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Abstract

The interpretation of aerial images is difficult, especially
for low-resolution images. Although solutions have been
worked on for many years, performance of these systems
is still not sufficient to be useful in practical applications.
One potential solution is to create systems composed of
many specialized modules. We introduce one such module,
a Bayesian tracker for linear structures, such as pipelines
and access roads. We show that the tracker can be used suc-
cessfully to detect these structures in low-resolution images.

1. Introduction

Remote-sensed images are used in many GIS applica-
tions, including map production and updating, urban and
regional planning, agricultural and forestry assessment, de-
tection of mineral resources, and many others. Over the past
decades, large efforts have been put into the design of com-
puterized image interpretation systems that should make it
possible to cope with the tremendous amounts of remote-
sensed data. Unfortunately, these systems are still not ac-
curate and reliable enough to be useful in practical applica-
tions. Several strategies have been pursued to overcome this
problem. First, one can design of semi-automatic systems,
where the computer acts as an assistant to the human oper-
ator, taking over very simple tasks, and returning control to
the operator whenever a problem is encountered [14, 15].
Second, one can focus on systems composed of many mod-
ules, each specialized on one particular image interpretation
task. This paper presents one such module: it is concerned
with the detection of (oil or gas) pipelines and oil-well ac-
cess roads in low-resolution aerial images.

In the past, there have been many attempts at detecting
linear structures, such as roads in high-resolution aerial im-
ages (e.g., [10, 7, 12, 13]). These systems make a number
of assumptions about the appearance of roads in the remote-
sensed images: for example, roads are elongated structures,

road surfaces are usually homogenous, and there is adequate
contrast between roads and adjacent areas. Many of these
systems can deal with difficult image interpretation prob-
lems, including complex road topologies near crossings,
bridges, ramps, etc.; occlusions by ground objects such as
vehicles, shadows, trees, etc.; and inadequate contrast due
to road texture, illumination conditions, weather conditions,
and more. Many road tracking systems rely on line or edge
tracking for road detection and focus on tracking the dy-
namic characteristics of roads, such as changes in orienta-
tion and texture. Some of the systems use a search approach
to find the next pixel to link to the road network. For in-
stance, the heuristic method proposed in [8] starts from pix-
els with a maximal second derivative and constructs lines by
adding the appropriate neighbors to these lines, using dis-
tance and angle difference information. Bordes [3] used an
extended Kalman filter to recursively predict the road axis,
where feedback from matching the predicted road profile
to the reference road profile is used to estimate the optimal
tracking state. A similar, more general approach was used
in [13] where roads are tracked using a particle filter. The
filter approximates the optimal state by a particle set and a
corresponding weight set. Starting with a set of particles,
each with the same initial probability, the algorithm gradu-
ally adjusts the weights of each particle during the evolution
process.

Several pattern-matching approaches to road tracking as-
sume that road segments can be represented by specific pat-
terns. For example, McKeown and Delinger [10] used pat-
terns describing road segments that were selected by a hu-
man operator. The road direction and width could be es-
timated from these patterns. A road section correspond-
ing to the next step in the direction was extracted and a
cross-correlation between the predicted new road section
and the tracking model was carried out. In [7], a region-
based tracker used snakes to find road boundaries in high-
resolution images. Regions and background were assumed
to have constant intensity, a condition of collinearity was
used to keep the two road borders parallel, and a smooth-
ness constraint was used to stabilize local deformation.
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Figure 1. Example of an aerial image

The systems described above all require high-resolution
aerial images that permit the extraction of road profiles and
road edges. Unfortunately, high-resolution images are of-
ten not available for remote areas. In low-resolution images
(with a resolution of at least 5 meters per pixel), pipelines
and access roads may be only a single pixel wide, eliminat-
ing the possibility of extracting profiles orthogonal to the
road direction. This is illustrated in Figure 1, which shows
an aerial image of size 1000 × 1000 pixels with a reso-
lution of 5 meters per pixel, containing a number of natu-
ral structures (hills, rivers, lakes) and several human-made
structures. Clearly visible in the middle of the image is an
S-shaped road. In addition, several long, straight, but faint
lines are visible, indicating the presence of pipelines and as-
sociated access roads. Existing road tracking systems have
no problem detecting the S-shaped road, but fail to detect
the others. The work presented here is concerned with the
detection of these linear structures.

