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Abstract 

This paper presents the groundwork for a 
distributed network of collaborating, intelligent 
surveillance cameras, implemented with low-cost 
embedded microprocessor camera modules. Each 
camera trains a person detection classifier using the 
Winnow algorithm for unsupervised, online learning. 
Training examples are automatically extracted and 
labelled, and the classifier is then used to locate 
person instances. 

To improve detection performance, multiple 
cameras with overlapping fields of view collaborate to 
confirm results. We present a novel, unsupervised 
calibration technique that allows each camera module 
to represent its spatial relationship with the rest. 
During runtime, cameras apply the learned spatial 
correlations to confirm each other’s detections. This 
technique implicitly handles non-overlapping regions 
that cannot be confirmed. Its computational efficiency 
is well-suited to real-time processing on our hardware.  

1. Introduction 

The increased need for security in public and 
private areas has augmented the reliance on video 
surveillance systems as a cost-effective way of 
monitoring large areas with few security personnel. 
The nature of this work (monitoring multiple video 
feeds), however, can be tedious for the security guards 
involved, since it is mostly uneventful. This tedium, 
combined with the necessary multitasking, can make 
the observer prone to error. It is therefore desirable to 
automate as much of this process as possible, using an 
intelligent system to monitor the video feeds and report 
activity to a human operator. 

The ability to detect people in an image is vital for 
automated video surveillance, as well as for many 
other real-world computer vision applications. The 
results of person detection can be used by higher-level 
tasks such as person tracking, event logging, content 
analysis, and low-rate video compression. In this work, 

the focus is on person detection itself, but its output 
can be used for any of the aforementioned applications. 

Since areas requiring surveillance are typically 
larger than a single camera’s field of view (FOV), 
surveillance setups typically use multiple cameras. 
While a setup composed of multiple, independent 
single-camera intelligent surveillance systems, such as 
[4, 15], would be an improvement over simple video 
feeds, even more benefits can be achieved by 
combining the sensors into a collaborative multi-
camera surveillance system [2]. 

This paper presents a design for an intelligent multi-
camera surveillance system capable of person detection 
and suitable for real-world applications. Person-
detection is achieved with a machine-learning 
approach, based on work by Nair [10]. The system uses 
a parallel, distributed network of cameras, appropriate 
for wide-area surveillance. This system architecture 
implies several requirements that guide our design: 

1) Real-time processing: In a security context, 
results must be available in a timely fashion. This 
requires computationally efficient techniques. 

2) Low-cost hardware: A wide-area surveillance 
system can include tens or even hundreds of cameras, 
so each camera module uses low-cost, commercially 
available components. 

3) Distributed processing: A distributed system 
scales easily to a large number of cameras. Our system 
therefore performs all processing on the individual 
camera modules, instead of a centralized server. This 
also eliminates the need to transmit images over the 
network: only high-level information, such person 
locations, is communicated. The lower bandwidth 
requirements also favour scalability. 

4) Easy setup and calibration: Since this camera 
network is designed for wide-area surveillance, the 
initial setup of such a system is designed to be as 
simple as possible. Camera modules use a wireless 
network to maximize placement options. An easy setup 
also implies unsupervised learning: otherwise, each 
different camera view would require its own manually-
labelled training set to account for differences in 
viewpoint, lighting, and camera properties. The 
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calibration for multiple cameras to learn their spatial 
relationships is also designed to be as simple as 
possible to perform. 

5) Adaptability: The system must adapt to changes 
in people’s appearance over time. In winter, for 
example, people might be wearing heavy garb, which 
alter their appearance and shape compared to what is 
seen in summer.  

6) Multi-camera collaboration: By collaborating, 
the surveillance system can improve person detection 
accuracy, reducing the number of false positives and 
handling occlusion. 

The contribution of this work is an intelligent multi-
camera surveillance system that fulfills all the above 
criteria. Processing is distributed on low-cost 
embedded processor modules, which each learn a 
person detection classifier without supervision, thanks 
to an automatic labeller component that extracts and 
labels training examples on the fly. Detection accuracy 
is further improved with a novel spatial calibration 
technique, which allows each camera to learn the 
correspondence between its field of view and those of 
other cameras monitoring the same scene. Cameras 
then collaborate to confirm person detections and 
improve their performance. 

