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Abstract—Motivated by the abundance of images labeled
only by their captions, we construct tree-structured multi-
scale conditional random fields capable of performing semi-
supervised learning. We show that such caption-only data can
in fact increase pixel-level accuracy at test time. In addition,
we compare two kinds of tree: the standard one with pairwise
potentials, and one based on noisy-or potentials, which better
matches the semantics of the recursive partitioning used to
create the tree.
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I. INTRODUCTION

A. Motivation

A central problem in training object localization models

is that pixel-labeled images are rare and costly to produce.

In contrast, data that have only weak labeling information,

such as captions, are relatively abundant. We would like to

construct a localization model which can incorporate such

weakly labeled data into its training set. As we will show,

this can be done by constructing a unified model of object

presence at both the scale of the whole image as well as the

scale of individual super-pixels.

B. Multi-scale Approaches

Recent work has shown that combining evidence from

multiple scales is an effective strategy for image classifica-

tion [1] [2] [3]. These approaches exploit the fact that label

fields at different scales must agree with each other to some

degree.

This observation motivates the following procedure for

building a joint model across scales: First, segment an

image at different scales. Next, estimate a class’ presence or

absence separately for each segment. Finally, combine these

local estimates with a conditional random field (CRF).

C. Previous Approaches to Multiscale CRFs

The construction of multi-scale CRFs was previously

demonstrated in [2] and [3]. In these experiments, each

image was segmented independently at multiple scales.

Potentials were trained to estimate the local evidence that

each node contained the class of interest. Each node was

Figure 1. An example of a CRF defined on a recursively segmented image.
Left: An example image, segmented at 4 levels of detail. Centre: The image
segments, coloured to denote the presence of a sheep within them. Right:
The tree-structured CRF corresponding to the image segments, where each
segment is attached to all of its sub-segments.

then connected to a parent node from the next coarser level

of segmentation, whose segment most overlapped the child

segment. This procedure resulted in a tree-structured CRF

which could combine local evidence from all nodes in a

sensible way. Figure 1 shows an example of such a CRF.

Because this model defined a joint probability over labels

at all scales, it could perform both image classification

and object localization. In addition, it could effectively

incorporate evidence from other image classifiers to perform

better localization on unlabeled images. [2]

D. Contributions

In this work, we further develop the use of such tree-

structured multiscale CRFs. However, in contrast to previous

approaches, we construct the joint CRF before training,

which allows evidence from partially labeled data to propa-

gate through the tree, acting as a training signal at all scales.

Thus, our model can perform semi-supervised learning,

taking advantage of weakly labeled data. This is a significant

advantage, since there is an abundance of weakly labeled

image data on the web: specifically, images which only have



captions, (such as ‘cat’) but no pixel-level labels. We show

that such caption-only data can in fact increase pixel-level

accuracy at test time.

The other main contribution of this paper is the use

of an exact, recursive image segmentation, in which each

segment is composed entirely of smaller image segments.

This induces an OR-structured correspondence between the

labels of each segment and its subsegments. We examine the

effect of introducing the noisy-or factor in section IV.

II. SEMI-SUPERVISED LEARNING IN PAIRWISE CRFS

In this section, we give details of our segmentation algo-

rithm, define the multiscale CRF with pairwise potentials,

show how to compute the likelihood, and show how learning

can be done via the Expectation-Maximization algorithm.

A. Exact Recursive Segmentation

In previous work [2] [3], segmentations at different levels

of detail were constructed independently of one another.

This approach is efficient, but has the disadvantage that the

segments at one level of detail may not significantly overlap

with the segments at the next coarsest level.

As opposed to segmentation images at each scale inde-

pendently, we construct an exact recursive segmentation. We

define a multi-scale segmentation to be recursive when each

segment is contained in exactly one other segment at the

next coarser level of detail.

To produce the exact recursive segmentation used by our

model, we first segment the image at the finest spatial scale

using a Quick-shift based super-pixel algorithm [4]. We then

run a sparse affinity propagation clustering algorithm [5]

to cluster adjacent image regions. The similarity between

regions is simply the L2 distance between their mean colors.

We perform several rounds of clustering, corresponding to

increasingly coarse levels of detail. We stop when there are

6 or fewer segments, which are merged in a final step.

In all experiments performed in this paper, we trun-

cated the recursive segmentation at four levels of recursion,

leaving approximately 30 segments per image at the finest

level of detail. Figure 2 shows some examples of recursive

segmentations using this algorithm.