2 Overview

The Bayesian line tracker described here is part of
a larger system [5]. Several of the components, those
concerned with the detection of linear segments, have
been described elsewhere [6] and are summarized only
briefly, namely the construction of a local orientation map
(Section 2.1), the extraction of line segments using an
orientation-weighted Hough transform (Section 2.2), and
the combination of line segments into linear structures using
a Markov random field (Section 2.3). In Section 3, we intro-
duce the Bayesian tracking model and the tracking process.
The tracker is responsible for tracking curved roads and for
tracking the curved connections between linear segments of

Figure 2. Left: Aerial image of size 300 × 300
pixels with resolution of 5 meters per pixel.
Middle: Orientation map with 10 orientations
denoted by different grey levels. Right: Tex-
ture map representing the magnitude of the
Gabor filter response

linear structures. In Section 4, we present experimental re-
sults, and in Section 5, we present conclusions.

2.1 Local Orientation Analysis

To determine the dominant local orientation at all image
positions, the input images are filtered with even Gabor fil-
ters

G(x, y) = exp

(
x′2 + y′2

2σ2

)
cos

2πx′

λ
(1)

with

x′ = x cos θ + y sin θ (2)
y′ = −x cos θ + y sin θ (3)

where λ represents the wavelength of the cosine carrier, σ
defines the scale of Gaussian envelope, and θ is the filter
orientation. We use a bank of 10 Gabor filters with orien-
tation θ uniformly distributed in the interval [0,π), and we
used λ = 5 and σ = 2.

The orientation map o(x, y) is defined for each pixel
(x, y) as the orientation θ of the Gabor filter with maximal
response magnitude, and the texture map g(x, y) is defined
as the maximal response magnitude. The orientation map
represents local image orientation whereas the texture map
represents local texture [9]. Figure 2 shows an image of
size 300 × 300 pixel and the corresponding orientation and
texture maps. These two characteristics are used in the next
step to extract linear segments in the images.

2.2 Orientation-Weighted Hough Trans-
form

The Hough transform is used to detect lines by trans-
forming image space into Hough space, selecting maxima
in Hough space, and using these maxima to identify lines in
image space. Each pixel in image space votes equally for
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Figure 3. Line detection. Left: Input image of
size 300 × 300 pixels. Right: Lines detected
using an orientation-weighted Hough trans-
form

all possible straight lines through the pixel. The detection
of straight lines is thus susceptible to the presence of ran-
dom noise and spurious line segments, which may generate
false maxima in Hough space.

To reduce false contributions, we introduce a weighting
scheme into the voting strategy. The orientation map (see
Section 2.1) is used to assign weights in terms of how well
the orientation o(x, y) at pixel (x, y) matches the line orien-
tation. Given the orientation map o(x, y) (see Section 2.1),
the contributing weight to accumulator cell (θ, ρ) in Hough
space should be larger when θ is close to o(x, y). The
weight can thus be defines as

Wθ,o(x,y) = |cos(o(x, y)− θ)|.

The orientation-weighted Hough transform is somewhat
related to earlier work on Hough transforms for short lines
and edge segments (e.g., [4]), but it generalizes that work,
replacing heuristic grouping by a weighting scheme using
Gabor filters. As Figure 3 indicates, this technique can de-
tect straight lines while reducing the detection of spurious
line segments. In the next Section, we describe how to label
these line candidates and combine them together to identify
linear structures.

2.3 Combining Linear Structures

The method introduced in the previous Section is able to
identify linear structures, but they may be broken into many
line segments, as seen in Figure 3. To complete the identifi-
cation process, these line segments must be combined into
linear structures. As described in detail in [6], we define a
graph of all line segments, and over this graph we define
a Markov Random field (MRF). The node and clique po-
tentials of the MRF are defined in a way that captures the
important properties of lines (e.g. line segments are long,
have no gaps, and have a consistent texture) and line con-
junctions (e.g. conjunctions have low curvature, end points

Figure 4. Line detection. Left: Input image of
size 1000 × 1000 pixels. Middle: Lines de-
tected using the orientation-weighted Hough
transform. Right: Line labeling result on us-
ing Markov Random Field model. Spatially re-
lated line segments are connected by black
lines.

are rare, intersections of lines are rare, etc.). The results of
linear structure combination using the MRF is illustrated in
Figure 4.

