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Abstract—This is a theoretical paper on ‘“Deep Learning” mis-
conduct in particular and Post-Selection in general. As far as the
author knows, the first peer-reviewed papers on Deep Learning
misconduct are [32], [37], [36]. Regardless of learning modes, e.g.,
supervised, reinforcement, adversarial, and evolutional, almost all
machine learning methods (except for a few methods that train
a sole system) are rooted in the same misconduct— cheating
and hiding—(1) cheating in the absence of a test and (2)
hiding bad-looking data. It was reasoned in [32], [37], [36] that
authors must report at least the average error of all trained
networks, good and bad, on the validation set (called general
cross-validation in this paper). Better, report also five percentage
positions of ranked errors. From the new analysis here, we can
see that the hidden culprit is Post-Selection. This is also true
for Post-Selection on hand-tuned or searched hyperparameters,
because they are random, depending on random observation
data. Does cross-validation on data splits rescue Post-Selections
from the Misconducts (1) and (2)? The new result here says:
No. Specifically, this paper reveals that using cross-validation for
data splits is insufficient to exonerate Post-Selections in machine
learning. In general, Post-Selections of statistical learners based
on their errors on the validation set are statistically invalid.

Keywords—Artificial intelligence, experimental protocols,
hyper-parameters, post-selection, misconduct, deep learning,
cross-validation, social issues.

I. INTRODUCTION

The so-called “Deep Learning” is a scheme that trains
multiple networks (or called models) each of which starts
from a different set of initial parameters, optionally processed
further by error-backprop or value-backprop training. The
primary misconduct is to report only the luckiest few networks
from Post-Selection—selecting a few luckiest networks from
n trained networks using a validation set (Post-Selection Using
Validation Set, PSUVS) or a test set (Post-Selection Using Test
Set, PSUTS)[32]. Both PSUVS and PSUTS lack a test.

Weng [37] proposed a Nearest Neighbor With Threshold
(NNWT) classifier that guarantees to reach a zero validation
error, due to the Post-Selection step during training. Weng [36]]
proposed a simpler version of NNWT, called Pure Guess Near-
est Neighbor (PGNN) by dropping the threshold in NNWT.
PGNN also guarantees to reach a zero validation error, due to
the Post-Selection step during training. With a lack of tests,
NNWT and PGNN should not generalize well, because they
simply find the luckiest fit in the absence of a test. In theory,
they “beat” the errors of all well-known Al systems, such as
AlphaGo, AlphaZero, AlphaFold, ChatGPT, and Bard since
none of them have claimed a zero validation error.

In the ACM’s investigative report triggered by the au-
thor’s complaint against the works of Turing Award 2018,

the investigative team mentioned the future possibility of
cross-validation. Although none of the Turing Awarded works
used cross-validation, the report seems to imply that cross-
validation might exonerate Post-Selections.

This paper scrutinizes the process of system development
that contains Post-Selections and cross-validation for data
splits. In particular, we apply cross-validation for data splits
at both the input data end and output data end. In between we
have Post-Selections. We call such cross-validation for data
splits traditional cross-validation.

Weng [32], [37], [36] extended the cross-validation for the
luck of system parameters, including architecture hyperparam-
eters and neuronal weights, called cross-validation on system
parameters. In this paper, we called it general cross-validation.

Normally, in the absence of Post-Selection, there is a wall
between the data and models. We provide a model set M
first and then collect data set D next. After a fixed model
m; € M is determined, the model m; is then exposed to a fit
data set F' C D in the training stage. The performance of the
trained model m;(F') is validated using a disjoint validation
set V. C D, where F' and V are disjoint. The key point is
the performance of m;(F') on a future test 7' C D that is
disjoint with F' and V. In the absence of Post-Selection, the
performance of m;(F') on V is expected to be similar to the
performance of m;(F) on T, if V and T satisfy the same
distribution, although that are disjoint (i.e., no common data).

Post-Selection breaks the wall. The Post-Selection step is
the second step of the training stage, where the first step is
the fit step. In the Post-Selection step of the training stage, the
author trains n models, m;(F), i = 1,2,...n. Among the n fit
models, top m < n (e.g., m = 5 and n = 10, 000) models are
post-selected after the errors of all » models on V' are known.
Typically, the Post-Selection pickes the luckiest m;(F') on V,
from ¢ = 1,2, ...,n. Then, the author reports the luckiest error
and hides all bad-looking errors.

Is Post-Selection a valid statistical process?

Post-selection is also controversial in statistics. The pro-
posals that used Post-Selection in statistical inference were
called Post-Selection Inference PoSI [2] where Post-Selection
is limited to linear models. Namely, among the set of all linear
models M = {m;(F};)|i = 1,2, ...,n} where m;(F;) is a linear
model that fits F; C F', pick the one that is the luckiest on V.
Therefore, each different selection of subset F; C F' results in
a different model m;(F'), although all the candidate models
are linear.

