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Abstract

We propose merging face detection and face tracking
into a single probabilistic framework. The motivation stems
from a broader project in algorithmic modeling, centered
on the design and analysis of the online computational pro-
cess in visual recognition. Detection is represented as a
tree-structured graphical network in which likelihoods are
assigned to each history or “trace” of processing, thereby
introducing a new probabilistic component into coarse-to-
fine search strategies. When embedded within a temporal
Markov framework, the resulting tracking system yields en-
couraging results.

1. Introduction

Detecting objects in an image and tracking them through
a video sequence has been a fundamental problem in com-
puter vision and has inspired significant amount of research
in the last few decades. The particular problem of detect-
ing and tracking a human face continues to attract interest
due to applications in human-computer interaction, visual
surveillance and vision-based control. At present, there ex-
ists no solution comparable to human performance in either
precision or speed.

The main challenge is achieving invariance to facial
appearance and motion. Variations result from many fac-
tors, including environmental conditions (lighting, clutter),
imaging sensors (frame rate, quantization, noise) and in-
herent non-rigid variations in the pose, shape, structure and
motion of a face. In view of the diversity and magnitude of
such variations, most existing approaches are designed to
operate most effectively within a restricted domain of vari-
ability.

Face detection refers to determining the presence and the
location of faces in an image, in particular, distinguishing
faces from all other patterns in the scene. Standard meth-
ods apply a face vs. background classifier at every image

location and at several scales (and perhaps rotations). Base
classifiers such as neural networks [14], support vector ma-
chines [12], Gaussian models [17] and naive Bayesian mod-
els [15] have all been used. Recent work has focused on se-
rially combining multiple classifiers to yield faster and more
powerful detectors [6, 5, 18].

The purpose of face tracking is to follow one or more
faces through a video sequence. Most approaches exploit
the temporal correlation between successive frames in or-
der to refine the localization of the target. Whereas manual
initialization is common, in some cases an independent face
detector is used to automatically start the process. Track-
ing methods can broadly be classified as region-based [7],
color-based [16], shape-based [3] or model-based [4]. Fairly
exhaustive surveys on face detection and tracking can be
found in [8, 19]. Traditionally, work in face detection and
face tracking have progressed independently of one another
and only a few approaches have attempted to merge them
into a single framework [11].

The work in this paper stems from a broader project on
algorithmicor computationalmodeling for semantic scene
interpretation. It is motivated in part by the limitations of
pure predictive learning and based on explicit modeling of
the computational process. Single-frame detection is based
on the coarse-to-fine (CTF) framework proposed in [6],
where a series of linear classifiers is used to gradually re-
ject non-face patterns and focus computation on ambiguous
regions. The resulting distribution of processing is highly
skewed and face detection is rapid at the expense of a few
false alarms. Here, we expand this approach by introducing
the concept of thetrace of processing in the sense of en-
coding the computational history – the family of performed
tests, together with their outcomes, during coarse-to-fine
search. When the set of traces is endowed with a proba-
bility distribution, the resulting stochastic network induces
a likelihood on each candidate detection.

These frame-based probability measures are naturally in-
tegrated into a spatial-temporal model for the joint distri-
bution of the time-varying pose parameters and the trace



Figure 1. Hierarchical pose decomposition.
Each Λl,k represents a subset of geometric
poses. An alarm is identified with a fine (leaf)
cell Λ if the classifiers for every coarser cell
(i.e containing Λ) respond positively.

of processing within each individual frame. A very primi-
tive model for frame-to-frame pose transition probabilities
leads to coherent tracking over the entire video sequence.
Unlike existing approaches, the motion model is not used
to restrict the search domain of the tracker but rather only
to link detections from differing frames. The resulting al-
gorithm unites detection and tracking in one probabilistic
framework.

The rest of the paper is organized as follows: Section 2
provides an overview of the CTF face detection algorithm.
In Section 3, the trace model is introduced, along with a de-
scription of how it is learned from training data. The track-
ing framework is presented in Section 4 and experimental
results are presented in Section 5, followed by a brief dis-
cussion in Section 6.

