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Abstract—Cognitive Radio Networks are envisioned to solve
the problem of spectral scarcity in wireless networks; through
providing highly configurable radios and protocol stacks to
support the application of a variety of efficient and possibly
cross-layered solutions. However, the large numbers of hardware
and software modules involved in realising these goals raises a
fundamental design problem. Specifically, how do we do construct
scalable and extensible systems to work across heterogeneous
systems and help realise their full potential.

To address these issues, we propose a component-based ap-
proach to the construction of the control and management
software for radios. We propose generic interfaces to support
heterogeneity and portability. Our architecture supports dynamic
policy updates and enforcement through a Policy Engine. Finally,
we show the realisation of the proposed implementation archi-
tecture through a system example.

I. INTRODUCTION

The increase in the numbers of wireless devices and appli-
cations has led to a great demand for the sparse capacity of
wireless networks, especially in the license-free ISM bands.
Cognitive Radios (CR) and Dynamic Spectrum Access (DSA)
provide a promising avenues of research to solve the above
problem [9], [1]. Unlike classical radio devices, the CR
paradigm emphasises the reconfiguration of radio functionality
at a fine-granularity through permitting access to a wide range
of spectrum and choice of custom modulation mechanisms that
can be exploited to achieving greater spectrum efficiency.

Several factors have contributed to the growth of research in
this area. Radio manufacturers have started to create flexible
software-defined radios that reveal the low-level radio param-
eters and functionalities, and support the dynamic reconfigu-
ration of the complete protocol stack [14], [8]. As a result,
protocol and application designers have been exploiting this
rich set of functionalities to design novel mechanisms that
enable cross-layer and cross-technology solutions [1].

However, in aiming to realise the cognitive radio objec-
tive, we face a number of challenges. Amongst them, first,
even though various device manufacturers expose different
sets of radio functionalities most use proprietary interfaces.
Second, custom optimisation modules and protocols exploit
the configurable radio parameters though utilising the input
from several layers and tweaking the system parameters using
a non-standard approaches. Together, these issues make it hard
to integrate different modules in a single system, and make it

difficult to attain Mitola’s original vision [9] of building holis-
tic systems that are aware of their state and environment, and
capable of adjusting their behaviour in response to changes.

Though there exits several framework proposals for Cog-
nitive Radio Management(CRM), for example [12], [13], too
often they are too narrowly focused on the optimisation task,
and lack a holistic perspective on the problem. To address this
issue we must consider the problems faced when designing
resource management solutions for cognitive radios and how
they impact on the design task.

The primary issue here concerns the factors to consider in
the general resource management task, e.g. protocol stack,
hardware, deployment environment and etc. Resource man-
agement frameworks may be expected to gather information
from large variety of sources, and provide methods to perform
actions upon them. Given the problem at hand, i.e. latency
sensitive applications, they may be expected to support real-
time operation. The heterogeneity of candidate deployment
environment means (hardware, OS, and etc.) raise the issues
of portability and extensibility. The complexity of specifying
cross-layer optimisation tasks, especially as the number objec-
tives increases means that we must consider how we specify
individual tasks and how we address their coordination.

This work address some of the concerns raised for Cog-
nitive Resource Management architectures and proposes a
component-based framework that supports; (i) generic in-
terfaces to support heterogeneity and portability, (ii) policy
management to handle stakeholder and user policies, and (iii)
a behaviour abstraction to support extensibility and modularise
the definition of individual optimisation/control goals and their
coordination. We present an overview of our prototype and
refer the reader to [12] for a discussion of the generic CRM
framework.

II. PROBLEM STATEMENT

Realising and exploiting the capabilities offered by a cog-
nitive radio network requires a CRM framework that manages
the various hardware and software modules and building a
single monolithic resource management unit leads easily to un-
scalable systems, that are difficult to extend and port. Because
cognitive radio terminal may consist of several modules that
attempt to pursue individual objectives in either a cooperative



or a competitive manner, the CRM should provide methods to
coordinate their action and resolve the conflicts that may arise.
To address the concerns discussed we define the following
requirements when designing resource managers for cognitive
radio systems:

o Extensibility: To enable systems designer to work incre-
mentally and experiment with different approaches to a
problem, the CRM must be modular and extensible. The
CRM must as much as possible separate the manner
it is constructed from the problems it addresses. In
practise, this means support for well defined interfaces,
the dynamic binding of code and conflict resolution to
resolve binding errors.

