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Abstract—Algorithmic Differentiation (AD) is a set of tech-
niques to calculate derivatives of a computer program. In C++,
AD typically requires (i) a type change of the built-in double, and
(ii) a replacement of all MPI calls with AD-specific implemen-
tations. This poses challenges on MPI correctness tools, such as
MUST, a dynamic checker, and TypeART, its memory sanitizer
extension. In particular, AD impacts (i) memory layouts of the
whole code, (ii) requires more memory allocations tracking by
TypeART, and (iii) approximately doubles the MPI type checks
of MUST due to an AD-specific communication reversal. To
address these challenges, we propose a new callback interface for
MUST to reduce the number of intercepted MPI calls, and, also,
improve the filtering capabilities of TypeART to reduce tracking
of temporary allocations for the derivative computation. We
evaluate our approach on an AD-enhanced version of CORAL
LULESH. In particular, we reduce stack variable tracking from
32 million to 13 thousand. MUST with TypeART and the callback
interface reduces the runtime overhead to that of vanilla MUST.

Index Terms—adjoint MPI, correctness, type mismatch, algo-
rithmic differentiation

I. INTRODUCTION

In previous work, we extended the dynamic MPI correctness
checker MUST [1] with our tool TypeART [2] to detect type-
related mismatches between the type-less MPI communication
buffers and the declared datatype. In particular, the work aimed
at detecting errors w.r.t. manually constructed MPI derived
datatypes. Here, the developer is responsible for constructing
a memory overlay by specifying offsets for the MPI library to
extract and communicate the correct values of a data structure.
Any mistake in the construction of the derived datatype by,
e.g., specifying a wrong offset can lead to subtle bugs or code
portability issues, as the standard states in [3, Sec. 4.1.12]:

“It is not expected that MPI implementations will
be able to detect erroneous, ‘out of bound’ displace-
ments [. . .]”

TypeART tracks all memory allocations relevant to MPI calls
and, thus, MUST with TypeART can detect such errors.

A. Challenges of domain-specific MPI correctness

In this work, we investigate the particular use-case of
algorithmic differentiation (AD, [4], [5]). AD is a set of
techniques to compute derivatives of a target program to, e.g.,

conduct sensitivity studies for model verification [6] or data
assimilation [7]. To that end, in C++, all built-in floating-
point types are changed to a user-defined AD type, which
provides overloads for all operators to compute the original
and derivative value, respectively, or record the operation
performed, depending on the AD approach employed. Book-
keeping for distributed derivative computations is handled with
domain-specific MPI libraries [8]–[10].

While the application of AD is straightforward in theory,
the AD changes usually require a careful revalidation of the
target code and its numerics. For MPI type correctness, this
pertains to the changes in data layouts of the whole program
due to the AD type change. In particular, to apply MUST
with the TypeART extension to an AD-enhanced code, further
complications have to be tackled, e.g., (i) the high count of
additional allocations due to the derivative calculation and
(ii) the AD-specific MPI interface and communication.

1) The impact of AD on data layouts: In Fig. 1, a typical
AD type change applied to a struct is shown. The AD type
adouble replaces the previously used built-in double.

1
2 struct S {int i; double d[2];};

#include ”adouble.h”
struct S {int i; adouble d[2];};

Fig. 1. Left: The original struct. Right: The double type is replaced by
some AD type adouble. It encapsulates the original value and additionally the
corresponding derivative value, or records the operation, in an implementation
dependent manner.

In Fig. 2, the impact of AD on a potential memory layout of
the struct is shown. The AD type is at least twice the data size
of the built-in double if it encapsulates derivative information.

a2 a2d2 d2i d1 d1 a1 a1.
adouble d1 adouble d2

i d1 d1 d2 d2.
padding0x80 0x98

Original)

AD)

Fig. 2. Impact on the memory layout of the struct shown in Fig. 1 after
the type change. Each cell represents 4 bytes, padding is added for an 8 byte
aligned memory layout (ai denotes the additional derivative value).
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Hence, any memory layout specification can be impacted
by these changing data sizes, and, thus, needs to be carefully
reexamined in a target program after a type change, see Fig. 3.

a1

Start of struct member adouble d[2]

+sizeof(double) +sizeof(double)
padding d1 d1

Fig. 3. To construct a MPI derived data type, the offsets to each data member
have to be specified. Applying a type change, the offset calculation or pointer
arithmetic with, e.g., the sizeof operator, needs to change. Otherwise, as shown
here, if the user previously extracted the two double values with the sizeof
operation, the wrong values are extracted due to the new datatype that includes
derivative information.

2) Additional allocations: In previous work, we observed
that the amount of required allocation tracking is one of the
main culprits of performance regression induced by TypeART
and MUST in a target code. For efficiency, modern AD tools
use template metaprogramming and inlining of calls for the
derivative computation, see [11]. As a consequence of the
inlining, though, we measured an increase of more than a
factor of 2000× for total tracked stack allocations of the AD-
enhanced Coral LULESH benchmark [12].

3) AD domain-specific MPI communication: A particular
mode of AD, called reverse mode (RM), requires the reversal
of program execution to calculate the derivative information
called adjoints [13]. Thus, all MPI calls are replaced for the
required program reversal. As a result, for instance, an adjoint
MPI send executes internally (i) a vanilla send and, also, at a
later time, (ii) a vanilla receive for the reversal. These forward
and reverse communication patterns apply to all AD-related
MPI communication calls.

