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Abstract

Most algorithms in stereo vision work on rectified im-
ages and therefore find the point correspondences row by
row. So especially for standard block-matching algorithms
periodic patterns are a problem in determining correspond-
ing features reliably. This contribution describes a segment-
based approach that allows the detection and removal of
single outliers in an arbitrary dense disparity map and so
improves the data quality. The first step is a matching of ver-
tical edge segments in the images in a coarse to fine strat-
egy. Then the segment information is taken into account.
Even more, when using segments there is only need to cal-
culate feature correspondences for a fraction of the image
rows, which considerably reduces computation time. By fus-
ing this information with the disparity map of the standard
block matching algorithm a significant improvement of the
resulting disparity map in the presence of periodic patterns
can be reached.

1. Introduction

Stereo vision has been an active field of research for
more than three decades. To date, stereo systems are com-
mercially available as well as open-source implementations
([1], [2]). However, recent investigations ([3]) still revealed
room for data quality improvement, namely in the presence
of periodic patterns. Such structures in the scene can cause
correspondence mismatchings. This happens quite often
in real world and especially urban scenarios and may be a
big problem for algorithms that work with the resulting 3D
data.
The goal of the proposed algorithm is to increase the
robustness of cheap and fast algorithms in the presence
of periodic patterns. In this context robustness means the
reduction of wrong disparity values in the resulting dense
disparity map. Therefore a fusion-based strategy is used.
A dense disparity map is calculated that is independent of

the dense map of the block-matching algorithm. A feature-
based optimization is performed to find correspondences
of vertical edge elements in an image pyramid. By con-
sidering the whole edge segments outliers or unconfident
disparities can be rejected. At a final step a fusion between
the two disparity maps is done. The algorithm is designed
to run in real-time.

The next section gives an overview of state-of-the-art
stereo processing techniques and how they have been con-
sidered in this work. Section 3 presents a segment-based
algorithm that addresses the problem of periodic structures.
The vertical edge segment extraction is sketched, followed
by the optimal matching approach. The disparity values be-
tween the segments are interpolated. Then a fusion step
is performed where the initial dense disparity map is fused
with the calculated sparse but robust disparity map. In sec-
tion 4 some results on real data are shown.

2 Related Work

Without loss of generality one can assume that the ste-
reo image pair is rectified ([4], [5]). This means that cor-
responding points are in the same image line, the so-called
epipolar line, and hence the correspondence search can be
reduced to a 1D search. Features on an epipolar line respec-
tive a row in the left image need to be matched to features
in the same row in the right image.
In this paper the benefits of several stereo techniques are
considered, such as dense or pixel-wise ([6], [7], [8]), sparse
([9], [10], [11]), local ([12], [13], [14], [11]) and global
techniques ([7], [15], [8]).
[14] implements a block matching algorithm. Block match-
ing is also the most popular algorithm used in commercial
stereo systems because of its simplicity (see also [1]). Be-
cause the disparities are searched sequentially for each pixel
or feature, these algorithms are highly error-prone to peri-
odic patterns so that some disparity post processing has to
be implemented.
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[11] calculates sparse depth maps using a pyramidal ap-
proach and vertical edges that is similar to the segment-
based approach in this paper. Mismatches made in an early
stage of the pyramid connot be removed during the process-
ing procedure. However, [11] only generates sparse depth
maps and does not explicitly consider the information along
the whole segments, which is used in this paper to refine the
results.
[16] is an approach especially designed for parallel process-
ing architectures and multi camera stereo applications. It is
feature based and creates clouds of 3D points. The topic
of periodic structures has not been discussed so far for this
system. As it is based on the backprojection of image fea-
tures into planes one can only assume that periodic patterns
may lead to ambiguities that need to be resolved.
[7] calculates a minimal cost path through a matrix where
each entry relates to a distance measure between a pixel
in the left image and a pixel in the right image via dy-
namic programming. [8] minimizes an energy function to
find the globally optimal assignment for each pixel. Both
dynamic programming and energy minimization result in
dense depth maps and they consider the information of each
pixel on the epipolar line. Although both algorithms should
be able to handle periodic structures both algorithms are not
considerable in real-time applications on a standard PC be-
cause of the high computational cost.
A probabilistic approach is given in [17], but as it has to
estimate parameters in an expensive procedure it is also not
executable under real-time conditions.
[15] used an optimization strategy that comes close to the
proposed algorithm, except in this paper features are used
instead of all pixels within an epipolar line to decrease com-
putation time. The Hungarian Algorithm is used to find the
minimal path through a cost matrix. As a result each pixel
in the left row is assigned to a pixel in the right row so that
the overall distance between the pixel assignments are min-
imal. Referred to the authors periodic structures can be well
handled. Hence the information of the whole row is consid-
ered.
The approach of [18] seems to be quite promising, but no
evaluation in the specific handling of periodic pattern has
been done so far.