2. Coarse-to-Fine Face Detection

Algorithmic modeling offers a new approach to pattern
classification. The object of analysis is the computational
process itself rather than probability distributions (Bayesian
inference) or decision boundaries (predictive learning). The
formulation is motivated by attempting to unite stored rep-
resentations and online processing, and by applications to
scene interpretation in which there are many possible ex-
planations for the data, and one of them, “background,” is
statistically dominant. Computation should then by concen-
trated on ambiguous regions of the image.

Theoretical work [1] has shown that under certain as-
sumptions about the tradeoffs among cost, power and in-
variance, a testing strategy which is coarse-to-fine (CTF) in
both the representation and exploration of hypothesis yields
an optimal computational design. The entire set of hypothe-
ses (e.g., class/pose pairings) is represented as a hierarchy
of nested partitions. Each cell of the hierarchy corresponds

to a subset of hypotheses and is included in exactly one of
the cells in the preceding, coarser partition (see Fig. 1). The
partitioning is recursive and provides a CTF representation
of the space of hypotheses. In order to explore the hierar-
chy, a test or classifier (binary random variable) is associ-
ated with each cell and is designed to respond positively to
all hypotheses represented by the cell. CTF search proceeds
from tests near the root which accommodate many hypothe-
ses to those that are more dedicated and discriminative near
the leaves.

The result of processing a scene results in a list of alarms
(detections). More precisely, this set is the union of all fine
cellsΛL,k with the property that all the tests which corre-
spond to ancestor cellsΛ ⊇ ΛL,k respond positively. Here
L represents the last level of the hierarchy. This can be vi-
sualized as achain of positive responsesin the hierarchy of
cells (see Fig. 1). The computation of this list of (complete)
chains can be performed efficiently by evaluating a test at
cell Λ if and only if all the tests corresponding to cells con-
tainingΛ (hence more invariant) have already been evalu-
ated and responded positively. Areas of the scene rejected
by coarse tests are then rapidly processed, whereas ambigu-
ous areas are not labeled until some fine tests have been
evaluated.

The face detector used in this work is based on this CTF
technique where the space of hypotheses is the set of poses
of a face; all the details can be found in [6]. Briefly, each
test is constructed from oriented edges and is trained on
a specific subset of face subimages which satisfy certain
pose restrictions. In principle, the test at the root of the hi-
erarchy would apply toall possible face poses simultane-
ously and could, for example, be based on color or mo-
tion. In our experiments, however, this first test is only vir-
tual, assumed always positive, and the hierarchical search
begins with the second level at which the position of the
face (say the midpoint between the eyes) is partitioned into
(non-overlapping)8×8 blocks. More specifically, the coars-
est test is designed to detect faces with tilts in the range
−20◦ < θ < 20◦, scales (pixels between the eyes) in the
range8 < s < 16, and location restricted to an8 × 8 win-
dow. The finer cells localize faces to a2 × 2 region with
∆θ = 10◦ and∆s = 2. In order to find larger faces, the
hierarchy of classifiers is applied to every non-overlapping
8× 8 image block at three different scales. The criterion for
detection at a given pose is the existence of a chain in the hi-
erarchy, from root to leaf, whose corresponding classifiers
all respond positively.

The result of the detection scheme is a binary decision
labeling each8 × 8 image patch (at several resolutions) as
face or background and providing an estimate of the pose.
Although this scheme yields low error rates, it does not
assign any numeric confidence measure to each detection
or account for resolving competing interpretations, i.e., for



Figure 2. (a) A tree structure with 7 nodes representing a hierarchical set of classifiers used to detect
an object at different poses. (b) The result of coarse-to-fine search is a labeled subtree where dark
circles indicate a positive test and light circles a negative test. Eight of the 26 possible “traces” are
depicted together with the outcomes of the tests performed.

spatial context. In this work, the computational process de-
fined by CTF traversal of the hierarchy is modeled as a tree-
structured stochastic network. The nature of CTF search im-
poses major restrictions on the possible configurations (re-
alizations of this stochastic process) that can be observed,
which in turn lead to a simple model that characterizes pos-
sible search histories or “traces.” This provides a likelihood-
ratio test for weeding out false detections.

