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Abstract 
 

This paper presents an integrated modeling system 
capable of generating coloured three dimensional 
representations of a scene observed from multiple 
viewpoints. Emphasis is given to the integration of the 
components and to the algorithms used for acquisition, 
registration and final surface mapping. First, a sensor 
operating with structured light is used to acquire 3D 
and colour data of a scene from multiple views. 
Second, a frequency-domain based registration 
algorithm computes the transformation between pairs 
of views from the raw measurements and without a 
priori knowledge on the transformation parameters. 
Finally, the registered views are merged together and 
refined to create a rich 3D model of the objects. Real 
world modeling examples are presented and analyzed 
to validate the operation of the proposed integrated 
modeling system. 
 
1. Introduction 
 

Scene reconstruction is the process of generating a 
3D model of an object or a scene. This model can be 
used for various applications such as measurement, 
mapping, recognition, obstacle avoidance or 
augmented reality. Much literature has dealt with the 
object reconstruction problem; however, many 
constraints still remain on the objects being imaged as 
well as on the surrounding environment. The goal of 
this work is to develop a low cost scene reconstruction 
system to be used in robotic exploration of unknown 
environments. The accuracy and precision of the 
models are secondary to the flexibility, ease of use and 
robustness of the sensor, since the primary motivation 
is to interpret and map the environment. 

Such a modeling system usually consists of three 
main components, the acquisition, the registration and 
the data fusion parts. The acquisition stage takes care 
of acquiring multiple 3D maps of the scene, while the 

registration component estimates the transformation 
between the multiple views. The data fusion procedure 
merges the respective data sets and estimates the 
surface over the set of objects. 

Most current systems require that the registration 
component be highly coupled to the acquisition 
component. For instance, the classical turntable 
approach [1], [2], [3], [4] requires calibration and 
synchronization between the acquisition and the 
rotating devices. It also usually puts a limit on the size 
of objects that can fit on the turntable. In order to 
create a flexible modeling system that is operational 
with minimal constraints on its motion, a reduction of 
the coupling between the acquisition and the 
registration is necessary. This implies that all 
components must be selected and designed so that they 
operate independently. As a result, the position of the 
acquisition system with respect to the objects being 
imaged should remain flexible. This way, multiple 
measurements can be collected on the scene or objects 
by freely moving the acquisition platform. 

The cost of the system is mainly influenced by the 
technology used in the acquisition stage. In order to 
keep this cost low, laser scanners are not considered 
here and a camera-based system is selected. Most 
vision-based and passive acquisition techniques rely on 
shape from silhouette [1], [5]. The disadvantages with 
these approaches are the difficulties of background 
segmentation and, more importantly, the need for the 
calibration between views to be known a priori, which 
conflicts with the notion of low coupling between the 
acquisition and registration components. An active 
vision technology is therefore preferred in order to 
directly acquire a depth map of the scene from each 
viewpoint. Using the structured light technique 
introduced by Desjardins et al. [6], a precise and dense 
3D map can be achieved on featureless objects. 

As for the registration, the objective is to eliminate 
the need for initially estimating the movement of the 
acquisition device between views. Registration 
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parameter estimates should come entirely from the 
actual 3D maps, provided that there is adequate overlap 
between them. Two lines of thought exist on how to 
solve this problem. The first one is to extract some 
features that are common between the two different 
views, and match them [7], [8]. Most of the complexity 
in this solution comes from determining specific 
features and validating their respective matches. The 
second approach is to align 3D data sets without any 
analysis of the structure of their content, which can be 
achieved with the iterative closest point (ICP) 
algorithm of Besl and McKay [9]. ICP works very well 
in general, but the technique requires the data to be 
closely aligned from the beginning in order to avoid 
convergence to a local minimum solution. In the 
proposed framework, an original approach introduced 
by Curtis et al. [10] is considered. This method, which 
was inspired by Lucchese et al. [11], relies on using a 
frequency domain transformation to decouple the 
estimation of the rotation from that of translation to 
generate first estimates of the registration parameters. 
The ICP algorithm can then efficiently refine these 
estimates regardless of the sensor’s viewpoints. 

