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Abstract—This paper evaluates the performance of different
stereo formulations in the context of cluttered scenes [1] with
large number of binocular-monocular boundaries (i.e. occlusion
boundaries). Three stereo methods employing three different
constraints are considered. These are basic [2], [3](Basic),
uniqueness [4] (KZ-uni), and visibility [5](KZ-vis). Scenes for
the experiments are synthetically generated and some are
shown to have significantly more occlusion boundaries than
the Middlebury scenes. This allows evaluating the methods with
different types of scenes to understand the efficacy of differ-
ent constraints for cluttered scenes. The evaluation considers
mislabeled pixels of different types (binocular/monocular) in
different regions (on or away from occlusion boundary). We
have found that for sparse scenes (fewer occlusion boundaries)
all three methods have similar performance. For dense scenes
the performance is dominated by pixels on the boundary. For
binocular pixels Basic always does better but for monocular
pixels KZ-vis has the lowest error. If binary occlusion labeling
is considered then the cross-checked version of basic constraint
Basic-cc performs best followed by KZ-uni.

Keywords-Stereo; Performance Analysis; Visibility; Occlu-
sion; Occlusion Boundary; Markov Random Field

I. INTRODUCTION

An important step in stereo reconstruction is finding
corresponding pixels from a pair of images. Over the years a
wide range of techniques for stereo correspondence problem
has been proposed. Many of the top performing methods use
Markov Random Field formulation of the problem and try to
find the Maximum-a-Posteriori estimate (MAP-MRF) using
some global optimization algorithm. Different formulations
can be characterized by the type of constraints that are
enforced on the solution. The primary set of constraints that
are used in many vision problems are color consistency and
smoothness constraint. In the context of stereo there are also
methods that consider visibility and uniqueness constraints.
The main objective of this paper is to analyze how these
three types of approach perform for monocular pixels (also
known as semi-occluded pixels) and occlusion boundary
pixels (or binocular-monocular discontinuity pixels) in the
cluttered scene setting. It was previously reported that visi-
bility reasoning improves the performance of stereo methods
near discontinuity in [4]–[6]. In general discontinuity can
mean both occlusion boundary (i.e. binocular-monocular
boundary) and depth discontinuity. More specifically we
consider pixels on the occlusion boundary and away from

the boundary. It should be noted that pixels on the occlusion
boundary can either be on the same surface or on a different
surface. We look at where this performance improvement
occurs and by how much. We also investigate if this im-
provement has any dependence on the type of cluttered
scene.

We define cluttered scenes to consist of objects of some
size distribution placed uniform randomly in a 3D space.
Some common examples of such scenes in nature are tree
canopies, bushes, etc. Stereo reconstruction for such clut-
tered scenes can potentially be used in forest measurement,
where the problem is to determine the growth of a forest
by making measurements such as leaf area index (LAI),
canopy size, etc. [7]–[9]. Existing methods rely on either
making measurements using range finders or by estimating
the amount of sunlight falling in an area using tedious mea-
surement techniques. Cluttered scene stereo can significantly
simplify the process of making such measurements.

The paper is organized as follows. Section II gives a
general overview of the types of methods that have been
proposed over the years as well as performance evaluation
of those methods. The stereo formulation that is used in this
paper is discussed in Section III. In Section IV, the cluttered
scene model and scene generation technique is discussed.
The experiments are presented in Sec. V and finally Sec. VI
concludes the paper.

II. PREVIOUS WORK

Very broadly, stereo formulations can be categorized into
local and global approaches. In the local approach some
type of window based correlation method such as sum of
squared difference or absolute difference is used. There are
also variations that uses adaptive window size or weight to
improve the result. In the global approach the problem is
formulated as a global energy minimization problem. In this
setting the problem is usually formulated using MRFs where
each pixel or a group of pixels is considered as a random
variable that can take on values from a set of disparity labels
[10]. The problem then is to solve the MAP assignment
problem. The solution can be obtained by minimizing an
energy function that maps an assignment of labels to real
numbers. Global approaches usually produce better results
than the local approaches [3], [11]. The three methods that



are considered in this paper employ global optimization
techniques. An overview of the three techniques is given
in Sec. III.

In the following we look at some of the evaluation
methods that have been used for comparing different stereo
methods and discuss their strengths and weaknesses. The
scope of our review is limited to global approaches.