B. MUST in the adjoint AD workflow

Integrating MUST into this domain-specific context benefits
two groups, (i) the AD expert that develops these domain-spe-
cific tools, and (ii) the AD user that applies it or uses an
existing AD-enhanced code to compute derivatives.

For the former group, MUST helps verify their AD imple-
mentation, especially in the context of large-scale, real-world
codes. Here, the interception and analysis of the internal MPI
communication of the library are of particular interest. On
the other hand, AD users rely on the correctness of these
adjoint MPI libraries and overloading tools. Their interest is
on a higher semantic level, i.e., they use MUST and TypeART
to facilitate development of bug-free MPI communication in
their complex HPC codes.

For its analysis capabilities, MUST currently relies on the
MPI Profiling interface (PMPI, [3, Sec. 14.2]) to track relevant
information for its internal analysis modules. Unfortunately,
the AD MPI libraries do not provide such a mechanism, as
they (i) do not provide a standardized PMPI-like weak symbol
interception and (ii) their API may consist of generic C++ tem-
plate functions [10], which require MPI function overloading
for each template instantiation. To that end, we implement
an interface extension to MUST based on XMPT [14], which

acts as a callback interface to feed the analysis modules with
the required information. XMPT is a callback-based tools
interface for XcalableMP, a PGAS approach of the Japanese
Exascale initiative. The callback interface replaces the weak
symbol interception provided by PMPI. This allows MUST
to be configured for either the low- or high-level analysis of
AD experts and users, respectively. In summary, we make the
following contributions:
• An extension to MUST for analysis based on XMPT.
• An improved allocation filter for the TypeART extension,

capable of filtering across object files.
• An AD-enhanced version of LULESH with a MUST-

verified adjoint MPI implementation.
The remainder of this paper is structured as follows: Sec-

tion II introduces AD and adjoint MPI in more detail. MUST,
the TypeART extension, and its improved filtering capabilities
are introduced in Section III. We also describe the newly
developed callback approach of MUST. In Section IV, we
evaluate this approach on an AD-enhanced version of the
Coral LULESH benchmark. The impact on the type tracking
of MUST with TypeART is highlighted. A discussion of our
approach is given in Section V. Related work is highlighted
in Section VI. Finally, we conclude this work in Section VII.

II. ALGORITHMIC DIFFERENTIATION AND MPI

We introduce the fundamentals of the AD RM in Sec-
tion II-A. MPI and derived datatypes in the adjoint context are
introduced in Section II-B. For an extended introduction into
AD, see [15] and the AD community portal www.autodiff.org.

A. Fundamentals of adjoint AD

With AD, we assume that each computer program is a
composite function y = f(x) : Rn 7→ Rm of elemental
functions (e.g., sin) and operations (e.g., +) with known
derivatives. The original code and its values are called primal.

Given f , the RM is based on the adjoint formulation

x̄ =
df

dx

T

ȳ ≡ JT
f ȳ . (1)

ȳ ∈ Rm is the vector for the adjoint direction, x̄ ∈ Rn is
the result of the adjoint formulation and Jf ∈ Rn×m is the
Jacobian. The adjoints are derivatives of the final result w.r.t.
intermediate variables and are propagated in reverse order
through the program flow. Applying (1) to each intermediate
operation, e.g., a binary operation of scalar values, yields

c = φ(a, b) 7→ ā
+
= c̄

∂φ

∂a
, b̄

+
= c̄

∂φ

∂b
.

For instance, using a single assignment notation, the statement
z = ab+ sin(c) of scalar values yields

Forward
Section



ā,b̄,c̄ = 0 z̄ = 1
t1 = ab t̄1,t̄2 = z̄

t2 = sin(c) c̄
+
= t̄2 cos(c)

z = t1 + t2 b̄
+
= t̄1a

ā
+
= t̄1b


Backward
Section .

www.autodiff.org


As evident, with z̄ ≡ 1 the final adjoint values of the inputs
a,b,c are the entries of Jf . Initializing z̄ is called seeding.

1) Implementation: In complex codes, statements relevant
to the derivative computation typically span many functions
and translation units. Hence, for required values during the
reversal, all (relevant) operations of the program execution are
recorded on a global data structure called tape by the AD tool.
The derivative of a RM overloading type is, therefore, typically
implemented as a pointer to the adjoint on the tape.

B. Adjoint MPI

To compute adjoints in the context of distributed computa-
tions with MPI, three libraries [8]–[10] exist. They all provide
(i) a subset of modified MPI functions that enable the adjoint
of communication, and (ii) a back-end interface that an AD
tool has to implement for the required derivative book-keeping.
MPI derived datatypes are (partially) supported by the libraries
MeDiPack [10] and Adjoinable MPI [8].

1) Adjoint Communication: A MPI communication call
can be understood as an assignment operation in the adjoint
formulation, see (1). The RM then requires a reversal of
the dataflow between the MPI buffers. Hence, all calls to
MPI functions in the original program are typically replaced,
e.g., MPI Send 7→ AMPI Send. Internally, the AMPI Send invokes
vanilla MPI calls, see Fig. 4.