Finally, in order to produce a model of the scene, a 
surface map can be extracted from the unorganized 
point cloud that results from the acquisition and 
registration steps. This surface is easy to interpret 
programmatically by a navigating robotic platform and 
visually accurate for a human operator to recognize 
important features. There is extensive research in this 
field [12], [13], [14] and the development of surface 
maps remains beyond the scope of the current work. 
Here, the algebraic point set surface method [15] is 
applied to the resulting point cloud to simplify and 
merge the modeling results. 

In section 2, the proposed integrated framework for 
scene reconstruction is presented. The selected 
acquisition, registration and data fusion components 
are detailed in sections 3, 4 and 5 respectively. 
Experimental results are analyzed in section 6 to 
validate the technique. 
 
2. Proposed Integrated Framework 
 

The proposed framework combines original 
solutions for acquisition, registration and data fusion to 
produce an integrated 3D modeling system that can be 
used to estimate the shape and colour of a scene from 
multiple views with minimal intervention from the 
operator. Fig. 1 illustrates the interconnections of the 
three main components and the flow of data between 
them. 

The acquisition module, based on structured light 
stereoscopic imaging, successively acquires several 
views of the scene before it. Depending on the 
dimension of the subject under analysis, the object 
imaged or the sensor itself is translated and rotated to 
capture multiple views. Images are acquired with 
structured light before being processed to extract 
colour coded feature points on which triangulation is 
performed. Each initial view generates an independent 
3D point cloud relative to the corresponding pose of 
the sensor. 

These point clouds are transferred to the registration 
module where they are first mapped as voxel clouds 
and then converted to the frequency domain. The 
registration procedure estimates the rotation and 
translation parameters that represent the relative 
displacement of the sensor between successive views. 

 

Figure 1. Interconnection of acquisition, registration and data fusion modules. A number, n, of point clouds (PC) are 
acquired and converted to voxel clouds (VC) and then to the Fourier (F) domain. The translation (T) and rotation (R) 
between the n-1 pairs of views are estimated and the point clouds are merged to generate the global 3D model. 
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Finally, the data fusion aligns the respective point 
clouds using the previously estimated registration 
parameters and merges them into a single large set of 
3D coordinate measurements. A surface map is also 
generated to produce a complete and realistic 3D 
model of the scene. 

Using these components, the modeling system 
adapts and scales to its environment. The resulting 
system is flexible since it is possible to image small 
objects or large scenes, as well as increase or decrease 
the density of the acquired range data. Moreover, the 
system can generate visually pleasing 3D coloured 
surface models when necessary or simply output fused 
point clouds when used in the context of autonomous 
robot exploration. 
 
3. Acquisition of 3D Points 
 

The acquisition module is an independent system 
capable of producing 3D point clouds of objects before 
it. The sensor, introduced in the work of Desjardins et 
al. [6], uses active vision in the form of structured light 
to achieve a dense stereoscopic acquisition and 
reconstruction of the shape and colour of surfaces. 

The physical setup of the 3D sensor is composed of 
two colour cameras and one LCD projector. The 
cameras are rigidly assembled as a stereo pair on a 
bracket above the projector as shown in Fig. 2a. Only 
the stereo rig requires calibration of its intrinsic and 
extrinsic parameters. The projector is used to project 
colour coded patterns onto the scene but is not 
calibrated with respect to the cameras. This provides 
maximum flexibility for the device to be moved, 
focused or adjusted in accordance with the depth or 
brightness of the scene so that the projected pattern 
appears sharp and in focus. 