One of the early works that looked at different stereo
methods was [11]. The authors categorized and compared
different local and global techniques for stereo reconstruc-
tion. Compared to their work we only consider MRF-based
stereo formulations and their performance for a special class
of scenes. Tappen et al. in [12] compares Graph Cuts and
Belief Propagation using the same energy formulation. The
authors found that both algorithms yield optimal solutions
whose energy is lower than that of the true scene. This
indicates that the energy formulation did not sufficiently
model the problem. The authors restricted their evaluation
to the basic formulation, but we also use additional con-
straints, but restrict the analysis to cluttered 3D scenes. More
recently, in [3], Szeliski et al. studies the performance of
different optimization algorithms for the basic constraint on
a set of benchmark problems. While their objective was to
find the algorithm with the lowest energy configuration and
fastest convergence rate, our objective is to evaluate different
consistency constraints and observe their performance in
specific regions of a scene and for different types of scenes.

In [13] we looked at the performance for basic formula-
tion. The objective was to find the optimal parameter settings
for different types of cluttered scene. We restricted the
analysis to binocular pixels. In this paper, both monocular
and binocular pixels are considered. We also look at how
the error depends on the amount of occlusion and occlusion
boundary.

III. STEREO FORMULATION

In this section we give an overview of the methods
that we used in our evaluation. These methods model the
stereo correspondence problem in the MAP-MRF framework
and find a solution using global optimization techniques.
In all cases, we use the α-Expansion algorithm [2] for
optimization. In the MRF-formulation the stereo problem is
formulated as a labeling problem. The objective is to find a
configuration or label assignment X such that the following
energy is minimized.

E(X) = Edata(X) + Esmooth(X). (1)

In other words, we want to solve X∗ = argminX E(X).
In the above equation, Edata encodes the data consistency
constraint and Esmooth encodes the smoothness constraint
which enforces that neighboring pixels to have similar labels
assigned. These two terms form the fundamental constraint
that is used in many vision problems. We refer to this basic

formulation as Basic. In the context of stereo the above
formulation can be expressed as follows.

For stereo pair images Il and Ir with disparity values fp
and fq for pixels p and q respectively, the energy function
that we optimize is of the following form [3]:

E =
∑
p

Ep(fp) + λ
∑
p,q

Ep,q(fp, fq) (2)

Ep(fp) = d(Il, Ir, p, q)
kd (3)

Ep,q(fp, fq) = wpq min(|fp − fq|ks , Vmax) (4)

Equation 3 is the data term and 4 the smoothness term.
The function d in the data term is the dissimilarity measure
between corresponding pixels (i.e. pixels p and q in Il and Ir
respectively). It can be absolute difference (kd = 1), squared
difference (kd = 2), or the more sophisticated Birchfield-
Tomasi measure [14]. We use the latter, with kd = 2. In
the smoothness term, wpq is a scalar weight defined for
every neighboring pixel pair p and q, and depends on the
color gradient. The smoothness term is a function of label
difference. We use ks = 1. The parameter λ specifies how
much weight should be given to the smoothness term.

Besides these basic constraints, additional constraints such
as uniqueness and visibility can also be considered. In [4]
the authors propose a model that encodes this uniqueness
constraint. This method which is referred to as KZ-uni in
the rest of the paper, considers pairs of pixels or voxels as the
nodes in the MRF. The objective is to label each pair with
a binary label denoting correspondence or mismatch. In this
way a pixel can only be matched with at most one other
pixel. As a result the approach is enforcing a uniqueness
constraint. If a pixel is not matched it is considered as an
occluded pixel, i.e. not visible to the other camera. In this
paper we refer to such occluded pixels as monocular pixels.

In [5] the authors proposed an alternative approach which
we refer to as KZ-vis. Like KZ-uni (but unlike the basic
approach), KZ-vis labels pixels in both left and right images.
A pixel p in the left image can be assigned disparity label
fp if and only if a visibility constraint is satisfied, namely
the scene point defined by (p, fp) does not occlude the
scene point (q, fq) in the right image where q = p + fp.
Equivalently, the scene point (p, fp) does not lie on the line
segment joining the right camera to the scene point (q, fq).
The algorithm starts by assigning a disparity value of 0 to
every pixel and maintains the visibility constraint in each
step of the algorithm.

IV. CLUTTERED SCENE MODEL AND SCENE
GENERATION

The experiments that we will present use synthetic scenes
with a range of parameters. These scenes provide us some
control over the number of occlusion boundary pixels and
monocular pixels, and this allows us to examine how well
an algorithm performs as a function of these percentages.