e Portability: Given the heterogeneity of radio hardware
and target deployment environments, a natural goal for
the CRM is to increase the portability and application
of the optimisation and control routines it provides.
The CRM must therefore provide consistent transparent
interfaces to access both hardware and the network stack.

o Policy-awareness: Because spectrum license-owners, reg-
ulatory bodies, and users may restrict spectrum access
through the definition of transmission policies [5], the
CRM must specify methods for representing, reasoning
about and enforcing these policies.

o Support for distributed operation: The CRM must be
capable of managing resources that may be distributed
over a network, since features such as control channel
negotiation are often required to coordinate the behaviour
of terminals. Further, to support the portability require-
ment, this requirement should also be transparent to the
mechanisms that depend on it.

o Performance: To support possible low-latency applica-
tions like transmit-rate control, the CRM must provide
support for real-time operation.

o Complexity reduction: Given the complexity of specifying
and implementing cross-layer optimisation strategies, the
CRM must provide mechanism to specify them in modu-
lar manner and facilitate their incremental extension and
the coordinate between them.

In summary, our requirements stress support for extensibil-
ity, generalisation, and experimentation.

III. RELATED WORK

Though there exist several cognitive radio architectures and
frameworks in the literature, many proposals address only the
DSA problem [20]. Others are still high-level and only limited
real implementations demonstrate a small set of cognitive
features.

The most relevant work to our CRM design is the concept of
Cognitive Engine (CE) [15]. The engine is capable of learning
the behaviour of the radio in different environments over time,
and intelligently adapts the communication stack to fit the
new wireless communications scenarios based on a set of
objectives and constraints. However, so far the optimisation
of the communication stack has been constrained to solve a
subset of the CR problems: setting up PHY layer parameters

(modulation, transmit power, number of sub-carriers, etc.)
using genetic algorithms.

A component based Reconfigurable Node design was in-
troduced by Trinity College Dublin for reconfiguration and
observation of the radio and network stack [17]. As a result
of a joint effort between Virginia Tech and Trinity College,
a framework for implementation of cognitive functionalities
that links the concepts of CE and Reconfigurable Node has
been proposed in [11]. The main underlying idea of the
framework is to facilitate network stack composition and
management. Still, no real implementation solution for the
controlling structure is given.

Moreover, there are number of key architectural issues
that are not addressed. For example, the framework does not
define specific interfaces to enable flow of context information
from the protocol stack to the cognitive engine, and feed the
optimised parameters back. The work does not address the
problem of scheduling and managing different control actions,
or the capability of distributed system support, and etc.

IV. SYSTEM EXAMPLE

In order to assist the understanding of the architecture
presented in Section V, we present an example cross-layer
application that aims to jointly optimise video and MAC
parameters in order to maximise the video throughput. This
early prototype has been implemented as a part of the
ARAGORN [16] project so as to test architectural primitives
and enables us to refine our model.
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Fig. 1. A high-level overview of our Video-MAC cross-layer optimisation
tested. In this setup, the transmitter streams a video to the receiver, which in
return sends back channel measurements and statistics concerning the quality
of service. Based on this information, the transmitter evaluates its performance
and adapts its video and MAC parameters to maximise the performance
measure.

Figure 1 illustrates a system setup, whereby a video trans-
mitter, receiver and policy server nodes are present and the
wireless nodes are equipped with multiple interfaces (Atheros
and GnuRadio).

Although the scenario given presents a large number of
input parameters and candidate actions that can be exploited,
to simplify our initial experimentation we only look at a small
subset. From the radio, we are interested in how we can use
the SNR, jitter and contention information across different
channels to alter the performance of the MAC by modifying
the transmission power, transmit-rate and channel selection.



For video streaming we use the Video Conferencing tool
(VIC) [10] with the H.261 codec. Unlike MPEG4 codec,
H.261 provides analog control over the source rate of the
video transmission, and as a result gives our application
continuous control over the video transmission rate. To asses
the video performance, we take as inputs the percentage of
missing packets, frames and the video throughput (over a
given interval). For actions we modify the frame-rate and
quantisation at the sender, thus altering the source rate of
the video traffic. Although not presented in this example, our
architecture supports advanced QoS based policy constraints
for video application and the system can easily be generalised
to a multi-hop network with multiple nodes.

