© 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

DOI: 10.1109/CRISIS.2012.6378956

Managing and Accessing Data in the Cloud:
Privacy Risks and Approaches

Sabrina De Capitani di Vimercati, Sara Foresti, Pierangela Samarati
Dipartimento di Informatica
Universita degli Studi di Milano
26013 Crema - Italy
Email: firstname lastname@unimi.it

Abstract—Ensuring proper privacy and protection of the

information stored, communicated, processed, and disseminated
in the cloud as well as of the users accessing such an information
is one of the grand challenges of our modern society. As a matter
of fact, the advancements in the Information Technology and the
diffusion of novel paradigms such as data outsourcing and cloud
computing, while allowing users and companies to easily access
high quality applications and services, introduce novel privacy
risks of improper information disclosure and dissemination.
In this paper, we will characterize different aspects of the privacy
problem in emerging scenarios. We will illustrate risks, solutions,
and open problems related to ensuring privacy of users accessing
services or resources in the cloud, sensitive information stored at
external parties, and accesses to such an information.

Index Terms—Privacy risks, data protection, private access,
outsourced data, cloud

I. INTRODUCTION

Today’s digital infrastructure supports innovative ways of
storing, processing, and disseminating data. In fact, we can
store our data in remote servers, access reliable and effi-
cient services provided by third parties, and use computing
power available at multiple locations across the network.
Furthermore, the growing adoption of portable devices (e.g.,
PDAs, mobile phones) together with the diffusion of wireless
connections in home and work environments have led to a
more distributed computing scenario. These advantages come
at a price of higher privacy risks and vulnerabilities as a
huge amount of (private) information is being circulated and
stored, often not under the direct control of its owner. In
modern scenarios, like data outsourcing and cloud computing,
it is hard to guarantee that sensitive data remain properly
protected and that users maintain the control on who can
access their data when they are stored at external cloud servers.
Furthermore, the advances in the information and communica-
tion technologies, including the possibility of combining and
analyzing information from several data sources, intensify the
privacy problem. The proper protection of privacy requires
therefore solutions for empowering users to understand the
privacy risks to which they are exposed, and to maintain
control over their own information, and enabling cloud servers
to properly protect the privacy of their users. These problems
have been under the attention of the research and development
communities and several investigations have been carried out,
proposing novel solutions for protecting users’ privacy in data

storing and publishing (e.g., [1], [2]). Research efforts have
been also specifically devoted to the development of solutions
addressing the privacy-aware processing of data externally
stored (e.g., [3], [4]) and supporting the definition and en-
forcement of privacy requirements of users (e.g., [S]-[10]).
Although these solutions represent important advancements in
the privacy area, they tackle only part of the problem. Many
issues still need to be investigated to really enable users to
understand the privacy breaches to which they are exposed
when interacting or exchanging information with other parties,
and to maintain control over their own private data. In addition
to this, solutions for efficiently accessing data while preserving
their confidentiality and integrity are now complicated by the
storage of data in a number of different cloud servers that need
to collaborate in a private and selective way without revealing
their information to other not authorized parties.

The goal of this paper is to present an overview of the main
privacy issues that arise in modern scenarios. We also highlight
some research directions that address the issues discussed, and
describe some open problems. The remainder of the paper is
organized as follows. Section II illustrates the privacy risks in
cloud scenarios. Sections III-V provide a description of the
main issues to be investigated for protecting the privacy of
users, data stored at external cloud servers, and accesses to the
externally stored data, respectively, along with some current
solutions. Finally, Section VI provides our conclusions.

II. PRIVACY RISKS IN THE CLOUD

We describe the main privacy risks that arise in data out-
sourcing and cloud computing scenarios. Figure 1 illustrates
the scenario we consider as a reference for our discussion.
We assume that data owners store their data at external
cloud servers, and authorized users (i.e., human beings or
companies) access such data. The cloud servers may not be
trusted for knowing the data they store and therefore data can
be encrypted. For the sake of simplicity, but without loss of
generality, we assume that data are organized in relational
tables and are stored in a (distributed) relational database.
However, the problems, solutions, and open issues illustrated
in the following apply to any data model.

e Data dissemination and sharing. A cloud infrastructure

offers several advantages to users since they can easily
share and store data in a reliable system, and can have

Sara Foresti

Sara Foresti
© 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
DOI: 10.1109/CRISIS.2012.6378956

Sara Foresti

User

Cloud Infrastructure

Fig. 1. Reference cloud scenario

hardware and computational power as a commodity.
While this situation has an important implication from
the economic point of view (the cost of hardware and
the cost for managing the systems are reduced), it is
creating unprecedented risks of privacy breaches. In fact,
data stored and made publicly (or semi-publicly) available
through cloud servers may include sensitive information
that, if associated with users’ identities, may violate their
privacy. Several approaches adopted in a data publish-
ing scenario to minimize the risk of unintended disclo-
sure of sensitive information are based on k-anonymity
(e.g., [11], [12]) or differential privacy (e.g., [13]). Such
solutions however represent only a starting point since
there are many issues that still need to be addressed.
For instance, the design of techniques for protecting
sensitive data from inferences that exploit dependencies
among data, or the definition of a comprehensive privacy
framework for formally analyzing possible information
leakages.