B. Model Semantics

As in previous work, we construct the CRF by connecting

nodes whose image regions have maximal overlap. However,

in our case, each node is completely contained in exactly one

other node by design. We denote the containing region to

be a parent region, and the nodes contained within it to be

the children of that region.

The image segments at all levels of detail can be denoted

by Sr, where r denotes the segment number. The model

contains one label node Y
(c)
r for each class c and each

element of the recursive image partition Sr. Setting Y
(c)
r = 1

is interpreted as meaning that the image region defined by

Figure 2. Example multi-scale segmentations from the VOC 2008 dataset.
Rows one to four: Image segmentation at progressively finer levels of detail.

segment Sr contains part of an object from class c, while

setting Y
(c)
r = 0 is interpreted as meaning that the image

region Sr does not contain part of an object from class c.

C. Local Evidence Potentials

The local evidence log-potential for each node Y
(c)
r in

this model depends linearly on the feature vectors xr for

the region Sr. We define the local evidence log-potential in

Equation 2.1, where w
(c)
l are the feature-to-label weights

for class c and segmentation level l.

φf

(

y(c)r , xr

)

= y(c)r (xT
r w

(c)
l ) (2.1)

Weights are shared across all nodes in a given level of

detail l of the segmentation tree within each object class.

In the experiments below, the weight vectors w
(c)
2 and w

(c)
3

were also constrained to be equal.

We make a separate copy of each CRF for each class.

Each class’s training and testing was performed separately,

so from this point on, we drop the (c) superscript for

notational simplicity.

D. Independent Model

As a baseline, we can consider an image model consisting

solely of unconnected local evidence potentials. In this “in-

dependent” model, every region label is predicted separately,



and the model becomes equivalent to a per-region logistic

regression on each region’s image features. The parameters

of the independent model only can be trained on fully-

labeled data.

The likelihood of a node label assignment y in the

independent model is as follows:

P (y|x) =
1

Z

N
∏

i=1

exp
(

φf (yi, xi)
)

(2.2)

where N is the number of nodes in the tree.

E. Pairwise Potentials

To construct a joint distribution over label nodes, we in-

troduce pairwise potentials connecting neighbouring nodes.

These pairwise potentials depend only on a 2x2 table of

parameters θ, indexed by values taken by the nodes at each

end of the potential.

φpair (yi, yj) = θ(yi, yj) (2.3)

In our experiments, three sets of pairwise parameters were

learned: One set for the potentials connecting global nodes

to their children, another set for the potentials connecting

the two middle layers, and a third set for the potentials

connecting middle-layer nodes to bottom-layer nodes.

F. Likelihood

The likelihood of observing a particular configuration of

label nodes y given feature vector x is defined as:

P (y|x) =
1

Z

N
∏

i

exp

(

φf (yi, xi) + φpair(yi, ypar(i))

)

(2.4)

Here par(i) denotes the index of parent of node i. As a

special case, the root has no parent node, and φpair = 0.

G. Likelihood Gradients

We now show how to compute the gradient of the log-

likelihood in the presence of missing (unlabeled) data.

First, let y
mis denote the missing labels while y

obs

denotes the observed labels. The marginal probability of

observing y
obs can be obtained by summing out over all

joint configurations of the missing labels y
mis:

P (yobs|x) =
∑

ymis

P (yobs,ymis|x) (2.5)

We can then define the posterior probability of the missing

labels given the observed labels:

P (ymis|yobs,x) =
P (ymis,yobs|x)

P (yobs|x)
(2.6)

We compute both of these quantities using belief propa-

gation [6]. Then, the gradient for the weights with respect

to the expected complete log-likelihood L is given by:

∂E[L]

∂wc
l

=
∑

i∈Layer(l)

[

P (yi|y
obs,x)− P (yi|x)

]

xi (2.7)

This gradient sums across training examples. In addition,

an L2 regularization penalty was placed on the image feature

weights w.

H. Learning

Learning was broken into three stages as follows:

1) The image feature weights w, initialized to zero,

were trained in the independent model by supervised

training on fully labeled training images.

2) Pairwise factors φpair were added to the CRF, and the

feature weights w along with the pairwise parameters

θ were learned jointly by supervised training on the

fully labeled training examples.