To achieve a dense 3D reconstruction on objects 
that exhibit few features, a bi-dimensional pseudo-
random (PR) array of coloured squares is projected on 
the scene, as shown in Fig. 2b-c. The unique encoding 

of every 3x3 group of coloured regions facilitates 
feature extraction, provides higher robustness to the 
inherent colours present in the scene, and increases the 
confidence on matches between the artificially created 
feature points. In this case, a palette of three colours 
(red, green, blue) is selected, which is robust to a wide 
range of object surface characteristics and ambient 
lighting levels. 

At the beginning of the acquisition phase, a pair of 
left and right images is acquired without the projection 
of structured light to secure the original colour of the 
objects. The offline generated PR pattern is then 
projected on the objects and a second pair of images is 
captured. In order to increase the resolution of the 3D 
model, marching patterns are also used. That is, the 
same PR pattern is successively shifted horizontally 
and vertically while subsequent pairs of images are 
acquired. This strategy significantly increases the 
number of matched feature points created by the extra 
locations of the projected pattern on the surface of the 
scene, and therefore increases the density of points in 
the 3D point cloud. 

Every pair of stereoscopic images is processed to 
extract the location of the colour coded feature points. 
The coloured regions are first extracted by 
segmentation with a histogram analysis that highlights 
the dominant colours in the images. Those regions are 
labelled, their centroid is computed and a statistical 
analysis is performed to eliminate false detections and 
further segment larger blobs associated with two or 
more adjacent coloured regions. Such regions can 
appear as a merged cluster due to different orientations 
of the object’s surface under the projected pattern. 
Uniquely defined 3x3 colour codes are recovered and a 
confidence measure is computed for each one, in 
relation with the original known projected colour map. 
Codes with a low confidence are dropped, while 
similar valid codes between the left and right images 
are matched to define feature points for the 
reconstruction phase. 

 

 
(a) (b) (c) 

Figure 2. (a) Stereoscopic structured light acquisition system, (b) bi-dimensional pseudo-random pattern, and (c) its 
projection onto an inkjet printer. 
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(a) (b) (c) 

Figure 3. (a) Colour image of a printer, (b) 3D point cloud reconstruction from a single view (colour omitted), and (c) 
same point cloud augmented with its actual coloured point set surface. 
 

In order to minimize the occurrence of outliers, the 
list of feature points is further refined with a RANSAC 
algorithm. The optimal polynomial reconstruction 
algorithm [16] that validates the epipolar constraint is 
then used to estimate the actual 3D coordinates of 
every point. 

To validate the operation of the acquisition and 
modeling stage, experiments were conducted on 
several objects measured from a single viewpoint. Fig. 
3 demonstrates the accuracy of the point cloud 
produced by the acquisition system on the upper part of 
a standard printer that was scanned from a single 
viewpoint using 36 shifted patterns. A dense and 
uniformly distributed map of the printer surface is 
reconstructed with an average resolution of 1.5mm. 
Due to the spatial distribution of the PR codes used for 
the structured light, it remains difficult to acquire 
measurements on regions with sharp edges, as shown 
in Fig. 3b. This happens because the 3x3 coloured 
regions are skewed, which precludes local recognition 
of feature points. But this limitation is largely 
overcome with the addition of extra views to the 
model. Moreover, an accurate colour measure, 
estimated from the average of the original left and right 
source images, is mapped on every reconstructed point, 
producing a rich dataset as can be seen in Fig. 3c. 
Details on the colour mapping increase along with the 
resolution of the scan using the marching pattern 
described above. Such accurate coloured 3D models 
are not available with most conventional stereo vision 
systems or laser scanners. 
 