 The principle advantage of our multi-camera 
collaboration is that it offers an easy, unsupervised 
calibration and a computationally efficient means of 
runtime cooperation. The calibration procedure does 
not require detailed environmental models or 
knowledge of exact camera locations, as the Visual 
Surveillance and Monitoring (VSAM) [5] and 
Cooperative Distributed Vision (CDV) [9] projects do. 
The Intelligent Multi-Camera Surveillance and 
Monitoring (IMCASM) project [3] also offers 
unsupervised camera calibration, based on a 
homography mapping between camera views. 
However, applying this mapping during normal 
operation requires significant computation and would 
reduce the framerate on our hardware platform. The 
simplicity of our technique allows correspondences 
between camera views to be obtained with only a one-
dimensional search through a row of the spatial 
association matrix.  

Our method of automatic calibration (using a single 
moving target in overlapping camera FOVs) is closest 
to the work of Khan et al. [6]. During their calibration, 
a single person moves through the camera FOVs, 
allowing calculation of the FOV boundary lines for 
each camera. During normal detection operation, a 
camera can then tell which other cameras should be 
seeing a detected person, based on the person’s current 
location (as determined by the position of their feet). 
Khan et al. use this correspondence to allow handoff of 
tracked targets between cameras, rather than to confirm 

detection. Although their approach is faster than the 
homography mapping used by IMCASM, it still 
requires more calculation than our approach. 

Finally, it is important to note that, while person 
tracking could be added to the system as an additional 
layer, it is not required for camera collaboration. This 
is in contrast to nearly all the current multi-camera 
systems, including those discussed above. Our 
technique is ideal for embedded systems with slower 
frame rates, since it can function effectively without 
person tracking. 

In the next section, we present our person detection 
technique within the context of a single camera, to 
facilitate understanding. In Section 3, we describe how 
this system can be extended to a multi-camera network 
using collaboration. Finally, Section 4 presents the 
results of our experiments. 

2. Single-camera person detection 

Each camera module is designed to be an 
independent unit capable of processing images, as well 
as communicating with the other cameras. To this end, 
we use a small, lightweight, embedded-microprocessor 
development board (the ARM-based Intrinsyc 
CerfBoard 250) as the core of each camera module. 
Each module also consists of an expansion card 
(CerfComm 250, needed for USB connectivity), a USB 
camera (D-Link DSB-C300 webcam), and a wireless 
network card (Linksys WCF12). 

The single-camera person detection system is 
illustrated in Figure 1. The system is divided into three 
main components: the automatic labeller (Section 2.1), 
the classifier (Section 2.2), and the online learning 
algorithm (Section 2.3). Video frames received by the 
camera are sent to both the current classifier and the 
automatic labeller. The latter finds and labels person 
and non-person examples in the frame. These labels are 
compared with the current output of the classifier, and 
if the classifier was mistaken, the online learner 
updates the classifier. 

2.1. Automatic labeller 

The automatic labeller efficiently provides training 
examples on the fly, with which the online learner can 
train our classifier. The labeller does this with 
background subtraction [15]. Although 
computationally efficient, the initial results from 
background subtraction are prone to false positives. 
Since labeller provides training examples, it is 
important that it be reasonably accurate, while still 
being efficient enough for real-time processing.  
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Background subtraction uses a statistical model of 
the background. The most accurate method is 
considered to be adaptive background subtraction [12, 
16], but the increased calculations are too slow for our 
hardware platform, so a simplification is used: the 
background model is obtained by averaging 10 
consecutive frames of video with little or no motion 
between them. 

With the background model initialized, background 
subtraction is performed on each new frame in the 
RGB domain, unlike most systems, which use only 
greyscale intensity [3, 5, 10, 12]. Xu and Ellis [16] 
demonstrated significantly improved accuracy with 
chromaticity-based background subtraction. The per-
pixel computation required for our background 
subtraction (three integer comparisons) is still less than 
even the simplest single-Gaussian-per-pixel greyscale 
adaptive background subtraction. 

The automatic labeller features global failure 
avoidance, alerting it to cases where the whole frame 
may be unsuitable for use. This could be because of a 
lighting change or other large-scale environmental 
change in the scene, requiring re-calibration of the 
background model. If the percentage of foreground 
pixels in a frame is too high, the automatic labeller 
temporarily shuts itself off, ignoring the current frame 
and re-initializing the background model. In our setup, 
44% was determined to be a good threshold 
percentage, although this depends on the camera sensor 
used and the scene being monitored.  