Table II gives a summary of the percentages of monocular
pixels and occlusion boundary pixels in our synthetic scenes
versus typical Middlebury images.

Each of our cluttered scenes is defined by squares of a
certain size and distributed uniformly over a 3D volume.
Let the average number of objects per unit volume be ρ,
the halfwidth of each square be r, and the z−range of the
bounded volume be [zminzmax]. Using these parameters one
can formulate a model that represents the probability of
disparity, visibility and other properties of cluttered scenes
[1], though such a model is not used here.

Our scene generation process is similar to that of the
dead-leaves model [15], with the exception that we choose
the image size of each object to be inversely related to the
depth of the object according to the laws of perspective.
Object centers were chosen randomly in the 3D volume. In
preliminary experiments, the objects were projected to two
different viewpoints using perspective (central) projection.
However, because of pixel binning this perspective projec-
tion method often produced inconsistent size and disparity
values in the two images. To avoid these artifacts, we have
instead generated the images using orthographic projection,
as follows. The size of each object in the left image was
inversely proportional to its depth. We chose the disparity
label of the object based on its depth, and instantiated a
corresponding object at the disparity-defined distance in the
right image. The OpenGL depth buffer handled the visibility
for the orthographic projection in each image.

For the ground truth labels, for each pixel on an object in
the left image, we used its disparity to find the corresponding
pixel in the right image and we checked its depth value. If
the depth value was less than that of the original pixel in the
left image, the left pixel image was marked as monocular.

A texture map for each square object was generated by
choosing random RGB values on a 4× 4 grid spanning the
object and then interpolating. A background square was used
at the far depth plane. Its texture was chosen using a 16×16
grid of random RGB values. Independent noise was then
added to the RGB pixel values.

The parameters we use for our scenes are shown in Table
I. The scenes are defined by two levels of each of three
categories: density, depth range, and object size. The (a)
and (b) are the large radius and small radius, respectively.
Note that these object radii r interact with the z range, such
that we are effectively varying the baseline of the camera,
rather than the images sizes of the objects. For example,
the denser and larger object near scenes (1a) produce single
images that have the same properties as the denser, larger
object far scenes (2a). A few examples of the scenes are
shown in Figure 1.

The crucial point is that the eight classes of cluttered
scenes all have different visibility and occlusion character-
istics. To give an idea of the differences, and how they
compare to scenes in the Middlebury dataset, we list the

No. baseline density ρ range z radius r
1a

0.2

0.54
2-8 0.1

1b 0.025
2a 8-32 0.4
2b 0.1
3a

0.1
2-8 0.1

3b 0.025
4a 8-32 0.4
4b 0.1

Table I
CLUTTERED SCENE PARAMETERS

scene % monocular % occ. boundary
map 10% 5%
sawtooth 7% 3%
cones 15% 2%
teddy 13% 1%
rocks2 17% 4%
flowerpots 28% 5%
1a 30% 4%
1b 48% 12%
2a 8% 2%
2b 15% 8%
3a 32% 4%
3b 39% 15%
4a 12% 4%
4b 26% 13%

Table II
PERCENTAGE OF MONOCULAR PIXELS AND OCCLUSION BOUNDARY
(I.E. BINOCULAR-MONOCULAR BOUNDARY). STATISTICS COMPUTED

FROM 100 IMAGES OF EACH SCENE.

percentage of monocular pixels occlusion boundary edges
in Table II. For the case of cones and teddy we used the
provided occlusion map. For the rest of the images from
the Middlebury dataset we computed the occlusion map
by doing cross-checking. It should be noted that slanted
surfaces produce false positives for the occlusion detection
and so the true percentage of occlusions for the Middlebury
dataset should be less. Note that many of our scenes contain
a greater number of monocular pixels and most of our scenes
contain a much greater number of occlusion discontinuities
than the Middlebury scenes. Furthermore the eight different
classes of scenes have variations in these percentages. This
allows us to examine how different stereo methods perform
under different types of clutter.

V. EXPERIMENTS

This section starts by giving an overview of the types of
errors that are considered and the motivation behind them.
Then we present the results and summarize the observations.
Using the parameters specified in Table II, 10 instances of
each scene were generated. The software provided in [6]
was used for running the experiments on those scenes.

