
People Tracking using Robust Motion Detection and Estimation

Markus Latzel, Emilie Darcourt, and John K. Tsotsos
Department of Computer Science, Center For Vision Research

York University
Toronto, Ontario, Canada

{markus,emilie,tsotsos}@cs.yorku.ca

Abstract

Real world computer vision systems highly depend on
reliable, robust retrieval of motion cues to make accu-
rate decisions about their surroundings. In this paper, we
present a simple, yet high performance low-level filter for
motion tracking in digitized video signals. The algorithm
is based on constant characteristics of a common, 2-frame
interlaced video signal, yet results presented in this paper
show its applicability to highly compressed, noisy image se-
quences as well. In general, our approach uses a computa-
tionally low-cost solution to define the area of interest for
tracking of multiple, moving objects. Despite its simplic-
ity, it compares very well to exisiting approaches due to its
robustness towards environmental changes. To demonstrate
this, we present results of processing a sequence of JPEG-
compressed monocular images of a parking lot in order to
track pedestrians, cars and bicycles. Despite a high level of
noise and changing lighting conditions, the algorithm suc-
cessfully segments a moving object and tracks its position
along a trajectory.

Keywords: Interlace Filter, Motion Tracking, Motion De-
tection, Surveillance

1. Introduction

Motion detection and estimation in image sequences has
multiple applications ranging from image stream data com-
pression to artificial intelligence or automatic surveillance
problems and is considered a vital component of any of
these systems. Accordingly, a large amount of work has
been done to identify moving objects within a video se-
quence and estimate their motion parameters. In the follow-
ing, a novel approach for this task is presented, for the rea-
son of its astonishing simplicity and robust performance, as
shown in experimental applications.

Motion in a sequence of images is defined as a situa-
tion where part of the scene is moving in front of a non-

uniform background. This moving part may not be con-
nected, as in the case of multiple moving objects, each drift-
ing in different directions. Furthermore, additional to a sim-
ple translation of static image data, the objects may be ro-
tating, non-rigidly deforming (i.e., experience local motion
within themselves) or temporarily occlude each other. On
top of this, the capturing device may be submitted to ego-
motion, which results in a moving background altogether.

A motion estimation algorithm identifies connected ob-
jects within the image that experience motion relative to-
wards the background, and estimate motion parameters, i.e.,
direction, speed, and occlusion events. In partial solutions, a
simple detection of ”something in motion” suffices. In many
motion alarm systems for surveillance applications, this is
the case.

1.1. Background Subtraction

A trivial motion detection works by subtracting a previ-
ously stored ”background” image, or reference frame from
the current input, and identify areas of high response as dis-
turbances in the image. Obviously, background subtraction
relies on zero ego-motion of the system, and no undesired
changes to the observed background. Lighting changes for
example, have to be accommodated for by an adaptive back-
ground extraction algorithm, which iteratively updates the
stored reference frame. In [7], A. Makarov compares back-
ground extraction algorithms. Common to his paper and
[10] is that the choice of threshold values for discrimina-
tion between noise and real changes to the scene is crucial
to eliminate false positives during motion detection. In [1],
an automatic reference frame update is given to be able to
detect motion even after sudden lighting changes occur in
an image sequence.

1.2. Interlaced Video Signals

A notion generally left out of consideration is that mo-
tion (as temporal changes) is inherently encoded in the im-
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Figure 1. Motion artifacts in interlaced video
signals.

age sequence signal acquired from commercial video cam-
eras. The NTSC signal scans 525 lines of image data per
frame, with a frame rate of 30fps. To eliminate flicker, two
interlaced frames are sent alternatively with a rate of 60fps.
Accordingly, alternating lines of the captured image are
scanned with a delay of 16.7ms. If we consider an object
moving horizontally before a background, then interlacing
artefacts can be observed along edges of the object, since
each even scan line has been captured exactly one frame
later than its preceding and following odd line. Figure 1
shows a magnified snapshot of such an artefact. The hori-
zontal extent of these artefacts are directly proportional to
the horizontal component of the edge velocity. In terms of
the image window, the objects velocity vo is thus

vo =
l

16.7ms

in pixel per second, with l being the length of an interlacing
artefact.

2. A Motion Bandpass Filter

Detecting the interlace artefacts can be achieved by ap-
plying a vertically oriented bandpass filter with the charac-
teristic frequency

fBP = 1
1

pixel

Since none of the original image should be preserved, the
filter thus has a low frequency component of 0, i.e. weight
of the filter kernel kBP = 0. In order to discriminate weight
of scan lines further from the center of the filter kernel, a
standard band pass filter was multiplied with an approxi-

mated Hamming window function:

kBP = kstdrd ∗ kw

= [ −1 1 −1 1 −1 1 −1 ]
∗[ 1 2 3 4 3 2 1 ]T

= [ −1 2 −3 4 −3 2 −1 ]

With the windowing function kw approximated by a tri-
angle function.

Applied to a raw video image I(x, y), the given filter re-
sponds to columns of pixels with alternating intensities. In
particular, if the centre of the kernel is located on a white
pixel within a motion artefact, the response will be posi-
tive, while on a black pixel, the response is negative. In ar-
eas with a frequency other than fBP , the output IBP (x, y)
is close to 0.