3 Robust Stereo Processing

For the following sections the images are assumed to be
rectified so that the epipolar lines are colinear and corre-
sponding image points are in the same image row ([4], [5]).
The initial depth map that is used in this paper is the result
of the edge-based block matching implementation of Kono-
lige ([2], [1]), but any other depth map can be used, too, for
the algorithm presented in this paper. The advantage of the
Konolige algorithm is its low computational cost on a stan-

dard PC.
The algorithm proceeds as follows: First, edge segments are
extracted and correspondences of edge elements are found
on everyrth row. Then the disparities for the whole edge
segments are interpolated. The result is a sparse dispari-
ties map of edge segments that can be used to detect and
remove outliers in the initial map. Finally, a fusion step is
performed that takes the result of the inital, dense disparity
map and the segments’ information into account to yield a
more robust disparity map (see fig. 1).

3.1 Correspondence Search

As the proposed algorithm should be able to handle
VGA (640×480 Pixels) images in real-time, this approach
focuses on strong image features. In this paper these
are vertical edge segments with a large gradient so that
correspondences can be found reliably. Regions between
such features are considered as homogeneous or at least as
regions with a slowly changing contrast. Depth values in
these areas can only be estimated depending on the relative
adjustment of strong features. Therefore the x-gradient of
the images is calculated. A pixelx is assumed to be an edge
pixel if and only if the gradientg(x) is a local maxima or
minima. To get the respective segment the edge pixels are
concatenated with the three pixels in the row above and
below. If there is more than one possible edge element
to be connected to the segment, a new segment will be
initialized. To reduce the influence of noise for the further
processing segments with less thanεS pixels are rejected.
The task of the correspondece search is to find an optimal
matching of all features in the same epipolar line. Along
an epipolar line a feature is given at the intersection of th
epipolar line with an edge segment that passed the vertical
connectivity test. A cost matrix is filled by calculating
distance measures for all possible pairs of correspondences
(see fig. 2). An optimal path through the cost matrixC is a
minimum cost path and hence an optimal matching.
The Hungarian Method finds an optimal path in a cost
matrix. This technique is equivalent to finding the maxi-
mum weighted matching on a bipartite graph([19], [20]).
The algorithm has polynomial running time. The proposed
approach is motivated by [15]. But instead of matching
every pixel just single features are matched. The cost
matrix C is filled with the results of a cost function
ρ(xi

L,xj
R) of the two sets of featuresxi

L and xj
R on the

left and right epipolar line respectively withi = 1, ..., N
and j = 1, ...,M andC ∈ Rmax(N,M)×max(N,M). The
remaining matrix elements are set to∞. The normalized
correlation coefficient (NCC) between two image points is
used which is defined as
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Figure 1. Fusion of the initial disparity map with the segment-based map.

NCC(xL,xR) =

∑
i∈U (IL(xL + i)− IL)(IR(xR + i)− IR)√∑

i∈U (IL(xL + i)− IL)2
∑

i∈U (IR(xR + i)− IR)2

(1)

whereIL, IR are the mean intensity values inU in the left
and right imagesIL andIR. U is am×m correlation mask
centered atxL respectivexR. These image points are edge
elements along the epipolar line that belong to a vertical
edge segment. Experiments yielded good results with the
NCC. But any other reasonable distance measure could be
considered, too.
To avoid mismatches some restrictions are made. First of
all the assumption is made thatxL > xR. Furthermore,
only disparities smaller than a given threshold are consid-
ered such thatxL − xR < εdisparity. The costs for all pairs
of points that violate these two conditions are set to infinity.
The Hungarian Algorithm has no implicit ordering con-
straint e. g. like dynamic programming. It may happen

in practice that correspondences are crossing, this means
for two corresondence pairs{x1L

