Transfer Operation

In this section we will demonstrate how the GC service
operates in an environment where two healthcare software
systems share information. In the sample database view in
Figure 9 it is intended to export details of all HIV patients
who havebloodtype ’O’ using the partial type hierarchy
in the illustration. The first step is to register both object
types with the GC service. A validation layer verifies that
relationship attributes are valid. For example, clones cannot

9

interface CloneAttribute
(extent CloneAttributes)
{

relationship <CloneSpecialization>
Specialization inverse Specialization::
AttributeSet;

attribute array <string> AttributeValue;
}

interface PrototypeAttribute
(extent PrototypeAttributes)
{

attribute string name;
relationship <PrototypeSpecialization>
Specialization inverse Specialization::
AttributeSet;

attribute short AttributeType;
attribute string AttributeValue;
relationship <KeyDef> KeyValue
inverse KeyDef::Keyset;

}

interface KeyDef
(extent keys

key name)
{

attribute string name;
relationship set <Attributes>
Keyset inverse Attributes::KeyDef;

}

Figure 8. ODL interfaces for attributes.

be created for thePerson prototype unless theAddress
prototype is also registered.

The registration process first requests a class name,
senderid, receiverid and number of subclass levels
in the object hierarchy. Thesenderid andreceiverid
are optional in our current implementation as no security
layer exists. It is then necessary to register thePerson,
Patient andHIV Patient subclasses. When attributes
have been defined for a sub-class, candidate keys can be de-
fined based on the attribute set described for each class. As
already stated, theAddress prototype must also be regis-
tered before any clones can be constructed.

Once the classes have been registered, the clone opera-
tion is used to create an instance of one of these classes.
The current implementation places the onus on suppliers
to construct clones where required and populate them with
data values. Each clone object has aSet method which is
passed an attribute’s name and value. It is assumed that sup-
pliers create an export function which calls theSet method
to write to the clones. In reality, this is part of the agent
process. The code for the each patient may look something
like:

Object

Patient

PatID : string

BloodType : string

HIVPatient

cd4count : integer

Address

StreetName : string

Town : string

County : string

PostCode : integer

Person

lname : string

fname : string

dob : date

address : Address

lives in

Figure 9. A sample healthcare object to be
passed using the Generative Communication
service.

myclone.set("LastName", lname);
myclone.set("FirstName", fname);
myclone.set("dob", dob);
myclone.set("address", Address);

Note that in the above example, the onus is on the supplier
to ensure the integrity of relationships (through the use of
oids). It is necessary to create theAddress clone first,
obtain the appropriate oid, and pass thisPrototype Factory
oid to thePatient clone, rather than the original oid con-
tained in the supplier’s database.

A similar process takes place on the consumer’s side
where an import procedure must be constructed to query
clone objects usingGet to retrieve data values and popu-
late objects in the consumer database. Our implementation
assumes that consumers send a message to the GC service to
inform it that data has been successfully transferred, which
permits either the GC service or the original suppliers to
destroy unwanted clone objects.

4.4. Synchronization

The CORBA event services are used in combination with
our GC service to provide synchronous or asynchronous

10

consumersupplier

supplier
consumer

GC service
push

pull
.
.
.

.
.
.

deposit

deposit

Figure 10. Push and pull communication
through the GC service.

transfer of information objects using event channels [23].
Agents can either receive notification of events that concern
them (pushmodel) or can connect to the event channel to
wait for their events (pullmodel). Figure 10 illustrates both
mechanisms. The event service is implemented as a spe-
cialized CORBA object which means that it can be used by
multiple suppliers and consumers simultaneously. In effect,
this means that multiple suppliers can pass information to
multiple consumers using the same event channel without
any supplier or consumer having direct knowledge of each
other. We use the OrbixTalk implementation of the CORBA
event services [17], and the result is a flexible coordination
architecture.