In the field of statistics, van der Laan et al. 2007 [28]]



proposed a so-called “Super Learner”, whose goal is to find
better learners from a set M that contains any available types
of models, from Random Forests to neural networks. Through
a Post-Selection step, the Super Learner gives a weight to each
model in M, so that the cross-validated error is minimized
using an exhaustive search.

The Super Learner model contains cross-validation for input
data splits but not for output data splits (e.g., see Fig.1 of [28]).
For simulation experiments, the authors [28] generated addi-
tional validation data for their mathematical equation models
to validate the outputs from the Super Learner. However,
no such output validation was mentioned for their real-data
simulations (HIV and diabetes). This author does not think that
a Super Learner can do well for HIV and diabetes data sets
in a new future test. Our Lost Luck Theorem below predicts
that Super Learner performs poorly for real data.

In general, unless we have additional information that
one or more candidate models have abstraction, invariance,
and transfer, like observations from mathematical equations,
Post-Selection cannot transfer rare luck among many naive
networks to a new future test. Similarly, a rare luck in the last
lottery draw will not be repeated in the future lottery draw.

This paper shows that the Super Learner is a misleading
procedure, even after this author adds a nest cross-validation
to it. A lucky learner, generated by NNWT or PGNN, can
“sneak” into the Super Learner and fool it. The Super Learner
would give a 100% weight to the lucky learner, and a 0%
weight to all other bad-looking learners, and reports a cross-
validated zero error. However, the lucky learner Post-Selected
by the Super Learner will do badly in a future test. Adding
nest cross-validation to Super Learner does not help either.

This paper has the following novelties beyond the existing
papers on Deep Learning misconduct [32]], [37], [36]:

(1) General cross-validation. We analyze the effects from
not only randomly initialized weights but also architecture
hyperparameters that are typically manually tuned. Often, opti-
mal architecture hyperparameters were also searched for along
a grid. Our new analysis here has discovered that architecture
hyperparameters must be uniquely generated in a closed form
inside each learner. Namely, any Post-Selection must report
the distribution of multiple trained systems, at least their five
percentage positions of ranked errors. Specifically, picking the
luckiest vector of architecture hyperparameters is statistically
invalid since the luck does not transfer to a new future test.
For example, the five percentage positions of ranked errors
from multiple tried values of the threshold in NNWT must
be reported, if NNWT does not provide a sole threshold. If
Deep Learning reports average as the general cross-validation
requires, the accuracy of Deep Learning should be uselessly
bad, like what [7] showed for the MNIST data.

(2) Traditional cross-validation. Next, we discuss cross-
validated risk from n candidate learners (not-nested) like Super
Learner [28]]. Because the cross-validation does not include all
guessed learners that NNWT and PGNN tried but dropped, the
cross-validation gives zero risk for NNWT and PGNN. PGNN
is much slower than NNWT to develop, but the Post-Selection

like Super Learner does not care. Because of the absence of a
test, the cross-validated zero risk from the Super Learner does
not say anything about the error in a future test. This seems
to be true with almost all Deep Learning papers. Therefore,
traditional cross-validation does not rescue Deep Learning in
particular and Post-Selection in general.

(3) Nested traditional cross-validation. We further discuss
nest cross-validation, one for input and one for output, beyond
Super Learner [28]. However, NNWT and GPNN also produce
a zero value for the cross-validated input error and cross-
validated output error. This means that nest cross-validation
cannot rescue deep learning either. Therefore, the nested
traditional cross-validation does not rescue Deep Learning in
particular and Post-Selection in general.

This theoretical paper does not present new experiments.
The author believes that even the best data set that money
can buy is always task-specific and may suffer from the said
misconduct in a fatal way. Therefore, the misconduct protocol
is primary and experimental performance data is secondary.

The remainder of the paper is organized as follows. Post-
Selection is reviewed in Section Section discusses
Experimental Protocols. Section [[V|provides new results about
Post-Selection as the Lost-Luck Theorem. Section [V| presents
new results for cross-validated Post-Selection. Section
establishes new results for nest cross-validated Post-Selection.
In Section we discuss the implications of the results here
to some major social science issues. Section provides
concluding remarks.