, x1R
}, {x2L

, x2R
} that

(x1L
< x2L

andx1R
> x2R

) or (x1L
> x2L

andx1R
<

x2R
). But earlier experiments have shown that these cross-

ings are very seldom and therefore can be neglected in this
approach. Diagonal paths in the cost matrix are enforced by
weighting adjacent matrix elements stronger depending on
their diagonal, previous cost entry. Then the final match-
ing is checked again and remaining crossings are solely re-
moved.
One popular strategy in robust stereo processing is the us-
age of image pyramids by subsampling the original images.
An edge pyramid is used where the edge elements are prop-
agated through the pyramid levels, similar to [11]. This step
is important as the structure of periodic patterns is smoothed
by subsampling the image. This helps to find correct corre-
spondence matchings in a coarse level without having the
difficulties one may usually have in the original images.
The correspondences found in the coarse level are used as
a boundary in the next level which means that the calcula-
tion of the minimal cost path has only to be executed for
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Figure 2. The Hungarian Method finds a min-
imal, bipartite cost matching in a cost ma-
trix C. C is filled with distance measures
between the features found on correspond-
ing epipolar lines. The long marked features
are features with no corresponding feature
on the other epipolar line.

a small cost matrix. So, this approach trusts very strongly
early matches in the pyramid. However, the next section
shows how such mismatchings can be revealed using the
segments’ information.

3.2 Improving Robustness using Seg-
ments

For each vertical edge segment a disparity histogram
is calculated where the disparity valuesd ∈ N. Therefore
the rows and their disparity values are counted along a
single segment. To evaluate the histogram some param-
eters are needed: The most frequent disparitydf and
the corresponding number of rowsqdf

that contain this
disparity, the total number of rowsQtotal and the number
of different disparity valuesNdifferent on the segment.
The distribution of the disparity values along the segment
is assumed to be smooth. Next, the intervalI(df ) on the
histogram is defined.I(df ) containsdf and its adjacent
disparity valuesdi with di 6= 0. Furthermore, the total
number of disparity values insideI(df ), QI , the total
number of disparity values outsideI(df ), QI , the number
of different disparity values insideI(df ), NI , and the
number of different disparity values outsideI(df ), NI is
defined. Using these parameters one can formulate the ratio

RI =
QI ·NI

QI ·NI

. (2)

The closerRI is to zero the more unambigous is the
disparity of a segment. Segments for whichRI is too
big are neglected. Fig. 3 shows an example of how to
calculate the values. IfRI is big enough all disparities on

Figure 3. Example disparity histogram of a
single segment. df = 4, qdf

= 15, I(df ) =
[3, 5], Qtotal = 32, QI = 23, QI = 9, Ndifferent =
5, NI = 3, NI = 2.

the histogram that are outsideI are deleted on the segment.
Then a linear interpolation between the remaining disparity
values on the segment is performed. So, single outliers
along a segment can activily be replaced. It becomes clearer
now why there is no need to calculate the correspondences
for every image line: By using the histogram, the local
disparity distribution is approximated and can be used to
make a reliable estimation of the disparities for the whole
segment. So, obviously, when taking only everyrth line,
processing time decreases approximately by a factor of
r. Fig. 4 shows the resulting segments from a sparse set
of feature correspondences. Finally the correspondences
in each line are refined to subpixel accuracy by fitting a
quadratic curve to the image gradients:

x∗(x0) =
1
2
· g−1 − g1

g−1 − 2g0 + g1
. (3)

3.3 Fusion of the two Depth Maps

First of all the disparity map is filled with the values
from the initially calculated, dense mapD1. This map is
the result of the standard block-matching algorithm. So, the
task is to detect the uncertain parts of the map and replace
it with either more senseful values or no values at all, to
get the final disparity mapD. For this purpose a second
dense depth mapD2 is created by simply interpolating hor-
izontally and linearly between two adjacent edge segments
if the x-distance‖∆x‖ < ε∆x and the difference of the
disparity values‖∆d‖ < ε∆d. A pixel x of the disparity
map is meant to beuncertain, if

‖D1(x)−D2(x)‖ > 1. (4)
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Figure 4. Correspondence images for a periodic pattern. Left: Found disparities for every 5th row.
Right image: The resulting segments after histogram analysis. Notice that wrong correspondences
in the left image (dark points on the periodic pattern) can be caught in the segment representation.

