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Abstract

We present an approach to recognizing faces with vary-
ing appearances which also considers the relative proba-
bility of occurrence for each appearance. We propose and
demonstrate extending dimensionality reduction using lo-
cally linear embedding (LLE), to model the local shape of
the manifold using neighboring nodes of the graph, where
the probability associated with each node is also consid-
ered. The approach has been implemented in software and
evaluated on the Yale database of face images [1]. Recog-
nition rates are compared with non-weighted LLE and
principal component analysis (PCA), and in our set-
ting, weighted LLE achieves superior performance.

Keywords: face recognition, nonlinear dimensionality re-
duction, locally linear embedding

1. Introduction

Face detection and recognition are an extremely active
area in computer vision, resulting in a large number of pub-
lications, as can be evidenced by the meta reviews [5], [16],
and [17].

Face recognition can be characterized as a high-level pat-
tern recognition problem in which humans are very skilled,
whereas for machines, it presents a considerable challenge.
In addition to authentication and recognition, recent efforts
attempt to utilize face recognition to improve user interfaces.

Given a set of training images, a face recognition sys-
tem needs to independently train to recognize a person from
a new image. To be useful, such a system needs to capture
image detail well enough to enable reliable recognition, with
minimal sensitivity to variations in the test image, such as
pose of the face and lighting. Also, since data tends to be
large, scalability is of great importance.

1.1. Related Research

Due to the overwhelming number of approaches that have
been proposed in the literature, an extensive survey of face
recognition techniques is far beyond the scope of this paper.
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Rather, we will restrict our discussion to the popular and im-
portant class of appearance-based approaches.

Kirby and Sirovich [7] first proposed a low-dimensional
reconstruction technique for face images which is optimal in
the sense of preserving the direction of maximum variance
based on a method known as the Karhunen-Loeve expan-
sion or principal component analysis (PCA, see [6]). This
technique was later extended for face recognition by Turk
and Pentland [14]. The key idea is a pixel-wise compari-
son of the input image with the images in the database. To
reduce the storage requirements of the database, and to fa-
cilitate faster comparisons, linear dimensionality reduction
is performed, using PCA. This approach has had a tremen-
dous impact on object recognition and remains popular to
this day. While dimensionality reduction techniques such as
Independent Component Analysis [3] and Linear Discrim-
inant Analysis [1] may outperform PCA in some settings,
PCA’s applicability in the general case is widely recognized
[3, 8] and it maintains its popularity as a face recognition
tool, thanks to its performance, efficiency and simplicity.

However, PCA also suffers from some inherent disadvan-
tages. For example, being a least-squares estimation tech-
nique, PCA is sensitive to outliers. Murase and Nayar [9]
use a clever extension of PCA to represent different appear-
ances of an object as a continuous manifold in the low dimen-
sional space. Their technique first projects the image onto a
low dimensional space, to identify the object. Once the ob-
ject is recognized, it is projected onto a new coordinate sys-
tem, defined specifically for that object. Murase and Nayar’s
system produces very impressive results, but is still sensi-
tive to slight changes in the object’s shape and lighting con-
ditions.

Recently, several studies have demonstrated that the
space of face images is likely nonlinear (cf. [4],[10],[11]
[13]). If so, the application of PCA to face recogni-
tion, is sub-optimal. Significant effort has been devoted to
the pursuit of appropriate dimensionality reduction tech-
niques that would exploit this idea. Some of the techniques
that were developed to consider the nonlinear struc-
ture of the manifold, particularly locally linear embedding
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(LLE, see [10]), seem to be better discriminators of face im-
ages for classification purposes. This could suggest that in
the problem of face recognition, local manifold structure car-
ries more discriminating power than the global Euclidean
structure. One pitfall of these techniques is that the lo-
cal structure at a data point is learned from its neighbors.
In other words, these techniques require a large train-
ing set.

The above approaches have produced promising results,
albeit at the cost of higher computational complexity than
PCA. Also, the underlying premise has been that the images
in the training set equally represent the test image domain,
an assumption that is in many cases flawed.

Several schemes have been proposed to extend PCA to
address the issues of missing data and robustness against out-
liers (e.g., [2]). Skocaj et al. [12] propose a technique to ex-
tend PCA to include weights for images in the training set
as well as individual pixels in the image. These weights are
used both in the recognition of the test face, and the compu-
tation of the reduced space. This is a very powerful idea, and
is a key element of our approach.

