Assuring the Safety of On-Demand Medical
Cyber-Physical Systems

Andrew L. King, Lu Feng, Oleg Sokolsky, Insup Lee
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, USA

Abstract—We present an approach to establish safety of on-
demand medical cyber-physical systems which are assembled to
treat a patient in a specific clinical scenario. We treat such
a system as a virtual medial device (VMD) and propose a
model-based framework that includes a modeling language with
formal semantics and a medical application platform (MAP) that
provides the necessary deployment support for the VMD models.

I. INTRODUCTION

Modern medical treatment in both the home and hospi-
tal settings require involvement of multiple medical devices
helping the doctor achieve goals of the treatment. Increasingly,
modern medical devices are being designed with network inter-
faces. These interfaces are currently being used to stream infor-
mation from the medical device (e.g., vital sign readings) into
a health IT system (e.g., Electronic Health Records). In some
limited cases, communication goes the opposite direction, with
some health IT systems using the network to reprogram or
reconfigure medical devices remotely [5]. The next logical step
is to close the loop: medical sensors will push information onto
the network where it will be processed by software which will
in turn reconfigure medical actuators. When medical devices
are assembled at the bedside to coordinate with each other
to provide care, they collectively form a single ‘on-demand’
medical cyber physical system (MCPS).

While the availability of network-enabled medical devices
has increased, in general these devices are not interoperable.
Current MCPS solutions typically require that each component
in the system be produced or integrated by a single manu-
facturer. This is problematic for caregivers because it locks
them to a single vendor if they want to deploy a modern
system. Interoperable approaches, such as those promoted
by the Medical Device Plug and Play project [16], would
enable caregivers to assemble MCPS at the bedside out of
interoperable medical devices from different manufacturers to
provide therapy for a specific clinical scenario. Because plug
and play systems do not exist physically prior to assembly, we
call these medical systems Virtual Medical Devices (VMD).
When a caregiver assembles a plug and play system according
to a specific scenario we call it a VMD instance. Typically, a
VMD implements a particular clinical scenario. An example
of such a scenario may be patient-controlled analgesia (PCA)

This research was supported in part by NSF CNS-1035715, NSF CNS-
1239324, NSF 1IS-1231547, and NIH grant 1TU01EB012470-01. Lu Feng is
supported by James S. McDonnell Foundation 21%* Century Science Initiative
- Postdoctoral Program in Complexity Science/Complex Systems - Fellowship
Award.

pain management in post-operative patients, which we will use
as a running example.

Most safety-critical cyber-physical systems, such as air-
craft, nuclear power plants, and medical devices, are evaluated
for safety by regulators before they can be used. The state of
the art in safety assessment is to consider the complete sys-
tem. However, unlike most other safety-critical cyber-physical
systems, virtual medical devices are constructed at bedside,
based on the needs of an individual patient and from available
devices. It is natural to ask the question: How can we assess
the safety of a VMD a priori if we don’t know precisely what
medical devices (i.e., make, model, brand, etc.) will be used
in the instantiation? In this paper we describe one possible
approach to ensuring the safety of Virtual Medical Devices.

The next section describes the PCA safety interlock ap-
plication that is used as a running example to illustrate our
approach in the rest of the paper. In Section III, we give
an overview of the workflow a clinician would follow to
instantiate a VMD. In Section IV, we describe our modeling
and specification language and show how the PCA safety
interlock application would be specified. In Section V, we
describe the services provided by the MAP. In Section VI,
we discuss some systems and safety engineering consequences
of our approach, and concludes with potential directions for
future research.

II. MOTIVATING EXAMPLE

We first describe a specific clinical scenario where the
patient is provided pain management through a therapy called
patient controlled analgesia (PCA). In PCA therapy the patient
is administered an opioid pain medication using an infusion
pump. The pump is equipped with a button that allows the
patient to request an additional dose of medication called
bolus. A well-known hazard of administering opioids is that an
overdose can lead to a respiratory failure, which may be fatal
to the patient [9], [15]. To mitigate this hazard, the scenario
also includes monitoring of the patient’s respiratory function
using a vital sign sensor, either directly (using capnography
sensors) or indirectly (via blood oxygen saturation, measured
by a pulse oximeter). In addition, a vital sign display is used to
present sensor readings to a clinician. A hospital typically has
several different kinds of infusion pumps and vital sign sensors
available. In the current clinical practice, a clinician monitors
the vital sign readings and adjusts infusion as necessary.
Current practice is both error prone and burdensome for the
clinician [10], [8].