Anonymous communication. The knowledge of the fact
that two parties in the cloud have exchanged messages
may compromise their privacy, even when the content of
the messages is kept secret. For instance, if an observer
knows that a user is querying a server storing information
related to cardiology diseases, the observer can infer that
the user (or a person close to her) is suffering from a car-
diology disease. In this case, it is necessary to protect the
relationship between a user and the messages (queries)
that she sends. Anonymous communication protocols
(e.g., [14]) have been proposed for addressing this issue.
Specific solutions taking advantage of the peculiarities of
cloud systems are also being investigated (e.g., [15]).
Collaborative query execution. The availability and adop-
tion of on-demand storage and processing services re-
quire the assurance that, while releasing information and
cooperating to compute query results, the confidentiality
of sensitive information is not at risk. The need of
a party to release information and to cooperate with
another one can characterize several scenarios, ranging
from traditional distributed database systems (where a

centrally administered database is distributed to different
locations), to cloud computing systems (where different
cloud servers collaborate and integrate their data and
services for providing users with applications available
anywhere anytime). These situations call for innovative
solutions supporting a selective sharing of information
stored at multiple cloud servers, even across administra-
tive and enterprise boundaries. In the relational database
context, authorizations are usually defined through the
specification of views and the definition and enforce-
ment of access restrictions over them. Clearly, when
the diversity of the parties involved and of their views
is considerable and dynamic, such an approach results
limiting since it requires to explicitly define a view for
each possible access need. Furthermore, it imposes on
the user/application the burden of knowing and directly
querying the view. This aspect is particularly critical in
cloud scenarios, where inter-organizational collaborations
occur on a daily basis, and where the heterogeneity of
the cloud servers and of their access restrictions can be
high. In this case, we should devise solutions able to
identify, in a declarative way, not only the portion of
the data whose access is being authorized but also the
visibility of possible associations that such data convey.
To this purpose, some approaches take both direct and
indirect information flows into consideration to determine
a query plan that does not violate access restrictions
specified by the owners of the different information
sources (e.g., [16]-[20]).

External data storage. The security and privacy concerns
arising from the storage of (sensitive) information on
servers outside the control of the data owners are one
of the main reason for which users are often reluctant
in moving to the cloud. Solutions for ensuring proper
protection of the confidentiality as well as of the in-
tegrity of the data are then becoming more and more
important. These problems have received the attention
of the research community and several advancements
have been proposed, especially in the data outsourcing
context where the storing server is typically considered
“honest-but-curious” (i.e., the server is trusted to properly
manage and make data available to users, but it is not
trusted to know the content of the data). Current solutions
guarantee the confidentiality of the data by: applying a
cryptographic layer on them; combining encryption with
fragmentation; or departing from encryption and adopting
only fragmentation (see Section IV).

Data integrity consists in providing guarantees that cloud
servers do not improperly modify the data they store
without being detected. Current proposals ensure this
property by adopting signature-based solutions that allow
the verification of query results (see Section IV).

e Digital interactions. A cloud infrastructure allows users

to interact with possibly unknown parties to access ser-
vices and resources anywhere anytime. Such interactions
may however reveal to a malicious observer (or to the

server itself) private information about the user, who
may not always want to disclose her identity to gain
access to the service of interest. This problem requires
the adoption of appropriate techniques supporting the
anonymous interaction of users with remote servers. So-
lutions based on credentials or on anonymous credentials
can be helpful for protecting the identities of the users.
Also, some researches have developed solutions allowing
users to select what information to reveal during an
interaction with a cloud server to gain the required access
without disclosing too much personal information (see
Section III).

Other important issues that arise when accessing data
stored at external cloud servers are related to the protec-
tion of the query issued by a user and to the assessment
of the proper behavior of the cloud server in providing
a response to the query. In fact, a query may reveal
sensitive information that should be kept confidential
(e.g., users querying a medical database may not want to
disclose to the storing cloud server which specific medical
information they are interested in). Also, it is necessary to
verify whether a cloud server correctly executes queries
against the stored data (neither a portion of the data nor
a old or modified version of them). In summary, users
need guarantees that: i) the privacy of their queries is
preserved; ii) the confidentiality of access patterns is not
at risk (i.e., an observer should not be able to infer
whether two queries aim at accessing the same data);
and iii) the server storing the data provides a correct and
complete response to their queries. The problems and
solutions related to the protection of query privacy are
discussed more in details in Section V.

In the following, we focus our attention on the privacy risks
affecting data, users, and accesses (queries).

III. PRIVACY RISKS FOR USERS

We focus on the problem of protecting the identities of
the users accessing services or resources in the cloud. In
particular, we provide an overview of the main solutions for
enforcing attribute-based access control, which allow users to
interact with cloud servers and to release information about
themselves without revealing their identities. We also describe
recent approaches supporting the definition of the privacy
preferences of the users. These privacy preferences specify
which information is better to disclose for gaining access to a
service depending on the information sensitivity.

A. Attribute-based access control

Traditional approaches for regulating access to resources are
based on user authentication (e.g., [21]-[24]) and therefore
cannot be adopted in the cloud, where the interacting parties
can be unknown to each other. Attention has been then given to
departing from user authentication and, in the name of privacy
and convenience, providing access control solutions supporting
credential-based and attribute-based specifications (e.g., [25]—
[27]). In this way, users can easily access all the resources

available from (possibly unknown) servers without the need
to remember passwords or manage a specific account for each
of the servers they access. In fact, credentials permit a server to
verify whether the user requesting access to a service satisfies
the conditions necessary to gain the access. For instance,
consider a policy restricting access to a resource only to people
living in a European country. In this case, the server has to
communicate to the requesting user the access policy, which
has to be obfuscated whenever it can be considered sensitive
and as such needs to be protected [25]. After receiving the
condition from the server, the user has to select and provide
a credential showing where she lives, without reveling her
identity. Recently, attention has been also devoted to the use
of anonymous credentials, defining privacy-enhanced solutions
and mechanisms for credential definition and management.
Anonymous credentials (e.g., UProve, Idemix [28]) enable
a user to selectively disclose subsets of attributes from a
credential, and even to prove that the attributes contained in a
credential satisfy a certain condition without revealing the ex-
act attribute values. The integration of anonymous credentials
with access control policy languages is a problem that has to
be further investigated.