Next, adjacent foreground pixels are grouped 
together into “blobs” of motion. Each blob undergoes a 
local failure avoidance check, designed to weed out 
erroneously-labelled person examples. A blob is 
discarded if it does not meet a minimum size 
requirement or if its aspect ratio does not approximate 
that of a person.  

The segmented motion blobs that pass the checks 
are then labelled as “person” examples. Any motion 
blobs that failed the checks are left unlabelled, 

meaning they are not used for training. All other areas 
of the image are labelled “non-person”. Rather than 
crop and store any images, the automatic labeller 
maintains a list of person example bounding boxes. 
During person detection, the current scan window can 
be quickly compared to the person example list to see 
if there exists a close match. If a match is found, the 
subimage’s true label is “person”. Otherwise, if no 
unlabelled areas exist in the scan window, the true
label may be safely set to “non-person”. This true label 
will be compared to the results of the classifier (the 
predicted label), as explained in the next section. 

The performance of the labeller was suitable for 
real-time processing and made up only 5.6% of the 
per-frame processing time [1]. 

2.2. Feature-based person classifier 

Person detection is performed with a classifier that 
learns the appearance of a person by using a set of 
image features, each of which is a wavelet template of 
the kind proposed by Oren et al. [11]. Each feature is a 
localized bandpass filter with a 2D structure. A 
window of interest is scanned across the image at 
different scales, and the classifier is applied to each 
subimage by evaluating all of its features. Feature 
values are then combined with the feature weights used 
by Winnow (see Section 2.3), to produce the 
classifier’s prediction (“person” or “non-person”). 

Instead of using raw pixel values to compute each 
feature’s value, we use a much faster alternative 
developed by Viola and Jones [14], called an integral 
image. The integral image is an intermediate 
representation, computed only once per frame, 
allowing rectangular regions of the image to be 
summed very quickly. It is represented as a 2D matrix 
of the same size as the original image. The integral 
image (ii) value at a point x,y is the sum of all image (i)
pixels above and to the left of x,y (inclusive): 

' '

( , ) ( ', ')
x x y y

ii x y i x y
≤ ≤

=  (2.1) 

Any rectangular region can then be summed with 
only four array references and a sum of four terms. The 
sum of the pixels a rectangular region, whose vertices 
are labelled A, B, C, and D (clockwise from the top-
left), is then simply: 

( ) ( ) ( ) ( )sum ii D ii C ii B ii A= − − +  (2.2) 
During the classifier’s initialization, an 

overcomplete feature set is created by varying the 
position and scale of the features across a basic 48x16 
subwindow. As the subwindow is scaled during 
scanning, so are the classifier’s features being applied. 
With the integral image technique, the computation 
time for the classifier is actually independent of the 

Figure 1. System diagram of the single-
camera person detection application. 

Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV’06) 
0-7695-2542-3/06 $20.00 © 2006 IEEE 



scan window’s size, allowing efficient use of the 
classifier and its features at a variety of scales. 

This classifier functions as the system’s internal 
representation of a person’s appearance. Accordingly, 
using these features is preferable to raw pixel values, 
since we seek to capture general trends in the visual 
structure of a person, rather than specific pixel 
relationships. This allows our classifier to generalize 
and handle new person instances. In addition, starting 
with a large pool of features and using machine-
learning techniques allows the classifier to capture 
non-intuitive details of a person’s appearance that a 
hand-coded set of rules might not. 

This classifier is a form of appearance-based person 
detection, which is well-suited for low-cost embedded 
hardware, as they do not require as much computation 
as model-based methods. 

2.3. Online learning with Winnow 

The Winnow learning algorithm [7] is an online-
learning algorithm that trains a two-class classifier by 
learning a monotone disjunction from a high-
dimensional feature vector. Winnow efficiently 
separates a number of relevant attributes from a much 
larger number of irrelevant ones. Consequently, this 
algorithm is ideally suited to our classifier, since we 
start with a large set of image features. 