The MRF analysis achieves two goals. First, isolated line
segments, which are unlikely to be part of an extended lin-
ear network, are eliminated. This is seen by comparing the
results obtained with the Hough transform (Figure 4 mid-
dle) and the results obtained after applying the MRF model
(Figure 4 right). Second, line segments that are likely to be-
long to the same linear structure are identified. This is seen
by the black lines (in the white circles) connecting neigh-
bouring line segments.

3 Bayesian Tracking Model

The methods described in the previous Section can suc-
cessfully identify linear structures, and they can identify
line segments that belong to the same structure. What is,
however, still missing is a way to track those connections
along a curved path (See Figure 4). This is the task of the
Bayesian tracker presented in this Section.

The Bayesian tracking process involves the construction
of a posterior probability density function of the current
state based on the accumulated observations. First, we build
a prediction model (state model) to find all possible contin-
uations of a line, and we assign a probability to each pre-
dicted state. Second, we match the characteristics extracted
at these predicted states to the reference characteristics us-
ing a matching model (measurement model). Third, we use
the Bayesian model to recursively update the optimal track-
ing state. Finally, we discuss stopping strategies.

The main task of line tracking is to find the next ap-
propriate line position based on past and current observa-
tions. A reference profile is estimated based on the geom-
etry and spatial information of a line, namely direction and
texture. In high-resolution aerial images (less than 5 meters
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per pixel), the width of a road or pipeline can also be used.
In low-resolution images, roads and pipelines are typically
1-2 pixels wide, and width is thus not a useful line charac-
teristic.

The tracking process can be modeled as a time series by
a state-space approach [1]. It involves two stages, predic-
tion and matching. A prediction model is used to describe
the state evolution, and the matching model is built up to
relate the observation measurements to the reference pro-
file. These two models are ideally suited for a Bayesian
approach.

3.1 Prediction Model

The state vector at time k, denoted by Xk, contains all
relevant information required to describe the linear structure
tracking system. It can be defined as (see [12]):

Xk =




xk

yk

θk



 , (4)

where (xk, yk) is the line axis position, and θk is the line
direction. According to [1], the state vector Xk depends on
the previous state Xk−1 and a process noise wk,

Xk = fk(Xk−1, wk).

In the line tracking system, the state Xk is updated by

Xk =




xk−1 + dcos(θk−1 + θ′k)
yk−1 + dsin(θk−1 + θ′k)

θk−1 + θ′k



 , (5)

where θ′ is the direction shift from state Xk−1 to Xk, and
d is a constant, representing the distance covered in each
tracking step. The values of d and θ′k are determined by
the prediction scale. Generally, a larger prediction scale
is more tolerant to occlusions but is more likely to gen-
erate incorrect predictions. Under the assumption that the
upper bound of the curvature at time k is π/6, we let θ′k
be distributed uniformly in the interval [-π

6 ,π
6 ], i.e. θ′k ∈

[−π
6 ,−π

6 + ϕ, ..., π
6 ]. The number of predicted states is de-

termined by the value of ϕ: Smaller values make the predic-
tion more sensitive to changes of the line curvature. In the
prediction stage, we search for all the possible line states
within a small neighborhood, as shown in Figure 5.

The state X0 is initialized based on the results of line
detector (see Section 2.2). The tracking direction θ0 is set to
the line orientation obtained from the line detector, (x0, y0)
is set to the position of the starting pixel of the line, and the
probability of P (X0) isset to 1. Then the state sequence is
predicted recursively using Equation 5.