4. Registration between Multiple Views 
 

In order to perform registration between the point 
clouds obtained from each viewpoint, without a priori 
estimates of the rotation and translation parameters 
between the views, the frequency domain registration 
technique introduced by Curtis et al. [10] is used. This 
ensures a maximum of flexibility for the displacement 
of the sensor in order to map the surface of complex 

scenes. The primary advantage of the frequency 
domain approach is that it inherently decouples the 
estimation of the rotation from that of the translation. 
First, a voxelized representation of the point cloud is 
created for each viewpoint because the Fourier 
transform requires the use of a regularized data 
representation. If [ ]n1Im  and [ ]n2Im  are voxelized 
range data sets collected on the same object, but 
differing in their viewpoint by a rotation R and a 
translation T, with n  being the space domain location 
index vector, then by definition: 

[ ] [ ]TnRn += 21 ImIm  (1) 

The Fourier transform of eq. (1) is computed with 
k as the frequency index, M as a dimensional scale 
factor, and 

1ImF and
2ImF as the frequency domain 

representations of [ ]n1Im and [ ]n2Im  respectively. The 
transformations result in: 

[ ] [ ] ( ) MTkRj
T

ekFkRF π2
ImIm 12

−=  (2) 

By considering respectively the amplitude and 
phase components of eq. (2), the estimation of rotation, 
eq. (3), and translation, eq. (4), can effectively be 
decoupled: 

[ ] [ ]kFkRF
12 ImIm =  (3) 

[ ] [ ] ( ) MTkRkFkRF
T

π2
12 ImIm −∠=∠  (4) 

Using the knowledge that the rotation can be 
estimated without knowing the translational differences 
between the views, it can be observed that for any 
rotation about an arbitrary axis, the points that lie on 
this axis do not change in space. Therefore, taking the 
absolute difference between the respective magnitude 
frequency domain images, the axis of rotation is 
identified by searching for the line of minimal energy 
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that passes through the origin (DC point). This is 
achieved by using a neighbourhood path searching 
algorithm, where the minimal energy path away from 
the origin and towards the edge of the difference 3D 
frequency image is followed. 

Once the axis of rotation is known, the angle of 
rotation is determined by selecting a small subset of the 
3D frequency points, iterating for different rotations 
about the axis of rotation, and choosing the angle of 
rotation that produces the minimal sum of absolute 
difference. However, there exists a Hermitian 
symmetry in the frequency domain )2( ωπω −→ , so 
there are two possible solutions for the rotation angle. 
Fortunately, the estimation of the translation parameter 
solves this discrepancy. 

The estimation of translation is performed by first 
rotating [ ]n2Im  by each of the possible solutions, and 
then projecting the respective points onto the three 
cardinal axes. These projections are cross-correlated 
with the projections performed on [ ]n1Im . The 
estimation of the translation corresponds to the lag of 
the maximum peak of the respective cross correlations. 
The correct solution corresponds to the solution set 
where the peak in the cross correlation is highest and 
has the lowest noise energy. 

From the initial estimates found using the above 
technique, the rotation and translation parameters can 
finally be refined using the ICP algorithm for higher 
accuracy. 
 
5. Data Fusion and Surface Estimation 
 

The data fusion component is the last stage in the 
proposed modeling framework. It takes the outputs of 
both the acquisition and registration modules and 
merges the data sets obtained from the respective 
viewpoints into a 3D model of the objects in the scene. 

The registration component determines the 
transformation between successive views. In order to 
merge all views together, each one must first be 
expressed with respect to a common reference frame. 
The initial view is selected as the common reference. 
Therefore, the respective transformations between the 
latter and all other views are computed and applied to 
their respective point clouds, ensuring a consistent base 
for the 3D representations. Finally, all of the point 
clouds are merged by concatenating the list of points to 
produce a single large point cloud modeling all objects 
in the scene with respect to the first location and 
orientation of the structured light imaging system. 

If the application requires details or a higher level of 
processing such as mapping and feature detection in a 
robotic context, the entire raw point cloud can be sent 
to the next processing stage. On the other hand, if the 
goal is to produce a visually pleasing model of the 
scene that is easy to interpret, the point cloud is 
transformed into a surface. Because of the overlap 
between the successive viewpoints, the concatenated 
point cloud results in oversampled and densely 
populated regions. 