B. Users’ privacy preferences

The release of users personal information is often regu-
lated by approaches that can be seen as symmetric to the
ones adopted by servers for regulating the disclosure of
resources/services. However, access control-like specifications
do not completely fit the users’ protection requirements, since
they may need a way to specify preferences on the information
to disclose based on the sensitivity of such an information.
For instance, a user may prefer to disclose her identity card
over her passport if both credentials can allow the access
to the requested service. Few proposals have addressed this
issue (e.g., [5S]-[10]). The proposal in [8] permits a user to
associate a different cost with each credential in her portfolio
representing its sensitivity (i.e., more sensitive credentials have
a higher cost) and to minimize the total cost of a negotiation
process. The approach in [10] proposes a point-based trust
management model, where a user labels her credentials with
a quantitative privacy score, and the server defines a credit for
each credential that users may possess. The server allows a
user access to a resource if the sum of the credits of released
credentials reaches a fixed threshold. An optimal set of user’s
credentials is such that the total privacy score of disclosed
credentials is minimal and the server’s access threshold is
satisfied. In [9] the authors propose a logic-based language for
the specification of privacy preferences that determine a partial
order among the properties of users. The approach in [5]-[7]
provides a formal modeling of the user portfolio, which is
composed of a set of credentials and declarations. Credentials
include certified properties and are characterized by a type,
a name, and the authority who issued it. Declarations are
instead uncertified properties uttered by the user. Properties in
the user portfolio can be either credential-independent when
their values depend only on the credential owner (e.g., the

user name) or credential-dependent when their values depend
on the specific credential certifying them (e.g., the credit card
number). The proposed model also captures modern credential
technologies (e.g., Idemix [28]) that support the selective
release of arbitrary subsets of properties. These credentials
are referred as non-atomic in contrast to traditional atomic
credentials that imply the disclosure of all the properties they
certify. Clearly, the release of a property within a non-atomic
credential also entails the release of the existence of the
credential certifying it. A user expresses her privacy prefer-
ences by associating a sensitivity label with each property and
credential in the user portfolio. The sensitivity label reflects
how much the user values the release of the property and of the
existence of the credential. In general, the release of a set of
credentials/properties entails a sensitivity corresponding to the
combination of the labels of all the elements involved. There
are however cases where the combined release of a set of
credentials/properties is more (sensitive view) or less (depen-
dency) sensitive than the release of the credentials/properties
singularly taken. The proposed model captures these situations
allowing users to associate a sensitivity label with associations
of credentials and/or properties. This label specifies either the
additional sensitivity due to the association between creden-
tials/properties in the sensitive view, or the sensitivity that has
to be removed since the combined release of the elements in
the dependency does not provide additional information with
respect to the release of the single elements. Users can also
impose constraints on the disclosure of portfolio elements, by
explicitly defining associations of credentials/properties that
should never be released (forbidden view), and limitations of
the form “at most n of these elements” can be jointly released
(disclosure limitation). Figure 2(a) illustrates an example of
user portfolio represented as a graph with a rectangular vertex
for each credential (with label credential_name:type), an oval
vertex for each property (with label property name:value),
and an edge connecting each credential to the properties it
certifies. To distinguish atomic from non-atomic credentials,
all the edges incident to an atomic credential are attached to a
black semicircle. Sensitivity labels, which for simplicity in the
example are integer numeric values, are indicated by a tag next
to the vertices. The figure also represents: sensitive association
{myVISA,address}, denoted with a small circle and a
positive sensitivity label; dependency {Address,Country},
denoted with a small circle and a negative sensitivity label;
forbidden view {NameNickName}, denoted with a cross;
and disclosure limitation {Phone,eMail}, denoted with a
cross and 1 as a subscript meaning that at most one of the
attributes can be disclosed.

A minimum disclosure is a subset of credentials and prop-
erties in the user portfolio whose release allows the user to
access the service requested, while minimizing the sensitivity
of the set of elements released. As an example, suppose that a
user requires the access to a service that can be granted if the
user releases her name and address certified by a credential of
type id_card, and her name and credit card number certified
by a credential of type credit_card. Figure 2(a) illustrates an

<1]
myld:id_card

Name:BobSmith

7 =
S S

<5]
se

myLicense:dr_licen

7 \
A DoB:23/10/1975 \
\
ST

(b)

Fig. 2. An example of sensitivity specifications (a) and disclosure (b) [6]

example of minimum disclosure.

Although this solution enables users to organize and manage
all their credentials and regulate their release, there are still
several open issues that need to be addressed. In fact, it is
necessary to define user-intuitive approaches for expressing
preferences that, for example, should derive the sensitivity
labels according to some criteria (e.g., based on identity
exposure), provide an integration with server-side solutions,
and consider preferences varying according to the context
and/or purpose of the access request.

IV. PRIVACY RISKS FOR STORED DATA

Since data are stored at cloud servers that are typically not
under the direct control of data owners, data confidentiality
and integrity may be put at risk. Furthermore, accesses to data
stored at the cloud server may need to be regulated, meaning
that different parties may have different access privileges. In
the following, we describe possible solutions for ensuring
confidentiality and integrity of data, and for enforcing different
access privileges.