3) Caption-only data was added to the dataset, and the

model was trained in a semi-supervised way using the

E-M algorithm shown above.1

III. EXPERIMENTS

A. Performance Metric

Performance was measured by the accuracy a as defined

in the VOC 2008 challenge as

a =
tp

tp + fp + fn
(3.8)

where tp, fp, and fn mean true positive, false positive, and

false negative, respectively [2]. True positive is the number

of foreground pixels correctly predicted. False positive is the

number of background pixels incorrectly predicted. False

negative is the number of foreground pixels incorrectly

predicted. Here, “foreground” refers to the parts of the image

containing the class of interest.

B. Pascal VOC Dataset

The data used for these experiments were gathered from

the training and validation sets provided in the PASCAL

Visual Object Classes(VOC) Challenge 2008 segmentation

dataset [7]. This dataset contains 1023 fully labeled images,

each approximately 500x500 pixels. Each pixel is either

assigned to one of 20 classes, assigned to the “background”

class, or labeled as “don’t care”. The predicted labels of

pixels labeled “don’t care” do not count towards the accuracy

score.

1The function minimizer used in the M step was minFunc by Mark
Schmidt, which implements the L-BFGS algorithm. This software is
available at http://www.cs.ubc.ca/ schmidtm/Software/minFunc.html



8

8.5

9

9.5

10

10.5

11

In
de

pe
nd

en
t

Pai
rw

is
e

Pai
rw

is
e 

+ 
SS

N
oi
sy

−O
r

N
oi
sy

−O
r +

 S
S

P
e

rc
e

n
t 

A
c
c
u

ra
c
y

Figure 3. Pixel-level test accuracy across all models.

C. Image Features

The image features used were: colour histograms (100 di-

mensions), histogram of oriented gradients (200 dimensions)

[8], textons (500 dimensions) [9], and the 5x5 discretized

location of the segment (25 dimensions). With a bias term

added, each feature vector had 826 dimensions. However, the

model is somewhat agnostic to the image features computed,

and allows the use of different feature vectors at different

levels in the segmentation hierarchy. For instance, one may

want to use GIST [10] features at the highest spatial scale,

as in [11]. However, exploratory experiments did not show

a significant difference in performance when the top level

features were replaced with a GIST vector.

D. Dataset Balancing

In these experiments, we balanced the dataset for each

class separately by removing approximately 80% of images

that did not contain the class of interest from the training

sets.

E. Cross-validation

Error bars depicting one standard error were produced

by conducting experiments on five training/test splits of the

data. Within each split, the L2 regularization parameter λ

was chosen by nested cross-validation: Each training set was

split into five inner training/validation splits. For both the

supervised case and the semi-supervised case, the setting of

λ that had the best average accuracy on the validation set

was chosen to train the model on the whole training set for

that fold.

Each outer fold had 400 fully-labeled training examples,

400 caption-only training examples, and 200 test examples.

F. Results

Figure 3 shows mean performance across all 21 classes in

the VOC dataset, averaged over 5 folds. Error bars represent
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Figure 4. A plot of the change in test error versus the pixel-level accuracy
on the test set after supervised training, when the global node was set to
the true value.

one standard error. The mean improvement in accuracy after

semi-supervised training is statistically significant.

To better understand where the improvement from semi-

supervised learning came from, we produced figure 4. This

figure shows the change in pixel-level accuracy on each

class after semi-supervised training, versus the pixel-level

accuracy after supervised training when the top-level node

was clamped to the true value. Only those classes which

were already well-localized after supervised training were

able to take advantage of the caption-only data.

G. Smoothing

In Figure 5, we compare the pixel level probabilities

amongst the three models for an image drawn from the

test set. In the image shown, the independent model finds

several disparate patches which match the class of interest. In

the tree models, evidence from the whole tree is combined,

resulting in a smoother labeling at the pixel level.

Figure 5. Detecting a dog. Top left: Original image. Top center:
Segmentation at bottom level. Top right: True pixel labels. Bottom left:
Pixel probabilities for independent model. Bottom center: Pixel probabilities
for pairwise model. Bottom right: Pixel probabilities for noisy-or model.



H. Improving Performance

The performance of the models in these experiments

is unimpressive relative to the state of the art. However,

there are several reasons to expect that significantly better

performance can be achieved, at the cost of slower training

times2.

To improve test accuracy, any of the following steps could

be taken:

• The recursive segmentation can be made finer. In the

experiments performed above, the recursive segmenta-

tion was only four levels deep, leaving relatively large

segments at the finest scale. Since images can only

be labeled per-segment, a coarse segmentation puts an

upper bound on the pixel-level accuracy.

• The training set can be left unbalanced. In the exper-

iments above, the training datasets were balanced by

removing approximately 80% of images that did not

contain the class of interest.