MPI Send(a0)

MPI Recv(ā1)
ā0 += ā1

MPI Recv(a1)

MPI Send(ā1)

. . . . . .

. . . . . .

P0: AMPI Send P1: AMPI Recv

Forward
Section

Backward
Section

Fig. 4. Adjoint MPI send/recv operation of two processes. Only the primals
are sent to P1, which is equivalent to an assignment a1 = a0. During the
reversal, the adjoints of P0 need to be updated. Hence, P1 sends these to P0,
which then updates its local adjoints ā0. The adjoint MPI library orchestrates
the required reversal of the MPI operations.

Likewise, a broadcast, say, becomes a sum reduction dur-
ing the program reversal. These adjoint communication pair-
patterns exist for other MPI calls and remain deadlock-free
when applied to a (correct) target code [8].

2) MPI Datatypes: Conceptually, all AD MPI libraries
work similarly w.r.t. datatypes. Sending primal datatypes is
unchanged, whereas the elementary AD-related datatype is
treated as follows: (i) In the forward section, only the primal
values are exchanged, while (ii) in the backward section, only
the adjoint values are communicated in reverse order. The
library handles the extraction of these values.

Derived datatypes are treated similarly. The developer, as
before, (i) specifies and passes the typemap to the (overloaded)
datatype constructor, and (ii) communicates data with the
datatype. Constructed types that include the AD type are
treated as follows: An additional datatype is constructed inter-
nally that mirrors the overall user-specified typemap. However,
the new datatype replaces the AD type with a type field

holding the primal. The original data alignments are remapped
to account for this change. From a user perspective, the
buffer is sent as the user-specified datatype but, internally, a
modified buffer is created and communicated. For the program
reversal, similar to the primitive datatypes, only the adjoints
are communicated for the required updates.

3) Templates: MeDiPack, in particular, provides a generic
wrapper class for holding the MPI Datatype handles. The wrap-
per holds both the user-specified and adjoint specific datatypes.
However, the adjoint MPI calls are template functions that
are instantiated for the specific MPI datatype wrapper. Hence,
a PMPI-like approach for MUST would require providing
function overloads for each such type.

III. MUST AND TYPEART

MUST intercepts the MPI calls in a target program to
feed its analysis modules with information for detecting, e.g.,
deadlocks or type mismatches of the specified MPI datatypes
between the sender and receiver. The TypeART extension
allows MUST to compare the type-less void buffer and the
static MPI datatype for correctness.

TypeART is based on the Clang/LLVM compiler toolchain
to (i) statically analyze a target code for type information,
and (ii) instrument all allocations relevant to MPI calls. This
enables its runtime library to track dynamic type allocation
information for MUST to query, see Fig. 5.

MPI Application

TypeART
Runtime MUST

Address

Type Info

Alloc Free Intercepted 
MPI Comm.

Fig. 5. TypeART as an extension to MUST. For every intercepted MPI call,
MUST queries the address of the type-less buffer using TypeART’s runtime.
The resulting allocation information are compared to the MPI datatype passed
to the MPI call. If an inconsistency is detected, MUST reports it.

MUST’s callback extension to support the adjoint MPI
libraries is discussed in Section III-A. In Section III-B, Ty-
peART is briefly introduced, see also [2] for more implemen-
tation details. In particular, we highlight recent additions to
TypeART enabling, e.g., better allocation filtering.

A. MUST Callback Interface Extension

MUST is based on GTI (generic tool infrastructure), which
can be understood as a distributed multi-agent network. The
network itself is implemented as a so-called Tree-Based
Overlay Network with intra-layer communication [16]. In the
classic MPI use case, the sensors of this network consist of
MPI function wrappers. To interface with other programming
languages, MUST has language-specific sensors like OMPT-
based sensors for OpenMP applications or XMPT-based sen-
sors for XcalableMP applications [14]. For the correctness
analysis, MUST comes with agents to track state (e.g., creation
of communicator handles) and agents for specific analyses.



1 int AMPI Irecv( . . . ) {
2 void* tool data;
3 if (callbacks.MPIAD Irecv) // start callback
4 callbacks.MPIAD Irecv( . . . , MPIADT begin, &tool data,
5 builtin return address(0));
6 · · · · · · · · · · · · · · · original AMPI Irecv code · · · · · · · · · · · · · · ·
7 if (callbacks.MPIAD Irecv) // end callback
8 callbacks.MPIAD Irecv( . . . , MPIADT end, &tool data,
9 builtin return address(0));

10 return ampi ret val;
11 }

Fig. 6. Example of MPI-AD tools callbacks integrated into an AMPI function.
The arguments for the callbacks are extracted from the function signature
of the AMPI call. This allows for correctness checks on the user-passed
buffers, and avoids (i) checking the internally executed MPI communication,
see Fig. 4, and, also, (ii) the corresponding, modified buffers.

1) MPI-AD tool interface: We designed the MPI-AD tool
interface to provide the information for the analysis by direct
calls, disabling the MPI function wrapping. To that end, the
necessary callbacks (function pointers) are registered with
MUST at program startup, and all relevant AMPI functions are
augmented with the appropriate callback. This augmentation
needs to be performed once per adjoint MPI library.