A. Confidentiality and integrity

The data stored and managed by a cloud server can include
sensitive information that neither the cloud server nor unau-
thorized users should read. The problem of protecting data
confidentiality from the eyes of the storage server (as well as

Relation and confidentiality constraints

PATIENTS co = {ssN}
DoB [Sex| Job [Tliness | ¢; = {Name, Illness}
123-45-6789[Ann |1985/07/29] F [Nurse |dermatitis | ¢2 = {DoB, Sex, Illness}
234-56-7891(Bob (1982/19/12| M |Lawyer|gastritis c3 = {Job, I1lness}
345-67-8912(Cindy|1978/02/09| F |Actress|tachycardia| ¢4 = {DoB, J(z;)}

(@)

Non-communicating pair of servers

[SSN [Name|

F1 F2
[[d[SSN°[Name[DoB [Job“| [Id[SSN°[Sex[Job“[Tllness |
1| o« [Ann [1985/07/29] o 1| ¢ |F| ¥ |dermatitis

2| B [Bob |1982/19/12| € 2| m |[M]| Kk [|gastritis
3| ~ [Cindy|1978/02/09| e 3] & |F| X\ [tachycardial

() [G))

Multiple fragments
Fy Fy F3

[SaliName[Etuple] [Salf DoB | Job [Etuple] [Sal[Sex| Tllness [Etuple|

1985/07/29Nurse o

s1 |Ann m s s7 | F |dermatitis P
s2 [Bob v ss5 [1982/19/12|Lawyer| sg | M |gastritis o
s3 |Cindy| & se [1978/02/09|Actress| o sg | F |tachycardia] o

() (f (2

Departing from encryption

SRR IS

F, Fs
Id SSN [Job | Tness | IdName] DoB [Sex
1{123-45-6789|Nurse |dermatitis 1[{Ann [1985/07/29

[S}
[S}

F
234-56-7891[Lawyer|gastritis Bob [1982/19/12| M
345-67-8912|Actress|tachycardial 3|Cindy|1978/02/09| F

(h) ®

%)

Fig. 3. An example of relation (a), a set of confidentiality constraints over
it (b), and a correct fragmentation in the non-communication pairs of server
(c-d), multiple fragments (e-g), and departing from encryption (h-i) scenarios

of non-authorized users accessing it) has first been addressed
in the Database As a Service (DAS) scenario. The proposed
solutions consist in encrypting the data before storing them
at the external server (e.g., [2], [29]-[31]). In this way, only
authorized users, who know the decryption key, can access
the data content. Indexing information is then coupled with
the encrypted data to allow the server to partially evaluate
users’ queries directly on the encrypted data (e.g., [29]-[31]).

Whenever data are not sensitive per se, but what is sensitive
is their association with other information, encryption seems
an overkill. For instance, the list of patients’ names and
the list of illnesses treated in a hospital can be publicly
released while the association of each patient’s name to a
specific illness must be protected. The solutions proposed to
protect the sensitive associations while limiting the adoption
of encryption are based on the combined use of encryption
and fragmentation (e.g., [32]-[35]). In these approaches, the
sensitive associations are modeled through a set of confi-
dentiality constraints [32] corresponding to sets of attributes
that should not be publicly visible together. As an example,
consider relation PATIENTS in Figure 3(a). A possible set of
confidentiality constraints over relation PATIENTS is reported
in Figure 3(b). These constraints state that the list of values
of attribute SSN (cq) is sensitive as well as the associations
among: the name of each patient and the illness from which
she suffers (c1); the date of birth, sex, and illness of each
patient (c2); the job and illness of each patient (c3); and the
date of birth and job of each patient (c4). The idea is then to
protect the sensitive associations breaking them by storing data

in separate relations (fragments) that cannot be joined and by
possibly encrypting some attributes. The approaches relying
on fragmentation and encryption to enforce confidentiality
constraints can be classified as follows.

e Non-communicating pair of servers [32]. The data owner
partitions a relation in two fragments, stored at two non-
communicating servers, and encodes the attributes (i.e.,
attributes are transformed, for example via encryption,
so that the storing servers cannot infer their original
values) that cannot be stored at any of the two servers
without violating confidentiality constraints. Encoded at-
tributes are stored at both servers. Authorized users need
to access both the versions of an encoded attribute to
reconstruct its values. Figures 3(c-d) illustrate an example
of fragmentation of relation PATIENTS in Figure 3(a)
that enforces the constraints in Figure 3(b). Attribute Id
is the tuple identifier, introduced to permit authorized
users to reconstruct relation PATIENTS by joining F; and
F5. Attributes SSN® and Job® represent the encoding of
attributes SSN and Job.

e Multiple fragments [33]. The data owner partitions a
relation in an arbitrary set of disjoint fragments (i.e.,
each attribute appears in at most one fragment), possibly
stored at the same cloud server. Each fragment stores,
either in clear or in encrypted form, all the attributes of
the original relation. Figures 3(e-g) illustrate an example
of fragmentation of relation PATIENTS in Figure 3(a) that
enforces the constraints in Figure 3(b). Attribute Salt is
a randomly chosen value, different for each tuple in each
fragment, that is concatenated with plaintext attribute
values before encryption. Attribute Etuple is the result
of the encryption of the attributes in PATIENTS that do not
appear plaintext in the fragment. Note that the adoption of
an arbitrary number of fragments (three in the example)
permits to represent in the clear all the attributes that are
not sensitive per se (attribute Job in the example).

e Departing from encryption [34]. The data owner parti-
tions a relation in two fragments and stores one fragment
locally and one fragment at an external cloud server. Only
authorized users can join the two fragments. This solution
completely departs from encryption for confidentiality
constraint satisfaction since the data owner is willing to
store a limited portion of the information. Constraints are
then enforced by fragmenting the attributes in a way that
sensitive associations are broken or completely stored at
the data owner site. Figures 3(h-i) illustrate an example
of fragmentation of relation PATIENTS in Figure 3(a) that
enforces the constraints in Figure 3(b). Note that the
fragment stored at the data owner side includes in the
clear attributes Job and Illness forming constraint
c3, as only authorized users can access this fragment.

With respect to the integrity of the data, it is clearly not
possible to prevent data tampering since the cloud server
physically stores the data. However, different techniques per-
mit the data owner and authorized users to detect unautho-

rized modifications. These solutions usually rely on digital
signatures, possibly aggregated to minimize the overhead of
the signature verification process that can detect integrity
violations (e.g., [36], [37]).