To construct visually accurate models, locally 
redundant points are removed before a surface mesh is 
generated as redundant points do not positively 
contribute to the visual appearance of the model. First, 
the global point cloud is voxelized and decimated by 
keeping only one point in each voxel as a 
representative entity for that voxel. Not only does this 
remove redundant points, it also greatly reduces the 
size of the point cloud, which in turn speeds up the 
processing of all subsequent steps. 

Next, a surface is extracted from the unorganized 
point cloud using the point set surface technique that 
stems from point-based graphics research. Points that 
are near a local section of the point cloud are projected 
onto a moving least squares (MLS) [13] surface that 
approximates the point cloud locally [14]. This allows 
the extraction of a surface in the presence of noise or 
error due to the registration procedure. The advantage 
of using the algebraic point set surface (APSS) [15] 
variant of the algorithm is that points are fitted to an 
algebraic surface, in this case an algebraic sphere, 
rather than a simple plane. This improves the final 
model in areas of high curvature and regions where the 
point cloud is undersampled. 

Once the MLS surface is defined, a coarse mesh is 
extracted using the marching cubes algorithm [17]. The 
latter voxelizes the MLS surface and determines how 
the surface intersects with the voxels. Using a case 
table, the triangle topology of each voxel is determined 
and a triangular mesh is constructed. Finally, the mesh 
is further refined using another, more accurate, 
projection back onto the MLS surface. All of the 
operations regarding the surface extraction in this 
section are performed on the global point cloud 
obtained after registration using Meshlab [18]. 
 
6. Experimental Evaluation 
 

The integrated 3D modeling system was tested with 
multiple objects and scenes to evaluate its performance 
and flexibility. The results of two modeling tests are 
presented here. 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 4. Modeling of a printer: (a) colour image of the object, (b) textured point set surface map for a single view at 
70°, and (c) at 220°. Global point set surface model from the merge of 36 local data sets: (d) front view, (e) rear view, 
and (f) zoomed view of the rear label. 
 

The first case consists of a small object that allows 
the construction of a closed surface map. An inkjet 
printer, shown in Fig. 4a, was imaged from 36 different 
points of views, separated by roughly 10°, to ensure 
full 360° coverage. The structured light pattern was 
shifted 36 times and point clouds of about 30000 
points with 1.5mm resolution were produced for each 
view. Local models obtained from two separate views 
are shown in Fig. 4b-c. The registration was performed 
on a 256x256x256 voxelization of the data and the 
final model surface was extracted using an MLS filter 
scale of 7mm. 

The results shown in Fig. 4d-f demonstrate that it is 
possible to produce an accurate model of relatively 
small objects despite the limited accuracy of the 
acquisition system along edges. The shape of the 
printer is clearly visible and fully textured. Such a 
model can be readily used for mapping, obstacle 
avoidance, or objects recognition applications. 

The second scenario exemplifies the capability of 
the proposed imaging system to model a large and 
complex scene, in a general context, where the sensor 
cannot be moved as easily to capture measurements 
from all faces. In the present case, shown in Fig. 5a, a 
robotic workcell of approximately 1.5m3 is explored 
with a mobile version of the integrated imaging 
system. The scene was imaged from 12 separate 

viewpoints, starting perpendicular to the computer 
monitor and moving left along an arc by about 25 to 
50cm between each view and changing the orientation 
to keep the scene within the field of view of the 3D 
sensor. In this test, the structured light pattern was 
shifted 9 times, resulting in point clouds of 
approximately 4000 points with 5mm resolution for 
each view. The same parameters for the registration 
and surface extraction operations as above were used. 
In spite of the complexity of the scene, its 
unconstrained geometry, the different colours and 
reflectance characteristics of the objects, no 
adjustments were required on the lighting and 
operation of the sensor to collect and register the 3D 
measurements. 