The aim of the optimisation task is maximise the video
throughput in the presence of external noise (we introduce
an external noise source to generate the disturbance). The
optimisation task is performed through applying reinforce-
ment learning [19]. Reinforcement learning provides a simple
method to specify the optimisation task, through linking the
actions that can be performed in each of the states of the
system to rewards that reflects the goodness of the action, with
respect to the state. To perform on-line learning without the
large state-space problems associated with common methods,
i.e. Q-learning [2], the learning task is formulated as a function
approximation, with a feed-forward neural network providing
the generalisable function approximator [18]. The inputs to
the neural network are the sensory reading we collect from
the environment, and the action sets available, and the outputs
represent the action selection probabilities.

V. SYSTEM ARCHITECTURE

To support the requirements listed in Section II, we have
make use of a component-based approach. Component-based
approaches are typically proposed to simplify the design and
management of complex software through the modularisation
of individual constituent parts [6]. As depicted in Figure 2,
the proposed architecture consists of: 1) CRM core that is
composed of a set of a pluggable behaviour components, 2)
generic interfaces components to support transparent access to
the underlying system 3) distributed control and co-ordination
modules, and finally 4) a policy engine.

In this context, components are encapsulated units of func-
tionality and deployment. Our components model utilises the
RUNES component model [6] and components only may
only interact through well defined interfaces and receptacles,
as shown in Figure 3. Complex and modular systems may
be implemented through the specification of specific units
of functionality (components) and their interactions (inter-
face/receptacle bindings). The model also defines Capsules,
Loaders and Binders. Capsules group instances of components
to form a single instance of a system. While loaders and
binders enable a capsule instance to dynamically manage its
constituent components - through the loading, unloading and
the bindings of the components.

It is worth stressing at this point that because of the
component focus of our architecture, all parts of the CRM may
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Fig. 2. The high-level architecture of the ARAGORN Cognitive Resource
Manager (CRM).

be implemented as components utilising well defined inter-
faces, and consequently enabling developers to abstract away
from the specific requirements of possible target deployment
environments.

A. CRM core

The CRM core is essentially a capsule and plays two vital
roles in our system. First, it provides an the administrative
framework to coordinate the construction of the system, and
second it provides the control primitives used to coordinate the
actions of the components. The following sub-sections discuss
the abstractions provided by these roles in more detail and
highlight how they may be used to satisfy the constraints listed
in Section II.
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Fig. 3. The RUNES component model [6] defines the notions of capsules,
caplets, loaders and binders, all of which may be implemented as components.
Components interact with each other through well defined interfaces and
receptacles with intern list, the functions that they offer and the dependencies
between them.

1) Administrative framework: So that we may construct
systems in a modular and dynamic manner, e.g. from in-
dividual components that are bound at run-time, we must
provide the methods and mechanism that monitor the state
of the system, resolve conflicts as and when they arise and
ensure that the appropriate operating system resources are
provided. These administrative functionality are provided by
a component manager module within the CRM core.



We restrict each CRM core to contain only one component
manager, this way, it aware of all the functions the CRM pro-
vides, and can play a coordinating role - for example providing
resource allocation and dependency resolution. Further, having
the component manager means that the system administrator
has a holistic overview of the CRM, and can perform tasks
such as profiling individual components.

2) Control framework: The control framework of the CRM
is defined to address the concerns of the different control and
optimisation aspects that may loaded in the CRM, and as such,
it provides the abstractions for dealing with decision making
aspects of the system. The control framework is composed of;
behaviours, generic interfaces, action brokers, action resolvers
distributed control components and a policy manager.

B. Behaviours

We use the abstraction of behaviours to refer to the in-
dividual tasks that may be pursued by the CRM. With this
abstraction, a behaviour is simply a unit of goal directed
functionality and as such, may be mapped to a single compo-
nent or a number of tightly bound components. An individual
behaviour are defined in terms of a data-flow model, as shown
in Figure 4. For example, the source-rate adaptation task of
the video in Section IV is represented as individual behaviour
that is independent in implementation and specification from
the rest of the system. This way, complex system may also be
decomposed into smaller more manageable units.
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Fig. 4. Data Flow Model of Behaviour components: the input generator is
responsible for isolating the component from data sources. The input process
is responsible for performing the evaluation, and the output dispatcher is
responsible for communicating any decisions made.