Each predicted state is assigned a probability
P (Xk|Xk−1) called prediction probability. The line

Figure 5. Find the possible state Xk+1s based
on previous state Xk within the interval dis-
tance d and direction change θ′.

curvature changes slowly within a small distance d, assum-
ing that lines are fairly straight. The probability density of
the prediction can be defined as

P (Xk|Xk−1) =
1
Z

|cos(θk − θk−1)|, (6)

where Z is the normalization constant. Compared to some
tracking techniques that only generate one state at time k
[13], we search multiple predicted states, and assign each
a weight (probability). The single-state model is suitable
for gradual line changes, while the multiple-state model
can predict the correct state even when the line orientation
changes abruptly.

3.2 Matching Model

The measurement vector represents observations that are
related to the predicted state. The measurement vector con-
tains a textural and an orientation characteristics (see Sec-
tion 2.1):

Dk =
[

gk

ok

]
, (7)

where gk and ok are the textural and orientation values at
pixel (xk, yk). The matching model is defined to match the
observations at predicted states to the reference profile. Ac-
cording to the linear structure characteristics, continuity and
consistency, the texture and orientation of the observation
Dk at state Xk should be similar to the reference profile
denoted by D′ = [g′, o′]. The matching process can be
modeled as the sum of two Gaussian functions.

P (Dk|Xk) =
1
Z

(
exp

( (gk − g′)2

2σ2
g

) + exp(
(ok − o′)2

2σ2
o

))

(8)
In order to incorporate dynamic features of linear struc-

tures, such as surface or direction changes, the reference

309



is not kept constant but is updated dynamically. The ref-
erence profile D′ = [g′, o′] at time k is determined by the
observation measurements from the previous state sequence
Xk−n:k−1,

[
g′

o′

]
=

n∑

i=1

Pk−i

[
gk−i

ok−i

]
, (9)

where Pk−i represents the weighting coefficient that is de-
termined by the posterior probability of state Xk−i, and n
is the number of past observations involved to estimate the
reference pixel in each tracking step. Smaller values of n in-
crease sensitivity to changes of the line, but are more likely
to include noisy references.

3.3 Tracking Process

Given the state sequence X0:k−1 and the observation se-
quence D0:k−1, the tracking process can be modeled as a
posterior probability P (Xk|D0:k). According to the Bayes
rule

P (A|B, C) =
P (B|A, C)P (A|C)

P (B|C)
,

we obtain the posterior probability

P (Xk|D0:k) = P (Xk|D0:k−1, Dk)

=
P (Dk|Xk, D0:k−1)P (Xk|D0:k−1)

P (Dk|D0:k−1)
.

Since the observation Dk is independent of the previous ob-
servation sequence D0:k−1, P (Dk|D0:k−1) is a normaliz-
ing constant, and we obtain

P (Dk|Xk, D0:k−1) = P (Dk|Xk), (10)

which can be estimated from the matching model given in
Equation 8.

Given the posterior probability P (Xk−1|D0:k−1) of the
previous state, the prior probability of the state Xk can be
recursively estimated by the Chapman-Kolmogorov equa-
tion [1]

P (Xk|D0:k−1) =
N∑

k=1

P (Xk|Xk−1)P (Xk−1|D0:k−1),

where N is the number of possible states at time k − 1,
and P (Xk|Xk−1) can be estimated by the prediction model
Equation 6. Hence, the tracking state Xk at time k can be
recursively updated by the maximal posterior probability

P (Xk|D0:k) ∝P (Dk|Xk)×
N∑

k=1

P (Xk|Xk−1)P (Xk−1|D0:k−1)
(11)

3.4 Stopping Criteria

One way to stop the tracking process is based on thresh-
olds. Equation 11 shows that tracking performance depends
on the predicted state and the correlation between the pre-
dicted profile and the reference profile. Tracking should
stop if the posterior probability in Equation 11 at time k
falls below the threshold.

In our system, stopping is based on the line detection
and the image interpretation results. Since image interpre-
tation based on MRF (see Section 2.3) can label almost all
the prevalent lines in aerial images, tracking should proceed
only in the vicinity of labeled lines. Tracking should stop
if it deviates too much from labeled lines. This can occur
either when a tracking error occurs or when the end of a line
(pipeline or road) has been reached.