II. POST-SELECTION MISCONDUCT

Currently, well-known Deep Learning networks include
Convolution Neural Networks (CNNs), such as AlexNet [12],
AlphaGo Zero [23], AlphaZero [22], AlphaFold [19]], MuZero
[18], AlphaDev [14], those in IBM Debater [24] among others
[25], [IL], [13)]. For open contests with AlphaGo [21], this
author alleged that humans did post-selections from multiple
AlphaGo networks on the fly when test data were arriving
from Lee Sedol or Ke Jie [37]. More recent Deep Learning
publications are in the author’s misconduct reports submitted
to Nature [29] and Science [30]], respectively. Many other types
of networks also belong to this misconduct category, such as
LSTM [9]], ELM [11], [10], and evolutionary computations
that use a validation set to select surviving agents from many
simulated agents. The misconduct is rooted in Post-Selection
from multiple guessed systems.

Suppose that an available data set is in the form D =
{(z,z)|x € X,z € Z}, where X is the input space and Z is
the output space. D is partitioned into three mutually disjoint
sets, a fit set I, a validation set V' (like a mock exam), and a
test set 1" (like a contest) so that D is the union of three sets
from the same distribution.

D=FUVUT. (1)

The trainer possesses the fit set F' and the validation set V.
He trains a learner to fit F' and then checks the error of the
learner on V/, but the trainer should not possess the test set T’
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Fig. 1. A 1D-terrain illustration for the fit error (dashed curve) from the

fit data set, the post-selection validation error (solid thin curve) from the
validation data set, and the unknown test error (thick green curve) from a
future test set. The green and blue NN-balls end at the max-post pit and the
luckiest-post pit, respectively. The red NN-ball will miss the lowest post error.
Only if n is large (n = 3 here), can the validation error from all 7 network
weight samples (i.e., cross-validation) better predict the expected error on the
unknown test set. The validation set and the test set have similar distributions
here but are disjoint. Figure modified from [34].

since the test should be conducted by an independent contest
agency. Otherwise, V and T become equivalent, and PSUVS
and PSUTS become the same.

Fig. [I] illustrates how any Post-Selection on a validation
set V' does not help a future test on a test set 7. Each
learner is represented by an NN-ball (Neural Network ball).
A gradient-based learning algorithm (e.g., error backprop or
value backprop) makes all randomly initialized NN-balls roll
down the hill on the terrain whose height is the error of NN-
ball to fit F'. The errors on F, V, and T are three different
terrains.

The alleged misconduct, Post-Selection, in so-called Deep
Learning was originally raised in a YouTube video “BMTalk
3D Episode 6: Did Turing Award Go to Fraud?” posted
on June 4, 2020. The first peer-reviewed paper about the
misconduct appeared in 2021 [31]]. To explain why the Deep
Learning scheme is misconduct, Weng 2023 [37]] proposed
a simple classification method called Nearest Neighbor With
Threshold (NNWT) and proved mathematically that it reaches
a zero error on any validation set under the misconduct
protocol. This NNWT was simplified by Weng 2023 [36]
into Pure-Guess Nearest Neighbor (PGNN) by dropping the
threshold. It was proven [36] that PGNN also reaches a zero
error on any validation set under the misconduct protocol. Both
NNWT and PGNN should be tested using a new test set that
is not in the possession of the authors, but almost all Deep-
Learning publications have not published such a new test. The
misconduct consists of the following two:

1) Misconduct 1: Cheating in the absence of a test. This
is true for both PSUVS and PSUTS since the test set is
often in the possession of the authors so the test set is
used as a validation set and the validation errors were
falsely reported as test errors. Namely, so-called “test
data” in almost all Deep Learning publications are, as

alleged by Weng, only training data, not a test set.

2) Misconduct 2: Hiding bad-looking data. Furthermore,
Weng alleged that all bad-looking data, except that from
the luckiest network, were hidden and not reported.

Without the power of abstraction, NNWT and PGNN are
expected to generalize badly, like a few Deep Learning papers
that report average errors [7].

Similarly, almost all performance data from evolutional
methods are also misconduct because of the use of Post-
Selection. Namely, the performances of all individual networks
in an evolutionary generation should be reported. Furthermore,
a reasonably disjoint test set must be used to evaluate the
generalization of the luckiest network.

Furthermore, those methods that use a human program-
mer to tune parameters are also misconduct. Such methods
are numerous, from Neocognitron of Fukushima [5], [6]], to
HMAX of Poggio et al. [20], to almost all neural networks
mentioned earlier, including Large Language Models (LLMs),
Transformers, ChatGPT, and Bard. This new information rep-
resents an advance from the author’s earlier papers [32f], [37],
[36]. Namely, the authors must report at least the average and
the five percentage positions, 0%, 25%, 50%, 75%, and 100%,
of the ranked errors of all trained networks. Only such more
informative data can give a reasonable description of the error
distribution in a future test by even the luckiest network on
the validation set. In the absence of further information (e.g.,
about the abstraction and invariance inside the network), the
expected error of the luckiest network on V' in a future test
T is the same as any other trained network, as I will prove
below. From Fig. [T} we can intuitively see why—the luck of
the luckiest network on V' does not likely translate to a future
test 7.