Interconnecting the infusion pump and a vital sign sensor
over a network allows us to implement a safety interlock; a
computer controller that would automatically stop infusion if
a problem is detected, and alert the clinician. One hazard to
patient safety in this automated setting is that a network cable
would become disconnected which would prevent the con-
troller from disabling the pump. This hazard has been studied
extensively by Arney et al. in [4]. Their solution (see Figure
3) involves a controller that periodically issues a “ticket” to
the infusion pump. The ticket denotes the amount of time
the infusion pump can deliver a bolus until the patient could
possibly be pushed into respiratory distresss. If the network
becomes disconnected for a long period of time the ticket held
by the infusion pump would expire and the pump would stop
delivering bolus ensuring that the patient is safe from PCA
overdose. We would like to note that this sort of autonomous
and timed behavior will likely be essential for the safety
of medical devices that coordinate therapy over a network;
already recent research has identified timed safety protocols
for use with X-ray machine & ventilator synchronization [3]
and laser scalpel & ventilator safety interlocks [11].

III. PROPOSED APPROACH

Our approach is to ensuring the safety of VMD is two-
fold. First, we use a rigorously defined language to model a
specific clinical scenario. This model specifies the required
types of medical devices used, logic modules (i.e., software)
that implement device coordination algorithms, and how data
flows between the devices and logic modules. VMD developers
and regulators can analyze the VMD models for safety and
effectiveness (via simulation, modeling checking, or both).
Second, we use a trusted base called a Medical Application
Platform (MAP). The role of the MAP is to ensure that VMDs
are instantiated correctly: When a clinician tries to instantiate a
VMD with real devices the MAP checks if those devices satisfy
the VMD’s requirements, it hosts the software (logic) portion
of the VMD, and applies a variety of scheduling and resource
management techniques to ensure that the VMD’s performance
requirements are met. In order to make the role of the MAP
more concrete, we describe the workflow a clinician would
follow to instantiate a PCA interlock VMD:

Step 1 The clinician connects PCA pump and pulse
oximeter to the network. Each device will register
a capabilities specification with the MAP.

The clinician selects the PCA-Interlock VMD and
then the specific devices to use.

The MAP determines whether the selected devices
are compatible. If the devices are not compatibile
the clinician is notified.

If the devices are compatible, the MAP will
then analyze the VMD’s timing constraints (i.e.,
the deadline on tasks and the end-to-end latency
requirements on the dataflows) by performing a
schedulability test. If the MAP can satisfy (i.e.,
guarantee) the timing constraints, then the VMD
is instantiated; otherwise the user is notified.

Step 2

Step 3

Step 4

Because the MAP enforces correct instantiation, we claim
that properties verified from a VMD model must hold for any
instantiation (see Figure 1). This approach imposes a number
of requirements on both the modeling formalism (which we

[VMD is safe]

Clinical
scenario
model

Model is
verifiedto
be safe

Compliant
devices

communication

semantics /

device specification

p
Compliant

deployment platform
(& J

Fig. 1: VMD safety assurance

discuss next) and on the MAP itself (which we discuss in
Section V).

IV. MODELING LANGUAGE

In this section, we illustrate the ideas behind the modeling
language using our pain control scenario. A detailed exposition
of the language (without timing specification) and its formal
semantics is given in [13].

Requirements for the language design. The language should
support the assurance framework outlined in Section III. This
imposes the following requirements on the language:

o The language must be amenable to formal verification.

e The language should allow modular specification to
reflect the physical composition of scenario instantia-
tions.

o The language should allow us to express both required
and allowed functional behaviors of the devices in-
volved in the scenario, such as timing characteris-
tics of devices behaviors, interconnections between
devices, as well as end-to-end timing constraints of
the overall scenario.

e The language should support instantiation of the
modules in the model with actual devices. Techni-
cally, this requires support for compositional property-
preserving refinement.