Winnow maintains a large pool of “experts” as a 
vector of Boolean variables with an associated vector 
of weights (one per variable). Each expert gives a 
prediction, and the prediction of the overall classifier is 
the dot product of the two vectors. If it is above the 
threshold θ, the classifier decides “person”, otherwise 
it decides “non-person”. The classifier is updated only 
when it is wrong, in which case experts are either 
increased or decreased by a weight update multiplier α.

Our classifier uses the balanced variation of the 
Winnow algorithm, which uses a weight vector for the 
features and another for their complements (see [7] for 
greater detail). Since Winnow adjusts weights by either 
multiplying or dividing them by a factor α, and that the 
weights are initialized to 1, each weight can be simply 
expressed as a power of α. Thus, only the exponents of 
α are stored, to save memory. The multiplier α is set to 
2, allowing weight updates with bit-shifting. 

Since Winnow uses Boolean features, we must map 
our image features (which return integer values) to a 
suitable vector of Boolean features. We therefore 
construct our Boolean feature vectors from the 
variables x < t, for each possible image feature x and 
each possible feature value t. Using this mapping, what 
could be nonlinear relationships between the original 

image pixels can be converted to linear relationships in 
this representation. 

Since there is a total of 2,283 image features used in 
the classifier, each with a large range of possible 
values, we use the virtual weight algorithm [8], as Nair 
did [10], to efficiently represent the vectors. For a 
given image feature, each range of consecutive 
Boolean features with the same weight is represented 
virtually, by storing only a single weight and the 
delimitations of that range.  

Additionally, since the vast majority of the Boolean 
features will be irrelevant for representing a person, we 
prune features whose weights are 220 times smaller 
than the current biggest weight in the classifier, to 
further reduce memory and computation loads. 

Winnow also provides the adaptability we seek, 
since learning is continuously performed online. Error 
accumulation is prevented, since if it starts to diverge 
from the automatic labeller’s results, Winnow will 
compensate by training the classifier to correct any 
errors that it might initially make. 

3. Multi-camera collaboration 

Based on the observation that the single-camera 
system suffers from many false positives, and that 
these errors are generally the result of a scene feature 
that happens to be roughly person-shaped, it is 
reasonable to think that detection results can be 
improved by the collaboration of multiple cameras 
with overlapping FOVs. A scene artefact that appears 
person-shaped in one camera can look quite different 
from another point of view. 

Collaboration is accomplished by learning the 
spatial relationship between camera FOVs, allowing 
each camera to report its local detections and receive 
confirmation. This technique uses an initial calibration 
procedure, explained in Section 3.1, through which 
each camera can learn the correspondences between 
points in its FOV and those in the other camera’s FOV. 
Once this one-time calibration is complete, cameras 
can use these correspondences to confirm detections 
(see Section 3.2). 

Currently, our system is run on two camera modules 
(referred to as Cam1 and Cam2), of the type presented 
in Section 2, arranged so that their FOVs overlap. The 
two cameras were placed in a corridor with heavy 
traffic. Cam1 was placed about a meter above the 
ground (located in region 3 of Cam2’s view in Figure 
2), and Cam2 was mounted on the ceiling (located in 
region 13 of Cam1’s view in Figure 2). The detection 
application was run on 30,000 processed frames. The 
camera modules are each connected to a wireless 
network connected to the Internet, in order for the 
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Network Time Protocol (NTP) daemon on each 
module to synchronize the on-board clocks to a 
reference clock. NTP can provide accuracy to within a 
few milliseconds, which is sufficient for this design. 
During calibration, timestamps on each image are used 
to correlate detections, making it important that the 
clocks are aligned. 

Once a person is detected in one camera, it sends 
out a notification to the other. Cameras use the spatial 
association matrix learned from calibration to 
determine if their local detections need confirmation 
and if so, what remote detections would correspond. 
Using passive notifications allows us to create a peer-
based architecture (as opposed to a master-slave 
design) that is suitable for scaling up to large numbers 
of cameras. 

3.1. Calibrating spatial associations 

This multi-camera system uses a robust, 
unsupervised calibration procedure that is run only 
once after the cameras are first setup. The idea is to 
create a simple representation of the spatial 
relationship between the overlapping FOVs of each 
camera. This shifts much of the computational load of 
spatial association away from the actual person 
detection system, thus improving its real-time 
performance. 