1.2. Contributions

The apparent effectiveness of nonlinear, non-global di-
mensionality reduction and the potential in using weights
(which we will motivate in section 2) prompted us to investi-
gate a generalization of such a nonlinear technique to process
images with variable probabilities.

The main contributions of the present research are as fol-
lows: First, certain appearance variations are modelled as
variance around the standard image, with decaying probabil-
ity of occurrence as the test image diverges from the standard
image. Second, we present a unified framework that allows
computing a low-dimensional mapping known as locally lin-
ear embedding, that channels learning to recognize images
with variable probabilities.

1.3. Outline of Paper

This paper proposes a technique for face recognition
given variable probabilities based on locally linear embed-
ding (LLE). It is composed of four main sections. This first
section has provided motivation for considering the proba-
bilities of face appearances and for using dimensionality re-
duction based on local features. In section 2 we describe the
algorithmic and technical aspects of our approach in gen-
eral terms. Section 3 presents empirical results of a realiza-
tion of our algorithm. Section 4 provides a summary and fi-
nally, section 5 points out directions for further research.

2. Technical Approach

Our approach is based on the following ideas:
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e Variation in face appearance can produce a range of face
images, with varying probabilities of occurrence.

e Asshown by [10] and [13], face space may not be linear.
Both contributions demonstrate recognition rates supe-
rior to those generated by PCA. Therefore, the pursuit
of a locally linear dimensionality reduction scheme is
justified.

e Nonlinear dimensionality reduction techniques such as
LLE may be enhanced by introducing image weights
that represent a given image’s probability of occurrence.

These ideas are discussed in greater detail below.

2.1. Weighted Images

Various generalizations of PCA, including weighted
PCA, have been known to statisticians for decades. Skocaj
et al. [12] have applied weighted PCA to image recogni-
tion, using two types of weights: weights for individual pix-
els (spatial weights), used to account for parts of the image
which are unreliable or unimportant, and weights for im-
ages, which they refer to as temporal weights. The main
motivation for the latter is the idea that more recent im-
ages of a subject (or object) are more reliable. The idea
is to maximize the weighted variance in the low dimen-
sional space in order to achieve lower reconstruction error
for certain target images or pixels.

Other possible applications for image weights are tuning
an authentication system to achieve lower error rates for in-
dividuals with high levels of classification.

Our research was motivated by a different hypothesis.
Normally, an effort is made to standardize the input images to
minimize variations. For example, variation in location can
be moderated (alignment) by projecting a sliding window
over the image onto the reduced space and looking for min-
imum distance to the projection hyperplane. Other sources
of variance are much more difficult to mitigate. This cate-
gory includes variation due to scale, orientation (i.e. rota-
tion with respect to the camera’s optical axis) and pose (rel-
ative to the camera), facial expression, occlusion, and light-
ing conditions, and the presence or absence of features such
as beards, glasses, or clothing articles like scarfs and hats. To
this end, face recognition systems are typically trained with
multiple images for each individual. Most systems treat all
training images equally, implicitly assuming that their prob-
ability of occurrence is uniformly distributed. Clearly, this
assumption is faulty. If we consider the case of orientation
(in-plane rotation), most faces appear more or less upright.
In the absence of specific knowledge about the probability
distribution of face images with respect to rotation, it is con-
venient to assume a Gaussian distribution, which is far from
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2.2. Locally Linear Dimensionality Reduction

The quest for nonlinear techniques for dimensionality re-
duction ([10], [13], [11], [4]), has been driven by several
factors. Roweis [10] illustrates some pitfalls of PCA using
a few artificial 3-D examples, such as a Swiss Roll. PCA
fails to generate a feasible mapping due to its reliance on
Euclidean distances instead of geodesic distances. Others
have used examples where PCA mistakenly maximizes vari-
ance caused by outliers. Beyond these contrived examples,
the above works have shown that the face domain indeed lies
on a nonlinear manifold.