III. EXPERIMENTAL PROTOCOLS

Next, let us discuss experimental protocols with the goal
of the performance of the target system during future deploy-
ments. The statistical principle that we focus on in this paper is
a well-known protocol, called cross-validation (for data splits).

The traditional cross-validation [4], [26], [27] is for elim-
inating the luck in splitting all available data into a fit set
and a validation set. For example, if every validation point
in the validation set is surrounded by some points in the
fit set, the validation error is likely small. For example, the
nearest neighbor method, without much need for abstraction
and invariance, will do reasonably well since for every point
in the validation set—there is a nearby point in the fit set.

Here, we extend the traditional cross-validation [4], [26],
[27] to what is called general cross-validation. To estimate the
expected performance in a future test, we require resampling
the parameter space that the programmer cannot directly
compute in a closed form, such as the architecture hyperpa-
rameters and neuronal weights, by reporting the average of all
resampled networks.

Currently, few Deep Learning networks report cross-
validated errors. One superficial reason is the high compu-
tational cost of training one network which typically involves



GPUs. However, this does not seem to be a valid reason,
because almost all Deep Learning networks train n > 2
networks, e.g., n = 20 in [8] and n = 10,000 in [17]. The
authors only report the error of the luckiest networks on a
validation set that is in the procession of the authors. The
performances of the remaining n — 1 bad-looking networks
are hidden, and not reported. Therefore, it is not the issue of
computational cost, as such a cost has already been spent, The
key issue is what to report and whether bad-looking data are
hidden.

This paper will prove below that the luckiest network on
the validation set should give approximately the average error
in a future test. This argument corresponds to the Lost-Luck
theorem to be established in this paper.

The Lost-Luck theorem is a generalization of the traditional
cross-validation, by going beyond the splits of the data, but
instead also including any randomly generated variables or
manually tuned variables, as long as the set of tried system
parameters P = {P;, P, ..., P,} contains multiple elements
(n > 2). In splitting data into a fit set and a validation
set, the set of system parameters contains n elements, where
each element corresponds to a different split between the fit
set and the validation set. The Lost-Luck theorem states that
the average error of all trained systems, each from randomly
generated parameters or manually tuned parameters, is a
minimum variance estimate of the error in a future test.

In our NNWT example, the threshold in NNWT is unlikely
transferable to a future test, depending on the complexity of the
data set or the Al problem. In other words, there is no threshold
for the distance between a query and its nearest neighbor so
that the query and the nearest neighbor always share the same
label. For example, a shift in a pixel position may change the
label of an object (e.g., a square vs. a rectangle).

IV. LosT-LUCK THEOREM

For simplicity, we consider only an episodic system f :
X — Z, where X consists of vectors of inputs and Z consists
of a finite set of class labels as desirable outputs. For systems
with state, systems for vector outputs, and systems with
internal representations, see [36] about how Z is extended.
The results here apply to state-based systems by changing Z
to S x X, where S is the set of states.

A. Cross-Validation on Data Splits

Given a data set D = (dq,ds, ...,dg), where d; = (x;,1;)
consists of an input vector ; € X, and [; € Z,i=1,2,....d.
We need to divide the data set D into two disjoint sets, a fit set
F and a validation set V/, so that D = FFUV. We do not call
F' training set because as we have seen in [36] V' was also
used in the training stage due to Post-Selection. Traditional
cross-validation is a scheme for organizing and splitting the
data set D. Let us briefly overview four well-known types of
cross-validation [26].

n-fold cross-validation: The set D is randomly divided into
n mutually exclusive and exhaustive sets D,,v = 1,2,...,n,
of as nearly equal size as possible. For each data split D,,

the corresponding fit set is defined as F,, = D — D,, and the
validation set is V,, = D,,. Therefore, we get n ways to split
D into a fit set and a validation set.

Leave-one-out cross-validation (LOOCV): LOOCYV is n-
fold cross-validation when the fold size is 1, n = d.

Below, we consider n-fold cross-validation, with LOOCV
as its special case. The conclusions from these two types
of cross-validation also hold for the other types of cross-
validation, as long as the randomness in these four types
is pseudo-random, which is typically true with computer-
generated pseudo-random numbers. For example, NNWT and
PGNN classifiers need to know how the data are split in Super
Learner discussed below to provide the perfect classifier for
the Super Learner.