Theoretically, the filter responds to any high frequency
along a vertical axis such as sharp, horizontal edges, for
example. Increasing the filter length dy will increase its
discrimination towards such ’false responses’, and ensure
only truely alternating lines produce a response. However,
if slanted lines moving with slow velocity produce an arte-
fact length of less than dy/2, sensitivity of the filter is re-
duced. Experimentally, we found that a filter length dy = 7
was optimal for the motion detection applications presented
in the following.

kBP

y

Figure 2. A possible bandpass filter for kBP .

To decide whether moving edges are present in an im-
age or not, the complete filter takes the absolute value of
the output and generates a threshold image thereof:

M(x, y) =

{
1 if |IBP (x, y)| > threshold
0 else

(1)

In an experimental application, we were able to use
the filter for a simple intrusion detection system with this
method. An intrusion into the field of view was detected if∑

x,y

M(x, y) > k,

with k being a sensitivity parameter, depending on dimen-
sions of the acquired image and expected size of a moving
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object. A larger object will generally produce longer edges
and thus increase positives in M .

Since this algorithm does not store any reference data, it
does not react with false positives towards gradual changes
in the image. In other words, very slow and global changes
do not trigger the bandpass filter at all. As a result, lighting
changes do not result in any false intrusion alarms.

2.1. Thresholding

Selecting the threshold to attain M(x, y) proved to be
quite robust. In fact for both the indoor and outdoor im-
ages shown, the same threshold t was used. However, a
simple threshold adjustment scheme was used to automati-
cally increase the threshold on a static image input until the
M(x, y) = 0 for all x, y. The computed threshold was after-
wards treated as a system dependent variable and needed no
further updating. With kBP as given in figure 2, and an in-
put value range of [0..255] for I , IBP can assume values
within [−8 · 255..8 · 255]. The histograms in figure 4 show
a recording of |IBP | over this period, with the computed
threshold marked. Note that for the still reference image, no
values above t exist (i.e. M(x, y) = 0∀x, y). Again, the his-
togram does not change significantly for extreme changes in
lighting conditions (indoor/outdoor).

(a) raw image (b) |IBP |

Figure 3. Raw image data and filtered output
of a hand in waving motion. Note the low con-
trast of the acquired image

3. Motion Parameter Estimation

In order to provide information for higher level com-
puter vision systems, it is necessary to estimate motion pa-
rameters such as location, velocity and direction of mov-
ing objects from the filter output. Below, an outline of this
is achieved and some consideration on issues are given:

(a) no motion

(b) waving motion

Figure 4. Value histogram of |IBP |. (b) was
captured with a waving motion as in figure
3.

3.1. Direction of motion

In order to utilise the polarisation property of the filter,
the output signal IBP was further processed to display this
information: a three colour image N(x, y) was defined as:

N(x, y) = M(x, y) · sign(IBP (x, y))(−1)y,

with y being the scan line number. Figure 3 shows N(x, y)
encoded in three different colours, black for M(x, y) = 0.

N(x, y) denotes a gradient function of image values: a
transition from lower intensity to a higher one results in a
positive value. Thus, the direction of motion can be com-
puted from information derived from a single frame.

3.2. Motion velocity

Motion velocity vo,h along the horizontal trajectory can
be estimated from a single image snapshot by measuring
the artefact length l, as mentioned earlier. However, a verti-
cal motion will also yield filter response at slanted and hori-
zontal edges of the object. Thus, any object motion yields an
edge response of the filter, but the exact component of verti-
cal motion can not be estimated with this algorithm unless a
more sophisticated approach is taken, such as operating on
a vertically interlaced input image. However, real time per-
formance of the simple horizontal motion estimation sug-
gests that the given approach will assist a higher level de-
cision system to in image processing, identified frames and
areas of interest, with a preliminary motion velocity estima-
tion algorithm.

Also, given the high temporal resolution of the motion
filter approach (an inter-frame approach may - with ap-
propriate hardware - at best analyse motion in intervals of
33.3ms), fast motion is easy to detect and estimate due to the
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scan line interval of 16.7ms. Thus, for example in a traffic
surveillance application, speeding drivers are captured even
if they appear only in a single frame of the image sequence.
In contrary, very slow motion produces a dimmed output
of the filter. This drawback can be accommodated by peri-
odically interlacing previously stored key frames with the
current image. In other words, to virtually triple the speed
of passing objects, a composite frame J(x, y, n) consists of
interlaced frames I(n), and I(n−1), with n being the num-
ber of the current frame:

J(x, y, n) =

{
I(x, y, n) , if y even
I(x, y, n − 1) else

Applying the bandpass to J amplifies the sensitivity to-
wards slow motion.

4. Application to a sample dataset

In order to confirm our finding, we demonstrated appli-
cation of the motion detector to a pre-recorded sequence of
images. The dataset available was actually a sequence of
highly compressed images with view of pedestrians, cars or
bicycles in a parking lot scenario. Below find some consid-
erations on implications of this constaint with respect to ap-
plication of our motion detection filter.