One method that appears to generate particularly good re-
sults for face recognition is locally linear embedding, or LLE
[15]. In essence, LLE computes a low dimensional embed-
ding where adjacency of points in the original space is main-
tained in the low dimensional space. In other words, the local
arrangement of the points is preserved. In addition to learn-
ing the local structure of the manifold, this technique pro-
motes robustness, since an outlier only affects its neighbors.
On the other hand, LLE is heavily dependent on sufficient
sampling of the manifold to learn its shape.

If the manifold is indeed well-sampled, then a point and
its neighbors lie on an almost linear hyperplane which de-
scribes a patch of the manifold. For each point, LLE finds
coefficients for its neighbors that best describe it using a lin-
ear combination that generates the lowest reconstruction er-
ror. After these sets of coefficients are computed, LLE finds a
mapping to a low-dimensional space where each point can be
approximated with these coefficients while minimizing re-
construction error.

Various flavors of LLE define neighbors differently. The
simplest form identifies k nearest Euclidean neighbors for
each point. A more complex formulation looks at neighbors
that fall within a ball of radius . Roweis uses the former
method, which is simpler and computationally less expen-
sive. We have also used the k£ nearest neighbor model, ex-
tending it to variable image weights. We leave a similar ex-
tension to the fixed radius version for future work.

2.3. Image Weights in LLE

Skocaj et al. ([12]) introduce two methods for image and
pixel weights in PCA. An EM algorithm which allows on-
line processing of images, and a batch algorithm where all
training data is available upfront.

The batch method considers weights on two occasions: in
the computation of eigenfaces, and in the calculation of dis-
tance of the projected test image in the recognition step. To
compute the weighted eigenfaces, an input image z;, after
normalization by subtracting the average face is multiplied
by the image’s weight w! as follows:

b= Jwi(wi — W), i=1,...,N (1)
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where Z; is the adjusted image from which the eigenvectors
of the covariance matrix are computed, with image weights
factored in and W is the average face. Similarly, spatial
weights are introduced as follows:

J’Z‘ij:\/wijs-(l‘ij—\l/j), ’i:l,...,N,j:L...,M
2
where Z; is the image adjusted for spatial weights, and wy is
the weight for pixel j. So, ultimately the weighted input im-
age, z; from which eigenfaces are derived is computed as
follows:

i‘ij =14/ ]waj(:vij—\llj), 1= 1,...,N,j: 1,...,M

3)

Our aim is to introduce image weights in LLE in a fash-

ion that would achieve similar results. We limit our research

at this time to the k nearest neighbors flavor of LLE. The
LLE algorithm consists of three steps:

1. identify k nearest neighbors. This step is generally inex-
pensive. Our implementation employs a brute force al-
gorithm with complexity O(DN?) (where N is the size
of the data and D is the original dimensionality), but the
nearest neighbors can be computed in O(NlogN ) time
using K-D trees or ball trees.

2. compute w;;, the weights that best reconstruct data
point x; from its neighbors. The computational com-
plexity of this step is O(DNK?).

3. compute low dimensional vectors y; that best recon-
struct the weights computed in step (2). This step runs
in O(dN?) time, where d is the reduced dimensional-
ity.

In our extension, images have associated weights that
represent their probability of occurrence, or reliability. Since
the local shape of the manifold for a given point is learned
from its neighbors, we need to factor in the neighbors’
weights in order to reduce the effect of Euclidean neighbors
with low weights. To this end, we need to examine the first
two steps of the algorithm closer. Once the nearest neigh-
bors for a point x; have been identified, a ’local covariance”
or a Gram matrix is computed.

C:(xi—xj)T(xi—wj) (4)
where j = neighbory, ..., neighbory. Note that the Gram
matrix is symmetric and semipositive definite, and de-
fines the difference vectors x; — x; up to isometry. Optimal
weights that minimize reconstruction error can be eas-
ily computed using Lagrange multipliers, or equivalently by
solving

Cw; =1 (5)

, I}T, and normalizing w; so that
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Therefore, the Euclidean distance of a point to its neigh-
bors plays a role both in the selection of neighbors, and in the
formation of the Gram matrix. Clearly, we need to adjust the
distance to incorporate the neighbor’s probability of occur-
rence or weight. Let p; be the probability of occurrence for
point x;. Then we define the adjusted distance d;; of point ¢
from its neighbor 7 to be:

2 _ 2
diy = pi - di; (6)

This is of consequence both when determining a point’s
neighbors in step (1) and in the computation of the Gram ma-
trix in step (2). Identifying point ¢’s k nearest neighbors now
becomes a search for the k points with the smallest value for
d?j, and the adjusted Gram matrix for point ¢ is computed as
follows:

C = (x: — /pja;)" (w2 — Dj;) (7

where j = netghbory, ..., neighbor;. Now the solution to
Cw; = 1 yields the best weights adjusted for probability of
occurrence, and the embedding in step (3) can be computed
as before from these adjusted weights.