The calibration procedure is designed to be as 
simple as possible to run, making it suitable for large-
scale installations. During this phase, one person 
simply walks around each camera’s FOV, especially 
where they overlap. Each camera grabs and timestamps 
as many frames as it can. The actual calculations are 
performed after this step, in order to maximize the 
framerate of each camera. 

Once the image capture stage is complete, a simple 
person detection algorithm, nearly identical to the 
automatic labeller explained in Section 2.1, is applied 
to the sets of frames. Since calibration occurs under 
controlled conditions (only one person in the scene and 
no sudden lighting changes), the results can be 
assumed to be fairly accurate. Motion-based detection 
is needed because the classifier has not yet been trained 
at this point. 

Next, the center of mass of each detected blob is 
calculated. This is more accurate than using the center 
of the person bounding box, and since the calibration 
need only be performed once, the sacrifice of 
computational time is acceptable.  

The system now has two timestamped lists of 
pinpointed person detection locations, one from each 
camera. Using a temporal alignment procedure similar 
to that used by Stein [13], it creates a list of all possible 
detection pairs (one from each camera) whose 

timestamps differ by less than a small time period, 
typically less than the slowest frame interval on the 
cameras. 

In order to increase generalization and reduce 
runtime complexity, each frame is divided into 32 
regions (see Figure 2). The goal is to associate each 
region of a camera’s frame with one of the 32 regions 
in the other camera’s frame. The calibration program 
goes through each of the associated detection pairs and 
uses bilinear interpolation to increase association 
strength between the four closest region centres of the 
Cam1 detection and the four closest region centres of 
the Cam2 detection. The four closest region centres are 
used (weighted according to bilinear interpolation) 
instead of the single closest region, in order to 
maximize the applicability of the results. This allows 
us to build associations even in regions in which a 
person might not have been directly centred. 

When this process is complete, a 32x32 matrix of 
association values between frame regions in each 
camera is produced. The values in this matrix can be 
interpreted as the strength or probability of the 
association between two regions. Values that are close 
to zero (below a certain minimum association 
threshold) suggest no association between those two 
regions. By finding the row with the highest 
association value for a given column (or vice-versa), 
we can determine the best match between a specific 
local region and a region in the remote camera. If the 
highest value found in such a search is below the 
minimum association threshold, this indicates that the 
given local region has no corresponding remote region, 
and is thus considered out of the other camera’s FOV. 
This information will be useful for handling occlusions 
during runtime. Table 1 shows, for several regions in 
Cam1’s frame, the best corresponding match in 
Cam2’s frame, along with the association value (the 
region numbers refer to Figure 2). 

Table 1. Spatial associations for several 
regions in Cam1. Region numbers refer to 
Figure 2. 

Cam1 
Region 

Best Match 
Cam2 

Assn. 
Strength 

Figure 2. The 32 regions of each frame. 

Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV’06) 
0-7695-2542-3/06 $20.00 © 2006 IEEE 



Region (out of 1.0) 
8 15 0.42 
9 12 0.67 

10 4 0.19 
13 10 0.23 
14 10 0.17 
15 No match N/A 

This procedure is used for two overlapping cameras. 
In a wide-area surveillance system with many cameras, 
this calibration procedure could start off using a 
custom protocol similar to the Dynamic Host 
Configuration Protocol (DHCP) to discover how many 
cameras are on the network and what their network 
addresses should be. 

3.2. Collaborative peer-based camera network 

The person detection system presented in Section 2 
is now modified to make use of the association matrix 
learned during calibration. Figure 3 shows the 
complete multi-camera algorithm.  

Each camera runs a listener thread, to wait for 
incoming detection notifications from the other 
camera. These notifications include a timestamp, and 
the location of a detected person. They are put in a 
remote detection queue and will confirm local person 
detections. NTP synchronizes the camera clocks, so 
that timestamps may be compared across cameras.  

The main program thread is very similar manner to 
the stand-alone system in Section 2. The automatic 
labeller examines each new frame, then a person 
detection classifier is scanned across the frame to look 
for instances of people. Note that frame captures are 
now synchronized to the slowest camera. Online-
learning is performed as before, by comparing the 
output of the classifier and the automatic labeller, then 
applying the Winnow algorithm when they differ. 
However, instead of simply using the predicted label 
(the classifier’s output), the results are first verified 
with those of the other camera. 