The notion of refinement appropriate in our context calls
for further discussion. We want to allow behavioral variability,
in certain situations, in both functionality and timing, treated
as independent dimensions. That is, the language should distin-
guish the required functionality needed for the scenario from
any optional extensions that devices are allowed to introduce
without affecting safety of the scenario. Such required and
optional behaviors are often specified as “may” and “must”
transition modalities [14]. When specifying timing of indi-
vidual actions in a behavior, the language should allow us
to state, to what extent this timing can be modified in an
implementation. That is, the language needs to distinguish
required timing intervals from optional ones.

Overview. The model is organized as a collection of modules.
There would be a module for each device needed to effect
the scenario. In addition, the model should include at least

vmd ClosedLoopPC A
devices
pcaPump : PCA;
po : PulseOximeter;
enddevices
logicmodules
controller : PCATicketGenerator;
endlogicmodules
dataflows
po.SpO2 LN controller.SpO2
controller.ticket ~2™ pcaPump.ticket
enddataflows
endvmd

Fig. 2: PCA infusion VMD architecture specification.

one module describing the scenario workflow. In contrast
to devices, we refer to these module as logic modules. In
our example, the workflow would contain the logic of the
safety interlock. The distinction between devices and logic
modules is significant for several reasons. On the one hand,
device modules are specifications for existing devices and
instantiation of the model requires incorporating a concrete
device into the scenario, making sure that the device complies
with the specification. Connecting devices to the deployment
platform is a physical activity outside the framework. However,
ensuring that valid devices are correctly interconnected is
carried by the framework. By contrast, logic modules are
specific to the scenario and represent software components.
During instantiation, deployment of logic modules can be
done automatically within the framework and, as we will see
below, description of a logic module includes configuration
information for the deployment platform.

Each module has an interface comprised of externally
visible ports of the modules, through which it communicates
with its environment, and a body that details its behavior.

Architectural view. An architectural view of the model lists
modules and dataflows between them in a top-level architecture
specification. In addition, since dataflows are tied to ports of
modules, module interfaces are also considered to be part of
the architectural view.

The architecture specification has separate sections for
device modules, logic modules, and dataflows. We illustrate
the architecture specification using the PCA infusion scenario,
shown in Figure 2. It contains two device modules, the infusion
pump and the pulse oximeter, and a logic module for the
interlock that works as the controller of the pump. The scenario
includes two dataflows: one is the flow of sensor readings from
the pulse oximeter to the controller, and the other one carries
control events from the controller to the infusion pump. Each
control event is a ticket that gives the pump permission to run
for a fixed interval of time. Each flow specifies requirements
for transmission, for example, the transmission latency. Note
that flows are associated with named ports of the incident
modules.

Each module includes an interface definition that describes
ports for external communication. We distinguish between
patient interface, network interface, and clinician interface.
Patient interface of a medical device describes the interaction
between the device and the patient: physiological readings
serve as inputs and interventions, such as infusion of med-
ication, serve as outputs. Clinician interface describes the

bolusRequest

PulseOximeter pcaPump:PCA

ticket

infusionRate

controller:

PCAController |ffmm

Fig. 3: PCA infusion VMD architecture.

caregiver’s interface offered by the device. Finally, the net-
work interface allows devices in the scenario interact with
each other. Medical device modules tend to have all three
interfaces.! Logic modules do not have patient interface,
but can have their own clinician interface, for example, in
scenarios that implement smart alarms or decision support for
the clinician. A port is declared to be either input or output
and can represent either event communication or continuous
interactions. A port has a data type, which can be of type
integer or real, possibly restricted to a range of values. An
event port can also represent an event that does not carry a
value, in which case it does not have data type. Ports on the
network interface are typically event ports, while the patient
interface can also have continuous interactions, for example,
infusion of medication.

Figure 3 shows a graphical representation of the archi-
tecture view, visually separating ports of network interfaces
of modules from ports of patient interfaces. The latter are
represented as icons reflecting the physical nature of the ports.