One caveat remains to be considered, and that is pick-
ing an appropriate value for k, which makes for a fair perfor-
mance comparison between a bare standard training set and
a larger one that includes additional variations.

Ultimately, & defines the size of the neighborhood used
to learn the local shape of the manifold. Adding more train-
ing data (e.g. by introducing variations generated by rota-
tion) increases the sample density which aids learning the
manifold (the effectiveness of LLE greatly depends on the
size of training set). However, Euclidean neighbors with low
weights play a relatively small role in the construction of the
embedding so when choosing k, weights need to be consid-
ered as well. Another factor that needs to be examined is the
similarity of the degree of variation introduced by new data.
Consider the extreme case where the training set is simply
doubled by duplication, with equal weights. Clearly, in this
case, it is appropriate to use 2k neighbors excluding each
point’s twin.

We have presented some basic intuition for choosing an
appropriate value for k. We will leave a more rigorous and
complete derivation for future research.

3. Empirical Assessment

We have designed a series of performance measurements
to test the effectiveness of the proposed approach. We used a
standard database of face images and augmented it with vari-
ations of the faces generated using in-plane rotation at var-
ious small angles. A Gaussian distribution of probabilities
was assigned based on rotation angle. The rationale for se-
lecting rotation as a mutator is that rotation cannot be eas-
ily corrected by maximizing the projection of a sliding win-
dow, as is commonly done to correct location. Also, faces
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generally appear upright, and the subject’s position and cam-
era geometry only allow small variations.

3.1. Testing Methodology

For our testing, we used the Yale face database [1], which
consists of 165 images of 15 subjects recorded under differ-
ent lighting conditions and showing a variety of facial ex-
pressions.

In keeping with the testing methodology applied by
Roweis and Saul [10], we cropped and aligned the im-
ages, to a final size of 80 x 80. To further reduce com-
putational cost, following an idea proposed by Niyogi et
al. [4], we performed a PCA preprocessing step on the im-
ages reducing them to their 100 largest principal com-
ponents, effectively keeping over 99% of their informa-
tion.

We tested the recognition rates achieved by PCA and
LLE on the standard Yale database [1] of 165 upright face
images. For LLE, we used k£ = 3, which empirical evidence
proved to be a good choice. Next, for each image in the data-
base, we created five variations by performing in-plane ro-
tation by ¢, € {—8°,—4°,0°,4°,8°}, effectively increas-
ing the size of the database to 825 images. We tested this
extended data set with LLE using k = 7 (following the intu-
ition provided in section 2.3), and finally with weighted LLE,
where the image weights w(y;) were set according to

(1-2)2
w(p) =€ 2 ®)
where [ € {0,...,4} indicates the rank of ¢; in the ordered
set of angles and o = 0.776.

Recognition rates were measured for each of the above
techniques using the leave one out strategy (m fold cross val-
idation): each image was removed from the database to cre-
ate a training set of size m — 1, and then classified.

3.2. Results

We compared the recognition error rates achieved by the
above methods, at various dimensionality settings. As figure
2 demonstrates, our weighted LLE algorithm realizes recog-
nition by clustering images of the same individual together
in the low dimensional space. In the plot, markers represent
face images projected onto the first two dimensions, with a
different marker used for each individual. Clusters of differ-
ent appearances of the same individual are apparent, provid-
ing some insight into weighted LLE’s recognition power.

The results of our testing are summarized in figure 1,
which plots the error rate in face recognition as a function
of the dimension d of the low dimensional embedding space.