4.5. Security

Our effort involved the implementation of a layer above
the CORBA event services to permit the creation of pro-
totype objects which describeforthcoming information ob-
jects, and the creation of clones to carry actual data values.
A security layer is required to ensure that consumers only
retrieve the information which is destined for them. The se-
curity layer which is part of a future revision where the GC
service provides a table of public keys for each potential
consumer. It means that consumers can only decrypt mes-
sages which were meant for them, and were encoded using
their public key. It also means that if suppliers can share
encryption keys, it is possible to supply many users with
a single broadcast. A more detailed discussion of security
aspects is beyond the scope of the present paper.

5. Summary and Future Work

This paper starts with a discussion of previous and related
work on object-oriented communication frameworks (Sec-
tion 2) and generative communication in parallel program-
ming (Section 3), before our new Generative Communica-
tions (GC) service is presented. To transfer information
with this GC service, the following steps should be per-
formed by the database agents:

� Senders and receivers agree on some metadata struc-
ture and the associated information contents. Pre-
initialization of prototype objects that describe infor-
mation objects to be transferred is done on registration
of prototypes at the GC service.

� The prototype descriptions will later be used by con-
sumers to match their information needs.

� Information transfer is accomplished as follows:

– The sender sends an information object to the GC
service which transfers data values to a clone ob-
ject that represents the information object in the
GC. The GC service acts as a buffer. The objects
in the buffer are clones of the pre-initialized pro-
totype objects.

– Consumers can now receive the information ob-
ject (which is a clone) from the GC service. The
selection is based on formal parameters similar to
the Linda model. The event service (OrbixTalk)
wakes up the receiver on availability of the re-
quested information.

Sender and receiver do not need to know each other and
they do not need to exist at the same time. Communica-
tion is asynchronous. This decoupling alleviates distributed
programming. This fact is known from the experience with
parallel programming, in particular with the Linda model
for parallel programming.

The present paper also discusses how design patterns
guide the construction and documentation of the GC ser-
vice. With the presented architecture, the information can
be transferred through the GC service in a way that:

� The GC service does not need to know the structure
and different types of information to be transferred in
advance. It only manages the descriptions (metadata)
of the information to be exchanged in a prototype fac-
tory.

� The individual information systems do not need to
know each other. It is sufficient to agree on the struc-
ture of information (metadata) they intend to exchange.

In this way, we achieve a feasible decoupling of system
components in a flexible way.

For the discipline of software engineering, modifiabil-
ity and extensibility (for maintenance) are important qual-
ity properties that should be achieved in system’s design
[13]. One output is that the GC service can be re-used for
other systems with similar communication requirements, in
particular exchange of information among cooperative in-
formation systems.

11

Our current and future work in this area is focused on the
construction of a security layer. As we operate in a health-
care environment, security is crucial when transferring in-
formation in this manner. We are also improving the manner
in which we handled a situation where a consumer’s query
results in more that one prototype match. Finally, we are at-
tempting to improve the metamodel to allow a more seam-
less transfer of data between the GC service clones and the
supplier/consumer objects. At present, the onus is placed on
suppliers and consumers to manage this transfer, with lim-
ited assistance by the service (in the form ofGet andSet
methods).

Acknowledgements

This work was partly funded by the RENOIR network of
excellence established within the Fourth Framework Pro-
gramme for research and technology development in infor-
mation technology (ESPRIT) of the European Union.

References

[1] G. Andrews. Concurrent Programming. Ben-
jamin/Cummings, Redwood City, CA, 1991.

[2] S. Baker. CORBA Distributed Objects, using Orbix.
Addison-Wesley, Harlow, England, 1997.

[3] H. Bal. Programming Distributed Systems. Silicon Press,
1990.

[4] N. Carriero and D. Gelernter. Linda in context.Commun.
ACM, 32(4):444–458, 1989.

[5] N. Carriero and D. Gelernter.How to write parallel pro-
grams. MIT Press, Cambridge, MA, 1990.

[6] N. Carriero and D. Gelernter. Coordination languages and
their significance.Commun. ACM, 35(2):96–107, Feb. 1992.

[7] R. Cattell, editor.The Object Database Standard: ODMG-
93, Release 1.2. Morgan Kaufman, San Francisco, CA,
1996.

[8] J. Dongarra, S. Otto, M. Snir, and D. Walker. A message
passingstandard for MPP and workstations.Commun. ACM,
39(7):84–90, July 1996.