Supposing each data split is equally likely, we conduct n ex-
periments and each experiment gives the error e(L, (F,), V,))
of the learner L, (F,) on V,. The cross-validated error is the
average error across all n experiments:

=Y elLulF), Vo) @

When we compare any two learning systems, they must be
on the same set of learning conditions. Weng [36] proposed
four Learning Conditions for comparing learning systems: (1)
A body including sensors and effectors, (2) a set of restrictions
of learning framework, including whether task-specific or
task-nonspecific, batch learning or incremental learning, and
network refreshing rate; (3) a training experience that includes
the fit set and the order of elements in the fit set, and (4)
a limited amount of computational resources including the
number of neurons in the system, the number of weights in
the system, the storage size of the system, and the time, the
money, and man-power used during the development of the
system.

Let us further consider Learning Condition (4). Suppose
that one is allowed to use a finite, but unspecified, amount of
resources in terms of computational resources and the time for
system development. This is often the case with a publically
listed company. Namely, a rich company can afford more
resources. Using NNWT and PGNN, we will see that this
loop-hole will “beat” the traditional cross-validation—cross-
validation on date splits.

B. Fit Error and Validation Error

All publicly available data sets provide the test set to the
trainer. This is a big problem since it invites misconduct.
Surprisingly, in all ImageNet Contests [16] the test set was
publically released (in the form of an unlimited number of tests
available from the test server of the contest organizer) long
before the contest results were due. Therefore, the organizers
seem to have mismanaged the ImageNet Contests.

Let @ € A be a hyperparameter vector of the architecture
(e.g., including receptive fields of neurons). Let w € W be
a weight vector of neural networks. A neural network with
a and w is denoted as N(a,w). The fit error of N(a,w)



is the neural network’s average of output errors using all the
input-output pairs in F: ef(a, w) = g.(N(a,w)|F), where

ge(N(a,w)|F) = E

(abs error of z from N(a,w)|F)
(z,z)eF

3)
where E;cx is the expectation operator across all ¢ € X.
Note the difference between Eq. (2) and Eq. (3). The former
is for a limited number of samples but the latter is for
probablity. The validation error of N(a,w) is the neural
network’s average of output errors using all the input-output
pairs in
ev(a,w) = g.(N(a,w)|V). ()

We use a practical number n in Eq. (2) to approximate Eq. ().
With other factors unchanged, the larger n, the better the
approximation.

C. Search Architectures but Randomly Sample Weights

Suppose we have a hyperparameter vector § € © and
random variable e. The probability density function fy(e)
deterministically depends on 6. Recalling the definition of
probability density function fy, the probability for the ob-
served value of e to be less than x is called the cumulative
distribution function:

Fo(r)=Ple<x) = /_f fo(e)de

In Deep Learning, there are two kinds of parameters in 6,
0 = (a,w) where a is the hyperparameter vector for the
architecture and w is the weight vector of the network.

Since the dimension of w is extremely high (e.g., 60-
million dimensional in [12]), Deep Learning samples multiple
initial weights wgo), i=1,2,...,n (e.g., n = 20 in [8]] and
n = 10,000 in [17]]) using a pseudo-random seed, and then a
greedy gradient-based search reaches a local minima weight
w;, 1t =1,2,...,n.

How should we deal with n networks? The Deep Learning
misconduct reports the luckiest network that corresponds to
the lowest error (on V' or V' UT) but hides all other less lucky
networks. Why is this a misconduct?

D. Report Random Distributions

Suppose that 6 is either random or deterministic. Deep
Learning trains n > 2 networks and measures the error e(6;),
i = 1,2,..n, of the network on V with parameter vector
0;. Regardless 6 is random or deterministic initially, e(6;) is
considered random, similar to a biological system.

Randomly sampling 6: Because we do not know the distri-
bution of the the probability density f(x, z,#) of the machine
learner f. Worse, f depends on a random system parameter
(vector) . We randomly sample the space of 6 as 6;, and
measure error e(6;), i = 1,2, ..., n. We would like to give the
best estimate e that minimizes the mean square error (MSE)

e* = argmin g(e) = arg min Z(e —e(0,)*P;  (5)
eER eeR T

where P; is the probability of 6;. It is easy to prove below
that the above best solution e* for e is

n

=1

In the absence of further information, we assume P; = 1/n,
the above expression gives

n

> elby) (7)

i=1

e*:é:

S|

From the above derivation, we have the following theorem:
Theorem 1 (general cross-validation): The minimum MSE
estimate of a random variable e from n random samples, e(6;),
i =1,2,...,n, is its probability mean Eq. (6). Thus, the general
cross-validation should use Eq. if we assume each sample
is equally likely.
Proof: Taking the derivative of the term, denoted as g(e), under
minimization in Eq. (3)) with respect to e, and then setting it
to zero, we get

dg(

0= d:) =Y (e —e0)P,

Using Y.~ , P, = 1, we simplify the above and get Eq. (6).
The above reasoning gives the remaining proof. ]

Although it is for general cross-validation, Theorem (1] is
also the optimality of the traditional cross-validation for data
splits [15], [3l], [4]—reporting the average of n data splits.