3.5 Tracking versus Inference

The identification of connections between linear struc-
tures is formulated here as a dynamic tracking problem.
The tracker inspects positions sequentially, greedily pick-
ing the position with the highest probability. Alternatively,
one could reformulate the problem as an inference problem
in which one maximizes P (X0:k|D0:k). This would make
it possible to use other methods, including dynamic pro-
gramming, active contours [2], level sets [11], and others.
In contrast, we use dynamic tracking because the system is
imbedded in a semi-automatic system for interpreting aerial
images. In this system, the computer acts as an assistant
for the human operator, learns simple image interpretations
online, takes over simple tasks such as tracking roads or
pipelines, and returns control to the operator whenever a
problem is encountered [14, 15]. It is thus important that
the computer proceeds in a sequential manner, permitting
the operator to stop the interpretation process at any mo-
ment without having to correct or delete too many incorrect
interpretations.

4 Experimental Results

The criteria used to evaluate a tracking system are based
on accuracy and completeness. Accuracy refers to the num-
ber of tracking pixels that are correct, and completeness
refers to the number of lines that are tracked completely.
Accuracy should be given a higher priority than complete-
ness because - at least in semi-automatic systems [13] - in-
complete tracking can be continued after an interaction with
the human operator.

Our experiments were performed on the sub-images ex-
tracted from 7140 × 5940 and 7080 × 5880 aerial pho-
tos with a resolution of 5 meters per pixel. The parame-
ters of the prediction model were set to d=10 pixels, and
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Figure 6. Aerial image and road tracking for
two subimages.

Figure 7. Aerial image and road tracking for
two subimages.

θ′k = −π
6 + π

18 ∗ i, i = 0, ..., 6. The parameters of the
matching model were set to σg = 0.5 and σo = 2 with
o = 10, given that we used a bank of 10 Gabor filters (see
Section 2.1).

As described in Section 2, the Bayesian tracker is re-
sponsible for two tasks, namely for tracking orientation and
textural changes. For texture tracking, it attempts to deal
with occlusions such as shown in Figures 6 and 7, which
could not be detected in the line detection stage. Orientation
tracking involves tracking curved roads and curved connec-
tions between segments of linear structures. Road tracking
results are shown in Figures 6 and 7. Both images are very
large, hence we show tracking details for two subimages.
The tracking positions, which are indicated by white dots,
are separated by d=10 pixels, as indicated in the previous
paragraph. Both images indicate that curved roads can be
tracked successfully.

Second, the Bayesian tracker is responsible for for track-
ing curved connections between segments of linear struc-
tures. The linear structures are detected by the mechanisms
described in Sections 2.2 and 2.3. This is illustrated in Fig-

Figure 8. Aerial image with linear structures
detected by the mechanisms described in
Section 2 and connections found by the
Bayesian tracker described in Section 3

ure 4. The Bayesian tracker follows the curved paths con-
necting the line segments, as illustrated in Figure 8.

Tracking performance depends on the step size d of the
prediction model. Tracking with larger values of d is suit-
able for straight lines and robust to small occlusions; track-
ing with smaller values of d is more sensitive to changes is
line directions, but is also more affected by occlusions and
noise. This is illustrated in Figure 9, where tracking is per-
formed with a step size d = 10 in panels a and c, and with
a step size d = 30 in panels b and d. Using a larger value
of d leads to decreased accuracy in tracking the curved road
(Panel b); using a smaller value of d leads to decreased ac-
curacy in tracking due to occlusions and noise (Panel c).

5 Conclusions

We presented a Bayesian model of line tracking. It at-
tempted to deal with occlusions and curve conjunctions of
the linear structures in aerial images. Bayesian tracking was
performed in three stages, prediction of the possible states,
matching the profile with the reference, and updating the
tracking state. The tracking process can be initialized au-
tomatically without manual input. The experimental results
show that our proposed method could describe the dynamic
changes of line direction or texture and that it was robust to
the small occlusions in low resolution aerial images.
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(a) (b)

(c) (d)

Figure 9. Effect of step size on tracking per-
formance.
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