• The number of unlabeled examples can be increased

relatively easily. To gather caption-only training data

for the “dog” image model, for example, it suffices to

merely find images that somewhere contain a dog, with

no further labeling required. Note that these models

can safely incorporate datasets having some incorrect

labels, by giving images probabilistic labels.

In the following section, we investigate the possibility

of improving performance by introducing a different factor

joining the layers of the tree.

IV. NOISY-OR TREE MODELS

A. Motivation

In a multiscale CRF, how should we specify the joint

probability of a group of child nodes and their common

parent? When we segment an image recursively, then we

will only observe a parent node to be if at least one child

node is on. Thus, a factor joining parents and children should

only put probability mass on states where either the parent

is off, or where the parent and one or more children are also

on.

Such factors have the same semantics as a logical OR-

gate, whose probabilistic analogue is the noisy-or factor.

As shown in [6], belief propgation messages for a noisy-

or factor can be computed in time linear in the number

of children in the factor. Thus noisy-or factor is appealing

because it closely matches the semantics of the multiscale

tree, while having the same time complexity as the pairwise

model.

2In the experiments above, the tree models take approximately 2 hours to
train per class on a 2GHz CPU, for a given setting of the hyperparameters.
The main bottleneck in training the model is in performing inference at each
step on each of the the partially-labeled examples. However, this inference
step can be computed in parallel over all examples.

Local Evidence Pairwise Tree Noisy-Or Tree

Marginals Marginals

Figure 6. Left: Local evidence before belief propagation. Middle:
Marginals after belief propagation in a pairwise tree. Right: Marginals after
belief propagation in a noisy-or tree. Node size is proportional to marginal
probability.

B. Definition

The noisy-or factor has the following semantics: The

parent3 node yp turns on with probability θ independently

for each child yi that is turned on. Here i ranges from 1 to c,

the number of children of yp. Thus the noisy-or log-potential

can be defined as:

φno (yp, y1...c) = log

(

1−

c
∏

i=1

(1− θ)yi

)yp

+ log

(

c
∏

i=1

(1− θ)yi

)(1−yp)

(4.9)

In a form that is easier to read, we can replace the success

rate θ with the failure rate q = 1− θ:

exp(φno (yp, y1...c)) =

[

1−
c
∏

i=1

qyi

]yp
[

c
∏

i=1

qyi

](1−yp)

(4.10)

C. Multiple-Instance Learning

The noisy-or model is typically used in the multiple

instance learning (MIL) setting [12]. In the MIL setting, the

training set is constructed of subsets of training examples,

where each subset is labeled as a positive example if any

members of the subset are examples of the class of interest.

The MIL setting is very similar to the semi-supervised

object-detection task we are given here.

D. Evidence Flow in Trees

To illustrate the difference between pairwise trees and

noisy-or trees, we show a synthetic example. Figure 6

contrasts evidence flows between the two models. Given

strong evidence that a class is present somewhere in the

image, and weak evidence that it is present at one location,

the pairwise tree adjusts its probability strongly everywhere.

The noisy-or tree only adjusts its probability significantly in

the regions containing weak evidence.

3Here we are using “parent” and “child” to denote relative position in
the image segmentation, not in the sense of a Directed Acyclic Graph.



E. Likelihood

The likelihood of the noisy-or tree model is similar to that

of the pairwise tree model. Essentially, each set of pairwise

potentials between a parent and all of its children is replaced

by one noisy-or factor:

P (y|x) =
1

Z

N
∏

i

exp
(

φf (yi, xi) + φno(yi, ychildren(i))
)

(4.11)

Where, as a special case, nodes at the bottom layer of the

tree have no children, and φno = 0.

F. Computing Expected Complete Likelihood

To compute the expected complete likelihood of the noisy-

or factors conditioned on local evidence at each of the child

nodes, we could simply use the junction-tree algorithm.

However, this method would require a sum over all possible

states of each group of children. This sum is exponential

in the number of children and may be prohibitively slow.

Fortunately, the expected likelihood can be calculated in

linear time.

To see that this is the case, consider computing the

expected likelihood of a family of nodes yp, y1...yc, each

with local evidence P (yi|ei) representing the contribution

from the local potentials φf (yi, xi). Note that when the

parent node is off (yp = 0), the sum over all child nodes

has a factorized form:

∑

y1...c

P (yp = 0|y1...c)P (y1...c|e) =
∑

y1...c

c
∏

i=1

qyiP (yi|ei)

(4.12)

Bringing sums inside of products, we obtain the efficient

form:

∑

y1...c

P (yp = 0|y1...c)P (y1...c|e) =

c
∏

i=1

∑

yi

qyiP (yi|ei)

(4.13)

Which skips the exponential sum. Thus we can compute

P (yp = 0|y1...c) efficiently. We can also trivially compute

P (yp = 1|y1...c) = 1− P (yp = 0|y1...c). The normalization

constant P (e) can be computed in the same manner. Thus

we can compute every quantity needed efficiently.