1. Types of pixel (Fig. 3): Binocular and monocular la-
beling errors are considered separately in the experiments. In
each case it is the percentage of mislabeled pixels (i.e. non-
zero difference with the groundtruth) out of all the pixels



Figure 1. Sample scenes with disparity and occlusion (brightest) from our test dataset (top) and Middlebury (bottom). Top part (left–right) showing scenes
1b, 2a, and 3b. Bottom part showing (left–right) sawtooth, teddy and flowerpots.

of a given type. Binocular errors are expected to be less
than the monocular errors. Furthermore, the methods do not
explicitly handle monocular pixel labeling. For scenes with
fewer monocular pixels these errors do not have a big impact
on the overall error. However these errors become significant
for cluttered scenes with large number of monocular pixels
(e.g. scenes 1a-b, 3a-b Table II). In the experiments two
types of monocular labels are considered. The first is a
disparity label and the second is a binary monocular (i.e.
an invalid disparity value) and non-monocular (i.e. a valid
disparity value) labeling. Basic and KZ-vis do not make any
distinction between monocular and binocular pixels and as
a result both label monocular pixels with a disparity value.
KZ-uni however has occlusion label which is assigned to
any pixel that does not have a corresponding pixel. To make
the comparison consistent, the output of Basic and KZ-vis
are assigned monocular labels in an additional pass. This is
done by performing cross-checking with the left and right
disparity maps. If a pixel and its corresponding pixel do not
have the same disparity value then that pixel is marked as
monocular. These results are referred to as Basic-cc and KZ-
vis-cc. To summarize, two types of comparisons are made
for monocular pixels. A comparison between Basic and KZ-

vis (i.e. for disparity labels), and comparison between Basic-
cc , KZ-vis-cc and KZ-uni (i.e. binary monocular label).
Fig. 3 shows this error for a subset of the scenes.

2. Region (Fig. 4): This categorization is based on whether
a pixel is on the occlusion boundary or away from the
boundary. The accuracy of the border pixels is more sensitive
to the choice of prior and the additional constraints (i.e.
visibility and uniqueness) that are used to enforce correct
labeling of these pixels. Naturally for scenes with large
number of occlusion boundaries this type of error becomes
significant. These regions are further subdivided based on
binocular and monocular pixels and analyzed as before. The
plots are shown in Fig. 4.

3. Joint ground-truth and output (Fig. 2): This is the joint
histogram of disparity assignment and ground-truth. Here
too, the pixels are categorized into binocular and monocular.
The objective of such plots is to highlight the type of errors
occurring at each disparity. For the plots, the λ parameter is
fixed to the value giving the lowest error. It should be noted
that ideally the monocular joint plot for KZ-uni should be
empty since the algorithm labels those pixels as occluded
(and hence no disparity label). Therefore the monocular joint
plots for KZ-uni basically shows the types of mislabeled



Sparse Binocular Monocular

B+NB
Basic ≈ KZ-vis disp: KZ-vis < Basic

≈ KZ-uni occ: Basic-cc > KZ-uni> KZ-vis-cc
NB same as above same as above

B
Basic ≈ KZ-vis disp:same as above

< KZ-uni occ: Basic-cc < KZ-uni
< KZ-vis-cc

(a) Sparse Binocular-Monocular Boundary

Dense Binocular Monocular

B+NB
Basic < KZ-uni disp: KZ-vis < Basic

< KZ-vis occ: Basic-cc < KZ-uni
< KZ-vis-cc

NB Basic ≈ KZ-vis ≈ KZ-uni same as above
B Basic < KZ-uni < KZ-vis same as above

(b) Dense Binocular-Monocular Boundary

Table III
SUMMARY OF RESULTS FOR DIFFERENT SCENES (I.E. A) SPARSE AND B)

DENSE), TYPES OF PIXELS (BINOCULAR OR MONOCULAR) AND
REGIONS (B: OCCLUSION BOUNDARY, NB: NOT BOUNDARY AND

B+NB: ALL REGION). THE COMPARISON IS BASED ON THE LOWEST
ERROR I.E. a < b IMPLIES METHOD a’S LOWEST ERROR IS LESS THAN

b’S LOWEST ERROR.

pixels. Fig. 2 shows the joint error for both binocular and
monocular pixels for scenes 1b, 3b and 2b.