The data of the underlying MPI call is passed, and we need
additional arguments for book-keeping to emulate the original
wrapping of MPI calls with MUST, see Fig. 6. Some of the
arguments are valid and of interest only before and others only
after the underlying MPI call. In particular, the MPI interface
has IN, OUT and INOUT arguments. For this reason, we need two
callbacks for each AMPI call and mark the begin and end with
a flag. As an example, for MPI Wait, we need the originally
passed request handles in the analysis executed during the
end callback. The tool data argument allows MUST to transfer
such information from the begin to the end callback. The code
pointer argument set to builtin return address(0)1 allows MUST
to provide source code information in error reports.

B. TypeART

The TypeART framework is shown in Fig. 7.

LLVM Passes TypeART
Runtime

TypeART Framework

Linker Binary

Other Libs

Clang LLVM (opt)

Clang/LLVM Compiler Toolchain

Source

Allocation
Tracking

Type
Info

Analysis &
Transformation Alloc

Info

Fig. 7. TypeART framework, adapted from [2]. A target code is compiled with
the Clang/LLVM compiler. TypeART extends LLVM with passes to (i) extract
static type and allocation information (serialized for use with the runtime),
and (ii) instrument all allocations relevant to MPI calls. The runtime library
is linked with the target binary and accepts these instrumentation callbacks
to provide MUST with the required metadata for type correctness checks.

1https://llvm.org/docs/LangRef.html#llvm-returnaddress-intrinsic

1) Compiler Passes: Based on the generated LLVM in-
termediate representation (IR), the analysis pass (i) collects
all heap, stack and global allocations, and (ii) filters these
by discarding all allocations not relevant to any MPI call.
The instrumentation pass, subsequently, (i) serializes the type
information of the allocations (see the following paragraph for
details), and (ii) adds an instrumentation hook for our runtime.

In Fig. 8, an instrumentation hook for a heap allocation
is shown. The hook passes the (i) memory pointer, (ii) a
static type id to determine the allocated type, (iii) the extent
of the allocation, and, optionally, (iv) a static allocation id
that identifies the code location of the allocation. The latter
argument can be used by MUST to, e.g., accurately determine
the allocation location where a type mismatch originated from.

(double*) malloc(n * sizeof(double));

1 %1 = call i8* @malloc(i64 %0) // %0 = n * sizeof(double)
2 %2 = udiv i64 %0, 8 // %2 = %0 / sizeof(double)
3 call void @ typeart alloc( i8* %1, i32 6, i64 %2, i32 1 )
4 %3 = bitcast i8* %1 to double*

Pointer, Type id, Extent, Alloc id (opt.)

Fig. 8. Instrumented LLVM IR of a malloc call. TypeART adds instructions to
calculate the extent of the array dynamically (line 2). The callback is shown
in line 3: In total, we pass four arguments to our runtime. The type id is
determined statically, here 6 for the built-in double. Likewise, global and
stack allocations are instrumented (not shown for brevity).

2) Type Representation: Type ids are used in the runtime
library for identifying the effective type of a pointer at
runtime. Built-in types have predetermined ids and layouts.
A user-defined type, on the other hand, is handled during the
compilation by (i) creating a unique type id, and (ii) serializing
its type layout to a database (for runtime lookups).

3) Allocation Filtering: TypeART performs a conservative
inter-procedural forward data-flow analysis to enable the fil-
tering of allocations that are not part of an MPI call. For
its effectiveness, all relevant function definitions need to be
available in the current translation unit (TU), see Fig. 9.

1 extern foo bar(int*); // The definition is not available at this stage
2 void bar(int* x, int* y) {
3 *x = 2; // x is not used after
4 MPI Isend(y, . . .); // y is passed to an MPI routine
5 }
6 void foo() {
7 int a = 1, b = 2, c = 3;
8 bar(&a, &b);
9 foo bar(&c);

10 }

Fig. 9. Example of three relevant cases, from [2]: The filter follows the
allocations of a and b along their data flow. It eventually reaches the definition
of bar. (i) The analysis detects a filtering opportunity for a, as the aliasing
pointer x is never part of an MPI call. (ii) In contrast, b is instrumented as
the aliasing pointer y is part of an MPI call. (iii) Likewise, the allocation c
must be instrumented as it is passed to an interface function call.

To remedy the problem of reduced effectiveness of our
filter in the case of interface function calls, we implemented a

https://llvm.org/docs/LangRef.html#llvm-returnaddress-intrinsic


1 "foo_bar": { "callees": [ ], "parents": ["foo"] },
2 "bar": { "callees": ["MPI_Isend"], "parents": ["foo"] },
3 "foo": { "callees": ["bar", "foo_bar"], "parents": [] }

Fig. 10. Serialized CG excerpt for Fig. 9: The filter queries for foo bar, and
detects no other callees. Hence, the allocation of c can be filtered.

whole-program call-graph (CG) analysis. To that end, we use
a Clang-based tool that is part of our performance analysis
framework PIRA [17], which builds the CG using the Clang
abstract syntax tree in a preprocessing step by (i) first con-
structing TU-local CG’s and, subsequently, (ii) merging them
into a single whole-program CG.