3. Trace-Based Image Representation

In order to facilitate the exposition, we first describe
(§3.1-§3.3) the trace model for a general hierarchy and prob-
ability distribution on the set of traces; then, in§3.4, we spe-
cialize to the case of a pose hierarchy and probability distri-
butions conditional on pose.

3.1. Tree-Structured Networks

Let T denote the tree graph underlying the type of hi-
erarchy described in§2 and let{Xη, η ∈ T} be the corre-
sponding set of binary tests or classifiers. We writeXη = 1
to indicate a positive test andXη = −1 to indicate a nega-
tive test. Of course a (rooted) tree is a special case of adi-
rected acyclic graph(DAG) in which the nodes have an im-
plicit ordering and the edges have natural orientations, to-
wards or away from the root. The set of parent nodes of
η is denotedAη. A joint distribution P on configurations
{−1, 1}T is determined by imposing the splitting property
of DAGs [13] and well-know conditional independence as-
sumptions. Specifically, the distribution of{Xη, η ∈ T} is

given by

P (X) = P (Xη, η ∈ T ) =
∏

η∈T

P (Xη|Xξ, ξ ∈ Aη). (1)

We refer to equation (1) as the “full-tree model” as there are
no restrictions onwhich particular tests are actually per-
formed in any given realization.Learning the full model,
and computing realizations at many image locations and
resolutions, can be difficult for largeT since the number
of nodes, as well as the number of parameters determining
each conditional probability, increases exponentially with
|T |.

The situation is illustrated in Fig. 2(a) for a simplified
hierarchyT with seven nodes and corresponding binary
classifiersX1, ..., X7. We can imagine the four leaf cells
represent four possible fine pose cells. Clearly there are
27 = 128 possible test realizations. However, the nature
of CTF search results in certain restrictions on the subset of
classifiers which are actually performed and the values they
may obtain; some examples are illustrated in Fig. 2(b) (as
explained below in§3.2).

3.2. Trace Configurations

The result of CTF search is a labeled subtree which en-
codes the set of tests performed and the values observed.
As the hierarchy is traversed breadth-first CTF, certain
nodesη ∈ T are visited and their corresponding classi-
fiersXη ∈ {−1, 1} are evaluated. The setT ∗ ⊂ T of vis-
ited nodes is actually arandom subtreeas it depends on
the values of the tests performed. By definition, thetrace



Figure 3. (a) A CTF hierarchy with 3 classi-
fiers. (b) A decision tree representation of
CTF search.

is X∗ = {Xη, η ∈ T ∗}. For any traceX∗, certain con-
straints result from the fact that a testXη is performed if
and only if all ancestor tests{Xξ, ξ ∈ Aη} are performed
andeach one is positive. In particular, with∂T ∗ and∂T de-
noting the leaf nodes of the subtree and the full-tree respec-
tively, we have

η /∈ ∂T ∗ ⇒ Xη = 1
η ∈ ∂T ∗ \ ∂T ⇒ Xη = −1

η ∈ ∂T ∗ ∩ ∂T ⇒ Xη = ±1.

(Note that an internal node ofT maybe a leaf ofT ∗ de-
pending on the realization of tests; the test at such a node is
necessarily negative.) For instance, for the hierarchy in Fig.
2(a), there are26 distinct traces (labeled subtrees), eight of
which are depicted in Fig. 2(b).

The set of all possible traces partitions the full config-
uration space{−1, 1}T . By taking into account theorder
in which the tests in the hierarchy are performed, there is
a natural identification with a decision tree in which each
node corresponds to a particular test and each edge to one
of the two possible answers. There is then a one-to-one cor-
respondence between traces and complete paths in the deci-
sion tree. This correspondence should not lead to confusing
CTF hierarchies and decision trees. Among the differences,
a CTF hierarchy is a recursive partitioning of the space of
hypothesis, not of the feature space, and many branches in
the hierarchy may be traversed simultaneously.