The model of the robot workcell scene shown in 
Fig. 5b-d demonstrates that the system is capable of 
imaging a real environment with multiple objects of 
varying colour and unconstrained placement. This 
scene is particularly interesting since the track of the 
manipulator robot is occluded in the first views but 
correctly appears behind the monitor as the sensor is 
moved along the arc. However, occlusions due to 
objects near the sensor can contribute to apparent holes 
in the surface model. For example, the chair is directly 
responsible for the missing bottom corner of the 
monitor shown in Fig. 5d. 
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(a) (b)

(c) (d)

Figure 5. Modeling of a robotic workcell: (a) colour image of the scene, and global coloured point set surface model 
of the scene from (b) a zoomed in view, (c) a front view, and (d) a lateral view. 
 

A set of surface patches, which can be seen from the 
sensor's point of view, are merged to create a partial 
map of the content of this environment. The horizontal 
surfaces of the table and bench do not appear in the 
reconstructed model because the mobile sensor was 
only imaging horizontally, as is typical with a mobile 
robot and a vision sensor exploring an unknown world. 
To further reduce the amount of holes in the model and 
detect horizontal surfaces, range data can be acquired 
from more viewpoints at varying elevations. 
Nevertheless, the resulting model is accurate enough to 
further drive a robotic exploration toward specific 
objects on which higher accuracy or completeness is 
required, while the colour mapped onto the model 
makes the recognition of objects straightforward for an 
operator supervising the operation of the mobile 
platform. 

Based on this experiment, a 75% overlap between 
successive views is preferable for high quality 
registration. However, at the time of acquisition, only a 
visual check of the overlap is necessary and the 
acquisition component can be moved arbitrarily about 
the scene. The overlap constraints mainly determine 
the number of views required to achieve a given level 
of completeness in the model. The registration 
technique is robust enough to accommodate for various 
patterns of movement between views. These 
characteristics become very useful when the range 

sensor is mounted atop an autonomous robotic 
platform that is mapping an environment, as the 
platform has some flexibility when selecting its next 
best point of view to image the scene. 
 
7. Conclusion 
 

This paper proposes an integrated 3D modeling 
system capable of imaging closed objects as well as 
larger real world scenes from an affordable imaging 
technology and efficient registration mechanism. The 
system builds upon a structured light sensor that offers 
robustness to various reflectance characteristics and 
lighting levels in the scene. It captures range data of 
high density and detects featureless objects as opposed 
to standard stereo systems. A generic frequency 
domain registration approach that does not require an 
initial estimate of the transformation parameters 
between viewpoints is used to provide an optimal data 
fusion operation while preserving the necessary 
freedom on the sensor’s positioning. All components 
are minimally coupled to ensure that the system is easy 
to operate, flexible, and adapts to scenes of various 
sizes, complexity and colours. The results demonstrate 
that the modeling system has a variable depth of field 
and scales well from small objects to large scenes, 
which is not possible with laser systems. 
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The proposed modeling technology is designed 
using a pragmatic approach with autonomous robotic 
exploration under human supervision in mind. Multiple 
views of the environment can be merged without the 
need of accurately tracking the mobile platform’s 
movements. The generated surface models exhibit 
accurate shape reconstruction and contain rich colour 
and texture information. Finally, the results are suitable 
for modeling, mapping, obstacle avoidance, and object 
recognition where very high precision is not essential. 
 
8. Acknowledgments 
 

The authors wish to acknowledge the financial 
support from the Ontario Centre of Excellence for 
Communications and Information Technology, and the 
collaboration of Neptec Design Group to this research 
work. 
 
9. References 
 
[1] J. Arnabat, S. Casanovas, and G. Medioni, “3D 

Modeling from Turntable Sequences using Dense 
Stereo Carving and Multi-view Consistency”, 
Proceedings of the 17th International Conference on 
Pattern Recognition, vol. 4, Cambridge, UK, 2004, pp. 
36-39. 