[9] M. Fayad and D. Schmidt. Object-oriented application
frameworks.Commun. ACM, 40(10):32–38, Oct. 1997.

[10] M. Fowler and K. Scott.UML Distilled: Applying the Stan-
dard Object Modeling Language. Object Technology Series.
Addison-Wesley, Reading, MA, 1997.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, MA, 1995.

[12] D. Gelernter. Generative communication in Linda.ACM
Trans. Prog. Lang. Syst., 7(1):80–112, Jan. 1985.

[13] C. Ghezzi, M. Jazayeri, and D. Mandrioli.Fundamentals of
Software Engineering. Prentice-Hall, Englewood Cliffs, NJ,
1991.

[14] W. Hasselbring. Federated integration of replicated infor-
mation within hospitals. International Journal on Digital
Libraries, 1(3):192–208, Nov. 1997.

[15] W. Hasselbring. Design of a communication framework for
interoperable information systems. InProc. Third World
Conference on Integrated Design & Process Technology
(IDPT’98), Berlin, July 1998. (in press).

[16] W. Hasselbring. The ProSet-Linda approach to prototyp-
ing parallel systems.The Journal of Systems and Software,
1998. (in press).

[17] IONA Technoligies PLC., Dublin, Ireland.White Paper –
OrbixTalk, 1997.

[18] C. Jacquemot, P. S. Jensen,and S. Carrez. CHORUS/COOL:
CHORUS object oriented technology. InObject-Based Par-
allel and Distributed Computation (OBPDC ’95), volume
1107 ofLectureNotes in Computer Science, pages 187–204.
Springer-Verlag, 1995.

[19] R. Johnson. Documenting frameworks using patterns. In
Proc. OOPSLA ’92, pages 63–76, Vancouver, BC, Oct.
1992.

[20] M. Kaashoek, H. Bal, and A. Tanenbaum. Experience
with the distributed data structure paradigm in Linda. In
USENIX/SERC Workshop on Experiences with Building
Distributed and MultiprocessorSystems, pages 175–191, Ft.
Lauderdale, FL, Oct. 1989.

[21] A. Matrone, P. Schiano, and V. Puoti. Linda and PVM: A
comparisonbetween two environments for parallel program-
ming. Parallel Computing, 19(8):949–957, Aug. 1993.

[22] T. Mowbray and R. Zahavi.The Essential CORBA: Systems
Integration Using Distributed Objects. Wiley, New York,
1995.

[23] R. Orfali, D. Harkey, and J. Edwards.The Essential Dis-
tributed Object Survival Guide. Wiley, New York, 1996.

[24] E. Pitoura, O. Bukhres, and A. Elmagarmid. Object ori-
entation in multidatabase systems.ACM Comput. Surv.,
27(2):141–195, June 1995.

[25] W. Pree.Design Patterns for Object-Oriented Software De-
velopment. Addison-Wesley, Wokingham, England, 1995.

[26] M. Roantree, P. Hickey, A. Crilly, J. Cardiff, and J. Murphy.
Metadata modelling for healthcare applications in a feder-
ated database system. In O. Spaniol, C. Linnhoff-Popien,
and B. Meyer, editors,Trends in Distributed Systems:
CORBA and Beyond, International Workshop TreDS ’96,
volume 1161 ofLecture Notes in Computer Science, pages
71–83, Aachen, Germany, Oct. 1996. Springer-Verlag.

[27] A. Sheth and J. Larson. Federated database systems
for managing distributed, heterogeneous, and autonomous
databases.ACM Computing Surveys, 22(3):183–236, 1990.

[28] B. Stroustrup.The C++ Programming Language. Addison-
Wesley, Reading, MA, second edition, 1991.

[29] D. Talia. Parallel computation still not ready for the main-
stream.Commun. ACM, 40(7):98–99, July 1997.

[30] J. Widom and S. Ceri, editors.Active Database Systems
– Triggers and Rules For Advanced Database Processing.
Morgan Kaufmann Publishers, San Francisco, 1996.

12

		2002-04-03T17:01:09+0200
	Universitaetsbibliothek Dortmund - Eldorado