Although all these solutions guarantee confidentiality and
integrity protection, there are also other issues that have
to be investigated. In fact, the adoption of encryption and
fragmentation can compromise the utility of the data because
views on them, which can be considered of interest by some
recipients, are broken for privacy purposes. Also, the definition
of confidentiality constraints should be extended to specify
that the association among specific values of given attributes
is sensitive. Finally, in a cloud infrastructure, the efficiency
of data accesses is a fundamental requirement that has to be
combined with the need of preserving data confidentiality.

B. Selective access

In a cloud scenario neither the data owner nor the cloud
server can enforce the owner’s access control policy, for con-
fidentiality or performance reasons, respectively. In fact, the
cloud server cannot directly enforce access control restrictions
because it might not be trusted to enforce them and also
because the policy regulating access to the data may depend
on the data content (which must be kept confidential from
the server). The data owner would instead need to mediate
every access request to filter the query result, thus nullifying
the advantages of storing data at an external server. It is
therefore necessary to design a mechanism such that the data
themselves enforce restrictions on the set of users who can
access them. The solutions proposed are based on selective
encryption (e.g., [38]-[41]). Selective encryption consists in
encrypting different portions of the data using different keys,
and in distributing keys to users in such a way that each
user can decrypt all and only the pieces of information she
is authorized to access. This approach is coupled with key
derivation techniques for providing efficient access to the data

(e.g., [42]).
V. PRIVACY RISKS FOR DATA ACCESSES

Both the privacy of users accessing cloud services and of
the data stored at cloud servers may be at risk since access
requests could be exploited either by the cloud server or by a
malicious observer to possibly infer the (sensitive) content of
the accessed data. Also the query evaluation process may be
at risk since the cloud server is not trusted and therefore can
compromise the integrity of query results. We now describe
in more details the main risks affecting the integrity and
confidentiality of accesses evaluated by cloud servers.

A. Integrity

The cloud server (or set thereof) evaluating a query may be
lazy and evaluate the user’s query on a subset of the data to
save computational resources, or it could execute the query on
a non-up-to-date version of the data. It is therefore necessary
to define a mechanism that permits users to check the integrity
of query results. Query results satisfy integrity checks if they

are: correct (i.e., computed on genuine data), complete (i.e.,
computed over the whole data collection), and fresh (i.e.,
computed on the most recent version of the data). The integrity
of query results in a cloud scenario is a problem that has been
addressed only recently. Correctness is usually provided by
digital signature approaches. Completeness can be provided
either by defining authenticated data structures on the data
(e.g., signature chaining, Merkle hash trees, or skip lists [43]-
[45]), or by inserting sentinels in the data collection that must
also belong to query results (e.g., [46], [47]). Authenticated
data structures approaches have the advantage of providing a
full guarantee of query completeness, in contrast to the proba-
bilistic guarantee offered by sentinels. However, authenticated
data structures are less flexible than sentinels, since they
provide integrity guarantees only for queries operating on the
attribute on which the structure has been defined, and have a
higher management cost. In fact, authenticated data structures
cannot easily accommodate updates to the outsourced data.
Freshness is provided by making authenticated data structures
and/or sentinels dependent on a variable that changes over
time (e.g., by inserting a timestamp updated on regular basis
in the authenticated data structure or by periodically changing
the function used to generate sentinels [48]).

B. Query privacy

An important issue that needs to be addressed when data
are stored at external cloud servers consists in preserving the
privacy of the accesses (queries) themselves. Queries can be
exploited for performing different types of inferences. The first
type of inference can arise in scenarios where the accessed data
can be either confidential or not. As an example, consider
a medical database stored at a cloud server and assume
that a user accesses it looking for treatments and cures for
stomach ulcer (the medical database can be encrypted or not).
The user’s query reveals to an observer that either the user
or a person close to her suffers from stomach ulcer. The
second type of inference applies when the accessed data are
confidential and are encrypted. Queries can be exploited for
inferring information about the data content. In this case, it is
not sufficient to protect the confidentiality of queries singularly
taken (i.e., access confidentiality), but it is also necessary to
protect the confidentiality of patterns of accesses (i.e., pattern
confidentiality), meaning that the server should not be able to
infer whether two different queries aimed at the same target
information. In fact, by monitoring accesses to the data, the
cloud server could exploit the information on the frequencies
with which different pieces of information are accessed to
reconstruct the correspondence between the plaintext data and
the encrypted data.

Solutions proposed for protecting access and pattern confi-
dentiality when data are stored in the clear are typically based
on Private Information Retrieval (PIR) techniques and provide
access and pattern confidentiality at a high computational and
communication cost (e.g., [49]). Proposals operating on confi-
dential data introduce privacy-preserving indexing techniques
(e.g., based on Oblivious RAM and B-tree data structures)

PLGY I}

BI,Cl— EL F1 - H1 11— K1, L1—

[arazad Bim2- [2 o1 o2 [263 P 2= 1 2= e[2 [ki k- L2

(2)

001

D1,G1,J1,
101 102 104¢

201 * 202 % 203 204 205 206 207 208 209 210 211 212
‘ FIF2 - H BIB2-— HA]AZASH DI D2~ HC]CZGH KIK2 - H ElEZ[JH nni H JL2Ja3 H GIG2—- H LiL2- HHIHZH}‘

001
101 102 103 104
201 202 203 205 207 209 210 211 212

[N A N N A A A

(©

Fig. 4. An example of abstract (a), logical (b), and physical (c) representation
of a shuffle index

able to compute the query result while providing guarantees
of access and pattern confidentiality (e.g., [3], [4]). One of
these solutions consists in the definition of a shuffle index
for data organization and storage [3] (which also supports
concurrent accesses to the data [50]). The data stored at
the cloud server are indexed over a candidate key K and are
organized as an unchained B+-tree with fan-out F (i.e., each
node except the root has ¢ > [F'/2] children and stores ¢ — 1
values v1 < ... < wy_1). Data are stored in the leaves of the
unchained B+-tree in association with their index values. The
reason for the absence of the links between leaves is that if
such links are followed during a search operation, they disclose
the order relationship among the index values. Figure 4(a)
illustrates an example of abstract unchained B+-tree.