The example in Figure 3 illustrates a CTF hierarchy with
three classifiers and the decision tree representation of CTF
search; the leaf nodes are labeledU1, ..., U5. Since every
test realizationX lands in exactly one leaf, the decision tree
representation results in a mappingX → {Ui}. Of course
the Ui’s are disjoint and span all configurations. For any

probability distribution onX it then follows that
∑
x∗

P (X∗ = x∗) =
∑

Ui

P (Ui) = 1

where{x∗} is the set of possible traces.

3.3. Learning Trace Models

A Bayesian network model of the form (1) then in-
duces a very simple probability distribution on traces. As
above, letX∗ be the random trace (labeled subtree) and let
x∗ = {xη, η ∈ T ∗} denote possible value. It follows from
standard calculations of graphical models that:

P (X∗ = x∗) =
∏

η∈T∗
P (Xη = xη|Xξ = xξ, ξ ∈ Aη)

=
∏

η∈T∗
P (Xη = xη|Xξ = 1, ξ ∈ Aη)

=
∏

η∈T∗
Pη(xη) (2)

wherePη(xη) = P (Xη = xη|Xξ = 1, ξ ∈ Aη). The con-
ditional probabilities in the full-model are reduced to bino-
mial termsPη(xη) since all the conditional events are “pos-
itive histories.”Consequently, specifying a single parameter
Pη(1) for every nodeη ∈ T yields a global and consistent
probability model on traces.In contrast, in the full model,
there are2k parameters required to specify each conditional
probability for a history of lengthk.

3.4. Pose Hierarchy

We now return to the case outlined in§2, namely a recur-
sive partitioning of the set of positions, tilts and scales of a
face. (As before, we fix the scale in the range8 − 16 pix-
els and detect larger faces by repeating the search on pro-
gressively downsampled images. This could easily be ac-
commodated within the existing framework by adding an-
other level at the top of the hierarchy.)

The decomposition in (2) still holds for an observed trace
conditional on the poseθ. The probability of observing a
tracex∗ given the true poseθ is

P (X∗ = x∗|θ) =
∏

η∈T∗
Pη(xη|θ). (3)

The entire trace model is used to make inferences about
the poseθ. Given an image and its corresponding trace
X∗, likelihoods of individual poses are based on theposte-
rior probabilityP (θ|X∗). As usual, analyzingP (θ|X∗) de-
pends only on the “data model”P (X∗|θ) and the “prior”
model P (θ), which, for a single frame, can be taken as
uniform and henceforth disregarded. (This of course will
change when time is incorporated.)



Recall that the test at the root is virtual and the first level
of the hierarchy corresponds to partitioning the image pixels
into non-overlapping8× 8 blocks, say[W1, ..., Wn], where
n is the total number of blocks. LetX∗(i) denote the trace
corresponding to blocki. Given a poseθ, we will write i(θ)
for the (unique) block containing the position inθ. Writ-
ing X∗ = [X∗(1), ...,X∗(n)], we make several simplify-
ing assumptions about the conditional joint distribution of
these components: 1) The trace components are condition-
ally independent givenθ; 2) The trace components areiden-
tically distributed in the sense thatP (X∗(i(θ))|θ) does not
depend on the blocki(θ); 3) For i 6= i(θ), the distribution
of X∗(i) givenθ follows a universal “background law”, de-
notedP (X∗(i)|B). Consequently, the overall likelihood is
decomposed as follows:

P (X∗|θ) =
n∏

i=1

P (X∗(i)|θ)

= P (X∗(i(θ))|θ)
∏

i6=i(θ)

P (X∗(i)|θ)

= P (X∗(i(θ))|θ)
∏

i6=i(θ)

P (X∗(i)|B)

=
P (X∗(i(θ))|θ)
P (X∗(i(θ))|B)

n∏

i=1

P (X∗(i)|B)

=
P (X∗(i(θ))|θ)
P (X∗(i(θ))|B)

× C(X∗) (4)

whereC = C(X∗) does not depend onθ and hence can be
disregarded when making inferences about the pose. Given
θ, the full likelihood requires an evaluation of the likelihood
of one8 × 8 block under both the “object model” and the
background model. These assumptions simplify the model-
ing process as we only consider learning responses of classi-
fiers for all poses contained within a single, reference block.