The top part of Figure 4 shows the patient and network
interfaces of the PCA pump. Patient inputs are button presses
that request additional input of medication. Patient output is
the infusion of the medication at a specified rate. Similarly,
the top part of Figure 5 shows the interfaces of the pulse
oximeter device. Here, the difference between the patient
interface and network interface is especially vivid: the input
from patient is the actual blood oxygen saturation in the
body, the output of the device is the sensor reading that is
imperfect and is delivered with a variable delay [6]. The
network output port of the pulse oximeter specification also
shows the timing constraints on the port: readings are delivered
sporadically with the minimum separation of 80 milliseconds
and maximum separation of 120 milliseconds. We use this
timing specification to check consistency of the dataflows in
the model as well as drive the resource manager in the MAP
during deployment.

Behavioral view. The module body specifies behavior of the
component. The behavioral view of the language is based on
the Reactive Modules formalism [1], extended with transition
modalities must and may. Must transitions are used to capture
the required behavior, which must be exhibited by any devices
used in the scenario, while may transitions describe optional
extensions that actual devices may have.

The modules body consists of three parts: 1) state variable
declarations, 2) invariant assertions, and 3) state transitions.
State variables can have the same data types as ports, described

IWe do not model clinician interface in our example.

module PCA : device

interface
patient input: bolusRequest event;
patient output: rate continuous infusionRate[0..2];
network input: ticket event integer[0..300];
endinterface

p:[0..3] init 0;
w : [0..300] init 0;
ty,to,t3 : clock;

(p=0 = true) A (p=1 = t1<w) A (p=2 = t1 <wAty <2)
ANp=3 = t1 <wAty <4);
[bolusRequest?] (p = 0) P =0
[ticket?w] p=0)Vv(p=1) = pi=1t =0
[bolusRequest?] (p =1) 2 pi=2th =0
[(p=1)A(all t; = w) = p =0
[l (=1 == 0
[bolusRequest?] (p = 2) =2
[ticket?w] (p=2) = pi=2it =0
[l (p=2)A(all t, = w) = p =0
[rate!1] (p=2)A(somet; <wAts <2) =% p:=3:th:=0
[rate!0] (p=23) P =0
[rate!0] (p=3)A(all t; = w Atz <4) Ly =0,
[rate!0] (p=3)A(allt; <wAts=4) = p=1
[bolusRequest?] (p = 3) = p =3,
[ticket?w) (p=3) = p =3t =0
endmodule

Fig. 4: PCA pump device requirements specification.

module PulseOzimeter: device

interface

patient input: SpOas? continuous BloodOxygenSaturation[0..100],

network output: SpO,! event BloodOxygenSaturation[0..100] sep € [80,120];
endinterface

s :10..1] init 0;
val : [0..100] init 0;
x7 : clock;

(s=0 = true) A (s=1 = =z <120);

[SpOas?val] (s =0)
[SpO2!val] (s =1) A (some x; >80) = & :=0;

endmodule

Fig. 5: Pulse-oximeter device requirements specification.

above. Invariants are predicates over state variables. They
specify conditions that should hold in every execution of the
module and can be used in verification of implementations of
devices and scenario logic against their module specifications.
Violation of the invariant is a timeout that forces a transition
to another state. Finally, transitions describe state changes in
the module in response to external events and time progress.
Transitions are specified as guarded commands of the form:

. . op .
[communication] guard = action

Here, guard is a predicate over the state variables of a module.
Clock constraints that are part of the guard can be labeled
as all or some, depending on whether an implementation can
modify these constraints or not. Label op is either must or
may, denoting whether the transition is required or optional.
An action is an atomic assignment to primed state variables
with the usual meaning of a primed variable as holding the
“value in the next state.” Finally, a communication event is
an expression of the form p7v or plexp, where p is a port
name and ‘?” and ‘!’ represent input and output, respectively.
v is the input value received through the port, while exp is an

ticket?w
bolusRequest? ;? ;6: SL

|-~ - \
t1 =w -
ticket?w t1:=0 ty <w

A

I

X -

! bolusRequest?

ratel0 : rate!0

Lt =wAt3 <4

I

! —

! rate!0 t=w ta:=0

! h<wAl3=4

|
t <p '7\ t3 <4 =t3 =0 rate!l ' <p '?t2< 5
LSWABS somelt; <w Aty <2]|1SWARS

ti,(zket‘_7u;UbolusRequest? ticket?u;UbolusReq’uest?
t;1:=0 t=0

b = b1 1=

Fig. 6: Graphical representation of the PCA pump require-
ments specification.

expression over state variables and constants that determines
the value to output on the port.