Theorem [I] has also established that Post-Selection for
the luckiest network on V' is statistically invalid. Instead of
reporting the luckiest error on V, we must report the average
errors of all n trained networks on V. Otherwise, the reported
luckiest error inflates the expected performance in a new future
test on 7'

The sample standard deviation of € in Eq. should also
be reported:

LS el) - o). ®)

i=1

However, the sample standard deviation is often not infor-
mative. It is better to report the 5 percentage locations, 0%,
25%, 50%, 75%, and 100%, of the ranked errors on V.

E. Statistical Flaw of Post-Selection

Suppose one ranks the errors on V,
6(91) S 8(92) S S e(@n)

Since e(0;)’s are errors, he might fraudulently report the lucki-
est sample e(67) (like reporting the luckiest lottery ticket), but
e(61) badly under-estimates e = E(e(6)|T") (where T is like a
new lottery!). The smallest sample e(67) is only the luckiest
on V but only the average in Eq. is the best estimator on
unknown 7' since it reaches the minimum variance 6 on 7.
Recalling basic knowledge of probability, among n random



samples, the minimum sample badly underestimates the mean
of all n samples.

Therefore, PSUVS uses the luckiest (smallest) sample e(6;)
to replace the average é of n samples on V, thus, badly under-
estimating e = E(e(0)|T) on T. PSUTS is worse than PSUVS
ethically since 7" should not be leaked to the author at all!

FE. Hyperparameters Are Also Random

Suppose 6 is an architecture hyperparameter whose defi-
nition is known but not its value (e.g., learning rate). Then,
since the best (or hand-tuned) # depends on random data set
D, at least its F' and V. However, we deterministically search
for 6, i.e., the probability density fy(, z) is deterministic on
parameter 6, but the optimal # must depend on random F' and
V. Therefore, as a function of random F and V, 6 is a random
function that depends on F' and V. Therefore, we should not
hope

’
(Glav) IjE; (917 )7 (9)
which is hardly possible since 6; is the luckiest only on V'
not necessarily the luckiest on most 7's. Instead, we should
report the minimum variance estimator for the error from 6;
on unknown future 7":

n

~ %Z e(0;, V).

i=1

Ee(0;,T) (10)
T

i =1,2,...,n. The expression is from Theorem [I| because the
general cross-validation procedure told us that the minimum
MSE estimate of any random parameter #; on a future test set
T is the sample average in Eq. (7). In particular, this is also
true for the luckiest 81 on V, namely,

n

%Ze(@iﬂ/).

=1

Ee(6h,T) ~ 11
T
We have derived the following theorem:

Theorem 2 (Lost Luck): The luckiest network on the valida-
tion set V' has the same expected error as any other less lucky
networks and the following is the minimum MSE estimate of
their errors in a future test:

]Ee (0;,T) ~ (12)

ie (6;,V).
i=1

S\H

]Ee(ela )
T

1=1,2,..,n

Proof: As we discussed above, the hyperparameter randomly
depends on F' and V, and therefore, the general cross-
validation principle in Theorem [I] applies. (]

In summary, there is no difference between a random 6;
or a deterministic 6; at all in terms of our goal to give the
minimum MSE of 6; on a future test set 7.

Summarizing the above derivation, we have the following
theorem.

Theorem 3 (Must report all trained networks): From each
searched architecture a;, ¢ = 1,2, ..., k, the optimal network
weight vector is wy ;, j = 1,2,...,n. We get kn networks
N(ai,wy;), i = 1,2,...k, j = 1,2,...,n. Then, the min-
imum MSE estimate of the expected error of any network

N(a;,w; ;) among these kn networks in a future test 7" is
the average of their errors on V.

Proof: Since a; and w; ; all depend on the random data sets
F and V, the conclusion directly follows from the Lost Luck
theorem. O

In summary, the Deep Learning scheme generates n > 2
networks, not one. This resampling method is indeed used in
cross-validation [[15], [3]], [4], whose goal is to estimate how a
statistical scheme predicts on unknown future test 7" using the
average behavior of all n random resamples. The larger the &
value, the better the architectures are sampled, The larger the
n value, the better the weight vectors are sampled. But larger
k and n are computationally expensive.

In Deep Learning, both PSUTS (many authors did) and
PSUVS (few authors did) badly under-estimate the expected
error on T' by replacing the average of samples in Eq. (I2)
with that of the luckiest N(a;, w; ;) on V. Many evolutional
algorithms could contain the same misconduct because agents
have V' but lack a future test 7.