At the logical level, each node n in the unchained B+-tree
is associated with a logical identifier id, and is represented
by the pair (id, n), with n the node content. Pointers between
nodes at the abstract level translate to logical identifiers at
the logical level. The order between node identifiers does not
necessarily reflect the value-order relationship in the abstract
nodes. Figure 4(b) illustrates a possible logical representation
of the abstract unchained B+-tree in Figure 4(a). For sim-
plicity, in the figure nodes appear ordered according to their
logical identifier (reported on the top of each node) whose first
digit corresponds to the level of the node in the tree.

At the physical level, the encryption of a node content is
obtained concatenating it with a random salt to destroy plain-
text distinguishability and applying symmetric encryption in

CBC mode. The logical identifier of the node easily translates
into the physical address where the block representing the
node is stored at the server (for simplicity, we assume that
the physical address of a block coincides with the logical
identifier of the corresponding node). Figure 4(c) illustrates
the physical representation of the logical index in Figure 4(b),
which corresponds to the view of the server over the data
collection it stores.

Although encryption provides confidentiality of data at rest
and access confidentiality of individual requests, it is not
sufficient for ensuring pattern confidentiality. In fact, if the
server observes two accesses that retrieve the same block, it
can immediately infer that they aimed at the same node content
and, by observing a long enough history of accesses, it can
reconstruct the frequency of accesses to blocks. This infor-
mation, combined with the information about the frequency
with which different values are accessed, allows the server
to reconstruct the node-block correspondence (frequently ac-
cessed blocks store frequency accessed nodes). To avoid these
problems, encryption is complemented with cover searches,
cached searches, and shuffling.

o Cover searches. Cover searches are fake searches exe-
cuted in conjunction with the actual target search. Cover
searches aim at introducing confusion on the target of
a search operation: hiding the actual search within a set
of fake searches, any of the leaf blocks returned by the
searches has the same probability of storing the target
value. To provide such a protection guarantee, cover
searches must be indistinguishable from actual searches
(at the cloud server’s eyes), and provide block diversity
(i.e., they must follow disjoint paths in the shuffle in-
dex except for the root). Adopting cover searches, each
access execution requires to download from the server
num_cover + 1 blocks for each level of the shuffle index,
where: one block stores the node along the path to the
target value, and the other num_cover blocks store the
nodes along the paths to the num_cover cover searches.

e Cached searches. The cache is a layered structure, with
num_cache elements for each layer, that stores at the
client side a plaintext copy of the last num_cache visited
paths to target nodes. The cache keeps track of actual
(not of cover) searches and is managed according to the
Least Recently Used policy, which guarantees that the
parent of any node in cache is in the cache as well
as the path from the root of the shuffle index to any
node in the cache (path continuity property). The cache
aims at protecting the accessed data against intersection
attacks, by making searches for the same target (within
a short time interval) indistinguishable from searches for
different target values. If the target already belongs to the
local cache, num_cover +1 covers are used in the access.

o Shuffling. Most inferences that the server can draw are
caused by the one-to-one correspondence existing be-
tween a node and the block storing it. Node shuffling aims
at breaking this correspondence by moving the content

001

D1,G1,J1,
101 102 103 104 ¢

205 206 207 2
[aaa] ke[mes|

ZIII+ 202+ 21)3+ 204+

(i o o]

(2)

[]
101 | 103)
W oy ‘ﬁ@\ 205 206 207 208 200 210 211 N
ILAS R0 I I N A
(b)
001
‘DIJGIJ
Jai
101 % 102 103 104
BICl— KI i~
o — i S |

201 L 202 203 204 205 206 207 208 209 210 211 212
‘ DID2 - H BIB2 - HHIHZHJHAIAZMHC]CZGH KIK2 - H ElEZ[JH nnei H JL2Ja3 H GIG2—- H LiL2- H F1F2- ‘

(©

Fig. 5. An example of evolution of the logical shuffle index in Figure 4(b)
as a consequence of a search for value ‘D2’ with ‘H3” and ‘L1’ as covers

of accessed (either as target or as covers) and cached
nodes to different blocks. Shuffling modifies the node-
block allocation, and implies a re-encryption of the shuf-
fled nodes, thus changing their encrypted representation.
This prevents the server from reconstructing the shuffle
operation by exploiting the encrypted block content. The
parents of shuffled nodes need to be updated to preserve
the correctness of the index structure. Shuffling prevents
the server from inferring whether two accesses to the
same block aimed at the same target node content.

We now describe how a search operation can be executed
through the combination of the three techniques described
above. Given the target target_value of the search, the client
first chooses num_cover + 1 cover searches. The search then
requires an iterative process between the client and the server.
For each level | of the shuffle index, the client downloads
from the server num_cover + 1 blocks: one representing the
node along the path to target_value (if not in cache); and
num_cover (num_cover + 1 if the node along the path to
target_value is in cache) along the paths to cover searches.
The client decrypts the blocks downloaded from the server and
shuffles their content with cached nodes at level [. To maintain
the correctness of the shuffle index structure, it updates the
pointers to children in the parents of shuffled nodes. The client
then updates the local cache at level [either inserting the node
at level [along the path to target_value (if such a node was
not in cache before the search), or making the node along the