So, the pixel values of the final disparity map are filled with

D(x) =


D1(x), x is certain

0, ∆d > ε∆d

D2(x), ∆d ≤ ε∆d and ∆x < ε∆x

0, else

(5)

Fig. 5 shows an outline of the proposed algorithm.

4 Experimental Results

The proposed algorithm ran on an Intel 2GHz machine.
A VGA image pair was computed in∼ 1.5s − 2s without
any specific software optimization. The benefit of this ap-
proach becomes clear in the presence of periodic pattern.
So the behaviour of both algorithms, block matching and
the presented segment-based algorithm, was tested with real
images of periodic patterns. The Middlebury Stereo Vision
Data Base [21] was also used to give some objective results
(see fig. 7).
Although the Tsukuba image may seem less intuitively af-
ter the fusion, the data itself is less noisy (but also sparser).
Whereas the limbs in the Tree image look finer in the fu-
sioned disparity map. The biggest improvement could be
reached with periodic pattern. As the block matching obvi-
ously fails within such regions the fusion maps show much
more reliable results. This is quite important for outdoor
applications as especially in urban environments periodic
pattern just like window frontages or tree rows may oc-
cur very often. Fig. 7 shows four examples of images and

the processing stages of the algorithm. In fig. 8 the block
matching-based input disparity map is compared with the
fusion result from the presented algorithm. It can be seen
that a lot of noisy disparity estimations could be either re-
moved or corrected. Even if not every wrong estimated dis-
parity could be removed, one can see a significant improve-
ment.
Fig. 6 shows clearly the benefit that can be reached by fus-
ing the block matching disparity map with the presented
segment interpolated map. The upper histogramm shows
systematically big peaks. This is an expected behaviour of
the algorithm because of the periodic confusion (see [3]).
So in this area it is difficult to determine the real distance of
the periodic pattern in the scene. The histogram of the fu-
sioned depth map has only one significant peak around 17
and one more small peak at 48 as a result of a correspon-
dence mismatching.

5 Conclusion

An approach was presented to reduce the number of er-
rorneous disparities caused by periodic patterns in the stereo
images. Therefore a combinatorial algorithm was chosen
to find a minimum cost matching of all features along two
coresponding epipolar lines. The segments were analized to
remove remaining outliers and to yield a confident but not
necessarily dense disparity map. By fusing this disparity
map with a map resulting from a standard block matching
algorithm, a meaningful improvement of the data quality
could be shown especially for vertical, periodic structures.
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1. Get undistorted, rectified images

2. Calculate initial, cheap disparity map

3. Build image pyramid

4. Calculate gradient image and extract edges at local maxima

5. Find vertical edge segments by concatenating the edge ele-
ments

6. Propagate the edge elements through the pyramid

7. for levell = L− 1...0, for everyr(l)th Line:

• Fill cost matrix

• Find minimal path using the Hungarian Method

• Remove crossings

• Use correspondences as search borders for the next
level

8. Calculate and analyze disparity histogram for every edge
segment

9. Interpolate along segments and remove outliers

10. Calculate subpixel disparities for each correspondence using
the gradient image

11. Fusion of the interpolated segment disparity map and the ini-
tial disparity map

Figure 5. Algorithm outline.

The approach works as an add-on for precalculated dense
depth maps and runs on standard PC hardware with reason-
able computational time. More test series have to be done
with periodic pattern to verify the robustness in a large set of
scenarios. Therefore a detailed evaluation scheme like in [3]
should be used to make not only qualitive but also quantitive
statements. There are plans to implement this algorithm in
the near future on a hardware and software optimized plat-
form to yield a significant computational speedup.
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Figure 7. From left to right: Tsukuba, Tree (both from [21]), urban scene and periodic pattern . From
top to bottom: Left camera images, disparity maps from [1], linewise feature disparities, segment
disparities, interpolation between the edge segments, certainty maps, fusion maps.
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