Weng [33] suggested further to estimate the sensitivity of
the expected error of a on future test T' (i.e., Type-3 luck). The
lower the sensitivity, the better the stability of the performance
from architecture a. In contrast, Weng [35] uses a dynamic
(developmental) architecture that starts from a single cell.

Weng [34] reasoned that Deep Learning is like a liar in
a lottery who claims that his scheme is intelligent. The liar
reports only the luckiest ticket’s money return on V' to imply
the money return on a future lottery event 7T'. This is baseless.
He must report the average of all n lottery tickets on V.

V. INPUT CROSS-VALIDATED POST-SELECTION

In this section, we discuss why traditional (input) cross-
validation cannot rescue Post-Selection. Fig. 2] is for cross-
validation for both input and output.

We prove that NNWT and PGNN can reach a zero cross-
validated error and they “beat” all machine learning systems
that use Post-Selection.

For simplicity, we consider n-fold cross-validation. Almost
all existing papers on Deep Learning do not have a cross-
validation.

NNWT is probably faster than PGNN to develop since
NNWT tries to use the distance between a query and its nearest
neighbor. However, PGNN is simpler than NNWT by simply
setting the threshold to zero.

First, consider NNWT. NNWT stores all samples in F'.
Given any query x,, NNWT finds the nearest neighbor x;
in F. If the distance between x, and x; is smaller than the
threshold, NNWT outputs the label of x;. Otherwise, NNWT
guesses an x; specific label for x; when the query is farther
than the threshold.

Theorem 4 (Input Cross-Validated Post-Selection): Suppose
that the fit set and validation set are both in the possession
of the author. Then, NNWT and PGNN with input cross-
validation can give a zero validation error.

Proof: The traditional Cross-Validation gives n networks, not
one. The error from the cross-validation is the average of n
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Fig. 2. Nest cross-validation for post-selections. Operator abbreviations: F:
Fit. P: Post-Selection. V: Validation. A: Average. The nest cross-validation
has two stages, early cross-validation (blue) before Post-Selection based on
V/, and the later cross-validation (red) after Post-Selection. A blue arrowed
A is due to the early cross-validation using blue data folds as validation.
The red-arrowed A is due to the latter cross-validation using the red data
folds as validation. Cross-validation results in a system that consists of all
networks (or a sufficient number of representatives) that participate in the
average performance. The post-selection P here selects the luckiest single
network (or few m < n) according to the error on the blue validation set.
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networks. Therefore, NNWT also gives n networks. For each
F;, =D —V;, NNWT gives one network [V; that perfectly fits
F;. For each sample in V;, the network N; guesses a label if
the sample is far. As proven in [37], V; gives a zero error on
Vi, t = 1,2,..,n. The proof for PGNN is similar. As proven
in [36], PGNN also gives a zero error on V;, i = 1,2,..,n.

There are at least two problems with NNWT and PGNN.

First, they may take a very long time the get n networks
ready, meaning a very long developmental time that is not
taken into account by Post-Selection.

Second, they generalize poorly. NNWT assumes that the
label of a query x, is a function of its distance to the nearest
neighbor in F}, which is often not true in real-world problems.
PGNN assumes that the label of a query x, is a constant label
of its nearest neighbor in F;, which is often also not true in
real-world problems.

VI. NEST-CROSS-VALIDATED POST-SELECTION

The bested cross-validation performs cross-validation for
both ends, the input end data splits and the output end data
splits, as shown in Fig.[2| The new idea of nest cross-validation
is to assign a data fold not only for input but also a data fold
for output.

Let us recall that Super Learner [28]] does not propose this
nest cross-validation. For example, Fig. 1 in [28]] contains only
cross-validation for input, but not for output. The paper text
does not mention cross-validation for output either.

Theorem 5 (Nest-Cross-Validated Post-Selection): Suppose
that the fit set and validation set are both in the possession
of the author of a paper, but not the test set. Then, NNWT
and PGNN with input-output cross-validation can give a zero
validation error.

Proof: The traditional input-output Cross-Validation gives kn
networks, not one, where n is the fold for input cross-
validation and k for output cross-validation. The error from
the cross-validation is the average of kn networks. Therefore,
NNWT also gives kn networks. For each F;; = D — Vj,
i =1,2,...,n for inputs, j = 1,2,..., k for outputs, NNWT
gives one network NV;; that perfectly fits F;;. For each sample
in V;;, the network N;; gueses a label if the sample is far. As
proven in [37], N;; gives a zero error on V;;, i = 1,2,..,n,
j = 1,2,..., k. The proof for PGNN is similar. As proven
in [36], PGNN also gives a zero error on Vj;, ¢ = 1,2,..,n,
1=12 . k. g

As we discussed in the above section, NNWT, and PGNN,
the above problems also exist for nest cross-validation that
use Post-Selections. Therefore, both NNWT and PGNN are
impractical. They give misleading low validation errors for
both input and output. Consequently, the Super Learner [28]
would give 100% weight to them and drop all other candidate
classifiers, but these two classifiers are impractical.