path to farget_value the least recently used (if the node was in
cache before the search). The client then encrypts the nodes
at level [— 1, either downloaded from the server or in cache,
and sends the resulting blocks to the server for storage. The
process ends when it reaches the leaves of the shuffle index.
The leaf along the path to target_value is returned to the user
since it contains the tuple with value farget_value for attribute
K (if such a tuple exists in the dataset). For instance, consider
a search for ‘D2’ in the shuffle index in Figure 5(a) and
assume that num_cover=1, num_cache=2, and that the cache
stores nodes 001 [102D1101J1104G1103]; 101 [204E1207F1201—
15 102[203B1202C1205—]; 201 [F1F2—-]; 203[A1A2A3]. The
client chooses two covers for ‘D2’ (e.g., ‘H3’ and ‘L1’) and
visits the root node (i.e., block 001) in cache to determine
the blocks at the first level to download from the server. Since
block 101 along the path to ‘D2’ is already in cache, the client
downloads and decrypts blocks 104 and 103 (along the paths
to ‘H3” and ‘L1’, resp.). The client shuffles nodes 101, 102,
103, and 104 as illustrated in Figure 5(b), updates the root
node (and its representation in cache) accordingly, encrypts its
content and sends the resulting block to the server for storage.
The client then determines the blocks at the leaf level that must
be downloaded: since block 204 along the path to ‘D2’ is not
in cache, it discards one of the two cover searches (e.g., ‘L1’)
and downloads blocks 204 and 212 (along the paths to ‘D3’
and ‘H3’, resp.). The client shuffles nodes 201, 203, 204, and
212 as illustrated in Figure 5(b) and updates nodes 101, 102,
103, and 104 (and their representation in cache) accordingly.
The client encrypts nodes 101, 102, 103, and 104 and sends the
resulting blocks to the server. It then updates the cache at the
leaf level inserting 201 [D1D2-] and removing 204 [A1A2A3].
Finally, the client encrypts leaf nodes 201, 203, 204, and 212
and sends the blocks to the server. Figure 5(c) illustrates the
logical shuffle index after the access.

The solutions based on the definition of privacy-preserving
indexing techniques successfully provide effective protection
to access and pattern confidentiality. There are however differ-
ent open issues that need to be further investigated, to make
these access technique flexible enough to suit the requirements
of any data collection. In fact, these approaches could be
extended to support the definition of multiple indexes on the
same outsourced data, updates to the data collection (i.e.,
insert, delete, and update operations), and to support not only
equality queries but also queries including range conditions,
grouping operations, aggregate functions, and so on.

VI. CONCLUSIONS

Effective and efficient solutions for protecting the privacy
of the parties interacting in a cloud infrastructure as well as
of the data stored and processed are of paramount importance
for enabling a widespread exploitation of the cloud technology.
Privacy is however far from being a trivial problem to address
and represents a big challenge for all parties that use and
develop cloud technology. In this paper, we discussed the main
privacy risks that arise in a cloud scenario and illustrated some
solutions for addressing them.

ACKNOWLEDGMENTS

The paper is based on joint work with C.A. Ardagna, S.
Jajodia, G. Pelosi, and S. Paraboschi. This work was supported
in part by a Google Faculty Research Award on “Fine-Grained
Access Control for Social Networking Applications”.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]
[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

B. Fung, K. Wang, R. Chen, and P. Yu, “Privacy-preserving data
publishing: A survey of recent developments,” ACM CSUR, vol. 42,
no. 4, pp. 14:1-14:53, Jun. 2010.

P. Samarati and S. De Capitani di Vimercati, “Data protection in
outsourcing scenarios: Issues and directions,” in Proc. of ASIACCS,
China, Apr. 2010.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati, “Efficient and private access to outsourced data,” in Proc.
of ICDCS, Minneapolis, MN, USA, Jun. 2011.

P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud:
Practical access pattern privacy and correctness on untrusted storage,”
in Proc of CCS, Alexandria, VA, USA, Oct. 2008.

C. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and
P. Samarati, “Minimizing disclosure of private information in credential-
based interactions: A graph-based approach,” in Proc. of PASSAT,
Minneapolis, MN, USA, Aug. 2010.

——, “Minimising disclosure of client information in credential-based
interactions,” IJIPSI, vol. 1, no. 2/3, pp. 205-233, 2012.

— —, “Supporting privacy preferences in credential-based interactions,”
in Proc. of WPES, Chicago, IL, USA, Oct. 2010.

W. Chen, L. Clarke, J. Kurose, and D. Towsley, “Optimizing cost-
sensitive trust-negotiation protocols,” in Proc. of INFOCOM, Miami,
FL, USA, Mar. 2005.

P. Kirger, D. Olmedilla, and W.-T. Balke, “Exploiting preferences for
minimal credential disclosure in policy-driven trust negotiations,” in
Proc. of SDM, Auckland, New Zealand, Aug. 2008.

D. Yao, K. Frikken, M. Atallah, and R. Tamassia, ‘“Private information:
To reveal or not to reveal,” ACM TISSEC, vol. 12, no. 1, pp. 1-27, Oct.
2008.

V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati,
“k-Anonymity,” in Secure Data Management in Decentralized Systems,
T. Yu and S. Jajodia, Eds. Springer-Verlag, 2007.

P. Samarati, “Protecting respondents’ identities in microdata release,”
IEEE TKDE, vol. 13, no. 6, pp. 1010-1027, Nov. 2001.

C. Dwork, “Differential privacy,” in Proc. of ICALP, Venice, Italy, Jul.
2006.

C. Ardagna, S. Jajodia, P. Samarati, and A. Stavrou, “Providing mobile
users’ anonymity in hybrid networks,” in Proc. of ESORICS, Athens,
Greece, Sep. 2010.

N. Jones, M. Arye, J. Cesareo, and M. Freedman, “Hiding amongst the
clouds: A proposal for cloud-based onion routing,” in Proc. of FOCI,
San Francisco, CA, USA, Aug. 2011.