Behaviours are implemented as components, and in order to
interface with the rest of the system, they must provide handles
(in the form of interfaces and receptacles) both to interact
with the other components, e.g. the component manager their
associated action broker and other elements of the system that
rely on directly.

From a control perspective, a behaviour has the following
properties: first, it collects some input for processing. Second,
it evaluates the input(s) collected and last suggests some
action(s) to perform based on the evaluation. Therefore, As
depicted in Figure 4, a behaviour is simply a coupling of some
set of input, processing, and output mechanisms.

To support this coupling, our architecture make uses these
distinctions as primitives and defines; input generators, input
processors, and output dispatchers. The input generator is
responsible for providing generic interfaces to collecting and
formatting input for processing - in practise, this is a binding
to an interface monitor, such as the generic interfaces that
are described later in Section V-C, or a set of constraints and

goals in the case of a policy enforcing behaviour. The input
processor is responsible for evaluating the input and perform-
ing the decision making task, which should ideally lead to
a local decision. Finally, the output dispatcher is responsible
for communicating the decision either for actuation or further
processing.

C. Generic Interfaces

Generic interfaces abstract the varied and complex imple-
mentation of various protocol layers and present them in a
consistent and systematic manner, thereby providing portabil-
ity and supporting heterogeneity across different radio devices
and operating platforms.

We abstract the radio and link level interfaces through
utilising ULLA (Universal Link Layer API) [3]. A similar
ARAGORN project developed interface, GENI (GEneric Net-
work Interface), enables the detailed monitoring and configura-
tion of the transport and network layers. Together, ULLA and
GENI provide interface functionalities through the provision
of a generic and portable API.

We use Common APplication Requirement Interface
(CAPRI) to interface between applications and the CRM, such
that application are able to define their goals and objective in
a utility compatible (quantifiable) manner. In effect, CAPRI
provides the utility function based descriptions for goals,
payoffs, and restrictions. CAPRI is one of the most challenging
parts to implement as a part of ARAGORN architecture [16].

ULLA and GENI interfaces enable querying and altering
various networking parameters using a query language similar
to SQL. While CAPRI uses an advanced language to query and
specify the application objectives (e.g. maximise throughput or
minimise delay functions).

D. Action brokers

The definition of behaviours as distinct and individual oper-
ational units raises the concern of coordinating their function
in order to steer the system towards a system objective/goal.
Conflicts can easily arise in the resource management task,
since several behaviour modules co-exist and aim to inde-
pendently optimise their tasks. To address this concern we
define the abstraction of action brokers; whose job it is to
collect together sets of dependent behaviours and provide a
means to choose between their proposed actions - in effect
the behaviours dispatch their decisions to action brokers. In
this context, two given behaviours may be defined to be
independent of each other only if the execution of their
suggested actions does not raise a conflict. Consequently, a
given behaviour may only appear only in one action broker,
and a CRM may host numerous action brokers.

Furthermore, for finer grained control, this abstraction en-
ables us to define action brokers recursively, thereby simplify-
ing the grouping of dependent behaviours and allowing for
a greater flexibility in the method we may use to choose
between their actions, i.e given as set of dependent behaviours,
we may subdivide them into a sub-group that resolves via a
prioritisation policy and a set that operates in a competitive
manner.



Relating back to our example, the action broker is the
mechanism that captures that the MAC and video adaptation
are working on the same problem - through defining that their
actions are not independent from each other. Alternatively, if
we are interested in adapting the MAC and video indepen-
dently of each other, then we would place them under different
action brokers.

E. Action resolver

Resolvers are contained within the action brokers and im-
plement the resolution method to be used by the broker, in
effect action resolvers define how a broker chooses between
the candidate actions presented by the behaviours it groups.

While the specification of a resolution algorithm depends on
the problem at hand, there are two broad methods of decompo-
sition, available; horizontal and vertical (see Figure 5). Under
horizontal decomposition, the action resolution mechanism
utilises either a cooperative (weighted combinations) or a
competitive (argmax/argmin) operator to select the output
action. With vertical decomposition, the resolver may group
the behaviours in a hierarchical order based on prioritisation,
for example using subsumption based controllers derived from
understanding how the outputs of behaviours override one
another, or it may apply an arbitrary policy. In this way,
the final output selected by the action broker is the result of
applying the resolution routines given in the action resolver

Fig. 5. The CRM behaviours coordination abstraction uses action brokers
(solid line) to contain dependent behaviours (filled circles) and the action
resolution mechanisms (dotted line) to select between their suggestions. In
practise, behaviours report their suggested actions to the resolver which
applies its resolution algorithm(s), for example, a prioritisation hierarchy or
a weighted sum to select the individual action to execute.