4.1. Considerations on Data Properties

In general, the high frequency components inherent to
the motion artefacts described above are not preserved dur-
ing compression of video data. Thus, the interlace detec-
tion filter cannot be applied directly on the acquired images.
Rather, two subsequent images in a sequence had to be in-
terlaced artificially to re-create the same properties as dis-
cussed in section 3.2.

However, interlacing compressed images bears the dis-
advantage of added noise due to spatial inconsistencies of
the particular compression scheme used for each individ-
ual image of the sequence. The common ’bit-flicker’ seen
in any digitized video signal is amplified as a result of this
process. Nonetheless, the motion filter showed reliable re-
sponses even for small moving objects as shown in figure
5.

4.2. Tracking Multiple Targets

Multiple target tracking relies on robust clustering of
motion cues relevant to each moving object and sufficient
supression of noise. Binary output of the motion filter shows
that responses for one moving object are not necessarily
connected. One approach to increase sub-component size
and thus try to merge into one component would be to de-
crease the filter threshold to enlargen the response areas.

(a) raw image (b) |IBP |

Figure 5. Raw image data and filtered output
of a frame in the PETS sequence

However, experiments with this approach yielded nonsatis-
factory results in that noise was not surpressed sufficiently
and moving objects merged when the distance between
them was too small. A dilation-erosion process showed sim-
ilar results with the additional drawback of loss of detail
around the target boundary.

To deal with this problem, we chose to employ a modified
component labeling algorithm. The component labeling al-
gorithm assigns labels to 1-pixels connected directly to each
other and thus clusters connected pixels within one group.
In our approach, we increased the distance pixels may be
apart by introducing a neighbourhood size D. Each 1-pixel
was regarded of the same connected component to a 1-pixel,
if it was located within the neighbourhood distance D. Re-
cursively, the algorithm was then applied to its respective
neighbours within distance D. This approach successfully
assigned filter responses a grouping label and sufficed for
attaining a centre of gravity for each moving object as well
as a bounding-box segmentation.

Noise produced by the motion filter typically are stray
groups with a size significantly smaller than the smallest
real target and could thus be culled by restricting mov-
ing objects to a minimum number of response pixels. In
practice, this process culled any noise specks for the en-
tire sequence of the given video footage, while preserving
all moving objects.

Object Outline After grouping filter responses and culling
small groups, a coarse outline for each object is calculated
to serve for motion segmentation and attentional purposes.
The outlines shown in figure 6 are defined as an n-set of
points defined by (ρ, ϕ), denoting radius and angle from
the centre of gravity c = (cx, cy)

T of each particular ob-
ject. The values of (ρ, ϕ) are defined as:

rmax(ϕk) = max r : pixel(r, ϕk) = 1
k = (0, 1, ..n)
ρ(ϕk) = 1

3
(rmax(ϕk−1) + rmax(ϕk) + rmax(ϕk+1))
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pixel(r, ϕ) being the input image value given in polar coor-
dinates from origin c. (ϕ0, ...ϕn) spans −π to π in equidis-
tant steps. Thus, for each angle k there is a distance to a 1-
pixel furthest from the centre of gravity. In order to achieve
a smooth outline, this distance is averaged over three neigh-
bouring radius values. Figure 6 shows the result of this out-
line definition. Note that for outline points close to c the
outline is fairly accurate, while for extensions of the object
further away from the centre the averaging effect compro-
mises accuracy. Accordingly, legs and arms of walking peo-
ple are more likely to inaccurate segmentation.

Figure 6. The outline ρ1..n shown as con-
nected points. Distinct objects are marked
with different colours.

Consistent Target Tracking In order to track moving ob-
jects as individual instances, a state of each filter response
cluster is preserved from the last frame in the video se-
quence. The state vector encompasses centre of gravity in
two-dimensional space c, the set of outline points ρ1...ρn,
and a bounding box around all response pixels of the ob-
ject.

For each frame, the centre of gravity is used as starting
point for the modified component labelling algorithm de-
scribed above. This ensures that component clustering does
not originate at noise clusters that were within boundaries
of a moving object in the previous frame. Our experiments
on the described dataset showed very good results using this
technique.

Figure 7. Sample application of the segmen-
tation and tracking algorithm

5. Results and Conclusion

The motion detection filter described in this paper was
applied to the common problem of tracking multiple ob-
jects in a surveillance scenario. The proposed filter showed
to be robust with respect to lighting conditions, changes in
the environment and discontinuous motion parameters. Ad-
ditionally, an effective outline computation based on a cir-
cular sweep algorithm was presented that accurately seg-
ments walking pedestrians and cars. We propose that in par-
ticular, the robustness of the interlaced motion filter shows
benefits in applications of changing global conditions.

In some cases, large objects outside of the typical range
of interest (such as a pedestrian walking up to the camera)
were segmented as several objects moving in unison. Also,
since the motion tracker disengaged from a non-moving ob-
ject, the identity of an object was lost once it stopped.

Our future work will include a memory-based tracker
that will keep identity objects while not in motion, as well
as build super-clusters of objects that are in unified motion.
Acknowledgements: Funding of the work was grate-
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