G. Training

The gradients for the image feature weights W are

identical to those of the pairwise tree model once the node

marginals have been computed, and can be estimated with

the same E-M algorithm as the pairwise trees.
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Figure 7. Pixel-level test accuracy in the pairwise and noisy-or models,
compared to the case where the global-level nodes were clamped to their
true value.

H. Learning the Noisy-Or Failure Rate Parameter

In a fully observed, recursively segmented image, the

maximum likelihood estimate for the failure rate parameter

q will always be zero, since a parent node will be observed

to be on if and only if a child is on. However, on partially

observed data, this is not necessarily the case.

In initial experiments, the parameter q was learned in

parallel with the feature weights W , but as the model

converged, the learned q parameter again tended towards

zero. For the experiments below, this parameter was fixed

to 0.01.

I. Performance

In figure 3, we can see that while the noisy-or model

offers a slight advantage over the pairwise model in the

fully supervised setting, it has the same performance as the

pairwise model in the semi-supervised setting.

To further shed light on the results in section III, we

conducted a number of experiments investigating the flow

of evidence within CRFs for the two models.

J. Introducing an Oracle

Following [2], we examined the effect of introducing a

perfect oracle at the root node of the CRF. This let us

examine how well the models localize given the correct

object classification, and allowed us to compute an upper

bound on the possible performance boost in pixel-level

accuracy attainable by incorporating evidence from a better

global-level classifier. Figure 7 shows the results. We see that

both models obtain a large increase in pixel-level accuracy

when combined with an oracle. This result is consistent with

results in [2].

We also observe that the pairwise model receives a much

greater boost in accuracy from the oracle than the noisy-or

model. This result, combined with the example in Figure 6,

suggests that the noisy-or model might be inappropriately



Pairwise Factors

True Labels Local Evidence

Tree Marginals Clamped Marginals

Figure 8. An example of belief propagation and evidence flow in
the pairwise model, trained on real data. Node size is proportional to
probability.

Noisy-Or Factors

True Labels Local Evidence

Tree Marginals Clamped Tree Marginals

Figure 9. An example of belief propagation and evidence flow in a noisy-or
tree, trained on real data. Node size is proportional to probability.

“explaining away” the oracle’s being on by increasing the

marginal probability of only a small number of bottom-level

nodes.

K. Real Examples

To examine this phenomenon in more detail, we plot the

evidence flow on a CRF defined on an image drawn from

the test set. Figures 8 and 9 show the behavior of the two

models on a real example.

The most illuminating feature of these figures is the

difference in the marginals before and after the global node

has been clamped to the true value. When the global node is

clamped to the true value, we can see this evidence flowing

down to the leaves in both models. As in Figure 6, we

observe that in the pairwise model, evidence tends to flow

down all branches to some degree. In the noisy-or model, we

observe that evidence tends to flow down only one branch of

the tree, and to a smaller degree than in the pairwise model.

V. CONCLUSION AND FUTURE WORK

A. Large-Scale Experiments

Of the 400 caption-only images used here for semi-

supervised learning, on most classes only 20-50 images in

that set actually contained the class of interest. Given the

improvement in performance observed after adding only this

small number of examples to the test set, it seems worth

noting that a large weakly-labeled dataset could easily be

constructed for a small number of classes, to evaluate the

effectiveness of yet adding more caption-only data.

B. Bounding Box Data

In the recursive tree models, we can effectively incorpo-

rate bounding box information by setting a node containing

the entire bounding box to be ’on’. One next logical step

would be to incorporate the large amounts of bounding-

box labeled data available into the training set of multiscale

CRFs.

C. Concluding Remarks

Our central motivation for using multi-scale CRFs was

their ability to learn from weakly labeled data. This ability

was clearly demonstrated: during semi-supervised training,

we were able to observe evidence flowing from the labeled

global-level nodes to the unlabeled pixel-level nodes, and at

test time, we observed an increase in pixel-level accuracy. As

large, caption-only datasets such as ImageNet [13] continue

to grow, this ability will only become more useful.
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