[2] W.K. Leow, Z. Huang, Y. Zhang, and R. Setiono, 
“Rapid 3D Model Acquisition from Images of Small 
Objects”, Proceedings of Geometric Modeling and 
Processing, Hong Kong, 2000, pp. 33-41. 

[3] H.Y. Lin, and M. Subbarao, “Vision System for Fast 3-
D Model Reconstruction”, Optical Engineering, 43(7), 
SPIE, 2004, pp. 1651-1664. 

[4] S.Y. Park, and M. Subbarao, “A Multiview 3D 
Modeling System Based on Stereo Vision Techniques”, 
Machine Vision and Applications, 16(3), Springer, 
Heidelberg, 2005, pp. 148-156. 

[5] Y. Yemez, and F. Schmitt, “3D Reconstruction of Real 
Objects with High Resolution Shape and Texture”, 
Image and Vision Computing, 22(13), Elsevier, 2004, 
pp. 1137-1153. 

[6] D. Desjardins, and P. Payeur, “Dense Stereo Range 
Imaging with Marching Pseudo-Random Patterns”, 
Proceedings of the Canadian Conference on Computer 
and Robot Vision, Montreal, QC, 2007, pp. 216-223. 

[7] C.S. Chen, Y.P. Hung, and J.B. Cheng, “A Fast 
Automatic Method for Registration of Partially-
Overlapping Range Images”, Proceedings of the 6th 
International Conference on Computer Vision, 
Bombay, India, 1998, pp. 242-248. 

[8] E. Gagnon, J.F. Rivest, M. Greenspan, and N. Burtnyk, 
“A Computer-Assisted Range Image Registration 
System for Nuclear Waste Cleanup”, IEEE 
Transactions on Instrumentation and Measurement, 
48(3), 1999, pp. 758-762. 

[9] P.J. Besl, and H.D. McKay, “A Method for 
Registration of 3-D Shapes”, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 14(2), 
1992, pp. 239-256. 

[10] P. Curtis, and P. Payeur, “A Frequency Domain 
Approach to Registration Estimation in 3-D Space”, 
IEEE Transactions on Instrumentation and 
Measurement, 57(1), 2008, pp. 110-120. 

[11] L. Lucchese, G. Doretto, and G.M. Cortelazzo, “A 
Frequency Domain Technique for Range Data 
Registration”, IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 24(11), 2002, pp. 1468-
1484. 

[12] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and 
W. Stuetzle, “Surface Reconstruction from 
Unorganized Points”, Proceedings of the 19th Annual 
Conference on Computer Graphics and Interactive 
Techniques, Chicago, IL, 1992, pp. 71-78. 

[13] D. Levin, “Mesh-Independent Surface Interpolation”, 
G. Brunnett, B. Hamann, H. Müller, L. Linsen (eds.), 
Geometric Modeling for Scientific Visualization, 
Springer, 2004, pp. 37-49. 

[14] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. 
Levin, and C.T. Silva, “Computing and Rendering 
Point Set Surfaces”, IEEE Transactions on 
Visualization and Computer Graphics, 9(1), 2003, pp. 
3-15. 

[15] G. Guennebaud, and M. Gross, “Algebraic Point Set 
Surfaces”, Proceedings of the International Conference 
on Computer Graphics and Interactive Techniques, 
San Diego, CA, 2007. 

[16] R. Hartley, and A. Zisserman, Multiple View Geometry, 
Cambridge University Press, UK, 2003. 

[17] W.E. Lorensen, and H.E. Cline, “Marching Cubes: A 
High Resolution 3D Surface Construction Algorithm”, 
Proceedings of the 14th Annual Conference on 
Computer Graphics and Interactive Techniques, New 
York, NY, 1987, pp. 163-169. 

[18] Meshlab, [online], http://meshlab.sourceforge.net 
 

 
 
 

259