The Clang tool works as follows: For the TU-local CG, all
function definitions or function calls in a translation unit are
visited to construct the relevant call relationships. Functions
without definition in this TU referred to as non-local functions,
are added as nodes, to be resolved during the subsequent merge
step. Special care has to be taken for (i) C++ method calls
in an inheritance hierarchy, and (ii) calls based on function
pointers. For both cases, the tool tries to build finite sets of
potential call targets. In the former case, the tool iterates over
the method’s inheritance hierarchy and adds all overridden
methods to the set of call targets. For the latter case, the
function pointer value is queried for its definition to deter-
mine the call target (a context-insensitive, TU-local points-to
analysis). The merging of these local CG’s is straightforward:
(i) The actual definition replaces the non-local call target
nodes. (ii) All other nodes are simply merged in the final
whole-program CG file.

Using the CG, the filter performs a reachability analysis to
determine if a path exists from a function call to any MPI call,
see Fig. 10. Three distinct cases need to be handled for a call
path analysis in TypeART:

i) reaches: The call chain contains a MPI call. The alloca-
tion is not filtered.

ii) never reaches: In contrast, the call chain never reaches
such a call. The allocation is filtered.

iii) maybe reaches: A call exists in the call chain that, in
the CG representation, has no definition but is not an
MPI call. This applies to, e.g., C language system library
functions such as printf. We consider these functions
benign for the filtering analysis as they likely never call
any MPI function. The allocation is also filtered.

However, the CG is limited to the call-path information, and
does not provide data flow information at the granularity of
function arguments. This leads to a conservative cross-TU
filter strategy, keeping more allocations than strictly necessary.

IV. EVALUATION

We apply the AD tool CoDiPack [11] and the AD MPI
library MeDiPack [10] to the Coral LULESH benchmark.
We chose these candidates as (i) they provide modern C++
implementations of the adjoint concept, including template
meta-programming for efficiency, (ii) MeDiPack is the most

feature-complete adjoint MPI library, and, also, (iii) due to our
past experience with CoDiPack [18].

In Section IV-A, we describe the main code changes
w.r.t. the AD-enhancement of LULESH. Subsequently, in
Section IV-B, MUST is applied to the LULESH benchmark
variants. We compare the overall impact of our AD-related
changes to the original benchmark (henceforth called primal),
and highlight the significant impact of the heavy use of
templates and the corresponding code inlining on our tooling
approach. We also contrast the original allocation filtering
strategy STD and the newly implemented CG-based filter CG,
see Section III-B3. Vanilla refers to either the AD or primal
benchmark without a TypeART instrumentation.

A. AD-enhancement of LULESH

The AD-enhancement of LULESH is mostly straightfor-
ward. It required (i) the redeclaration of the global basic scalar
alias Real t, (ii) the replacement of the MPI routines with
corresponding MeDiPack calls, and, also, (iii) seeding and
extraction routines calling the CoDiPack API for the adjoint
computation.

1) Type change: In Fig. 11, the type change of the global
scalar alias is shown. The introduction of (generic) wrapper
functions for several C-library IO-related functions used in the
LULESH code base was required, as they are incompatible
with user-defined types.

1 #include ”codi.hpp”
2 using AD real = codi::RealReverse; // RM AD overloading type
3 using Real t = AD real; // AD real replaces built−in double
4 template<typename ... Args>
5 void printf oo(const char *fmt, Args &&... args) {
6 printf(fmt, detail::value(std::forward<Args>(args))...);
7 }
8 template<typename ... Args>
9 void fprintf oo(FILE* f, const char* fmt, Args&&... args) {...}

10 template<typename ... Args>
11 void sprintf oo(char* buf, const char* fmt, Args&&... args) {...}

Fig. 11. Required type definition for CoDiPack. The three math helper
function LULESH defines (i.e., SQRT, FABS, CBRT) had to be defined for
the AD real type. They are, however, simple passthrough implementations
to the equivalent CoDiPack overloads (not shown for brevity). The calls
to C language variadic functions have been replaced by generic wrappers
(line 4–11) using template parameter pack extension3. For the AD type, the
helper function detail::value extracts the primal value before passing it to the
C function (not shown for brevity). For built-in types, the function simply
forwards the value.

2) Adjoint MPI-related changes: In Fig. 12, an excerpt of
the changes to the MPI communication calls is shown. The
source-level impact is mostly limited to changing the prefix.

3) Main time-stepping compute loop: The main compute
loop is augmented with API calls to CoDiPack for seeding
and extracting the derivative values. For each time step, in
a black-box fashion, the derivative of the energy (e) at the
origin of the domain w.r.t. the pressure (p) is computed. The
tape is reset after each time step. The values computed by

3https://en.cppreference.com/w/cpp/language/parameter pack

https://en.cppreference.com/w/cpp/language/parameter_pack


1 auto baseType = ampi datatype<Real t>();
2 AMPI Comm rank(AMPI COMM WORLD, &myRank);
3 AMPI Irecv(&domain.commDataRecv[pmsg * maxPlaneComm],
4 recvCount, baseType, fromRank, msgType,
5 AMPI COMM WORLD, &domain.recvRequest[pmsg]);

Fig. 12. Modified MPI communication routines in LULESH (gray marker).
In line 1, a function to select the MPI datatype using template specializations
was introduced. All other communication routines were modified similarly.

AD LULESH regarding, e.g., the calculated error, agree up to
round-off with the values of the primal.