Table III(a) and III(b) summarizes the results. The analy-
sis is primarily focused on how the three methods perform
relative to each other for different types of pixels (i.e. binoc-
ular or monocular) in different regions (i.e. near occlusion
or not near). Scenes are categorized into sparse and dense
scenes based on the amount of occlusion boundary (i.e.
last column in Table II) present in them. For each type of
scene the binocular, monocular, boundary and joint errors
are considered.

Sparse Scenes: For binocular pixels in sparse scenes all
three methods have similar performance (i.e. lowest error is
the same). For binocular pixels on the border the ordering
between the methods is different but since the scenes are
sparse the border pixels make a very small contribution to
the overall error. For sparse scenes, if monocular disparity
is considered then KZ-vis always perform better than Basic.
For binary occlusion labeling, the cross-checking based
methods and KZ-uni have almost similar error.

Dense Scenes: For binocular pixels in dense scenes, the
order of performance is usually Basic, KZ-uni, and KZ-vis.
This is also the order for binocular pixels on the boundary.
However all three methods have equal performance for
pixels that are away from the boundary. Since the amount
of occlusion boundary is large, the mislabeled pixels on
the boundary have more impact on the overall error. Note
that scene 3b is an exception. In this case KZ-vis does
significantly better than the other methods. This scene has
a lot of visible background and from the second row of
Figure 2 it can be seen that KZ-vis (middle column) is
doing better than the other two at labeling those pixels

in the background (i.e. the (0,0) bin has more weight for
KZ-vis). The joint histogram also shows that for 1b (top
row), KZ-vis mostly mislabels pixels in the mid disparity
range. This is mostly because most of the binocular pixels
on the occlusion boundary are at this disparity. For this
scene the other methods (left and right column) have most
pixels concentrated on the diagonal. Finally for monocular
pixels with disparity labels, KZ-vis does better than Basic
independent of pixel region. From the joint histogram of
monocular pixels on the third row of Figure 2, it can be seen
that KZ-vis has a strong diagonal. On the other hand, the
monocular labels for Basic is almost uniformly distributed
over all the bins. For occlusion labeling the ordering is
always Basic-cc, KZ-uni, and KZ-vis-cc. The joint plot of
2b shows the mislabeled monocular pixels.

VI. CONCLUSION

In this paper, we investigated how different constraints
in the MAP-MRF formulation for stereo works for cluttered
scenes. We have shown that our definition of cluttered scenes
can incorporate different amounts of monocular pixels and
discontinuity (both depth discontinuity in general and oc-
clusion edges). We generated cluttered scenes with different
parameter settings so as to obtain scenes with different
properties. Furthermore we have the advantage of obtaining
a large number of scenes with the same property. This
allowed us to test the different methods under different
condition and statistically estimate the error rate.

We observed that when all pixels are considered (i.e. both
binocular and monocular error) then KZ-vis outperforms the
other two methods. This is not because KZ-vis does better
for binocular pixels near occlusion boundaries but mainly
because it does significantly better for monocular pixels near
occlusion boundary. In fact KZ-vis can often (except in 3b)
perform poorly for binocular pixels for dense scenes. Since
KZ-vis outperforms all other methods for monocular pixels,
it should perform better for general cluttered scenes. For
binary occlusion labeling the basic constraint with cross-
checking i.e. Basic-cc has the best performance. But it is
a two pass process and KZ-uni can achieve comparable
result in a single pass. For binocular pixels KZ-uni performs
somewhere in between the other two methods.

To summarize, we generated a range of scenes with differ-
ent properties and showed how different methods perform
for these scenes. In this work we restricted our attention
to methods that enforce pixel-wise constraints. However,
most of the current top performing methods use region-
based constraints. In future work we will investigate how
those methods perform for cluttered scenes.
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Figure 2. Joint disparity error (top-bottom) for binocular pixels of 1b, 3b, and monocular pixels of 2b. The columns from left to right represent Basic,
KZ-vis and KZ-uni.
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Figure 3. Error Statistics for scenes 1a-b, 2a, 3b and 4b(top-bottom). The left column represents the error for binocular and the right columns for
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binocular pixels.
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Figure 4. Error occurring for binocular (left) and monocular (right) pixels on the boundary for scenes 1a-b, 2a, 3b and 4b(top-bottom). As before Basic,
KZ-vis, KZ-Uni, KZ-vis-cc and Basic-cc are represented using ◦, C, �, ⋄ and ×. The binocular plots for KZ-vis-cc and Basic-cc are not shown.