Figure 4 illustrates the three sections of the behavior
specification for the PCA pump module. State variables of
the pump are p, which represents the operational mode of the
pump; w, representing the duration of the latest ticket; and
three real-valued clocks ti, t2, and ¢5. The invariant asserts
acceptable values of clocks in each state of the pump. Clock
t1 tracks the time elapsed since the last ticket received by
the pump. Unless the pump is in the inactive mode p = 0,
the value of ¢; cannot exceed the duration of the ticket, w.
Once the ticket expires (f; becomes equal to w), the pump
reverts to the inactive mode from any other mode. In mode
p = 1, the ticket has been received and the pump is ready to
accept a bolus request from the patient. Once the bolus request
arrives, the pump moves to mode p = 2, and is getting ready
to start infusion. It takes up to two time units to activate the
pump motor, but is also allowed to activate immediately. Time
progress is measured by clock ¢5. Once the motor is active,
the pump sets the desired rate and transitions to mode p = 3,
in which clock ¢3 measures the duration of bolus. Figure 6
represents pump behavior graphically, where must and may
transitions are shown as solid and dashed lines, respectively.
A clock constraint is labelled as some if there is a prefix some,
or labelled as all otherwise. We use ; := 0 to represent the
reset of clock t;.

The pump specification allows for both functional and
timing variability. To illustrate functional variability, note that
the pump may be deactivated prior to ticket expiration. For
example, one pump may implement a temperature sensor
which shuts down the pump if its motor overheats, while
another pump may expose an emergency stop button on
its front panel. In either case, the patient may receive less
medication. However, since we are concerned here only with
the overdose, this would not violate the safety requirement.
Thus, we introduce may transitions to the mode p = 0.
These transitions lack action labels, indicating that they can
be triggered by arbitrary means outside the model. Timing
variability is illustrated by the transition from p = 2 to
p = 3. The pump may always activate its motor sooner
than the worst case allowed by the specification. At the same
time, a real motor will never activate immediately. Thus in

module PCAController: logic

interface
network input: SpOss? event BloodOxygenSaturation[0..100]
invokes ticketGenTask;
network output: ticket! event Integer minSep € [80, 180];
endinterface

tasks
task ticketGenTask has deadline 100ms

elluil.task ticketGenTask
endtasks

endmodule

Fig. 7: Controller logic module specification.

an implementation, the clock constraint can be tightened both
from above and from below and become a; < t3 < ag with
0 < a1 < a2 < 2. To indicate that this is allowed, the
constraint in the transition guard is labeled some. We contrast
this with constraints on the clock ¢3 that control bolus duration.
Every compliant infusion pump must deliver the bolus in full,
therefore bounds on these constraints cannot be reduced and
we therefore label them as all.

The behavioral specification of the logic modules is similar
to the specifications of the devices with some important differ-
ences. Because the logic controller represents software whose
implementation is known, it only contains must transitions.
Additionally, we require that all behavioral information is
contained within a task definition which enable the MAP to
discern what tasks need to be scheduled. In our example Figure
7 contains the specification of the controller. It has one task
that is invoked whenever an intput SpO5 value is received.

The behavioral specification of the pulse oximeter is
straightforward: after obtaining a reading from the patient, the
device delivers the reading on its output port with some delay.
It is easy to see that behaviors satisfy the constraint on the
output port.