4) AD-enhancement process: For a self-contained code
base like LULESH, overall only few code changes are re-
quired. For more complex code bases, the change of the built-
in floating-point type to a user-defined AD type can lead
to several complications that have to be fixed by the AD
expert. Complications typically arise due to (i) the different
treatment of built-ins compared to user-defined types by the
C++ language causing compilation errors [19], and (ii) the
usage of external libraries [18], [20] and C-language function
calls [21] that are not compatible with the AD type (as seen in
LULESH). While tools exist to (partially) automate the process
of the type change [22], these may not be able to handle, e.g.,
external solver libraries, which require special treatment in the
adjoint context [23].

B. Evaluating LULESH

The benchmarks were run on compute nodes of the Lichten-
berg high-performance computer of TU Darmstadt, with two
Intel Xeon 2680v3 processors at a fixed frequency of 2.5 GHz
and 64 GB RAM. To compile the benchmarks, we use the
Clang compiler 10.0.0 with Open MPI 4.0.3. The results are
the median over five runs.

The default optimization flag is used (-O3). Debug infor-
mation (-g) was additionally included for the MUST tool to
generate useful diagnostics including source code references.
The benchmark is executed with 8 processes equally dis-
tributed on two compute nodes. We cap the iteration count
of the compute loop at 200 to keep the AD-induced overhead
manageable. All other LULESH parameters are the default
values. An additional process is reserved for MUST, as it uses
a separate MPI process for correctness analysis.

1) MPI communication impact: In Fig. 13, the additional
MPI communication impact of AD for our particular LULESH
configuration on rank 0 is shown. The other 7 processes have
slightly different send and receive operation counts in the
compute loop. Overall, however, they have the same total
number of point-to-point communication calls.

2) Static coverage: In TABLE I, the static instrumentation
statistics of TypeART are shown. The increased count of
instrumented memory-related operations of the AD version
can be explained by the header-based template class design of
the adjoint libraries, which causes the inlining of their codes.
Hence, a high number of internal operations and instantiated
templates (each parsed as a unique type in the LLVM IR) are
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Fig. 13. MPI communication call count trace summary of P0 (between init
and finalize). Right: Additional, AD-induced MPI calls of the MeDiPack
library. For each compute loop iteration, a reversal of the communication
is executed for the adjoints. In contrast, the first and last phases are executed
once, respectively. Note: MeDiPack implements the MPI Allreduce as a
MPI Allgather and subsequent MPI Reduce local calls (not shown).

TABLE I
INSTRUMENTATION STATISTICS. NOTE: STACK AND GLOBAL REPRESENT

THE FILTERED COUNT. FILTER PERCENTAGE IN BRACKETS [%].

LULESH Heap Free Filter Stack [%] Global [%] Types

Primal 14 6
CG 19 [64.8] 0 [100]

10
STD 32 [40.7] 0 [100]

AD 289 434
CG 72 [96.4] 2 [99.8] 147

STD 615 [68.9] 5 [99.0] 182

AD [CB] 289 434 CG 114 [94.4] 2 [99.8] 145

detected by the TypeART pass and subsequently instrumented.
These reasons also explain the high number of extracted
type information. The type layout is serialized on-demand,
whenever an allocation is instrumented. Thus, resulting in the
difference between the filter implementations. In particular,
AD with the MUST callbacks (AD [CB]), has a different
behavior due to the integrated callbacks based on dynamically
set function pointers. The filter, thus, performs differently,
keeping more stack allocations.

3) Dynamic coverage: In TABLE II, the tracked allocation
and MPI type check counts at runtime are shown.

a) Allocation filtering: The juxtaposition of the two filter
implementations shows the effectiveness of the CG version
for the AD-enhanced LULESH benchmark. With the original
STD filter, over 32 million stack variables are tracked overall
during the execution, even though the maximum stack depth
is only 32. This can be explained by the expression templates
(and the inlining), which introduces more stack variables that
are subsequently tracked but also regularly discarded. The
total number is due to missing crucial temporaries in a hot



TABLE II
RUNTIME STATISTICS FOR (I) TRACED MEMORY OPERATIONS, AND (II) MPI-RELATED TYPE CHECKS. THE MEDIAN OF ALL PROCESS VALUES IS SHOWN.

Traced Memory Operations MPI Type Checks
LULESH Tot. Heap Filter Tot. Stack Tot. Global Max. Stack Max. Heap Total Unique

Primal 40,063
CG 1,816 0 17

79 5,813 30
STD 2,624 0 21

AD 71,344
CG 13,816 2 18

223 11,213
524

STD 32,429,228 8 32 544

AD [CB] 71,344 CG 28,246 2 31 223 5,813 30

kernel function of the code. The new filter, on the other
hand, eliminates these and, thus, reduces the total tracked
stack variables by a factor of 2,347×. The AD [CB] version
approximately doubles the number of tracked stack operations
compared to the AD version due to the additional tracking
caused by the callback interface. In contrast, for the primal,
the CG filter reduces the tracked stack allocations by a factor
of 1.45×. The internal allocation of buffers by the adjoint MPI
library explains the AD-related heap operations.

b) MPI type checks: The number of MPI type checks
for AD approximately doubles compared to the primal. This
is due to the reversal of send and receive operations in the
compute loop. In particular, for the primal, we observe 5,414
and, hence, doubling to 10,828 point-to-point communication
calls for the primal and AD, respectively. The rest consists of
intercepted collective operations where MUST analyzes send
and receive semantics separately. With AD [CB], as expected,
we reduce the checks to that of the primal.