Several observations are apparent from this chart. First, in
our testing LLE consistently outperformed PCA. Although
in Roweis’ tests [10], PCA actually achieves better recog-
nition rates than LLE at higher dimensions, our results are
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Recognition error rates w.r.t. dimensionality reduction
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Figure 1. Recognition errors obtained from experiments with different dimension reduction tech-
niques for face recognition using the Yalefaces database.

not entirely at odds, as we clarify below. Next, not surpris-
ingly, LLE’s performance improved when a larger training
J set was introduced. And finally, we note that weighted LLE
achieved superior weighted recognition rates compared to
251 ] the non-weighted version.

As an aside, the computational cost of LLE (both
weighted and non-weighted) in our experiments greatly de-
pended on the size of the training set. The target dimen-

: 4 L sionality d and neighborhood size k affected execution
B Toy R A 4 time only moderately. Although a difficulty with all appear-
A :*2**55:’ ance based vision techniques, is that computational com-
os- * %%og%f ] plex1ty heavily d.epends on tl.lf.: size of the tralnlpg da.ta,
D * &@% 8 allowing for variable probability of occurrence in train-
i %Eé; 1 ing images is still befitting and feasible.
RO 3.3. Discussion

1k L L L L L L I I I

The results are encouraging in that they confirm our
hypothesis, that in a setting where images in the training
set have varying probabilities of resembling a test image,

Figure 2. The projection of images by weighted LLE achieves superior recognition results.

weighted LLE onto the first two dimensions, It is interesting to note that for every embedding dimen-
using £ = 7,d = 15. Each marker type repre- sionality considered in our experiments, weighted LLE pro-
sents a different individual. Note the formation duced the lowest recognition error, sometimes by a large
of clusters by the algorithm. margin. Weighted LLE reached especially low recognition

errors even for embedding spaces of small dimensionality.
Also, in our tests, LLE performed consistently better than
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PCA. While in Roweis’ experiments [10], PCA actually beat
LLE at higher dimension settings, we observed an improve-
ment in PCA’s recognition rates as the dimensionality of
the embedding space grows but saw no such improvement
in LLE. In Roweis’ experiments, this crossover occurs at
around d = 18. We have tested d values of up to 30, and
have not reached the crossover point.

Another observation is that with the larger training set,
non-weighted LLE appears to improve as the dimensional-
ity increases, whereas weighted LLE’s recognition rates are
practically constant. This may suggest the existence of some
upper-bound on the recognition rate due to poor modelling of
the face manifold in some areas. The bumpiness of the sets
that include rotation could be due to closer competition for
neighbors. This may possibly be alleviated with better para-
meter tuning.

4. Summary

This paper presented a novel approach to face recog-
nition. Given the observation that face recognition systems
generally improve in reliability when presented with multi-
ple training images for each subject and noting that train-
ing images are treated equally by most algorithms, we pro-
posed extending the locally linear embedding procedure with
a weighting scheme.

In our extension, weights are associated with images to
represent their probability of occurrence. As the LLE algo-
rithm recovers the local structure of the face manifold from
the neighbors of a given face, we have shown how the impact
of neighboring faces with low weights may be reduced. The
effectiveness of this approach has been verified by experi-
ments with the Yale face database [1]. We have demonstrated
that compared with PCA and standard LLE, our weighted
LLE algorithm performs better: for every embedding dimen-
sionality considered in the experiments, weighted LLE pro-
duced the lowest weighted recognition error rates, with error
rates of about 5% lower than non-weighted LLE.

5. Future Work

It should be noted that in order to realize the above re-
sults, we chose values for k£ empirically. Currently, no defin-
itive method exists to choose optimal values for k in LLE,
as well as several other nonlinear dimensionality reduction
techniques. Future work may study the response of weighted
(and non-weighted) LLE to different values of k.

Also, as mentioned earlier, the present research only cov-
ers the k nearest neighbors paradigm. In the future, it may be
useful to introduce weights to the more complex (due to vari-
able neighborhood size) fixed radius model.

Another problem left for future research is the rigorous
derivation of an appropriate value for k in the variable im-
age probability model. Additionally, we feel that better un-
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derstanding is needed of the factors that contribute to the as-
signment of modes of variation to principal axes in the re-
duced space.

Finally, the idea of weighting can also be extended, to
assign different weights to individual pixels in the image,
where information is deemed to be more significant, and to
other nonlinear reduction algorithms, such as Isomap [13].
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