The superficially low validation error from them, although
cross-validated at both ends, is not transferrable to a future
test. Tables 2, 3, and 4 in [28]] indicate that the weighted sum
from the Super Learner fits the validation set V' better, but
these tables lack a test that corresponds to the “future” test T’
here.

Laan et al. [28] wrote, “For the 4 studies (synthetic data), the
learning sample contained 200 observations and the evaluation
sample contained 5000 observations. However, they seem to
talk about V that contains 5000 observations, not a new test
after their Post-Selection. The author assumes that Laan et al.
[28] lacks a test. If they did, the test error would still be about
the average over all the candidates.

VII. SOCIAL ISSUES

Social issues are always highly complex since they must
deal with intelligence from human groups. The perspectives
provided above seem to be useful for social issues.

A. Post-Selection is Invalid

Is Post-Selection valid? The work here has proven that
Post-Selection is invalid statistically even in the presence of
nest cross-validation. Post-selection deals with only a single
random sample in the space of F' and V. The single sample
represents a single generation, a limited scope in geometry,
and a limited span in history.

It seems to be addictive for a human group to simply Post-
Select a model from a limited historical context (a scientific
experiment) without considering that the Post-Selection step
is contaminated by the bias from the human group. The group
hopes to hand-pick a random sample with minimum “error”,
but what it should do is compute the average of all random
samples.



B. Resources of Development

Another limitation of Post-Selection is a lack of considera-
tion of the resources used in the development of a model, such
as NNWT and PGNN, before its lucky learner enters the Super
Learner. The resources include storage space, the amount of
computation of a model, as well as the time and manpower
that have been spent to come up with a lucky model before
the model enters the Post-Selection step that the Super Learner
represents.

In developmental psychology, this corresponds to the cost
of cognitive development in a lifetime. The corresponding
question for a more general question—human development—
is: How much does it cost to raise a child? The more expensive
a policy is, the less practical the policy is. The more variation
the resulting children are, the less reliable the policy is. Within
a large population of citizens, the luckiest child does not count
much in the minimum MSE. We should examine the average
and the five percentage positions of the ranked performances.

The same issue also exists in the development of nations.
Let us consider some examples.

a) US development: If the U.S. must be developed by
causing many atrocities in other nations, such as the Vietnam
War and the Russian-Urkrane war, then the policy of U.S.
development is not very desirable overall. Namely, post-
selection of the U.S. nation among many nations by hiding
other “bad-looking” nations like Ukraine, Afghanistan, and
North Korea, is not a scientifically valid methodology. In
worldwide human development, how do we evaluate how well
humans are developing?

b) USSR development: Suppose that the USSR devel-
oped a small set of national pride, such as Communist ideol-
ogy, planned economy, and arms race. Post-selection of such
a national pride policy would hide other less proud aspects of
the USSR, such as a shortage of daily goods and low average
income (not the superficial per capita GDP). Did the isolation
of the USSR by the West Bloc hinder or slow down the internal
reform in the USSR?

c) Ukraine and Palestinian development: Among several
strategies, from violent wars against Russia and Israel, respec-
tively, to compromising with these “enemies”, Post-Selection
of national pride at the expense of other human developmental
metrics, seems to be simple-minded.

This paper does not directly address national development
per se. Our statistical framework seems to also benefit national
development. Namely, we should not disregard the resource of
national development, and only consider a post-selected, the
luckiest system on a validation set and consequently hide all
other less lucky systems. Short-sighted human behaviors are
common. A politician would say, “Regardless of what cost we
will pay, we must ... ”.

VIII. CONCLUSIONS

This paper gives new and stronger theoretical results than
the first three papers on Deep Learning misconduct [32]], [37],
[36]. (A) Generalized cross-validation should be applied to not

only random weights but also searched or manually tuned ar-
chitecture hyperparameters. This means that all Post-Selection
methods do much worse than their authors reported. (B) Cross-
validation for data splits, at both the input end and the output
end does not rescue Post-Selection. The performance of a
future test is still the average, much worse than the authors
reported. In other words, traditional cross-validation does not
rescue Post-Selections from the misconduct. (C) The general
cross-validation principle might have some applications in
social sciences, such as national development and human
development. Post-selection of certain national pride based
on a validation set, such as making enemies, violence, and
ideologies, appears not optimal for a future test.
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