For AD, the higher number of unique address checks, i.e.,
the distinct memory addresses MUST passes to TypeART to
query type information, is explained by the internal buffers of
MeDiPack for sending the datatypes, see Section II-B2. Only
for the AD benchmark, based on the filter implementation,
we observe a difference between these counts. TypeART in-
struments a different number of allocations based on the filter,
which likely affects the compiler to apply code transformations
and optimizations for code generation.

4) Runtime: The relative runtime overhead is shown in
Fig. 14. Per loop iteration, the overhead factor of AD for a
time step is approximately 9×. The subsequent tape evaluation
for the adjoints results in a combined factor total of about
11× compared to the vanilla benchmark. In contrast, TypeART
itself induces only little overhead. Comparing filter strategies:
The absolute runtime savings are 5 s for TypeART with the
new filter (not shown), and for MUST with TypeART we
measure about 8 s time saving for the AD benchmark. For
AD [CB], although more stack allocations are tracked, the
reduced type checks bring the performance to the level of
MUST without TypeART’s tracking. In contrast, the primal
runtime configuration differences are negligible.

5) Memory: The relative memory overheads are shown in
Fig. 15. The memory overhead factor of AD vanilla compared
to the primal vanilla is approximately 1.4×. TypeART’s in-
duced overhead is less than 4 MB for both variants compared
to vanilla. MUST combined with TypeART adds approxi-
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Fig. 14. The relative runtime overhead w.r.t. vanilla. Vanilla primal runtime:
7.59 s. Vanilla AD runtime: 83.52 s.

mately 9 ∼ 12 MB compared to vanilla. The filter strategy
has almost no impact on memory savings for MUST.
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Fig. 15. The relative median memory overhead of a single MPI process w.r.t.
vanilla. Vanilla primal RSS: 171 MB. Vanilla AD RSS: 242 MB.

V. DISCUSSION

A recent study of about 100 MPI applications [24] has
shown, that most codes require MPI-2 or lower and point-to-
point communication and collectives are the majority of used
MPI features. However, derived MPI datatypes are the fourth
most used feature in this study. Ensuring type correctness of
such advanced features with MUST and TypeART will help
the overall adoption thereof. This also applies to AD-enhanced
MPI codes, as any previous memory layout assumption may
no longer be valid with the new AD data layouts, especially
when low-level pointer arithmetic is used. Hence, a tool like
TypeART will only gain importance going forward.

A. Allocation filtering

The evaluation has shown that the application characteristic
w.r.t. memory operations significantly changes with AD. With-
out any filtering, for our AD configuration, TypeART tracks



about 600 million stack operations per process (compared to
about 6,800 for the primal), and the runtime is about 1,060 s.
The original TypeART filtering mechanism, in contrast, re-
duced (i) the tracking of stack allocations by a factor 18×,
and (ii) the runtime to about 83 s.

However, original filter missed many additional stack mem-
ory operations that are not part of the MPI communication.
This is partly due to the data-flow tracking not accurately
handling the additional nested template call hierarchies of the
AD tool. Therefore, improving the filtering mechanism was
worthwhile and reduced runtime by about 10% without loss
of type-tracking precision.

The improved filter relies on all user-code function bodies
being correctly identified with the CG-generator tool, as func-
tions without a body are interpreted as system library functions
that never call any MPI routine, see Section III-B3 (maybe
reaches). If this assumption does not hold, we may filter
allocations erroneously. Hence, if a call to a system library,
e.g., a pre-installed parallel solver, uses MPI internally, the
CG-generator tool needs to explicitly handle these library calls.
To that end, the CG-generator tool can be extended by a
plugin, or explicit system header annotations to treat such CG
nodes as call targets where filtering is not allowed. In addition,
changes to the target code w.r.t. adding or removing functions
require a re-generation of the call graph, otherwise filtering
may become ineffective or erroneous.

B. MPI type checks

The callback interface (AD [CB]) reduces the required type
checks to that of the primal version of LULESH. AD users
are mostly interested in the correctness of their (adjoint) MPI
usage w.r.t. deadlocks or usage of derived datatypes. Therefore,
it is sufficient to keep the analysis limited to, e.g., the datatype
buffer passed to the adjoint MPI call: If the buffer of the
datatype is incorrect, likely the internal handling of this buffer
will also be incorrect and vice versa.

The difference of unique address checks for the filter
implementations of the AD LULESH benchmark did not cause
any complications. Likely this is code generation related, as
we also observed stack variable address reuse during execution
for AD with the STD filter implementation. This behavior can,
e.g., be controlled with compiler flags and is typically activated
for all stack variables.4 However, a detailed analysis of the
produced assembly and the impact of the filtering on the code
generation is out of scope for this work.

C. Defects

We have not detected any type error. Initially, MUST
revealed a datatype that was not correctly freed before finalize
was called, originating from the MeDiPack library. This has
since been fixed.