If the predicted label is “person”, the spatial 
association matrix is used to check if this detection is 
visible to the other camera. The association values 
between the local detection region and all the remote 
regions are examined: if none of them are above a 
minimum association threshold, the detection is 

considered to be outside of the other camera’s FOV. In 
this case, the predicted label is used the same way as in 
the single-camera system. Note that because the 
classifier is applied to a scan window, the exact person 
shape is not available; the camera must approximate 
the person’s centre point with the centre of the 
detection bounding box. 

Figure 3. The multi-camera algorithm. 
Statements in italics are specific to the multi-
camera version. 
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If the detected person is within other camera’s 
FOV, the camera then seeks confirmation. A 
notification of the person detection is sent out. This is 
the type of message handled by the listener threads. 
The queue of remote detections is then examined for 
recent detections already sent by the other camera. If 
any temporal matches are found (within the 
approximate processing time of a single frame), the 
spatial association matrix is used to check for a spatial 
correlation. If a remote detection matches both 
temporally and spatially, the local detection is 
confirmed and the predicted label is set to “person”. 
No explicit confirmation of this match is sent to the 
other camera, since it will come to the same conclusion 
on its own. If no match is found, the detection is placed 
into a local queue, for comparison with future remote 
detections as they are received by the listener thread. 
This provides robustness against network latencies and 
processing delays on each camera. 

The simple symmetry of this communication, 
requiring only straightforward notifications, results in a 
flat, peer-to-peer network architecture that can be 
easily scaled up to a large number of cameras. 
Scalability is also increased by the low-bandwidth 
requirements of this system. 

4. Results 

The motivation behind the multi-camera 
collaboration was to improve the accuracy of person 
detections by reducing the number of false positives 
returned by the classifier, as compared to the single-
camera implementation. In this respect, multi-camera 
collaboration was quite successful. At the end of 
30,000 frames in which 1,349 subimages per frame 
were processed, both cameras achieved a noticeable 
improvement. For example, Cam1’s detection rate, or 
the percentage of people correctly spotted, increased 
slightly from 86% to 91%, as shown in Figure 4. This 
modest improvement was expected, since the goal of 

our collaboration was to reduce the false positive rate, 
shown in Figure 5. This rate is the number of non-
person images mistakenly identified as people, divided 
by the total number of true non-person images. Figure 
6 shows that the false positive rate dropped much faster 
in the multi-camera implementation and continued to 
be smaller. After 30,000 frames, the false positive rate 
was 0.21x10-6, compared with 1.36x10-6 for the single-
camera setup: collaboration thus reduced the number 
false positives by over 6.5 times. 

Figure 4: Cam1’s detection rate, for single-
and multi-camera implementations. 

Figure 5. Cam1’s false positive rate, for 
single- and multi-camera implementations. 

Figure 6. Distribution of false positives 
(grouped into bins of 5000 processed 
frames), for single- and multi-camera setups.

Figure 7. Examples of positive detections.
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Examples of the system’s person detection results 
are shown in Figure 7. The right-most example shows 
an incorrectly-classified non-person (i.e. a false 
positive). The bounding boxes of detection results 
appear slightly off-center, due to the scan window 
moving at fixed, discrete steps during classification. 
The classifier returns the current location of the scan 
window when a positive result was detected, which 
approximates the location of the detected person. 

5. Conclusions 

We have presented our efforts towards an intelligent 
multi-camera surveillance system that uses a 
distributed network of camera modules, each capable 
of onboard processing and automatic person detection. 
A method for unsupervised, online learning of a person 
detection classifier was described, and this learned 
classifier was then integrated into a multi-camera 
system to improve detection performance. A novel, 
unsupervised method of camera calibration was 
presented, allowing cameras to learn the spatial 
relationships between each other in a one-time setup 
phase. Execution of this calibration step is simple 
enough to be used with a large network of cameras. 
The spatial associations learned from this calibration 
are then applied during person detection, allowing 
cameras to match and verify corresponding detections. 
The computational efficiency of this design is well-
suited for real-time performance on low-cost hardware. 
The results of this multi-camera system were positive, 
showing that the system benefited from collaboration. 
The novel contributions of this work are the spatial 
calibration technique and the extension of Nair’s work 
[10] over a multi-camera network to achieve 
performance gains. 
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