V. MEDICAL APPLICATION PLATFORM

In this section we discuss in more detail the requirements
imposed on the MAP due to its role in the framework. As
mentioned in Section III the MAP ensures that VMDs are cor-
rectly instantiated. Correct instantiation involves two different
types of responsibilities. The first and most obvious is that only
correct devices should used. This means that the MAP must
check the each candidate device’s capabilities specification is a
refinement of the VMD’s corresponding device requirements
specification. The second deals with the computational (and
communications) aspects of a VMD. The core of a VMD
are the logic modules that implement clinical workflows or
algorithms. If these software modules do not execute correctly
(either by producing a wrong answer of violating a timeliness
constraint), then the safety of a VMD instance could be in
jeopordy. Additionally, the nature of modern medical therapy
means that the MAP must support the concurrent execution of
different VMDs.

Our MAP prototype [7], [12] decomposes the above re-
sponsibilities into a number of platform components (Fig-
ure 8). The functions of the Application Database, Device
Database, Clinician & Adminstrative Services and Data-
Logger are beyond the scope of this paper. We describe the
Application Manager, Resource Manager, and Message Bus

Supervisor

: L, A App
/ Manager Database

»

Resource
Service Network Controller
Device Device
Manager Database Data
Logger
A % Message Bus Hhh d
r £} Key
Medical Medical [e==--- * Pub/Sub interface
Device 1 Device n le—> Private APl interface

Fig. 8: MAP architectural view

in more detail as they are directly involved in the correct
instantiation of a VMD.

A. Application Manager

The application manager provides the execution ‘envi-
ronment” for the logic modules of each VMD instance. It
implements the operational semantics of the logic modules,
it is responsible for the lifecycle of each instance, it interacts
with the resource manager to allocate the appropriate resources
for each instance and it implements the refinement decision
procedure used to determine if a device is compatible with
a VMD. Additionally, the application manager must help
provide isolation: we take inspiration from Integrated Modular
Avionics (IMA) [17] and the MILS secure message router
architecture [2] which employ isolation mechanisms to ensure
that running applications can not adversely interact with each
other.

B. Message Bus

The message bus provides the communications service that
allows applications to send messages to devices and vice-versa.
The message bus implements publish-subscribe communica-
tions semantics and automatically serializes and deserializes
message data for transmission on a network. Publications are
equivalent to output messages over the network at the modeling
level, while subscribers are used to implement receive events.

C. Resource Manager

The resource manager is responsible for ensuring that the
timing constraints of all active VMD instances are met for
the entire duration of time the application is running. In the
most simplistic sense, whenever the user requests the instanti-
ation of a VMD, the application manager passes that VMD’s
deployment information to the resource manager which then
analyzes the VMD’s resource requirements. The Resource
Manager must account for VMD resource requirements due
to both computation and communication. For example, in the
PCAController module there is one task (ticketGenTask) that
is trigged each time a new SpO; value arrives. The Resource
Manager infers the minimum arrival period of the task by
checking the minimum arrival of the triggering input port”. The

2We also support purely periodic tasks.

ClosedLoopPCA also has timeliness constraints on the logical
message latency between the pulse oximeter & controller, and
the controller & pca pump. The logical latency includes both
the time each message takes propagating across the network as
well the amount of time a message spends in queues waiting to
be sent. In order to guarantee these timeliness properties, the
resource manager applies a schedulability test. If performance
can be guaranteed then the appropriate resources are allocated
for the instance’s lifetime.

VI. DISCUSSION & CONCLUSION

In this paper we have described an approach to ensuring
the safety of a specific class of Medical Cyber-Physical Sys-
tems, called Virtual Medical Devices (VMD). The approach
involves a specification language that allows us to model both
architectural and behavioral aspects of the system. A Medical
Application Platform (MAP) was then used as a trusted base to
facilitate the correct instantiation of VMD. We argue that this
allows us to check properties of a VMD at the modeling level
and that those properties will transfer to any instance allowed
by the MAP.

We acknowledge that our proposal is a different way of
reasoning about safety-critical systems. This is primarily due
to the nature of on demend medical systems: they do not
exist physically until the user assembles them. The current
trend of medical system development indicates that these types
of system will become more prevalent and we will, as a
community, have to develop new engineering principles and
techniques to address these systems.