4-fstack-reuse=reuse-level, see https://gcc.gnu.org/onlinedocs/
gcc/Code-Gen-Options.html

VI. RELATED WORK

Several MPI correctness checkers exist, e.g., [25]–[28].
However, we are not aware of any MPI correctness checker
being applied to adjoint MPI codes. Especially static MPI
checkers likely require adaptation for integrating the different
communication routine signatures of these adjoint libraries.
In addition, finding defects in the implementation of adjoint
libraries, e.g., deadlocks in the reversal patterns, is not straight-
forward with a static analyzer compared to the dynamic MPI
checker MUST.

A. MPI correctness checker

A discussion of previous related work to MUST and Ty-
peART can be found in [2]. More recently, in [28], the authors
use static analysis and symbolic code execution to find MPI
defects. Regarding buffer type matching, for each creation of
MPI derived types the primitive type components are tracked.
This approach fails, if the analysis can not detect the effective
type of a void buffer to compare with the tracked datatypes.

B. Adjoint MPI applications

The computation of adjoints in a distributed context has
been done for large scale software packages in the past for,
e.g., sensitivity studies or model optimizations [18], [29]–[31].

To highlight the relevancy of our approach, we briefly
discuss the adjoint implementation of the CFD solver Open-
FOAM [29]. The distributed computations of OpenFOAM are
based on a communication wrapper around MPI, which does
not pass type information to the low-level MPI communication
routines. Instead, before passing a buffer to the MPI call, the
wrapper serializes the data to a char array. Hence, data is
communicated as a MPI BYTE datatype. For correct reverse
propagation of adjoints, the AD experts had to, therefore,
implement a manual type detection scheme: (i) If primal values
are exchanged, the communication is left unchanged, however,
(ii) if an AD-related type is sent, the adjoint MPI library [9]
is called instead. We believe the correctness of this approach
can be (further) verified with MUST and TypeART.

VII. CONCLUSION

We presented extensions to MUST and TypeART that allows
for analysis of applications with domain-specific MPI com-
munication. In particular, for MUST, we developed a callback
interface that can replace the previous approach of relying on
weak-symbol forwarding using the PMPI specification to feed
MUST’s analysis modules. This enables a domain-specific
view of the adjoint MPI libraries where a standardized PMPI-
like interface is absent, and where templatized adjoint MPI
functions would require the individual provision of function
overloads for each instantiated template function.

The additional stack operations induced by the AD tool
to compute the derivatives significantly affects the amount of
required allocation tracking. Applying the MUST tool with the
TypeART extension using the original filtering strategy, thus,
showed an overhead of factor 1.12× due to tracking a total
of about 32 million stack operations. As a consequence, we

https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html


implemented a whole-program call-graph filter which reduces
the overhead to 1.03×, lowering the overhead close to the level
of vanilla MUST without TypeART. The new MUST callback
extension combined with the new filter, on the other hand,
brings performance to the level of vanilla MUST at 1.02×.

For future work, a CG-based filter with per function ar-
gument data-flow tracking seems worthwhile. We will also
apply the MUST callback extension to the other adjoint MPI
libraries. Automating this process is the next step.

The TypeART library is available in the source code reposi-
tory of the institute for Scientific Computing at TU Darmstadt,
see https://github.com/tudasc/typeart. The MUST extension
and AD LULESH are available upon request.

ACKNOWLEDGMENT

This work was funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project, by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
— Project-ID 265191195 — SFB 1194, and by the European
Union’s Horizon 2020 research and innovation program under
grant agreement 824080. Calculations were performed on
the Lichtenberg cluster at TU Darmstadt. We thank Max
Sagebaum for his advice w.r.t. AD LULESH and MeDiPack.

REFERENCES

[1] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and M. S.
Müller, “MPI runtime error detection with MUST: Advances in deadlock
detection,” Scientific Programming, vol. 21, no. 3-4, pp. 109–121, 2013.

[2] A. Hück, J.-P. Lehr, S. Kreutzer, J. Protze, C. Terboven, C. Bischof, and
M. S. Müller, “Compiler-aided type tracking for correctness checking
of MPI applications,” in 2018 IEEE/ACM 2nd International Workshop
on Software Correctness for HPC Applications (Correctness), 2018, pp.
51–58.

[3] Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard, Version 3.1,” 2015, last visited Oct 2020. [Online]. Available:
www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[4] A. Griewank and A. Walther, Evaluating Derivatives, 2nd ed. SIAM,
2008.

[5] U. Naumann, The Art of Differentiating Computer Programs: An Intro-
duction to Algorithmic Differentiation. SIAM, 2012, vol. 1.

[6] G. R. Carmichael, A. Sandu et al., “Sensitivity analysis for atmospheric
chemistry models via automatic differentiation,” Atmospheric Environ-
ment, vol. 31, no. 3, pp. 475–489, 1997.

[7] M. Asch, M. Bocquet, and M. Nodet, Data Assimilation: Methods,
Algorithms, and Applications. SIAM, 2016.

[8] J. Utke, L. Hascoet, P. Heimbach, C. Hill, P. Hovland, and U. Naumann,
“Toward adjoinable MPI,” in 2009 IEEE International Symposium on
Parallel Distributed Processing, 2009, pp. 1–8.

[9] M. Schanen, U. Naumann, L. Hascoët, and J. Utke, “Interpretative
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