The parametersPη(1) are learned for the object model
by accumulating the results of classification tests over a
standard face database. For each pose, we synthesizeNt =
10000 training instances which satisfy the given pose re-
quirement. Each training instance is then processed by the
entire classification hierarchy. For every training instancek
and nodeη, a record is maintained of whether a node test
was performed, denotedπ(η, k) ∈ {0, 1} and whether the
node test succeeded, denotedα(η, k) ∈ {0, 1}. Parameters
are then estimated by collecting simple counts over the en-
tire set of training instances as follows:

P̂η(1) =
∑Nt

k=1 α(η, k)∑Nt

k=1 π(η, k)

The background model is learned in a similar way with
training instances from a non-face database.

Figure 4. Tracking results from different
video sequences.

4. Markov Tracking Model

The trace model provides a likelihood function
P (observation|state) and hence could be used in con-
junction with various probabilistic-based tracking ap-
proaches, e.g., the Kalman filter and the condensation
filter [10]. In this section a simple Markov-based set-
ting is chosen. We writeI0:t−1 and θ0:t−1 to denote
the set of observed image frames and the set of ob-
served poses from time0 to t − 1. The trace of frameIt is
denoted byX∗

t . The tracking problem is formulated by es-
timating the pose of a face at timet given

• The new traceX∗
t ;

• The previously recorded set of tracesX∗
0:t−1;

• The previously estimated posesθ0:t−1.

The estimate of the posêθt is given by the MAP estimator

θ̂t = arg max
θt∈Θ

P (θt|X∗
0:t, θ0:t−1)

= arg max
θt∈Θ

P (X∗
0:t, θ0:t)

P (X∗
0:t, θ0:t−1)

= arg max
θt∈Θ

P (X∗
0:t, θ0:t)

= arg max
θt∈Θ

P (X∗
t , θt|X∗

0:t−1, θ0:t−1)

where at every step we have dropped the terms which are
independent ofθt and we have assumed that the trace/pose
process(X∗

t , θt), t ≥ 0 is jointly Markov. To further sim-
plify the computations, we assume that i) Given the current
poseθt, the current traceX∗

t is independent of the previous
trace/pose pair and ii) Given the previous poseθt−1, the cur-
rent poseθt is independent of the previous traceX∗

t−1. This



Figure 5. Top row: The result of our tracker in four different frames. Bottom row: The raw results of
pure detection in the same four frames.

results in the following baseline tracker:

θ̂t = arg max
θt∈Θ

P (X∗
t , θt|X∗

t−1, θt−1)

= arg max
θt∈Θ

P (X∗
t |X∗

t−1, θt, θt−1)P (θt|X∗
t−1, θt−1)

= arg max
θt∈Θ

P (X∗
t |θt)P (θt|θt−1). (5)

The likelihoodP (X∗
t |θt) is evaluated according to (4) in

the previous section withX∗(i) replaced byX∗
t (i) andθ

replaced byθt. The transition probabilityP (θt|θt−1) is as-
sumed stationary and captures our prior knowledge about
how the pose moves from one frame to another. In our ex-
periments, this transition model is learned from data.