There are some challenges that must be addressed before
safety critical on-demand medical systems become practical.
It remains to be seen whether the proposed model-based
approach offers a valid pathway for the regulatory approval of a
VMD. Extensive consultations with regulators to inform them
of these ideas and gauge their response are necessary before
one can attempt to use this approach to a real MCPS. Next, one
may notice that the models shown in this paper deal with the
nominal behaviors of the devices. Of course, assessing faulty
behaviors that a device may exhibit is a crucial part of the
safety assessment. While the modeling language presented here
is capable of capturing fault models of medical devices using
normal state transitions, it is not clear if faulty behavior should
be syntactically or semantically distinguished. Additionally, we
would like to note that it is not clear how current medical
device risk management practices can be adapted for VMD:
No matter how accurate a model may be, there is always
a possibility, however unlikely, that an implementation may
exhibit a behavior not predicted by a model. A safety argument
for the device has to take this possibility into account, using
some kind of risk management strategy specificically designed
to take into account how VMD will be used and deployed.

REFERENCES

[1] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in
System Design, 15(1):7-48, 1999.

[2] J. Alves-Foss, P. W. Oman, C. Taylor, and W. S. Harrison. The
MILS architecture for high-assurance embedded systems. International
Journal of embedded systems, 2(3):239-247, 2006.

(3]

(4]

(5]

(6]

(7]

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

D. Arney, J. M. Goldman, S. F. Whitehead, and I. Lee. Synchronizing
an X-ray and anesthesia machine ventilator: A medical device inter-
operability case study. In BIODEVICES 2009, pages 52—60, January
20009.

D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and
O. Sokolsky. Toward patient safety in closed-loop medical device
systems. In Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems, pages 139-148. ACM, 2010.

Cerner smart pump infusion integration. http://www.cerner.com/
solutions/Medical_Devices/Smart_Pump_Infusion_Integration/, 2013.

V. Chan and S. Underwood. A single-chip pulsoximeter design using the
MSP430. Technical Report SLAA274, Texas Instruments, Nov. 2005.

J. Hatcliff, A. King, I. Lee, A. Macdonald, A. Fernando, M. Robkin,
E. Vasserman, S. Weininger, and J. M. Goldman. Rationale and
architecture principles for medical application platforms. In Proceedings
of the 2012 IEEE/ACM Third International Conference on Cyber-
Physical Systems (ICCPS ’12), pages 3-12, 2012.

R. W. Hicks, V. Sikirica, W. Nelson, J. R. Schein, and D. D. Cousins.
Medication errors involving patient-controlled analgesia. American
Journal of Health-System Pharmacy, 65(5):429-440, March 2008.

Institute for Safe Medical Practices. Medication safety
alert: More on avoiding opiate toxicity with PCA by proxy.
http://www.ismp.org/newsletters/acutecare/articles/20020529.asp,
May 2002. Accessed 6/20/2013.

Joint Commission. Sentinel event alert issue 33: Patient controlled
analgesia by proxy. http://www.jointcommission.org/sentinelevents/
sentineleventalert/, December 2004.

C. Kim, M. Sun, H. Yun, and L. Sha. A medical device safety
supervision over wireless. In Reliable and Autonomous Computational
Science, pages 21-40. Springer, 2010.

A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees,
R. Jetley, P. Jones, and S. Weininger. An open test bed for medical de-
vice integration and coordination. In Software Engineering-Companion
Volume, 2009. ICSE-Companion 2009. 31st International Conference
on, pages 141-151. IEEE, 2009.

A. L. King, L. Feng, O. Sokolsky, and I. Lee. A modal specification
approach for ad-hoc medical systems. In Proceedings of 3% Interna-
tional Symposium on Foundations of Health Information Engineering
and Systems (FHIES ’13), 2013. To appear.

K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for
interface and product line theories. In Programming Languages and
Systems, pages 64—79. Springer, 2007.

P. E. Macintyre. Safety and efficacy of patient-controlled analgesia.
British Journal of Anaesthesia, 87(1):36-46, 2001.

Medical device “plug-and-play” interoperability program. http://mdpnp.
org/, 2008.

P. J. Prisaznuk. Integrated modular avionics. In Aerospace and
Electronics Conference, 1992. NAECON 1992., Proceedings of the IEEE
1992 National, pages 39-45. IEEE, 1992.