The advantage offered by the action broker/resolver abstrac-
tion is that it systematises the process of defining complex
control modules through decomposition. In this way, more
complex system than our prototype may be easily modularised,
enabling designers to experiment with different combinations
of optimisation and control pairings in a systematic manner.

For a practical example, if we look back at our example
in SectionlV, we notice that there are number of ways to
break up the optimisation and control task, i.e. a hierarchical
decomposition of the video and MAC, whereby the video
output overrides the MAC output, or a weighted combination
the outputs of both the controllers. However, the problem here
is that without any extra knowledge, it is difficult to gauge the
advantages offered by the different techniques a priori. Our
modular approach means that we are able to experiment with
different control methods in a systematic manner.

E. Distributed control and co-ordination

The CRM must provide mechanisms to support distributed
control and co-ordination in a transparent manner and as such,
distributed control and co-ordination components provide the
mechanism and abstractions to support this operation.

The main behaviour that makes use of this component is
the control channel negotiation and utilisation. Virtual or real
control channels may be negotiated by CRMs of the nodes
using different mechanisms. For example, a static and explicit
control channel or a dynamic on-demand control channel can
be used. We do not discuss specific approaches to negotiating
control channel in this paper, however, the existence of com-
mon control channel is a quite clear requirement for distributed
and cooperative CRM architecture.

G. Policy Engine

Policies are required to provide operation constraints to the
CRM, and they may be static or dynamic with respect to time
and geographical location, and this choice has an influence
on the manner in which they are handled. The Policy Engine
ensures the remote download of the applicable policies from
appropriate policy server and applies the constraints they list
to the CRM control framework.

ARAGORN policies are mostly specified as constraints
using a declarative language like CoRaL [7]. We are currently
pursuing advanced policy specification through a more pow-
erful interface that is similar to CAPRI.

The ARAGORN CRM architecture maps well to out proto-
type application; componentisation offers us a modular and
systematic approach to the problem of defining and im-
plementing resource management for cognitive radios. The
generic interfaces of ULLA and GENI provide us with the
mechanism to collect data and apply actions while hiding
the complexity of underlying system(s) from the behaviours.
In effect the implementation of behaviour components is
simplified and they are to a large extent capable of being
independent from the target deployment environment. The
support for distribution means the problem of control channels
negotiate is transparent to the behaviours that require it, and
information is easily exchanged between the terminals in the
system, while the policy engine verifies and enforces the
operational constraints.

With respect to performing the optimisation task, CAPRI
provides us with a systematic approach to problem of defining
goals i.e. by providing the direct reward function for our
the reinforcement learning example. While, the action bro-
ker/resolver abstractions enable us to modularise the learning
task. Further, we able to explicitly separate the individual re-
source management tasks and their coordination. For example,
our prototype application used a composite utility function
to define the action selection criteria for the two behaviour,
we may experiment with hierarchical decompositions e.g.
subsumption based controllers [4], by using CAPRI to define
a new activation policy for the action resolver.

VI. CONCLUSION AND FUTURE WORK



We have proposed a component-based architecture to help
realise extensible and portable solutions to recourse man-
agement in cognitive radio networks. With our architecture,
control and optimisation mechanisms that improve the network
performance are developed as reusable components. Generic
interfaces provide transparent access to several networking
and radio parameters, thus enhancing portability. Distributed
control and co-ordination mechanism and policy engine assist
in other primary functionalities of the cognitive radio network.
The core CRM manages the administrative and control func-
tionality. We illustrated the effectiveness of our architecture
through an example.

In this paper, we have focus largely on the implementation
architecture, in future work, we aim to develop a rich and
expressive language structures for CAPRI and the policy
language. We also aim to explore definition and practicality
of more demanding behaviour coordination functions, for
example, when numerous applications co-exist and compete
for the resources. Finally we aim to explore how more real-
time behaviours can be supported by our architecture.
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