M. Benedikt, P. Bourhis, and C. Ley, “Querying schemas with access
restrictions,” Proc. of VLDB Endowment, vol. 5, no. 7, pp. 634-645,
Mar. 2012.

A. Call and D. Martinenghi, “Querying data under access limitations,”
in Proc. of ICDE, Cancun, Mexico, Apr. 2008.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Assessing query privileges via safe and efficient permission
composition,” in Proc. of CCS, Alexandria, VA, USA, Oct. 2008.
——, “Controlled information sharing in collaborative distributed query
processing,” in Proc. of ICDCS, Beijing, China, Jun. 2008.

C. Li, “Computing complete answers to queries in the presence of
limited access patterns,” VLDB Journal, vol. 12, no. 3, pp. 211-227,
Oct. 2003.

S. Cimato, M. Gamassi, V. Piuri, R. Sassi, and F. Scotti, “Privacy-aware
biometrics: Design and implementation of a multimodal verification
system,” in Proc. of ACSAC, Anaheim, CA, USA, Dec. 2008.

——, “Privacy in biometrics,” in Biometrics: theory, methods, and
applications, N. Boulgouris, K. Plataniotis, and E. Micheli-Tzanakou,
Eds. Wiley-IEEE Press, 2009.

M. Gamassi, V. Piuri, D. Sana, and F. Scotti, “Robust fingerprint
detection for access control,” in Proc. of RoboCare, Rome, Italy, May
2005.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

R. Sandhu and P. Samarati, “Authentication, access control and intrusion
detection,” in CRC Handbook of Computer Science and Engineering,
A. Tucker, Ed. CRC Press Inc., 1997, pp. 1929-1948.

C. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini,
P. Samarati, and M. Verdicchio, “Expressive and deployable access
control in open web service applications,” IEEE TSC, vol. 4, no. 2,
pp. 96-109, Apr-Jun. 2011.

P. Bonatti and P. Samarati, “A uniform framework for regulating service
access and information release on the Web,” JCS, vol. 10, no. 3, pp.
241-272, 2002.

A. Lee, M. Winslett, J. Basney, and V. Welch, “The Traust authorization
service,” ACM TISSEC, vol. 11, no. 1, pp. 1-3, Feb. 2008.

J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”
in Proc. of EUROCRYPT, Innsbruck, Austria, May 2001.

H. Hacigiimiis, B. Iyer, S. Mehrotra, and C. Li, “Executing SQL over
encrypted data in the database-service-provider model.” in Proc. of
SIGMOD, Madison, WI, USA, Jun. 2002.

E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati, “Balancing confidentiality and efficiency in untrusted
relational DBMSs,” in Proc. of CCS, Washington, DC, USA, Oct. 2003.
H. Wang and L. Lakshmanan, “Efficient secure query evaluation over
encrypted XML databases,” in Proc. of VLDB, Seoul, Korea, Sep. 2006.
G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu, “Two can keep a
secret: A distributed architecture for secure database services,” in Proc.
of CIDR, Asilomar, CA, USA, Jan. 2005.

V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Para-
boschi, and P. Samarati, “Fragmentation and encryption to enforce
privacy in data storage,” in Proc. of ESORICS, Germany, Sep. 2007.
——, “Keep a few: Outsourcing data while maintaining confidentiality,”
in Proc. of ESORICS, Saint Malo, France, Sep. 2009.

— —, “Fragmentation design for efficient query execution over sensitive
distributed databases,” in Proc. of ICDCS, Montreal, Quebec, Canada,
Jun. 2009.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifi-
ably encrypted signatures from bilinear maps,” in Proc. of EUROCRYPT
2003, Warsaw, Poland, May 2003.

E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and in-
tegrity in outsourced databases,” ACM TOS, vol. 2, no. 2, pp. 107-138,
May 2006.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access control evolution
on outsourced data,” in Proc. of VLDB, Vienna, Austria, Sep. 2007.
——, “A data outsourcing architecture combining cryptography and
access control,” in Proc. of CSAW, Fairfax, VA, USA, Nov. 2007.
——, “Encryption policies for regulating access to outsourced data,”
ACM TODS, vol. 35, no. 2, pp. 12:1-12:46, Apr. 2010.

— —, “Support for write privileges on outsourced data,” in Proc. of SEC,
Heraklion, Crete, Greece, Jun. 2012.

M. Atallah, M. Blanton, N. Fazio, and K. Frikken, “Dynamic and
efficient key management for access hierarchies,” ACM TISSEC, vol. 12,
no. 3, pp. 18:1-18:43, Jan. 2009.

M. Narasimha and G. Tsudik, “DSAC: Integrity for outsourced databases
with signature aggregation and chaining,” in Proc. of CIKM, Bremen,
Germany, Oct.—Nov. 2005.

H. Pang, A. Jain, K. Ramamritham, and K. Tan, “Verifying completeness
of relational query results in data publishing,” in Proc. of SIGMOD,
Baltimore, MA, USA, Jun. 2005.

Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis, “Authenticated
join processing in outsourced databases,” in Proc. of SIGMOD, Provi-
dence, RI, USA, Jun.-Jul. 2009.

H. Wang, J. Yin, C. Perng, and P. Yu, “Dual encryption for query
integrity assurance,” in Proc. of CIKM, Napa Valley, CA, USA, Oct.
2008.

M. Xie, H. Wang, J. Yin, and X. Meng, “Integrity auditing of outsourced
data,” in Proc. of VLDB, Vienna, Austria, Sep. 2007.

— —, “Providing freshness guarantees for outsourced databases,” in
Proc. of EDBT, Nantes, France, Mar. 2008.

W. Gasarch, “A survey on private information retrieval,” Bulletin of the
EATCS, vol. 82, pp. 72-107, 2004.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati, “Supporting concurrency in private data outsourcing,” in
Proc. of ESORICS, Leuven, Belgium, Sep. 2011.