In practice, we do not search over all possible poses at
each timet. Instead, the search space is restricted to a lim-
ited set of poses constructed from the union of two sets. One
is the set of poses which are consistent with the estimated
pose in the previous frame (in the sense that the transition
probability is above some threshold). The other set con-
sists of the full set of alarms (complete chains in the hierar-
chy) which are produced by the CTF detection scheme. Of
course these alarms include both true detections and false
positives, but evaluating these poses allows for correcting
mistakes and accommodating the appearance of new faces
or the re-appearance of occluded faces. The poses in the
union of these two sets are then sorted by the likelihood
function in (5). Tracking can be further accelerated by lim-
iting the search space to regions that satisfy certain color
and motion constraints.

5. Experimental Results

Video sequences provided by [2], which are avail-
able at http://www.cs.bu.edu/groups/ivc/HeadTracking/,
are used in the initial experiments. The sequences con-
tain 200 frames with a resolution of320× 240 and contain
free head motion of several subjects under varying condi-
tions of illumination.

The pose transition model is learned from a set of simi-
lar pre-recorded video sequences. These training sequences
are manually landmarked and provide ground truth for pose
transitions. A histogram of the pose differencesθt− θt−1 is
generated for the entire training set and serves as a good es-
timate for the pose transition modelP (θt|θt−1).

In Fig. 4, we show some of the results obtained with the
face tracker. With a standard desktop PC and with no MMX
optimizations, faces are tracked at around 10 frames per sec-
ond. Since the evaluation of trace likelihoods is restricted to
regions of interest, the speed of the tracker is mainly de-
termined by the efficiency of detection. Real-time perfor-
mance can be obtained by only executing the full-image de-
tector every few frames or by incorporating global temporal
information.

In Fig. 5, we illustrate the difference in the quality of
single-frame detection between the dynamic tracking model
and the static, frame-by-frame face detector (i.e., without
the trace model, as implemented in the cited references).
Tracking yields both a higher detection rate and a lower
false positive rate. A higher detection rate is achieved be-
cause the tracker exploits the temporal information to occa-
sionally estimate a pose which does not correspond to a de-



Figure 6. Tracking results in two consecutive frames on a sequence with two faces. Since the cur-
rent tracking model assumes a single face, it occasionally jumps from one face to another when the
(normalized) likelihood of a detection dominates in the MAP estimation of the pose.

Figure 7. Tracking results on a difficult sequence with high camera instability.

tected alarm. This phenomenon is mainly observed in cases
in which the pose of the subject temporarily violates the
a priori constraints (e.g., on the range of tilts) or in cases
of temporary occlusion. In addition, the tracker filters out
false positives resulting from high-frequency noise (since
the tests are based on the presence of edges).

In Fig. 6, we show two consecutive frames from a video
sequence with multiple faces. As the current framework is
based on MAP estimation of a single track, multiple faces
cannot be tracked simultaneously. Extending the formula-
tion to multiple faces is a subject of current research. Fi-
nally, in Fig. 7 we depict the result of tracking one individ-
ual (the singer) in a very challenging video sequence [9].
The face of the subject is successfully tracked despite heavy
camera panning and unsteady focus. Unlike most tracking

algorithms, the search is global and the influence of the de-
tection model reduces the dependence on accurate motion
estimation.

6. Summary and Conclusions

We have presented a new method to unite face detec-
tion and face tracking in a probabilistic framework. The on-
line computational process of a CTF face detection algo-
rithm is analyzed in the context of a graphical model for
the history or “trace” of processing, thereby introducing a
probabilistic component into the CTF face detection strat-
egy. The resulting trace model can then be merged with pose
dynamics within a single, coherent Bayesian framework to
base tracking on both frame-by-frame detection and tem-



poral continuity, embedding detection in a filtering frame-
work. Since the temporal model is extremely elementary,
the encouraging experimental results can be seen to demon-
strate the power of the trace model.

Unlike traditional tracking algorithms, there are no re-
strictions on the motion of a face. This is possible because
CTF search makes detection very rapid, thereby allowing
for a search for faces over each entire video frame. Con-
versely, this also renders detection more efficient by elim-
inating a significant number of hypotheses. Extending the
formulation to tracking multiple faces is currently being in-
vestigated.
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